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We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of
state P ¼ Kρ2, where ρ is the rest-mass density and K is a constant. The energy density ϵ ¼ ρc2 þ Kρ2 is
the sum of two terms: a rest-mass term ρc2 that mimics “dark matter” (P ¼ 0) and an internal energy term
u ¼ Kρ2 ¼ P that mimics a “stiff fluid” (P ¼ ϵ) in which the speed of sound is equal to the speed of light.
In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ∼ ϵ,
ϵ ∝ a−6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless
dark matter (P≃ 0, ϵ ∝ a−3). We provide a simple analytical solution of the Friedmann equations for a
universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological
constant. This analytical solution generalizes the Einstein–de Sitter solution describing the dark matter era,
and the ΛCDMmodel describing the dark matter era and the dark energy era. Historically, the possibility of
a primordial stiff matter era first appeared in the cosmological model of Zel’dovich where the primordial
universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent
cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates
(BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial
universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing
scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is
negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This
happens, for example, when the BECs have an attractive self-interaction with a negative scattering length.
In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At
t ¼ 0, the scale factor is finite and the energy density is equal to zero. The universe first has a phantom
behavior where the energy density increases with the scale factor, then a normal behavior where the energy
density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of
arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter
regime where the scale factor increases exponentially rapidly with time. This can account for the
accelerating expansion of the Universe that we observe at present. When the cosmological constant is
negative (anti–de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the
internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions
of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
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I. INTRODUCTION

The nature of dark matter (DM) is still unknown and
remains one of the greatest mysteries of modern cosmology.
In the standard cold dark matter (ΛCDM) model, DM is
modeled as a pressureless fluid (P ¼ 0Þ. This is appropriate if
DM is made of weakly interacting massive particles with a
mass in the GeV–TeV range. These particles freeze out from
thermal equilibrium in the early universe and, as a conse-
quence of this decoupling, cool off rapidly as the universe
expands. The ΛCDM model works remarkably well at large
scales [1] but it encounters serious problems at small scales of
the order of a few kpc, the typical galactic scale. In particular,
it predicts that DM halos should be cuspy (the central density
should diverge as r−1) [2] while observations reveal that they
have a flat core [3].On the other hand, since the Jeans length is
equal to zero (or is very low), the ΛCDM model predicts an

overabundance of small-scale structures (subhalos/satellites),
much more than what is observed around the MilkyWay [4].
These problems are referred to as the “cusp problem” and the
“missing satellite problem.” The expression “small-scale
crisis of CDM” has been introduced.
In order to solve this crisis, other models of DM have

been developed. For example, it has been proposed that
DM may be in the form of Bose-Einstein condensates
(BECs) [5–7]. The bosons could be QCD axions with a
mass m ∼ 10−6 eV=c2, but other types of bosons with a
small mass have also been considered. The quantum
properties of BECDM may solve the problems of CDM.
Indeed, the Heisenberg principle (for noninteracting
bosons) or the pressure due to the scattering (for self-
interacting bosons) prevent gravitational collapse at small
scales and lead to central density cores instead of cusps. On
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the other hand, the finite Jeans length set by quantum
mechanics (or scattering) provides a sharp small-scale
cutoff in the matter power spectrum which may solve
the missing satellite problem. These problems may also be
solved if DM is made of fermions, such as sterile neutrinos,
with a mass in the keV range [8,9]. This corresponds to
warm dark matter. In that case, gravitational collapse is
prevented by the Pauli exclusion principle for dwarf halos
and by thermal pressure for large halos.
Harko [10] and Chavanis [11] independently considered

the evolution of a universe made of self-interacting BECs in
the Thomas-Fermi (TF) approximation. The equation of
state of a nonrelativistic BEC is P ¼ 2πℏ2asρ2=m3 [12]
where m is the mass of the bosons, as is their scattering
length, and ρ is the rest-mass density. In the relativistic
regime, one needs to express the pressure P in terms of the
energy density ϵ in order to solve the Friedmann equations
[13]. Harko [10] and Chavanis [11] assumed that the energy
density is simply given by the relation ϵ ¼ ρc2, so that
P ¼ 2πℏ2asϵ2=m3c4. However, the relation ϵ ¼ ρc2 is true
only at sufficiently late times, in the weakly relativistic and
nonrelativistic regimes, so it is not possible to extrapolate
their results in the early universe. Indeed, their approach
neglects the internal energy of the BECs [14].
If we consider a relativistic fluid at T ¼ 0, or an adiabatic

fluid, described by a barotropic equation of state PðρÞ, the
relation between the energy density and the rest-mass
density is given by an equation of the form ϵ ¼ ρc2 þ
uðρÞ [see Eq. (9) below] where ρc2 is the rest-mass energy
and uðρÞ is the internal energy which is entirely determined
by the equation of state PðρÞ. On the other hand, the rest-
mass density decreases as ρ ∝ a−3 [see Eq. (12) below],
where a is the scale factor. The decomposition ϵ ¼
ρc2 þ uðρÞ is very interesting because it shows that the
energy density of a relativistic fluid is the sum of a rest-
mass term that mimics pressureless “dark matter” and an
internal energy term that mimics a “new fluid.” If we
consider a polytropic equation of state P ¼ Kργ with
γ ¼ 1þ 1=n, we find that ϵ ¼ ρc2 þ nKργ ¼ ρc2 þ nP.
The rest-mass energy is given by ρc2 ∝ a−3 and the internal
energy is given by u ¼ Kργ=ðγ − 1Þ ¼ P=ðγ − 1Þ ∝ a−3γ.
We have to consider two cases.
When γ < 1 (n < 0), the rest-mass energy dominates in

the early universe (a low, ρ large) and the internal energy
dominates in the late universe (a large, ρ low). In that case,
the rest-mass term mimics dark matter and the internal
energy term mimics dark energy (when u > 0 and P < 0)
or anti-dark energy (when u < 0 and P > 0). This inter-
pretation is particularly relevant when γ → 0 (n → −1) and
K < 0 because a fluid with a constant negative pressure
P ¼ −ϵΛ, corresponding to γ ¼ 0, n ¼ −1 and K ¼ −ϵΛ
behaves similarly to the ΛCDM model (conversely, a fluid
with a constant positive pressure P ¼ ϵΛ, corresponding to
γ ¼ 0, n ¼ −1 and K ¼ ϵΛ, behaves similarly to the anti-
ΛCDM model) [15–17]. Therefore, a fluid with γ ≃ 0 and

K < 0 can account for small deviations from the ΛCDM
model and solve some of its small-scale problems. This
idea was developed in Ref. [18] by means of a fully
predictive cosmological model based on a dark fluid with a
logotropic equation of state. The logotropic equation of
state P ¼ A lnðρ=ρ�Þ can be viewed as the limiting form of
the polytropic equation of state P ¼ Kργ with γ → 0 and
K → ∞ in such a way that A ¼ Kγ is finite [19]. Therefore,
the logotropic equation of state is very appropriate to
describe dark energy for which γ ≃ 0. The considerations
of Ref. [18] show that ρ� can be identified with the Planck
density ρP ¼ c5=G2ℏ ¼ 5.16 × 1099 gm−3. On the other
hand, the logotropic temperature A is interpreted as a
fundamental constant given by A≃ ρΛc2= lnðρP=ρΛÞ≃
ρΛc2=½123 lnð10Þ� ¼ 2.13 × 10−9 gm−1 s−2 where ρΛ ¼
6.72 × 10−24 gm−3 is the cosmological density. This
model provides a unification of dark matter and dark
energy and is able to explain, without any free parameter,
observational results that were not explained previously.
When γ > 1 (n > 0), the rest-mass energy dominates in

the late universe and the internal energy dominates in the
early universe. In that case, the rest-mass term mimics dark
matter and the internal energy term mimics a primordial
cosmological fluid existing before the matter era. For a
quadratic equation of state (γ ¼ 2), corresponding to the
BEC model, we find that ϵ ¼ ρc2 þ Kρ2 ¼ ρc2 þ P. In the
late universe, where the density ρ is low, ϵ ∼ ρc2 ∝ a−3 so
that P ∼ Kϵ2=c4 like in the works of Harko [10] and
Chavanis [11]. In this limit, P ≪ ϵ, so the system behaves
essentially as CDM (P ¼ 0) with a small correction due to
the BEC. In the early universe, where the density ρ is high,
ϵ ∼ Kρ2 ∝ a−6 so that P ∼ ϵ. In that limit, the system
behaves as a stiff fluid in which the speed of sound cs ¼ffiffiffiffiffiffiffiffiffiffiffi
P0ðϵÞp

c equals the speed of light (cs ¼ c). Therefore,
everything happens as if the Universe were made of two
noninteracting fluids, a dark matter fluid with a pressureless
equation of state P ¼ 0 and a “new fluid” with a stiff
equation of state P ¼ ϵ. Recalling that K ¼ 2πℏ2as=m3 in
the BEC model, we note that the stiff fluid has a positive
energy density ϵ ¼ Kρ2 when as > 0 and a negative energy
density when as < 0.1 There is, however, no contradiction
with the fundamental laws of physics because our decom-
position in two noninteracting fluids is purely formal, or
effective. In reality, we have just one dark fluid and, of
course, its total energy density ϵ ¼ ρc2 þ Kρ2 is positive.
The rest-mass term ρc2 is always positive while the internal
energy term Kρ2 can be positive (K ≥ 0) or nega-
tive (K ≤ 0).

1BECs in which the bosons have an attractive self-interaction,
corresponding to a negative scattering length as < 0, exist in
nature and have been observed in laboratory experiments [12]. It
is therefore natural to consider the cosmological implications of a
negative scattering length of the bosons.
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The possibility of a primordial stiffmatter era first appeared
in the cosmological model of Zel’dovich [20] in which the
very early universe is assumed to be made of a cold gas of
baryons with an equation of state P ¼ ϵ. The aim of
Zel’dovich was to investigate the cosmological implications
of an equation of state forwhich the speed of sound is equal to
the speed of light [21]. In that case, the energy density
decreases as ϵ ∝ 1=a6. The stiff matter era (P ¼ ϵ, ϵ ∝ a−6)
precedes the radiation era (P ¼ ϵ=3, ϵ ∝ a−4), the darkmatter
era (P ¼ 0, ϵ ∝ a−3), and the dark energy era (P ¼ −ϵ,
ϵ ¼ ϵΛ). Zel’dovich’s model has been abandoned after the
success of the hot big bang theory, but it remains interesting
froma historical perspective. In addition, his paper is still very
much quoted, showing that there is a lot of activity on stiff
matter in general. Indeed, a stiff equation of state has several
interesting properties [22] that deserve to be better explored.
Stiff matter also occurs in the context of relativistic scalar

fields (SFs). A SF behaves as a stiff fluid when its kinetic
energy dominates its potential energy. In cosmology, this
corresponds to the kination epoch of scalar field evolution.
Therefore, a primordial stiff matter era is a fundamental
feature of any model based on a SF. Recently, Li et al. [23]
developed a fully relativistic treatment of SF/BECdarkmatter
and showed that the Universe undergoes successively an
intrinsic stiff matter era, followed by a radiation era (existing
only for a self-interacting SF), and a matter era. The stiff
matter era occurs when the SF oscillations are slower than the
Hubble expansion while the radiation and matter eras occur
when theSFoscillations are faster than theHubble expansion.
The same model has been investigated by Suárez and
Chavanis [24] using a hydrodynamical representation of
the Klein-Gordon-Einstein (KGE) equations.
For all the reasons given previously, it is important to

study a cosmology including a stiff matter era. In this paper,
we provide a simple analytical solution of the Friedmann
equations for a universe undergoing a stiff matter era, a dark
matter era, and a dark energy era due to the cosmological
constant.2 This analytical solution provides a simple
cosmological model generalizing the Einstein–de Sitter
(EdS) model and the ΛCDM model by incorporating a stiff
matter era. There are not many analytical solutions of the
Friedmann equations, so this solution is valuable.
Furthermore, it is of physical interest since stiff fluids
have often been advocated in astrophysics and cosmology.
We consider the general case where the energy density of

the stiff fluid (more precisely the internal energy of the dark
fluid) is positive or negative. The case of a stiff fluid with a
positive energy density is very similar to the standard
model of cosmology in the sense that the Universe starts
from a big bang singularity at t ¼ 0 in which the scale
factor is equal to zero while the energy density is infinite.

Initially, the scale factor increases as aðtÞ ∝ t1=3 and the
energy density decreases as ϵðtÞ ∝ t−2. Interestingly, a stiff
fluid with a negative energy density (anti-stiff fluid)
prevents the primordial singularity. In that case, we obtain
a model of a bouncing universe like in loop quantum
cosmology (LQC) [25]. At t ¼ 0, the scale factor is finite
and the energy density is equal to zero. The universe first
has a phantom behavior where the energy density increases
with the scale factor, then a normal behavior where the
energy density decreases with the scale factor. This model
is symmetric by time reversal t → −t. For the sake of
generality, we consider a positive or a negative cosmo-
logical constant. At late times, a dark fluid with a positive
cosmological constant enters in a de Sitter era in which the
scale factor increases exponentially rapidly with time. This
can account for the present acceleration of the Universe. By
contrast, when the dark fluid has a negative cosmological
constant (anti–de Sitter or anti-dark energy) the evolution
of the universe is cyclic. Therefore, depending on the sign
of the internal energy of the dark fluid and on the sign of the
cosmological constant, we obtain analytical solutions of the
Friedmann equations describing singular and nonsingular
expanding, bouncing, or cyclic universes.
The paper is organized as follows. In Sec. II we derive

general theoretical results needed in our analysis. In
Sec. III, we consider a perfect fluid at T ¼ 0, or an
adiabatic fluid, described by a quadratic equation of state
of the form P ¼ Kρ2, where ρ is the rest-mass density and
K is a constant. We determine the relation between the
energy density ϵ and the rest-mass density ρ and obtain an
explicit equation of state PðϵÞ [see Eqs. (17) and (22)]
relating the pressure to the energy density. For K ≥ 0, this
equation of state reduces at high energies to a stiff equation
of state P ∼ ϵ for which the speed of sound is equal to the
speed of light, and at low energies to a quadratic equation of
state P ∼ Kϵ2=c4. For K ≤ 0, the equation of state PðϵÞ has
two branches, one corresponding to a phantom behavior
(starting from an anti-stiff matter era) and one correspond-
ing to a normal behavior (ending in the matter era). In
Sec. IV, we give examples of systems described by a
quadratic equation of state P ¼ Kρ2 leading, in the regime
of high density, to a stiff equation of state P ¼ ϵ. In Sec. V,
we apply this equation of state to cosmology. This leads to a
cosmological model exhibiting a primordial (anti-)stiff
matter era, followed by a radiation era, a dark matter
era, and an ultimate (anti-)dark energy era. In Secs. VI–IX,
we provide simple analytical solutions of the Friedmann
equations for a universe exhibiting a primordial (anti-)stiff
matter era, a dark matter era, and an ultimate (anti-)dark
energy era. We consider four cases: a singular expanding
universe with K ≥ 0 and Λ ≥ 0; a nonsingular bouncing
universe with K ≤ 0 and Λ ≥ 0; a singular cyclic universe
with K ≥ 0 and Λ ≤ 0; a nonsingular bouncing cyclic
universe with K ≤ 0 and Λ ≤ 0. In Sec. X, we provide
simple analytical solutions of the Friedmann equations

2The main limitation of our analytical solution is that it does
not describe the radiation era that takes place between the stiff
matter era and the dark matter era.
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taking the radiation era into account. Finally, in Sec. XI, we
discuss a simple analytical model based on a generalized
polytropic equation of state [15–17] describing the tran-
sition from an inflation era to a stiff matter era.

II. THEORETICAL FRAMEWORK

A. The Friedmann equations

We assume that the Universe is homogeneous and
isotropic, and contains a uniform perfect fluid of energy
density ϵðtÞ and isotropic pressure PðtÞ. The radius of
curvature of the three-dimensional space, or scale factor, is
denoted as aðtÞ and the curvature of space is denoted as k.
The universe is closed if k > 0, flat if k ¼ 0, and open if
k < 0. We assume that the Universe is flat (k ¼ 0) in
agreement with the observations of the cosmic microwave
background [26]. In that case, the Einstein equations can be
written as [13]

dϵ
dt

þ 3
_a
a
ðϵþ PÞ ¼ 0; ð1Þ

ä
a
¼ −

4πG
3c2

ðϵþ 3PÞ þ Λ
3
; ð2Þ

H2 ¼
�
_a
a

�
2

¼ 8πG
3c2

ϵþ Λ
3
; ð3Þ

where we have introduced the Hubble parameter H ¼ _a=a
and accounted for a possible nonzero cosmological con-
stant Λ. The cosmological constant is equivalent to a dark
energy fluid with a constant density

ϵΛ ¼ ρΛc2 ¼
Λc2

8πG
; ð4Þ

and an equation of state P ¼ −ϵ. Equations (1)–(3) are the
well-known Friedmann equations describing a nonstatic
universe. Among these three equations, only two are
independent. The first equation can be viewed as an
equation of continuity. For a given barotropic equation
of state P ¼ PðϵÞ, it determines the relation between the
energy density ϵ and the scale factor a. Then, the evolution
of the scale factor aðtÞ is given by Eq. (3).
Introducing the equation of state parameter w ¼ P=ϵ,

and assuming Λ ¼ 0, we see from Eq. (2) that the Universe
is decelerating if w > −1=3 (strong energy condition) and
accelerating if w < −1=3.3 On the other hand, according to
Eq. (1), the energy density decreases with the scale factor if
w > −1 (null dominant energy condition) and increases

with the scale factor if w < −1. The latter case corresponds
to a “phantom” universe [28].

B. Relativistic thermodynamics

The local form of the first law of thermodynamics can be
written as [13]

d

�
ϵ

ρ

�
¼ −Pd

�
1

ρ

�
þ Td

�
s
ρ

�
; ð5Þ

where ρ ¼ nm is the mass density, n is the number density,
and s is the entropy density in the rest frame. We assume
that the Universe is made of a dark fluid with an equation of
state PðρÞ. We assume that this fluid is at T ¼ 0 or that the
evolution is adiabatic (isentropic), dðs=ρÞ ¼ 0, which is the
case for a perfect fluid (one can show that the Friedmann
equations imply the conservation of the entropy) [13]. In
that case, the first law of thermodynamics (5) reduces to

dϵ ¼ Pþ ϵ

ρ
dρ: ð6Þ

For a given equation of state, Eq. (6) can be integrated to
obtain the relation between the energy density ϵ and the
rest-mass density ρ. If the equation of state is prescribed
under the form P ¼ PðρÞ, Eq. (6) reduces to the first-order
linear differential equation

dϵ
dρ

−
1

ρ
ϵ ¼ PðρÞ

ρ
: ð7Þ

Using the method of variation of constants, we obtain

ϵ ¼ Aρc2 þ ρ

Z
ρ Pðρ0Þ

ρ02
dρ0; ð8Þ

where A is a constant of integration. For an equation of state
PðρÞ such that P ∼ ργ with γ > 1 when ρ → 0, we
determine the constant A in Eq. (8) by requiring that ϵ ∼
ρc2 when ρ → 0. This gives

ϵ ¼ ρc2 þ ρ

Z
ρ

0

Pðρ0Þ
ρ02

dρ0 ¼ ρc2 þ uðρÞ: ð9Þ

The term

uðρÞ ¼ ρ

Z
ρ

0

Pðρ0Þ
ρ02

dρ0 ð10Þ

can be interpreted as an internal energy density [29].
Therefore, the energy density ϵ is the sum of a rest-mass
energy term ρc2 and an internal energy term uðρÞ. The
rest-mass energy is positive while the internal energy
can be positive or negative. Of course, the total energy
ϵ ¼ ρc2 þ uðρÞ is always positive.

3According to general relativity, the source for the gravitational
potential is ϵþ 3P. Indeed, the spatial part g of the geodesic
acceleration satisfies the exact equation ∇ · g ¼ −4πGðϵþ 3PÞ
showing that the source of geodesic acceleration is ϵþ 3P
not ϵ [27].
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C. Conservation of the rest-mass density

Combining the thermodynamic relation (6) with the
continuity equation (1), we get

dρ
dt

þ 3
_a
a
ρ ¼ 0: ð11Þ

We note that this equation is exact for a fluid at T ¼ 0, or
for a perfect fluid, and that it does not depend on the
explicit form of the equation of state PðρÞ. It corresponds to
the conservation of the rest-mass density ρ or number
density n ¼ ρ=m. It can be integrated into

ρ ¼ ρ0

�
a0
a

�
3

; ð12Þ

where ρ0 is the present value of the rest-mass density and a0
is the present value of the scale factor. This relation shows
that the rest-mass energy term ρc2 in Eq. (9) behaves as
pressureless dark matter. Consequently, the internal
energy term uðρÞ behaves as a “new fluid.” When P ¼ 0

we have ϵ ¼ ρc2 with ρ ¼ ρ0ða0=aÞ3, and we recover the
CDM model.

III. QUADRATIC EQUATION OF STATE
(POLYTROPE n ¼ 1)

We assume that the Universe is filled with a dark fluid
described by a quadratic equation of state

P ¼ Kρ2 ð13Þ

corresponding to a polytrope of index n ¼ 1 [30]. This is a
particular case of the general class of polytropic equations
of state P ¼ Kργ , where ρ is the rest-mass density, studied
by Tooper [31] in the context of relativistic stars. This
equation of state is fundamentally different from the
polytropic equation of state P ¼ Kϵγ , where ϵ is the energy
density, studied by Tooper [32] in the context of relativistic
stars and by Chavanis [15–17] in cosmology (see Sec. XI).
For the equation of state (13), the relation between the
energy density and the rest-mass density, Eq. (9), takes
the form

ϵ ¼ ρc2 þ P ¼ ρc2 þ Kρ2: ð14Þ

Combining Eqs. (12) and (14), we obtain

ϵ ¼ ρ0c2
�
a0
a

�
3

þ Kρ20

�
a0
a

�
6

: ð15Þ

This relation can also be obtained by solving the continuity
equation (1) with the equation of state (17) when K ≥ 0 or
with the equation of state (22) when K ≤ 0 (see
Appendix D of Ref. [14]). We require that ρ ≥ 0 and

ϵ ≥ 0. We have to distinguish two cases depending on the
sign of K.

A. Positive pressure: K ≥ 0

When K ≥ 0, the pressure is positive. The universe starts
at a ¼ 0 with an infinite rest-mass density and an infinite
energy density. The rest-mass density decreases as a
increases; see Eq. (12). The energy density ϵ decreases
as a increases (i.e. ρ decreases); see Fig. 1. Equation (14)
can be reversed to give

ρ ¼ c2

2K

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Kϵ

c4

r
− 1

!
: ð16Þ

Combining Eqs. (13) and (16), we obtain the relation
between the pressure and the energy density

P ¼ c4

4K

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Kϵ

c4

r
− 1

!
2

: ð17Þ

The pressure P decreases as ρ and ϵ decrease; see Fig. 2.
In the early universe (a → 0, ρ → þ∞), the internal

energy (new fluid) dominates, and we have

ϵ ∼ Kρ2 ∼ Kρ20

�
a0
a

�
6

; P ∼ ϵ; P ¼ Kρ2: ð18Þ

These equations describe a fluid with a linear equation of
state P ¼ ϵ that is called “stiff” because the speed of sound
cs defined by c2s=c2 ¼ P0ðϵÞ is equal to the speed of
light (cs ¼ c).
In the late universe (a → þ∞, ρ → 0), the rest-mass

energy (dark matter) dominates, and we have

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

K > 0

K < 0

(ρ∗, εmax
)

ρ
max

PhantomNormal

Normal

>

>
>

|K
|ε/

c4

|K|ρ/c
2

FIG. 1. Relation between the energy density and the rest-mass
density.
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ϵ∼ ρc2 ∼ ρ0c2
�
a0
a

�
3

; P∼
K
c4

ϵ2; P ¼ Kρ2: ð19Þ

These equations describe a fluid with a polytropic equation
of state P ¼ Kϵ2=c4 of index n ¼ 1. For very large values
of the scale factor, we recover the results of the CDMmodel
(P ¼ 0) since ϵ ∝ a−3. This is because P ≪ ϵ in this limit.
For the equation of state (17), the speed of sound is

given by

c2s
c2

¼ 1 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Kϵ
c4

q ¼ 1

1þ c2
2Kρ

: ð20Þ

The speed of sound decreases as ρ and ϵ decrease; see
Fig. 3. For ρ → þ∞ (i.e. ϵ → þ∞), cs → c. For ρ → 0 (i.e.
ϵ → 0), cs → 0. We always have cs < c.
Substituting Eq. (15) in the Friedmann equation (3), we

see that the quadratic equation of state defined by Eq. (13)

with K ≥ 0 describes a model of the Universe exhibiting a
stiff matter era (ϵ ∝ a−6), a dark matter era (ϵ ∝ a−3), and a
dark energy era (ϵ ∼ ρΛc2) due to the cosmological
constant.

B. Negative pressure: K ≤ 0

When K ≤ 0, the pressure is negative. The energy
density ϵ given by Eq. (15) is positive provided that
a ≥ ai with ai=a0 ¼ ðjKjρ0=c2Þ1=3. Therefore, the
Universe starts with a finite scale factor ai, a finite rest-
mass density ρmax ¼ c2=jKj, and a vanishing energy
density ϵ ¼ 0. The rest-mass density decreases as a
increases; see Eq. (12). The energy density increases as
a increases (i.e. ρ decreases), reaches a maximum ϵmax ¼
c4=4jKj at a�=a0 ¼ ð2jKjρ0=c2Þ1=3 (i.e. ρ� ¼ c2=2jKj),
decreases as a increases (i.e. ρ decreases) further, and
tends to ϵ → 0 as a → þ∞ (i.e. ρ → 0); see Fig. 1. The
branch ai ≤ a ≤ a� (i.e. ρ� ≤ ρ ≤ ρmax) corresponds to a
phantom behavior in which the energy density increases as
the scale factor increases. The branch a ≥ a� (i.e. ρ ≤ ρ�)
corresponds to a normal behavior in which the energy
density decreases as the scale factor increases.
For ϵ ≤ ϵmax, Eq. (14) can be reversed to give

ρ ¼ c2

2jKj

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4jKjϵ
c4

r !
: ð21Þ

Combining Eqs. (13) and (21), we obtain the relation
between the pressure and the energy density

P ¼ −
c4

4jKj

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4jKjϵ
c4

r !
2

: ð22Þ

The pressure increases as a increases (i.e. ρ decreases). It
starts from Pmin ¼ −c4=jKj at a ¼ ai (i.e. ρ ¼ ρmax,
ϵ ¼ 0), achieves the value P� ¼ −c4=4jKj at a� (i.e. ρ�,
ϵmax), and tends to P → 0− as a → þ∞ (i.e. ρ → 0, ϵ → 0).
The equation of state PðϵÞ is defined for ϵ ≤ ϵmax and is
multivalued since it has two branches; see Fig. 2. The
branch þ corresponds to a phantom universe (P < P�) and
the branch − corresponds to a normal universe (P > P�).
In the early universe (a → ai, ρ → ρmax), the internal

energy (new fluid) counteracts the rest-mass energy (dark
matter), and we have

ϵ ∼
3c4

jKj
�
a
ai

− 1

�
; ϵ ∼ ðρmax − ρÞc2;

P≃ Pmax þ 2ϵ:

ð23Þ

The new fluid formally behaves as a stiff fluid with a
negative energy density that we shall call “anti-stiff” fluid
(see Sec. V).
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FIG. 2. Equation of state giving the pressure as a function of the
energy density.
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FIG. 3. Speed of sound as a function of the energy density.

PIERRE-HENRI CHAVANIS PHYSICAL REVIEW D 92, 103004 (2015)

103004-6



In the late universe (a → þ∞, ρ → 0), the rest-mass
energy (dark matter) dominates, and we have

ϵ ∼ ρc2 ∼ ρ0c2
�
a0
a

�
3

; P ∼
K
c4

ϵ2; P ¼ Kρ2:

ð24Þ

These equations describe a fluid with a polytropic equation
of state P ¼ Kϵ2=c4 of index n ¼ 1. For very large values
of the scale factor, we recover the results of the CDMmodel
(P ¼ 0) since ϵ ∝ a−3. This is because P ≪ ϵ in this limit.
For the equationof state (22), the speedof sound is givenby

c2s
c2

¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jKjϵ

c4

q ¼ 1

1 − c2
2jKjρ

: ð25Þ

The ratio c2s=c2 ¼ 2 at a ¼ ai (i.e. ρ ¼ ρmax, ϵ ¼ 0),
increases as a increases (i.e. ρ decreases, ϵ increases), tends
to þ∞ as a → a−� (i.e. ρ → ρþ� , ϵ → ϵmax), tends to −∞ as
a → aþ� (i.e. ρ → ρ−� , ϵ → ϵmax), increases as a increases
further (ρ decreases further, ϵ decreases), and tends to 0− as
a → þ∞ (i.e. ρ → 0, ϵ → 0); see Fig. 3. The speed of sound
is larger than the speed of light in the phantom era (ρ > ρ�)
and imaginary in the normal era (ρ < ρ�).
Substituting Eq. (15) in the Friedmann equation (3), we

see that the quadratic equation of state defined by Eq. (13)
with K ≤ 0 describes a model of the Universe exhibiting
an anti-stiff matter era (ϵ≃ 0), a dark matter era (ϵ ∝ a−3),
and a dark energy era (ϵ ∼ ρΛc2) due to the cosmological
constant.

IV. COSMOLOGY WITH A STIFF MATTER ERA

In this section, we give examples of systems described
by a quadratic equation of state P ¼ Kρ2 leading, in the
regime of high density, to a stiff equation of state P ¼ ϵ.

A. Gas of baryons interacting through
a vector-meson field

In an early paper, Zel’dovich [20,21] introduced a
cosmological model in which the primordial universe is
made of a gas of baryons interacting through a vector-
meson field and showed that the equation of state of this
system is of the form of Eq. (13) with a polytropic constant

K ¼ g2h2

2πm2
mm2

bc
2
; ð26Þ

where g is the baryon charge, mm is the meson mass, and
mb is the baryon mass. Zel’dovich [21] introduced this
equation of state as an example to show how the speed of
sound could approach the speed of light at very high
pressures and densities.

Zel’dovich [20,21] also mentioned that the complete
equation of state of his model is of the form

P ¼ Kρ2 þ K0ρ4=3; ð27Þ

where the first term is the pressure coming from the self-
interaction between the particles and the second term is the
quantum (Fermi) pressure. For the equation of state (27),
we find from Eq. (9) that the relation between the energy
density and the rest-mass density is

ϵ ¼ ρc2 þ Kρ2 þ 3K0ρ4=3: ð28Þ

Using Eq. (12), we get

ϵ ¼ ρ0c2
�
a0
a

�
3

þ Kρ20

�
a0
a

�
6

þ 3K0ρ4=30

�
a0
a

�
4

: ð29Þ

Substituting Eq. (29) in the Friedmann equation (3), we see
that the equation of state defined by Eq. (27) with K ≥ 0
describes a model of the Universe exhibiting a stiff matter
era (ϵ ∝ a−6), a radiation era (ϵ ∝ a−4), a dark matter era
(ϵ ∝ a−3), and a dark energy era (ϵ ∼ ρΛc2) due to the
cosmological constant.
Although Zel’dovich’s model was abandoned after the

success of the hot big bang theory, it remains important
from a historical point of view as it is the first suggestion
that a stiff matter era may have occurred in the very early
universe, before the matter and radiation eras.

B. Partially relativistic self-gravitating BECs

Some authors have proposed that dark matter may be
made of self-gravitating BECs with short-range interactions
[33–49]. In the TF approximation, a BEC is equivalent to a
fluid with an equation of state of the form of Eq. (13) with a
polytropic constant

K ¼ 2πℏ2as
m3

; ð30Þ

where m is the mass of the bosons and as is their scattering
length. This equation of state can be derived from the
classical Gross-Pitaevskii equation [50,51] after writing it
under the form of fluid equations by using the Madelung
transformation [52] (see, e.g., Refs. [48,49]). This is a
nonrelativistic equation of state that, in principle, is not
valid in the relativistic regime. Nevertheless, we can
consider a partially relativistic model in which we use
the classical equation of state (13) with the relativistic
relation (14) between the energy density and the rest-mass
density. This approximation has been considered
in Ref. [14].
An interesting feature of BECs is that the scattering

length as can be positive or negative [12]. Positive values of
as correspond to repulsive interactions and negative values
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of as correspond to attractive interactions. When as is
positive, the pressure is positive (K ≥ 0) and when as is
negative the pressure is negative (K ≤ 0). We shall consider
the two possibilities in the following. As we have already
explained, when applied to cosmology, Eq. (13) withK ≥ 0
leads to a stiff matter era in the early universe while Eq. (13)
with K ≤ 0 leads to an anti-stiff matter era.

C. Fully relativistic scalar field

A stiff matter era can also be justified from a field theory
for a relativistic SF. The phase of inflation in the very early
universe is usually described by a real scalar field called the
inflaton [53]. Similarly, in alternative theories to the
cosmological constant, the dark energy responsible for
the acceleration of the expansion of the Universe is
described by a scalar field called quintessence [54].
A scalar field minimally coupled to gravity evolves

according to the equation

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; ð31Þ

where VðϕÞ is the potential of the scalar field. The scalar
field tends to run down the potential towards lower
energies. The energy density and the pressure of the scalar
field are given by

ϵ ¼ 1

2
_ϕ2 þ VðϕÞ; P ¼ 1

2
_ϕ2 − VðϕÞ: ð32Þ

When the potential energy dominates the kinetic energy,
VðϕÞ ≫ _ϕ2=2, we obtain the equation of state P ¼ −ϵ of
vacuum energy and dark energy. When the kinetic energy
dominates the potential energy, _ϕ2=2 ≫ VðϕÞ, we obtain
the equation of state P ¼ ϵ of stiff matter. In cosmology,
this corresponds to the kination epoch of scalar field
evolution.
Recently, Li et al. [23] have used this argument to show

that a universe filled with a relativistic SF/BEC undergoes a
primordial stiff matter era preceding a radiation era (in the
case where the SF is self-interacting) and a matter era.
These results have been recovered by Suárez and Chavanis
[24] from a hydrodynamical representation of the KGE
equations. It is important to note that the justification of the
stiff matter era in the fully relativistic SF/BEC model
[23,24] is different from that given in the partially relativ-
istic BEC model (see Ref. [14] and Sec. IV B). However,
the present study, which provides analytical results for a
cosmology including a stiff matter era, a radiation era, a
matter era, and a dark energy era may be useful in the
context of fully relativistic SF/BECs even if the equations
determining the transition between these phases are differ-
ent in the two models. For a SF without self-interaction
(fuzzy dark matter), there is only a stiff matter era, a matter
era, and a dark energy era (no radiation era). This situation

corresponds to the analytical solutions considered in
Secs. VI and VIII.

D. Analogy with loop quantum cosmology

Combining the Friedmann equation (3) with Eq. (14),
and recalling Eq. (12), we obtain

H2 ¼ 8πG
3

ρ

�
1þ Kρ

c2

�
þ Λ

3
; ρ ¼ ρ0

�
a0
a

�
3

: ð33Þ

When Λ ¼ 0 and K < 0, this equation is formally analo-
gous to the modified Friedmann equation

H2 ¼ 8πG
3

ρ

�
1 −

ρ

ρmax

�
ð34Þ

that appears in LQC [25].4 In this analogy ρmax ¼ c2=jKj.
This equation has a bouncing solution which prevents the
big bang singularity. It is usually argued in LQC that
everything happens as if the quantum gravity effects
manifest themselves at the origin as a pressure which
forbids the Universe from collapsing and then removes the
original singularity [55]. Our approach is consistent with
this interpretation since, in our case, Eq. (34) arises
precisely from a pressure term with a quadratic equation
of state [see Eq. (13)].
In LQC, ρmax is of the order of the Planck density ρP ¼

c5=G2ℏ ¼ 5.16 × 1099 g=m3 so that corrections manifest
themselves only in the very early universe. If we take
ρmax ¼ ρP, and identify ρmax with c2=jKj, we obtain
jKj ¼ c2=ρP. If we use the expression (30) of K for a
BEC, and introduce the dimensionless self-interaction
constant λ=8π ¼ asmc=ℏ so that K ¼ λℏ3=4m4c, we
obtain jλj ¼ 4ðm=MPÞ4 where MP ¼ ðℏc=GÞ1=2 ¼ 2.17 ×
10−5 g is the Planck mass. Other consequences of the
assumption jKj ¼ c2=ρP are discussed in Appendix A.

V. THE FRIEDMANN EQUATIONS
FOR A UNIVERSE PRESENTING A STIFF

MATTER ERA

We consider a universe made of several fluids each of
them described by a linear equation of state P ¼ αϵ. The
equation of continuity (1) implies that the energy density is
related to the scale factor by ϵ ¼ ϵ0ða0=aÞ3ð1þαÞ, where the
subscript 0 denotes present-day values of the quantities. A
linear equation of state can describe dark matter (α ¼ 0,
ϵm ∝ a−3), radiation (α ¼ 1=3, ϵrad ∝ a−4), stiff matter

4We note, however, a crucial difference. In LQC, ρc2 repre-
sents the energy density (that we denote as ϵ) so that Eq. (34) is a
fundamental modification of the Friedmann equation (3). By
contrast, in our study, ρc2 is the rest-mass density and Eq. (34) is
deduced from the usual Friedmann equation (3) by using
Eq. (14).
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(α ¼ 1, ϵs ∝ a−6), vacuum energy (α ¼ −1, ϵ ¼ ϵP), and
dark energy (α ¼ −1, ϵ ¼ ϵΛ).
More specifically, we consider a universe made of stiff

matter, radiation, dark matter and dark energy treated as
noninteracting species. Summing the contribution of each
species, the total energy density can be written as

ϵ ¼ ϵs;0
ða=a0Þ6

þ ϵrad;0
ða=a0Þ4

þ ϵm;0

ða=a0Þ3
þ ϵΛ: ð35Þ

In this model, the stiff matter dominates in the early
universe. This is followed by the radiation era, by the dark
matter era and, finally, by the dark energy era. Writing
ϵα;0 ¼ Ωα;0ϵ0 for each species, we get

ϵ

ϵ0
¼ Ωs;0

ða=a0Þ6
þ Ωrad;0

ða=a0Þ4
þ Ωm;0

ða=a0Þ3
þΩΛ;0: ð36Þ

In this model, we must require that the energy density of
each individual fluid is positive so that Ωα;0 ≥ 0 for each
fluid. We now consider generalizations of this model.
The dark energy term [last term in Eq. (35)] can be

interpreted in terms of a cosmological constant Λ by using
the correspondence of Eq. (4). At a theoretical level, the
cosmological constant may be positive or negative. The
discovery of the present acceleration of the expansion
of the universe favors a positive cosmological constant but
the value of the cosmological constant, and its sign, may
have changed in the course of time (it is also possible that
the cosmological constant has a constant negative value and
that the present acceleration of the Universe is due to
another form of dark energy). For example, certain string
theories assume that the cosmological constant was neg-
ative in the past, corresponding to an anti–de Sitter universe
[56]. Therefore, in our theoretical analysis, for the sake of
generality, we consider a cosmological constant of arbitrary
sign. In terms of the correspondence of Eq. (4), this
amounts to considering formally that the dark energy term
ϵΛ is positive or negative. Therefore, we shall consider the
two possibilities ΩΛ;0 ≥ 0 and ΩΛ;0 ≤ 0. The case ΩΛ;0 ≤ 0

will be referred to as anti-dark energy.
We now turn to the stiff matter term [first term in

Eq. (35)]. When radiation is ignored, Eq. (36) is identical to
Eq. (15) obtained from the equation of state (13) and (26)
proposed by Zel’dovich [20,21] or from the equation of
state (13) and (30) corresponding to a partially relativistic
BEC [14]. On the other hand, Eq. (36) with radiation
included is identical to Eq. (29) obtained from the more
general equation of state (26) and (27) suggested by
Zel’dovich [20,21]. It is very important to note that, in
the point of view of Secs. III and IV, we do not have several
noninteracting fluids as in the beginning of this section, but
simply one dark fluid that can present different phases in
the course of time. Therefore, the justification of Eq. (15),
or Eq. (29), is different from the one given to obtain

Eq. (36). Nevertheless, the two equations are formally the
same. In this analogy, a positive value ofK corresponds to a
positive energy density of the stiff matter while a negative
value of K corresponds to a negative energy density of the
stiff matter. We shall therefore consider the two possibilities
Ωs;0 ≥ 0 andΩs;0 ≤ 0. The case Ωs;0 ≤ 0will be referred to
as anti-stiff matter. We again emphasize that, in the
interpretation of Secs. III and IV, the term Ωs;0=ða=a0Þ6
represents the internal energy of the dark fluid, and the term
Ωm;0=ða=a0Þ3 represents its rest-mass energy. The rest-
mass energy is always positive (Ωm;0 ≥ 0) while the
internal energy can be positive or negative. The laws of
physics only require that the total energy density is positive.
Therefore, in the approach developed in Secs. III and IV, it
is possible to consider Ωs;0 ≤ 0.
Substituting Eq. (36) in the Friedmann equation (3), we

obtain

H
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0

ða=a0Þ6
þ Ωrad;0

ða=a0Þ4
þ Ωm;0

ða=a0Þ3
þ ΩΛ;0

s
ð37Þ

with Ωs;0 þ Ωrad;0 þ Ωm;0 þΩΛ;0 ¼ 1 and H0 ¼
ð8πGϵ0=3c2Þ1=2. We note the relation

ϵ

ϵ0
¼
�
H
H0

�
2

ð38Þ

that will be needed in the sequel. The evolution of the scale
factor is given by

Z
a=a0

ai=a0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0

x6
þ Ωrad;0

x4 þ Ωm;0

x3 þΩΛ;0

q ¼ H0t; ð39Þ

where ai is the initial value of the scale factor that has to be
determined in each particular case.
In Secs. VI–IX, we ignore radiation (Ωrad;0 ¼ 0) and

consider a universe made of (anti-)stiff matter, dark matter,
and (anti-)dark energy. In that case, the Friedmann equa-
tion (39) reduces to

Z
a=a0

ai=a0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0

x6
þ Ωm;0

x3 þ ΩΛ;0

q ¼ H0t: ð40Þ

It turns out that this equation can be integrated analytically.
In Sec. X, we provide some particular analytical solutions
of Eq. (39) in the case where the radiation is taken into
account.
It is possible to develop a useful mechanical analogy to

study the Friedmann equation (37). Defining τ ¼ H0t, R ¼
a=a0 and VðRÞ ¼ −ð1=2ÞR2ϵðRÞ=ϵ0, Eq. (37) can be cast
in the suggestive form
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1

2

�
dR
dτ

�
2

þ VðRÞ ¼ 0; ð41Þ

where

VðRÞ ¼ −
1

2

�
Ωs;0

R4
þ Ωrad;0

R2
þ Ωm;0

R
þΩΛ;0R2

�
: ð42Þ

Equation (41) has the structure of the first integral for the
one-dimensional motion of a particle with energy E ¼ 0 in
a potential VðRÞ. The potential VðRÞ is plotted in Fig. 4 for
the different cases studied in Secs. VI–IX. The condition
VðRÞ ≤ 0, i.e. ϵ ≥ 0, determines the range of accessible
“radii” R. We must have

ΩΛ;0R6 þ Ωm;0R3 þΩrad;0R2 þ Ωs;0 ≥ 0: ð43Þ

When Ωrad;0 ¼ 0, Eq. (43) reduces to a second-degree
equation for x ¼ R3. The range of accessible radii is
specifically given in Secs. VI–IX. The phase portrait of
the Universe, with the “velocity” dR=dτ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðRÞp
plotted against the “position” R is represented in Fig. 5.
These curves show the transition between a decelerating
evolution ( _R decreases with R) and an accelerating evolu-
tion ( _R increases with R). The transition point Rc is
determined by the condition V 0ðRcÞ ¼ 0which is written as

2ΩΛ;0R6 − Ωm;0R3 − 2Ωrad;0R2 − 4Ωs;0 ¼ 0: ð44Þ

When Ωrad;0 ¼ 0, Eq. (44) reduces to a second-degree
equation for x ¼ R3. The transition point is specifically
given in Secs. VI–IX.

VI. THE CASE Ωs;0 ≥ 0 AND ΩΛ;0 ≥ 0

We first consider the case of a positive stiff energy
density (Ωs;0 ≥ 0) and a positive cosmological constant
(ΩΛ;0 ≥ 0). The total energy density is

ϵ

ϵ0
¼ Ωs;0

ða=a0Þ6
þ Ωm;0

ða=a0Þ3
þ ΩΛ;0: ð45Þ

The energy density starts from ϵ ¼ þ∞ at a ¼ ai ¼ 0,
decreases, and tends to ϵΛ for a → þ∞. The relation
between the energy density and the scale factor is shown
in Fig. 6. The proportions of stiff matter, dark matter and
dark energy as a function of the scale factor are shown
in Fig. 7.
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FIG. 4. Effective potential VðRÞ in the case where (1) Ωs;0 > 0
and ΩΛ;0 > 0, (2) Ωs;0 < 0 and ΩΛ;0 > 0, (3) Ωs;0 > 0 and
ΩΛ;0 < 0, (4) Ωs;0 < 0 and ΩΛ;0 < 0. We have taken
jΩs;0j ¼ 10−3, Ωrad;0 ¼ 0, Ωm;0 ¼ 0.237, and jΩΛ;0j ¼ 0.763.
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FIG. 5. Phase portrait of the Universe in the four cases
considered in Fig. 4.

0 1 2 3
0

1

2

3

4

5

εΛ

ε/
ε 0

a/a
0

FIG. 6. Energy density as a function of the scale factor. We have
taken Ωm;0 ¼ 0.237, ΩΛ;0 ¼ 0.763, and Ωs;0 ¼ 10−3 (here and in
the following figures, we have chosen a relatively large value of
the density of stiff matter Ωs;0 for a better illustration of the
results).
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A. Stiff matter, dark matter, and dark energy

We consider a universe made of stiff matter, dark matter,
and dark energy. Using the identity

Z
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
x3 þ b

x6
þ c

q
¼ 1

3
ffiffiffi
c

p ln ½aþ 2cx3 þ 2
ffiffiffi
c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ ax3 þ cx6

p
�; ð46Þ

Eq. (40) can be solved analytically to give

a
a0

¼
" 

Ωm;0

ΩΛ;0
þ 2

ffiffiffiffiffiffiffiffiffi
Ωs;0

ΩΛ;0

s !
sinh2

�
3

2

ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0t
�

þ
ffiffiffiffiffiffiffiffiffi
Ωs;0

ΩΛ;0

s
ð1 − e−3

ffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ
#
1=3

: ð47Þ

From Eq. (47), we can compute H ¼ _a=a leading to

�
a
a0

�
3 H
H0

¼
�

Ωm;0

2
ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p þ ffiffiffiffiffiffiffiffi
Ωs;0

p �
sinh ð3 ffiffiffiffiffiffiffiffiffi

ΩΛ;0

p
H0tÞ

þ ffiffiffiffiffiffiffiffi
Ωs;0

p
e−3

ffiffiffiffiffiffiffi
ΩΛ;0

p
H0t: ð48Þ

The energy density ϵ=ϵ0 is then given by Eq. (38) where
H=H0 can be obtained from Eq. (48) with Eq. (47).
At t ¼ 0, the Universe starts from a singular state

at which the scale factor a ¼ 0 while the energy density
ϵ → þ∞ (big bang). The scale factor increases with time.
For t → þ∞, we obtain

a
a0

∼

 
Ωm;0

ΩΛ;0
þ 2

ffiffiffiffiffiffiffiffiffi
Ωs;0

ΩΛ;0

s !
1=3

1

22=3
e
ffiffiffiffiffiffiffi
ΩΛ;0

p
H0t: ð49Þ

The energy density decreases with time and tends to ϵΛ for
t → þ∞. The expansion is decelerating during the stiff
matter era and the dark matter era while it is accelerating
during the dark energy era. Using Eq. (44), we find that the
transition takes place at

ac
a0

¼
 
Ωm;0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

m;0 þ 32ΩΛ;0Ωs;0

q
4ΩΛ;0

!
1=3

: ð50Þ

The temporal evolution of the scale factor and energy
density is shown in Figs. 8 and 9.

B. Stiff matter and dark matter

We consider a universe made of stiff matter and dark
matter. In the absence of dark energy (ΩΛ;0 ¼ 0), using the
identity
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FIG. 7. Evolution of the proportion Ωα ¼ ϵα=ϵ of the different
components of the universe with the scale factor.
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Z
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffi
a
x3 þ b

x6

q ¼ 2

3a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ ax3

p
; ð51Þ

we obtain

a
a0

¼
�
9

4
Ωm;0H2

0t
2 þ 3

ffiffiffiffiffiffiffiffi
Ωs;0

p
H0t

�
1=3

; ð52Þ

ϵ

ϵ0
¼ 4

9H2
0t

2

0
B@1þ 2

ffiffiffiffiffiffi
Ωs;0

p
3Ωm;0H0t

1þ 4
ffiffiffiffiffiffi
Ωs;0

p
3Ωm;0H0t

1
CA

2

: ð53Þ

C. Stiff matter and dark energy

We consider a universe made of stiff matter and dark
energy. In the absence of matter (Ωm;0 ¼ 0), using the
identity

Z
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffi
b
x6
þ c

q ¼ 1

3
ffiffiffi
c

p ln ½2cx3 þ 2
ffiffiffi
c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ cx6

p
�; ð54Þ

or setting X ¼ b=cx6 and using the identity

Z
dX

X
ffiffiffiffiffiffiffiffiffiffiffiffi
X þ 1

p ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p þ 1

�
; ð55Þ

we get

a
a0

¼
�
Ωs;0

ΩΛ;0

�
1=6

sinh1=3ð3 ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ; ð56Þ

ϵ

ϵ0
¼ ΩΛ;0

tanh2ð3 ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ

: ð57Þ

The universe starts accelerating at ac=a0¼ð2Ωs;0=ΩΛ;0Þ1=6.

D. Stiff matter

We consider a universe made of stiff matter. In the
absence of dark matter and dark energy (Ωm;0 ¼ ΩΛ;0 ¼ 0),
we find that

a
a0

¼ ð3 ffiffiffiffiffiffiffiffi
Ωs;0

p
H0tÞ1=3;

ϵ

ϵ0
¼ 1

9H2
0t

2
: ð58Þ

E. Dark matter and dark energy

We consider a universe made of dark matter and dark
energy. In the absence of stiff matter (Ωs;0 ¼ 0), using the
identity

Z
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffia
x3 þ c

p ¼ 1

3
ffiffiffi
c

p ln ½aþ 2cx3 þ 2
ffiffiffi
c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax3 þ cx6

p
�;

ð59Þ

or setting X ¼ a=cx3 and using the identity (55), we obtain

a
a0

¼
�
Ωm;0

ΩΛ;0

�
1=3

sinh2=3
�
3

2

ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0t
�
; ð60Þ

ϵ

ϵ0
¼ ΩΛ;0

tanh2ð3
2

ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ

: ð61Þ

This is the ΛCDM model. The universe starts accelerating
at ac=a0 ¼ ðΩm;0=2ΩΛ;0Þ1=3.

F. Dark energy

We consider a universe made of dark energy. In the
absence of stiff matter and dark matter (Ωs;0 ¼ Ωm;0 ¼ 0),
we obtain

aðtÞ ¼ að0Þe
ffiffi
Λ
3

p
t; ϵ ¼ ϵΛ: ð62Þ

This is de Sitter’s solution.

G. Dark matter

We consider a universe made of dark matter. In the
absence of stiff matter and dark energy (Ωs;0 ¼ ΩΛ;0 ¼ 0),
we obtain

a
a0

¼
�
9

4
Ωm;0H2

0t
2

�
1=3

;
ϵ

ϵ0
¼ 4

9H2
0t

2
: ð63Þ

This is the EdS solution.

VII. THE CASE Ωs;0 ≤ 0 AND ΩΛ;0 ≥ 0

We consider the case of a negative stiff energy density
(Ωs;0 ≤ 0) and a positive cosmological constant (ΩΛ;0 ≥ 0).
The total energy density is

ϵ

ϵ0
¼ −

jΩs;0j
ða=a0Þ6

þ Ωm;0

ða=a0Þ3
þ ΩΛ;0: ð64Þ

The energy density is positive for a ≥ ai with

ai
a0

¼
�
−Ωm;0 þ

ffiffiffiffi
Δ

p

2ΩΛ;0

�
1=3

; ð65Þ

where we have defined

Δ ¼ Ω2
m;0 þ 4ΩΛ;0jΩs;0j: ð66Þ

The energy density starts from ϵ ¼ 0 at a ¼ ai, increases,
reaches a maximum at
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a�
a0

¼
�
2jΩs;0j
Ωm;0

�
1=3

;
ϵ�
ϵ0

¼ Δ
4jΩs;0j

; ð67Þ

decreases, and tends to ϵΛ for a → þ∞. The relation
between the energy density and the scale factor is shown
in Fig. 10. The proportions of stiff matter, dark matter and
dark energy as a function of the scale factor are shown
in Fig. 11.

A. Anti-stiff matter, dark matter, and dark energy

We consider a universe made of anti-stiff matter, dark
matter, and dark energy. Using the identity (46), Eq. (40)
with ai given by Eq. (65) can be solved analytically to give

a
a0

¼
� ffiffiffiffi

Δ
p

2ΩΛ;0
cosh ð3 ffiffiffiffiffiffiffiffiffi

ΩΛ;0

p
H0tÞ −

Ωm;0

2ΩΛ;0

�1=3
: ð68Þ

From Eq. (68), we can compute H ¼ _a=a leading to

�
a
a0

�
3 H
H0

¼
ffiffiffiffi
Δ

p

2
ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p sinh ð3 ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ: ð69Þ

The energy density ϵ=ϵ0 is then given by Eq. (38) where
H=H0 can be obtained from Eq. (69) with Eq. (68).
At t ¼ 0 the Universe starts from a nonsingular state at

which the scale factor a ¼ ai and the energy density ϵ ¼ 0.
The scale factor increases with time. For t → þ∞, we
obtain

a
a0

∼
��

Ωm;0

ΩΛ;0

�
2

þ 4
jΩs;0j
ΩΛ;0

�
1=6 1

22=3
e
ffiffiffiffiffiffiffi
ΩΛ;0

p
H0t: ð70Þ

The energy density increases, reaches its maximum value
ϵ� at t ¼ t� where

t� ¼
1

3
ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0

ln

 ffiffiffiffi
Δ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΩΛ;0jΩs;0j

p
Ωm;0

!
; ð71Þ

decreases and tends to ϵΛ for t → þ∞. The universe is
accelerating during the anti-stiff matter era, decelerating
during the dark matter era, and accelerating during the dark
energy era. Using Eq. (44), we find that the transitions take
place at

að�Þ
c

a0
¼

0
B@Ωm;0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

m;0 − 32ΩΛ;0jΩs;0j
q

4ΩΛ;0

1
CA

1=3

: ð72Þ

The temporal evolution of the scale factor and energy
density is shown in Figs. 12 and 13.
This model of the Universe is mathematically interesting

for the following reasons. For 0 ≤ t ≤ t�, the evolution of
the Universe is phantom-like because the energy density
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FIG. 10. Energy density as a function of the scale factor. We
have taken Ωm;0 ¼ 0.237, ΩΛ;0 ¼ 0.763, and Ωs;0 ¼ −10−3.
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increases as the scale factor increases. For t ≥ t�, the
evolution of the Universe is normal because the energy
density decreases as the scale factor increases. On the other
hand, this model does not present a big bang singularity at
t ¼ 0 since the scale factor has a finite value ai and the
energy density vanishes (ϵ ¼ 0). At that moment the
Universe is globally empty (it “disappears”). Actually, this
model is time symmetric (with respect to the transformation
t → −t) so it describes a bouncing universe. The solution
valid for t ≥ 0 can be extended to t ≤ 0 by symmetry.
Therefore, this universe exists eternally in the past and in
the future. The scale factor starts from þ∞ at t → −∞,
decreases, reaches a minimum ai at t ¼ 0, increases, and
tends to þ∞ as t → þ∞. In parallel, the energy density
starts from ϵΛ at t → −∞, increases, reaches a maximum ϵ�
at −t�, decreases, vanishes at t ¼ 0, increases, reaches a
maximum ϵ� at t�, decreases, and tends to ϵΛ at t → þ∞.
As mentioned in Sec. IV D, this model shares similarities
with the bouncing universe predicted by LQC.

B. Anti-stiff matter and dark matter

We consider a universe made of anti-stiff matter and dark
matter. In the absence of dark energy (ΩΛ;0 ¼ 0), using the
identity (51), we obtain

a
a0

¼
�
9

4
Ωm;0H2

0t
2 þ jΩs;0j

Ωm;0

�
1=3

; ð73Þ

ϵ

ϵ0
¼ 4

9H2
0t

2

1

ð1þ 4jΩs;0j
9Ω2

m;0H
2
0
t2Þ2

: ð74Þ

At t ¼ 0 the Universe starts from a nonsingular state at
which the scale factor a ¼ ai with

ai
a0

¼
�jΩs;0j
Ωm;0

�
1=3

; ð75Þ

and the energy density ϵ ¼ 0. The scale factor increases
with time. The energy density increases, reaches its
maximum value

a�
a0

¼
�
2jΩs;0j
Ωm;0

�
1=3

;
ϵ�
ϵ0

¼ Ω2
m;0

4jΩs;0j
; ð76Þ

at

t� ¼
2
ffiffiffiffiffiffiffiffiffiffiffijΩs;0j

p
3Ωm;0H0

; ð77Þ

and decreases to zero. The universe starts decelerating
at ac=a0 ¼ ð4jΩs;0j=Ωm;0Þ1=3.

C. Anti-stiff matter and dark energy

We consider a universe made of anti-stiff matter and dark
energy. In the absence of matter (Ωm;0 ¼ 0), using the
identities (54) and (55), we obtain

a
a0

¼
�jΩs;0j
ΩΛ;0

�
1=6

cosh1=3ð3 ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ; ð78Þ

ϵ

ϵ0
¼ ΩΛ;0tanh2ð3

ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ: ð79Þ

At t ¼ 0 the Universe starts from a nonsingular state at
which the scale factor a ¼ ai with

ai
a0

¼
�jΩs;0j
ΩΛ;0

�
1=6

; ð80Þ

and the energy density ϵ ¼ 0. The scale factor increases
with time. The energy density increases with time and tends
to ϵΛ for t → þ∞.

VIII. THE CASE Ωs;0 ≥ 0 AND ΩΛ;0 ≤ 0

We consider the case of a positive stiff energy density
(Ωs;0 ≥ 0) and a negative cosmological constant
(ΩΛ;0 ≤ 0). The total energy density is

ϵ

ϵ0
¼ Ωs;0

ða=a0Þ6
þ Ωm;0

ða=a0Þ3
− jΩΛ;0j: ð81Þ

The energy density is positive for a ≤ af with

af
a0

¼
�
Ωm;0 þ

ffiffiffiffi
Δ

p

2jΩΛ;0j
�

1=3
; ð82Þ

where we have defined

Δ ¼ Ω2
m;0 þ 4jΩΛ;0jΩs;0: ð83Þ

The energy density starts from ϵ ¼ þ∞ at a ¼ 0,
decreases, and reaches ϵ ¼ 0 at a ¼ af. The relation
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FIG. 13. Evolution of the energy density as a function of time.
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between the energy density and the scale factor is shown in
Fig. 14. The proportions of stiff matter, dark matter and
dark energy as a function of the scale factor are shown
in Fig. 15.

A. Stiff matter, dark matter, and anti-dark energy

We consider a universe made of stiff matter, dark matter,
and anti-dark energy. From Eqs. (47) and (48) with
ΩΛ;0 < 0, we get

a
a0

¼
"
Ωm;0

jΩΛ;0j
sin2
�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0

jΩΛ;0j

s
sin
�
3

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
�#1=3

ð84Þ

and

�
a
a0

�
3 H
H0

¼ Ωm;0

2
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p sin
�
3

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
�

þ ffiffiffiffiffiffiffiffi
Ωs;0

p
cos
�
3

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
�
: ð85Þ

The energy density is then given by Eq. (38) where H=H0

can be obtained from Eq. (85) with Eq. (84).
At t ¼ 0 the Universe starts from a singularity at which

the scale factor a ¼ 0 and the energy density ϵ → þ∞ (big
bang). Between t ¼ 0 and t ¼ t1 where

t1 ¼
π − tan−1ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωs;0jΩΛ;0

p j=Ωm;0Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð86Þ

the energy density decreases from ϵ → þ∞ to ϵ ¼ 0
and the scale factor increases from a ¼ 0 to a ¼ af (at
t ¼ t1, the Universe is globally empty—it disappears—
since ϵ ¼ 0). During this period, the universe is always
decelerating. Between t ¼ t1 and t ¼ t2 ¼ 2t1 the energy
density increases from ϵ ¼ 0 to ϵ → þ∞ and the scale
factor decreases from a ¼ af to a ¼ 0 (big crunch). This
process continues periodically in time with a period t2.
However, it may not be possible to cross the singularity at
t ¼ t2, so the physical solution may be restricted to the
interval 0 ≤ t ≤ t2. The temporal evolution of the scale
factor and energy density is shown in Figs. 16 and 17.
Remark: Other types of cyclic universes have been

studied in the past, the most famous ones (corresponding
to k ¼ �1, Λ < 0 and P ¼ 0, or k ¼ þ1, Λ ¼ 0 and
P ¼ 0) being due to Friedmann [57,58], Einstein [59],
and Lemaître [60]. They were called “phoenix universes”
by Lemaître because, in these models, the Universe
undergoes regular periods of expansion and contraction
during which it “dies” (big crunch) and “rises again”
(big bang).
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FIG. 14. Energy density as a function of the scale factor. We
have taken Ωm;0 ¼ 0.237, ΩΛ;0 ¼ −0.763, and Ωs;0 ¼ 10−3.
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B. Stiff matter and anti-dark energy

We consider a universe made of stiff matter and anti-dark
energy. In the absence of matter (Ωm;0 ¼ 0), we get

a
a0

¼
�

Ωs;0

jΩΛ;0j
�

1=6
sin1=3

�
3

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
�
; ð87Þ

ϵ

ϵ0
¼ jΩΛ;0j

tan2ð3 ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j
p

H0tÞ
: ð88Þ

At t ¼ 0 the Universe starts from a singularity at which the
scale factor a ¼ 0 and the energy density ϵ → þ∞.
Between t ¼ 0 and t ¼ t1 where

t1 ¼
π

6
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð89Þ

the energy density decreases from ϵ → þ∞ to ϵ ¼ 0 and
the scale factor increases from a ¼ 0 to a ¼ af where

af
a0

¼
�

Ωs;0

jΩΛ;0j
�

1=6
: ð90Þ

Between t ¼ t1 and t ¼ t2 ¼ 2t1 the energy density
increases from ϵ ¼ 0 to ϵ → þ∞ and the scale factor
decreases from a ¼ af to a ¼ 0. This process continues
periodically in time with a period t2.

C. Dark matter and anti-dark energy

We consider a universe made of dark matter and anti-
dark energy. In the absence of stiff matter (Ωs;0 ¼ 0), we
obtain

a
a0

¼
�
Ωm;0

jΩΛ;0j
�

1=3
sin2=3

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t

�
; ð91Þ

ϵ

ϵ0
¼ jΩΛ;0j

tan2ð3
2

ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j
p

H0tÞ
: ð92Þ

At t ¼ 0 the Universe starts from a singularity at which the
scale factor a ¼ 0 and the energy density ϵ → þ∞.
Between t ¼ 0 and t ¼ t1 where

t1 ¼
π

3
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð93Þ

the energy density decreases from ϵ → þ∞ to ϵ ¼ 0 and
the scale factor increases from a ¼ 0 to a ¼ af where

af
a0

¼
�
Ωm;0

jΩΛ;0j
�

1=3
: ð94Þ

Between t ¼ t1 and t ¼ t2 ¼ 2t1 the energy density
increases from ϵ ¼ 0 to ϵ → þ∞ and the scale factor
decreases from a ¼ af to a ¼ 0. This process continues
periodically in time with a period t2. This solution
corresponds to the anti-ΛCDM model (see Sec. 6
of Ref. [16]).

IX. THE CASE Ωs;0 ≤ 0 AND ΩΛ;0 ≤ 0

We consider the case of a negative stiff energy density
(Ωs;0 ≤ 0) and a negative cosmological constant
(ΩΛ;0 ≤ 0). The total energy density is

ϵ

ϵ0
¼ −

jΩs;0j
ða=a0Þ6

þ Ωm;0

ða=a0Þ3
− jΩΛ;0j: ð95Þ

If jΩs;0j > Ω2
m;0=ð4jΩΛ;0jÞ the energy density is always

negative so this situation is not possible. Therefore, we
assume jΩs;0j ≤ Ω2

m;0=ð4jΩΛ;0jÞ. In that case, the energy
density is positive for ai ≤ a ≤ af with

ai
a0

¼
�
Ωm;0 −

ffiffiffiffi
Δ

p

2jΩΛ;0j
�

1=3
ð96Þ

and

af
a0

¼
�
Ωm;0 þ

ffiffiffiffi
Δ

p

2jΩΛ;0j
�1=3

; ð97Þ

where we have defined

Δ ¼ Ω2
m;0 − 4jΩΛ;0∥Ωs;0j: ð98Þ

The energy density starts from ϵ ¼ 0 at a ¼ ai,
increases, reaches a maximum at

a�
a0

¼
�
2jΩs;0j
Ωm;0

�
1=3

;
ϵ�
ϵ0

¼ Δ
4jΩs;0j

; ð99Þ
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FIG. 17. Evolution of the energy density as a function of time.
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decreases, and reaches ϵ ¼ 0 at a ¼ af. The relation
between the energy density and the scale factor is shown
in Fig. 18. The proportions of stiff matter, dark matter and
dark energy as a function of the scale factor are shown
in Fig. 19.

A. Anti-stiff matter, dark matter, and
anti-dark energy

We consider a universe made of anti-stiff matter, dark
matter, and anti-dark energy. From Eqs. (68) and (69) with
ΩΛ;0 < 0, we get

a
a0

¼
�

Ωm;0

2jΩΛ;0j
−

ffiffiffiffi
Δ

p

2jΩΛ;0j
cos
�
3

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
��1=3

ð100Þ

and

�
a
a0

�
3 H
H0

¼
ffiffiffiffi
Δ

p

2
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p sin
�
3

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
�
: ð101Þ

The energy density is then given by Eq. (38) where H=H0

can be obtained from Eq. (101) with Eq. (100).
At t ¼ 0 the Universe starts from a nonsingular state at

which the scale factor a ¼ ai and the energy density ϵ ¼ 0.
Between t ¼ 0 and t ¼ t� where

t� ¼
cos−1ð ffiffiffiffi

Δ
p

=Ωm;0Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð102Þ

the energy density increases from ϵ ¼ 0 to its maximum
value ϵ ¼ ϵ� and the scale factor increases from a ¼ ai to
a ¼ a� (phantom behavior). Between t ¼ t� and t ¼ t1
where

t1 ¼
π

3
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð103Þ

the energy density decreases from ϵ ¼ ϵ� to ϵ ¼ 0 and the
scale factor increases from a ¼ a� to a ¼ af. The universe
is accelerating during the anti-stiff matter era and decel-
erating during the dark matter and anti-dark energy eras.
Using Eq. (44), we find that the transition takes place at

ac
a0

¼

0
B@−Ωm;0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

m;0 þ 32jΩΛ;0∥Ωs;0j
q

4jΩΛ;0j

1
CA

1=3

: ð104Þ

Between t ¼ t1 and t0� where

t0� ¼
2π − cos−1ð ffiffiffiffi

Δ
p

=Ωm;0Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð105Þ

the energy density increases from ϵ ¼ 0 to ϵ ¼ ϵ� and the
scale factor decreases from a ¼ af to a ¼ a�. Between t0�
and t2 ¼ 2t1 the energy density decreases from ϵ ¼ ϵ� to
ϵ ¼ 0 and the scale factor decreases from a ¼ a� to
a ¼ ai (phantom behavior). This process continues peri-
odically in time with a period t2. The temporal evolution of
the scale factor and energy density is shown in Figs. 20
and 21.
This model of universe is mathematically interesting

because it combines the bouncing properties of the model
of Sec. VII (it can be extended to t ≤ 0 by symmetry)
together with the oscillatory properties of the model of
Sec. VIII. This model is never singular. It exists eternally in
the past and in the future, and is perpetually oscillating. It
displays phases of expansion and phases of contraction. It
behaves in certain periods of time as a phantom universe,
and in other periods of time normally. At some moments, it
is globally empty (ϵ ¼ 0with a > 0). Therefore, this model
of universe is mathematically very rich.
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FIG. 18. Energy density as a function of the scale factor. We
have taken Ωm;0 ¼ 0.237, ΩΛ;0 ¼ −0.763, and Ωs;0 ¼ −10−3.
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X. SOME ANALYTICAL SOLUTIONS INCLUDING
THE RADIATION ERA

We now come back to the general equation (39) includ-
ing the contribution of radiation and provide some par-
ticular analytical solutions.

A. Stiff matter and radiation

We consider a universe made of stiff matter and
radiation. The total energy is

ϵ

ϵ0
¼ Ωs;0

ða=a0Þ6
þ Ωrad;0

ða=a0Þ4
: ð106Þ

The energy density starts from ϵ → þ∞ at a ¼ ai ¼ 0 and
decreases to zero as a increases to þ∞. In the absence of
dark matter and dark energy (Ωm;0 ¼ ΩΛ;0 ¼ 0) the integral
in Eq. (39) can be performed analytically giving

2
ffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

p a
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0 þ Ωrad;0

�
a
a0

�
2

s
− 2Ωs;0

× ln

"
Ωrad;0

a
a0

þ ffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0 þΩrad;0

�
a
a0

�
2

s #

þ Ωs;0 lnðΩs;0Ωrad;0Þ ¼ 4ðΩrad;0Þ3=2H0t: ð107Þ

Using the identity sinh−1ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ, we can

rewrite the foregoing expression as

ffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

Ωs;0

s
a
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩrad;0

Ωs;0

�
a
a0

�
2

s

− sinh−1
 ffiffiffiffiffiffiffiffiffiffiffi

Ωrad;0

Ωs;0

s
a
a0

!
¼ 2ðΩrad;0Þ3=2

Ωs;0
H0t: ð108Þ

At t ¼ 0 the Universe starts from a singular state at which
the scale factor a ¼ 0 while the energy density ϵ → þ∞.
The scale factor increases with time while the energy
density decreases with time. The universe is always
decelerating. The temporal evolution of the scale factor
and energy density is shown in Fig. 22.

B. Anti-stiff matter and radiation

We consider a universe made of anti-stiff matter and
radiation. The total energy is

ϵ

ϵ0
¼ −

jΩs;0j
ða=a0Þ6

þ Ωrad;0

ða=a0Þ4
: ð109Þ

The energy density is positive for a ≥ ai with
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ai
a0

¼
�jΩs;0j
Ωrad;0

�
1=2

: ð110Þ

The energy density starts from ϵ ¼ 0 at a ¼ ai, increases,
reaches a maximum at

a�
a0

¼
�
3jΩs;0j
2Ωrad;0

�
1=2

;
ϵ�
ϵ0

¼ 4Ω3
rad;0

27jΩs;0j2
; ð111Þ

and decreases to zero as a increases to þ∞. In the absence
of dark matter and dark energy (Ωm;0 ¼ ΩΛ;0 ¼ 0) the
integral in Eq. (39) can be performed analytically giving

2
ffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

p a
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jΩs;0j þΩrad;0

�
a
a0

�
2

s
þ 2jΩs;0j

× ln

"
Ωrad;0

a
a0

þ ffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jΩs;0j þ Ωrad;0

�
a
a0

�
2

s #

− jΩs;0j lnðjΩs;0jΩrad;0Þ ¼ 4ðΩrad;0Þ3=2H0t: ð112Þ

Using the identity cosh−1ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ, we can

rewrite the foregoing expression as

ffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

jΩs;0j

s
a
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

jΩs;0j
�
a
a0

�
2

− 1

s

þ cosh−1
 ffiffiffiffiffiffiffiffiffiffiffi

Ωrad;0

jΩs;0j

s
a
a0

!
¼ 2ðΩrad;0Þ3=2

jΩs;0j
H0t: ð113Þ

At t ¼ 0 the Universe starts from a nonsingular state at
which the scale factor a ¼ ai and the energy density ϵ ¼ 0.
The scale factor increases with time. The energy density
starts from ϵ ¼ 0, increases, reaches its maximum value ϵ�
at t ¼ t� where

t� ¼
jΩs;0j

4Ω3=2
rad;0H0

½
ffiffiffi
3

p
þ 2 lnð

ffiffiffi
3

p
þ 1Þ − ln 2�; ð114Þ

and decreases to 0 as t → þ∞. The universe is accelerating
during the anti-stiff matter era and decelerating during the
radiation era. Using Eq. (44), we find that the transition
takes place at ac=a0 ¼ ð2jΩs;0j=Ωrad;0Þ1=2. The temporal
evolution of the scale factor and energy density is shown in
Fig. 23. This solution can be extended by symmetry to
t ≤ 0 so it describes a bouncing universe. There is no big
bang singularity. The universe is successively normal,
phantom, and normal again.

C. Radiation

We consider a universe made of radiation. In the
absence of stiff matter, dark matter, and dark energy
(Ωs;0 ¼ Ωm;0 ¼ ΩΛ;0 ¼ 0) we get

a
a0

¼ Ω1=4
rad;0

ffiffiffiffiffiffiffiffiffiffi
2H0t

p
;

ϵ

ϵ0
¼ 1

ð2H0tÞ2
: ð115Þ

D. Radiation and dark matter

We consider a universe made of radiation and dark
matter. The total energy is

ϵ

ϵ0
¼ Ωrad;0

ða=a0Þ4
þ Ωm;0

ða=a0Þ3
: ð116Þ

The energy density starts from ϵ → þ∞ at a ¼ ai ¼ 0 and
decreases to zero as a increases to þ∞. In the absence of
stiff matter and dark energy (Ωs;0 ¼ ΩΛ;0 ¼ 0) the integral
in Eq. (39) can be performed analytically leading to

H0t ¼ −
2

3

1

ðΩm;0Þ1=2
�
2Ωrad;0

Ωm;0
−

a
a0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωrad;0

Ωm;0
þ a
a0

s

þ 4

3

ðΩrad;0Þ3=2
ðΩm;0Þ2

: ð117Þ

Equation (117) can also be written as

�
a
a0

�
3

− 3
Ωrad;0

Ωm;0

�
a
a0

�
2

¼ 9

4
Ωm;0H2

0t
2 − 6

Ω3=2
rad;0

Ωm;0
H0t:

ð118Þ

This is a cubic equation for a=a0. At t ¼ 0 the Universe
starts from a singular state at which the scale factor a ¼ 0
while the energy density ϵ → þ∞. The scale factor
increases with time while the energy density decreases
with time. The universe is always decelerating.
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FIG. 23. Evolution of the scale factor and energy density
as a function of time. We have taken Ωs;0 ¼ −10−6 and
Ωrad;0 ¼ 8.4810−5.
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E. Radiation and dark energy

We consider a universe made of radiation and dark
energy. The total energy is

ϵ

ϵ0
¼ Ωrad;0

ða=a0Þ4
þΩΛ;0: ð119Þ

The energy density starts from ϵ → þ∞ at a ¼ ai ¼ 0 and
tends to ϵΛ as a → þ∞. In the absence of stiff matter and
dark matter (Ωs;0 ¼ Ωm;0 ¼ 0), we get

a
a0

¼
�
Ωrad;0

ΩΛ;0

�
1=4

sinh1=2ð2 ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ; ð120Þ

ϵ

ϵ0
¼ ΩΛ;0

tanh2ð2 ffiffiffiffiffiffiffiffiffi
ΩΛ;0

p
H0tÞ

: ð121Þ

At t ¼ 0 the Universe starts from a singular state at
which the scale factor a ¼ 0 while the energy density
ϵ → þ∞. The scale factor increases with time while the
energy density decreases with time and tends to ϵΛ for
t → þ∞. The universe is decelerating during the radiation
era and accelerating during the dark energy era. Using
Eq. (44), we find that the transition takes place at
ac=a0 ¼ ðΩrad;0=ΩΛ;0Þ1=4.

F. Radiation and anti-dark energy

We consider a universe made of radiation and anti-dark
energy. The total energy is

ϵ

ϵ0
¼ Ωrad;0

ða=a0Þ4
− jΩΛ;0j: ð122Þ

The energy density is positive for a ≤ af with

af
a0

¼
�
Ωrad;0

jΩΛ;0j
�

1=4
: ð123Þ

The energy density starts from ϵ → þ∞ at a ¼ ai ¼ 0,
decreases, and reaches ϵ ¼ 0 at a ¼ af. In the absence of
stiff matter and dark matter (Ωs;0 ¼ Ωm;0 ¼ 0), we get

a
a0

¼
�
Ωrad;0

jΩΛ;0j
�

1=4
sin1=2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t
�
; ð124Þ

ϵ

ϵ0
¼ jΩΛ;0j

tan2 ð2 ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j
p

H0tÞ
: ð125Þ

At t ¼ 0 the Universe starts from a singular state at which
the scale factor a ¼ 0 while the energy density ϵ → þ∞.
Between t ¼ 0 and t ¼ t1 where

t1 ¼
π

4
ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0

; ð126Þ

the energy density decreases from ϵ → þ∞ to ϵ ¼ 0 and
the scale factor increases from a ¼ 0 to a ¼ af. The
universe is always decelerating. Between t1 and t2 ¼ 2t1
the energy density increases from ϵ ¼ 0 to ϵ → þ∞ and the
scale factor decreases from a ¼ af to a ¼ 0. This process
continues periodically in time with a period t2.

XI. TRANSITION BETWEEN THE INFLATION
AND THE STIFF MATTER ERA

It is believed that the very early universe underwent an
inflationary era, driven by the vacuum energy with a
constant density of the order of the Planck density
ρP ¼ c5=G2ℏ ¼ 5.16 × 1099 g=m3, during which the scale
factor increased exponentially rapidly. To complete our
description of a cosmology with a stiff matter era, it is
important to describe the transition between the inflation
era and the stiff matter era.
An interpolation formula describing the transition

between a phase of inflation where the energy density is
constant (ϵ ¼ ρPc2) and a phase described by a linear
equation of state P ¼ αϵ can be obtained by considering an
equation of state of the form [15–17]

P ¼ αϵ − ðαþ 1Þϵ
�

ϵ

ρPc2

�
1=n

; ð127Þ

with n > 0. This is the sum of a linear equation of state
P ¼ αϵ and a polytropic equation of state P ¼ Kϵγ with
γ ¼ 1þ 1=n and K ¼ −ðαþ 1Þ=ðρPc2Þ1=n. Therefore, by
taking α ¼ 1, we can describe the transition between the
inflation and the stiff matter era. However, to be more
general, we leave the parameter α unspecified (but assume
0 ≤ α ≤ 1 to simplify the discussion) so that we can also
describe the transition between the inflation and the
radiation era (α ¼ 1=3) or the transition between the
inflation and the matter era (α ¼ 0). It is also possible to
introduce a generalized polytropic model based on a
quadratic equation of state that describes simultaneously
the early inflation, the intermediate decelerating expansion,
and the late acceleration of the Universe [61,62].
For the equation of state (127), assuming w ¼ P=ϵ ≥ −1

(nonphantom), the continuity equation (1) can be integrated
into

ϵ ¼ ρPc2

½1þ ða=a�Þ3ð1þαÞ=n�n ; ð128Þ

where a� is a constant of integration. The speed of sound is
given by

c2s
c2

¼ α − ðαþ 1Þ nþ 1

n

�
ϵ

ρPc2

�
1=n

: ð129Þ

For a ≪ a�, we obtain ϵ → ρPc2, P → −ρPc2 (P ∼ −ϵ) and
c2s=c2 → −ðαþ nþ 1Þ=n, leading to a phase of inflation.
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For a ≫ a�, we obtain ϵ ∼ ρPc2=ða=a�Þ3ð1þαÞ, P ∼ αϵ, and
c2s=c2 ≃ α corresponding to a linear equation of state.
Therefore, a� marks the transition between the inflation
era and the α era. Using the asymptotic result
ϵα ∼ ρPc2=ða=a�Þ3ð1þαÞ, the transition scale factor is deter-
mined by a�=a0 ¼ ðΩα;0ϵ0=ρPc2Þ1=½3ð1þαÞ� whereΩα;0 is the
present fraction of the α fluid in the Universe.
Substituting Eq. (128) in the Friedmann equation (3)

with Λ ¼ 0, we obtain

H ¼ _a
a
¼ ð8πGρP=3Þ1=2

½1þ ða=a�Þ3ð1þαÞ=n�n=2 : ð130Þ

The general solution of this equation is given by [15]

3

2
ðαþ 1Þ

�
8π

3

�
1=2 t

tP

¼
�
a
a�

�
3ðαþ1Þ=2

×2F1

�
−
n
2
;−

n
2
; 1 −

n
2
;−
�
a�
a

�
3ðαþ1Þ=n�

þ C; ð131Þ

where tP ¼ ðGρPÞ−1=2 ¼ ðℏG=c5Þ1=2 ¼ 5.39 × 10−44 s is
the Planck time and C is an integration constant determined
such that a ¼ lP at t ¼ 0, where lP ¼ ðGℏ=c3Þ1=2 ¼
1.62 × 10−35 m is the Planck length. Some explicit sol-
utions of Eq. (130) are given in Ref. [15]. For example, for
n ¼ 1, one has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=a�Þ3ð1þαÞ þ 1

q
− ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=a�Þ3ð1þαÞ þ 1

q
ða=a�Þ3ð1þαÞ

!

¼ 3

2
ðαþ 1Þ

�
8π

3

�
1=2 t

tP
þ C: ð132Þ

The time evolution of the scale factor and energy density is
represented in Figs. 24 and 25.
For a ≪ a�,

ϵ≃ ρPc2; a≃ lPeð
8π
3
Þ1=2t=tP ; ð133Þ

so the energy density is constant (equal to the Planck
density) and the scale factor increases exponentially rapidly
with time (inflation era). For a ≫ a�,

ϵ

ρPc2
∼
�
3

2
ðαþ 1Þ

�
8π

3

�
1=2 t

tP

�−2
; ð134Þ

a
a�

∼
�
3

2
ðαþ 1Þ

�
8π

3

�
1=2 t

tP

�
2=½3ð1þαÞ�

; ð135Þ

so the energy density and the scale factor evolve algebrai-
cally with time (α-era).

If we consider the transition between the inflation
era and the radiation era (α ¼ 1=3), we find that the
temperature is given by a generalized Stefan-Boltzmann
law [see Eq. (84a) in Ref. [15]]. The evolution of the
temperature is discussed in detail in Refs. [15–17,61]. In
our model, the temperature is initially very low, increases
exponentially rapidly during the inflation up to a fraction
(∼0.523) of the Planck temperature TP ¼ 1.42 × 1032 K
which is of the order of the grand unified theory (GUT)
scale, then decreases algebraically during the radiation era.
On the other hand, our model generates a value of the
entropy as large as S=kB ¼ 5.04 × 1087 [15–17,61]. This is
very different from the standard inflationary scenario
[53,63–65]. In that scenario, the Universe is radiation
dominated up to ti ¼ 10−35 s and expands exponentially
rapidly by a factor 1030 in the interval ti < t < tf with
tf ¼ 10−33 s. For t > tf, the evolution is again radiation
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dominated. At t ¼ ti, the temperature is about 1027 K (this
corresponds to the epoch at which most GUTs have a
significant influence on the evolution of the Universe).
During the exponential inflation, the temperature drops
drastically and one must advocate a phase of reheating by
various high-energy processes (not very well understood)
to restore the initial temperature.
Our model of inflation has the following properties. The

universe is accelerating when a < ac and decelerating
when a > ac where

ac
a�

¼
�

2

1þ 3α

�
n=½3ðαþ1Þ�

: ð136Þ

The speed of sound is imaginary (c2s < 0) when a < ae and
real (c2s > 0) when a > ae where

ae
a�

¼
�
αþ nþ 1

αn

�
n=½3ðαþ1Þ�

: ð137Þ

The speed of sound is always less than the speed of light.
The pressure is negative when a < aw and positive when
a > aw where

aw
a�

¼
�
1

α

�
n=½3ðαþ1Þ�

: ð138Þ

It has a maximum value

Pe

ρPc2
¼ α

nþ 1

�
αn

ðαþ 1Þðnþ 1Þ
�
n

ð139Þ

at a ¼ ae.
The phase of inflation in the very early universe is

usually described by a scalar field, called the inflaton,
which evolves according to Eq. (31). We can show [16] that
the equation of state (127) is equivalent to a scalar field
with a potential (see Fig. 26):

VðψÞ ¼ 1

2
ρPc2

ð1 − αÞcosh2ψ þ αþ 1

cosh2ðnþ1Þψ
; ð140Þ

where we have defined

ψ ¼
�
8πG
3c2

�
1=2 3

ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p

2n
ϕ: ð141Þ

For ψ → 0,

VðψÞ
ρPc2

≃ 1 −
1þ αþ 2n

2
ψ2

þ 2þ 2αþ 4nþ 3αnþ 3n2

6
ψ4; ð142Þ

which is consistent with the symmetry-breaking scalar field
potential used to describe inflation.5 For ψ → þ∞,

VðψÞ
ρPc2

∼ 22n−1ð1 − αÞe−2nψ ; ðα ≠ 1Þ; ð143Þ

VðψÞ
ρPc2

∼ 22ðnþ1Þe−2ðnþ1Þψ ; ðα ¼ 1Þ: ð144Þ

We can also show [16] that the relation between the scalar
field and the scale factor is

sinhψ ¼
�
a
a�

�
3ðαþ1Þ=2n

: ð145Þ

The end of the inflation, and the beginning of the α era,
corresponds to a ¼ a�, and hence to ψ¼ψ� ¼ sinh−1ð1Þ¼
lnð1þ ffiffiffi

2
p Þ¼0.881374. Combining Eqs. (127), (128) and

(145), we find that the energy density and the pressure of
the Universe are related to the scalar field by

ϵ ¼ ρPc2

cosh2n ψ
; ð146Þ

P ¼ ρPc2

cosh2nψ

�
α − ðαþ 1Þ 1

cosh2ψ

�
: ð147Þ

On the other hand, using Eqs. (131) and (145), we
find that the temporal evolution of the scalar field is
given by

0 1 2 3
ψ

0

0.2

0.4

0.6

0.8

1

V
/ρ

Pc2

FIG. 26. Potential of the scalar field (inflaton).

5Our model of inflation [15–17] has been recently used in
Ref. [66] to study the primordial quantum fluctuations in the very
early universe.
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3

2
ðαþ 1Þ

�
8π

3

�
1=2 t

tP
¼ sinhnψ

×2F1

�
−
n
2
;−

n
2
; 1 −

n
2
;−

1

sinh2ψ

�
þ C: ð148Þ

It is represented in Fig. 27. For t → −∞ (i.e. a → 0), we
find that

ψ ∼
�
lP
a�

�
3ðαþ1Þ=2n

e
3ðαþ1Þ

2n ð8π
3
Þ1=2t=tP → 0: ð149Þ

For t → þ∞ (i.e. a → þ∞), we find that

ψ ≃ 1

n

	
ln½3ðαþ 1Þ� þ ðn − 1Þ ln 2

þ 1

2
ln

�
8π

3

�
þ ln

�
t
tP

�

→ þ∞: ð150Þ

For n ¼ 1, using Eq. (132), we obtain for all times

coshψ − ln

�
1þ coshψ
sinhψ

�
¼ 3

2
ðαþ 1Þ

�
8π

3

�
1=2 t

tP
þ C:

ð151Þ

Combining the results of this section with those of
Sec. V, we can propose a general cosmological model of the
form

�
H
H0

�
2

¼ Ωα;0

½ða=a0Þ3ð1þαÞ=n þ ða�=a0Þ3ð1þαÞ=n�n

þ Ωs;0

ða=a0Þ6
þ Ωrad;0

ða=a0Þ4
þ Ωm;0

ða=a0Þ3
þ ΩΛ;0 ð152Þ

which describes an inflation era, followed by an α era, a
stiff matter era, a radiation era, a matter era, and a dark

energy era. The α era can represent the stiff matter era
(α ¼ 1), the radiation era (α ¼ 1=3), or the matter
era (α ¼ 0).
The transition between the α era and the dark energy era

is described by the analytical solution [16,62]

a
a0

¼
�
Ωα;0

ΩΛ;0

� 1
3ð1þαÞ

sinh
2

3ð1þαÞ

�
3

2
ð1þ αÞ ffiffiffiffiffiffiffiffiffi

ΩΛ;0

p
H0t

�
; ð153Þ

ϵ

ϵ0
¼ ΩΛ;0

tanh2½3
2
ð1þ αÞ ffiffiffiffiffiffiffiffiffi

ΩΛ;0

p
H0t�

: ð154Þ

The transition between the α era and the anti-dark energy
era (ΩΛ;0 < 0) is described by the analytical solution

a
a0

¼
�

Ωα;0

jΩΛ;0j
� 1

3ð1þαÞ
sin

2
3ð1þαÞ

�
3

2
ð1þ αÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩΛ;0j

q
H0t

�
; ð155Þ

ϵ

ϵ0
¼ jΩΛ;0j

tan2½3
2
ð1þ αÞ ffiffiffiffiffiffiffiffiffiffiffiffijΩΛ;0j

p
H0t�

: ð156Þ

XII. CONCLUSION

We have obtained analytical solutions of the Friedmann
equations for a universe undergoing a primordial stiff
matter era in which the speed of sound is equal to the
speed of light. The idea of a stiff matter era preceding the
radiation and matter eras first appeared in the cosmological
model of Zel’dovich [20,21] in which the very early
universe is assumed to be made of a cold gas of baryons.
This idea reappeared recently in certain models of relativ-
istic SF/BEC cosmologies [14,23,24] that are presently
considered with great interest. In this paper, we have
studied the evolution of the homogeneous background.
For the sake of generality, we have considered a positive
and a negative energy density of the stiff matter (leading to
singular or nonsingular bouncing models of the Universe)
and a positive or a negative value of the cosmological
constant (leading to expanding or oscillating models of the
Universe). In a future work, we shall consider the evolution
of the perturbations in these different models.
As mentioned long ago by Barrow [22], a stiff equation

of state has several interesting properties in astrophysics
and cosmology that deserve to be better explored. Some
works have shown that the presence of stiff matter in
cosmological models produces an abundance of relic
species of particles after the big bang due to the expansion
and cooling of the universe [67]. The presence of stiff
matter in the early universe may also help explain the
baryon asymmetry and the density perturbation of the right
amplitude for the formation of large-scale structures in our
universe [68]. It may also affect the spectrum of relic
gravitational waves created during inflation [69]. These
important problems should also be considered in
future works.
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FIG. 27. Evolution of the scalar field as a function of time.
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APPENDIX A: AN ESTIMATE OF Ωs;0

Following the considerations of Sec. IV D, we propose to
determine the polytropic constant K in Eq. (13) by

K ¼ � c2

ρP
; ðA1Þ

where ρP ¼ 5.16 × 1099 g=m3 is the Planck density. The
quadratic equation of state (13) can then be written as

P ¼ �ρPc2
�
ρ

ρP

�
2

: ðA2Þ

This equation of state leads to a fully predictive model,
without free parameters, including a stiff matter era (þ) or
an anti-stiff matter era (−) that manifests itself when the
rest-mass density ρ is of the order of the Planck density ρP.
Comparing Eq. (15) with Eq. (36), we find that ρ0c2 ¼

Ωm;0ϵ0 and Kρ20 ¼ Ωs;0ϵ0. Using Eq. (A1), we obtain

Ωs;0 ¼
Ω2

m;0ϵ0
ρPc2

: ðA3Þ

Taking ϵ0=c2 ¼ 9.26 × 10−24 gm−3, Ωm;0 ¼ 0.274 and
ρP ¼ 5.16 × 1099 gm−3, we find Ωs;0 ¼ 1.35 × 10−124

(∼ρΛ=ρP) so the present fraction of stiff matter is extremely
small. This comes from our assumption that stiff matter
manifests itself only at the Planck scale (see Sec. IV D).

APPENDIX B: A GENERALIZATION OF THE
ANALYTICAL SOLUTIONS

We consider a universe containing three noninteracting
fluids, each of them described by a linear equation of state
pi ¼ αiϵi with α1 ¼ α, α2 ¼ ðα − 1Þ=2, and α3 ¼ −1 (dark
energy). Since α1 ≤ 1, we have α2 ≤ 0. Therefore, the
second fluid necessarily has a negative (or a vanishing)
pressure. On the other hand, the two fluids are either both
normal (α1 > −1 and α2 > −1) or both phantom (α1 < −1
and α2 < −1). Some triplets ðα1; α2; α3Þ of physical interest
are ð1; 0;−1Þ, ð0;−1=2;−1Þ, ð1=3;−1=3;−1Þ, and
ð−1;−1;−1Þ. The first case ðα1; α2; α3Þ ¼ ð1; 0;−1Þ cor-
responds to a universe made of stiff matter, dark matter and
dark energy as studied in the main part of this paper. The
total energy density is

ϵ

ϵ0
¼ Ωs;0

ða=a0Þ3ð1þαÞ þ
Ωm;0

ða=a0Þ3ð1þαÞ=2 þ ΩΛ;0: ðB1Þ

The Friedmann equation (3) takes the formZ
a=a0

ai=a0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0

x3ð1þαÞ þ Ωm;0

x3ð1þαÞ=2 þΩΛ;0

q ¼ H0t: ðB2Þ

With the change of variables X ¼ xð1þαÞ=2, we obtain

Z ða=a0Þð1þαÞ=2

ðai=a0Þð1þαÞ=2

dX

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωs;0

X6 þ Ωm;0

X3 þ ΩΛ;0

q ¼ 1þ α

2
H0t; ðB3Þ

where we recognize the integral in Eq. (40). As a result, the
evolution of the scale factor and energy density of a
universe containing three noninteracting fluids with linear
coefficients α1 ¼ α, α2 ¼ ðα − 1Þ=2, and α3 ¼ −1 is given
by the equations of this paper with the substitutions
a=a0 → ða=a0Þð1þαÞ=2 and H0t → ð1þ αÞH0t=2.

APPENDIX C: GENERAL POLYTROPIC
EQUATION OF STATE

In this paper (see also Ref. [14]), we have considered a
relativistic fluid described by a polytropic equation of state
P ¼ Kρ2 of index n ¼ 1 (i.e. γ ¼ 2), where ρ is the rest-
mass density. This quadratic equation of state appears in the
model of Zel’dovich [20,21]. This is also the standard
equation of state of a self-interacting BEC at T ¼ 0 [12].
More generally, we can consider a polytropic equation of

state [30]:

P ¼ Kργ; γ ¼ 1þ 1

n
; ðC1Þ

with an arbitrary index γ. For γ ¼ 1, it reduces to the
isothermal equation of state

P ¼ ρ
kBTeff

m
; ðC2Þ

with an effective temperature Teff . These equations of state
can be derived from the Gross-Pitaevskii (GP) equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ Kγm

γ − 1
jψ j2ðγ−1Þψ ; ðC3Þ

or

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ 2kBTeff ln jψ jψ ; ðC4Þ

describing a BEC at T ¼ 0 with a power-law (γ ≠ 1)
or a logarithmic (γ ¼ 1) self-interaction potential [11].
The usual GP equation is recovered for γ ¼ 2 and
K ¼ 2πℏ2as=m3, where as is the scattering length of the
bosons. Combining Eqs. (C3) and (C4), we can obtain a
generalized GP equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ 4πasℏ2

m2
jψ j2ψ

þ 2kBTeff ln jψ jψ ; ðC5Þ
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that incorporates (effective) thermal effects and self-
interaction.
We assume that the Universe is filled with a single

relativistic dark fluid at T ¼ 0 described by the polytropic
equation of state (C1). From Eq. (9), we find that the energy
density is related to the rest-mass density by [14,31]

ϵ ¼ ρc2 þ Kρ lnðρ=ρ�Þ; ðγ ¼ 1Þ; ðC6Þ

ϵ ¼ ρc2 þ K
γ − 1

ργ ¼ ρc2 þ nP; ðγ ≠ 1Þ: ðC7Þ

Combining Eq. (12) with Eqs. (C6) and (C7), we obtain for
γ ¼ 1

ϵ ¼ ρ0c2
�
a0
a

�
3

þ Kρ0

�
a0
a

�
3

ln

�
ρ0
ρ�

�
a0
a

�
3
�

ðC8Þ

and for γ ≠ 1

ϵ ¼ ρ0c2
�
a0
a

�
3

þ K
γ − 1

ργ0

�
a0
a

�
3γ

: ðC9Þ

When γ > 1 (i.e. n > 0), we find that P ∼ ϵ=n and ϵ ∼
nKργ ∝ a−3γ in the early universe (a small, ρ large) and that
P ∼ Kðϵ=c2Þγ and ϵ ∼ ρc2 ∝ a−3 in the late universe (a
large, ρ small). When γ < 1 (i.e. n < 0), we find that P ∼
Kðϵ=c2Þγ and ϵ ∼ ρc2 ∝ a−3 in the early universe (a small,
ρ large) and that P ∼ ϵ=n and ϵ ∼ nKργ ∝ a−3γ in the late
universe (a large, ρ small).
Introducing relevant notations Ωm;0 ¼ ρ0c2=ϵ0, Ω0

m;0 ¼
ðKΩm;0=c2Þ lnðΩm;0ϵ0=ρ�c2Þ and Ωγ;0 ¼ Kργ0=½ðγ − 1Þϵ0�
(see below), the relation between the energy density and
the scale factor can be rewritten as

ϵ

ϵ0
¼ Ωm;0

ða=a0Þ3
þΩ0

m;0 ln½ðΩm;0ϵ0=ρ�c2Þða0=aÞ3�
ða=a0Þ3 lnðΩm;0ϵ0=ρ�c2Þ

ðC10Þ

for γ ¼ 1, and as

ϵ

ϵ0
¼ Ωm;0

ða=a0Þ3
þ Ωγ;0

ða=a0Þ3γ
ðC11Þ

for γ ≠ 1. By construction, Ωm;0 þ Ω0
m;0 ¼ 1 and Ωm;0 þ

Ωγ;0 ¼ 1.
For the polytropic equation of state (C1) with γ ≠ 1, our

treatment shows that the energy density (C9) of the dark
fluid is the sum of two terms: an ordinary term ϵm ≡ ρc2 ∝
a−3 (rest-mass energy) equivalent to dark matter and a new6

term ϵγ≡u¼nKργ ¼nP∝a−3γ (internal energy) depend-
ing on the polytropic index γ. Therefore, everything
happens as if we had two fluids: a “dark matter fluid”
ða=a0Þ−3 with a proportionΩm and a “new fluid” ða=a0Þ−3γ
with a proportion Ωγ . We recall, however, that in our
approach we intrinsically have just one dark fluid. What we
call “dark matter” corresponds to its rest-mass energy
density and what we call “new fluid” corresponds to its
internal energy. When γ > 1, the new fluid (internal
energy) dominates in the early universe and dark matter
(rest-mass energy) dominates in the late universe. When
γ < 1, dark matter (rest-mass energy) dominates in the
early universe and the new fluid (internal energy) domi-
nates in the late universe. For γ ¼ 2 (i.e. n ¼ 1), the new
fluid mimics stiff matter (ϵs ∝ a−6) as discussed in this
paper. For γ ¼ 0 (i.e. n ¼ −1), the new fluid mimics dark
energy (ϵΛ ¼ cst) as discussed in Refs. [15–17] when the
pressure is a negative constant (P ¼ −ϵΛ). For γ ¼ 4=3 (i.e.
n ¼ 3) the new term mimics the radiation of an ultra-
relativistic gas (ϵrad ∝ a−4).
More generally, according to Eq. (8), the new term that

appears in the energy equation is equal to the internal
energy of the dark fluid

ϵnew ¼ uðρÞ ¼ ρ

Z
ρ Pðρ0Þ

ρ02
dρ0: ðC12Þ

This relation clearly shows that the new term is related to
pressure effects (collisions). When PðρÞ is close to a
negative constant, corresponding to γ → 0 and K < 0 in
the polytropic model, we suggest that the new term ϵnew
represents dark energy. Our procedure may be used to
obtain generalized models of dark energy by considering
different equations of state PðρÞ, that do not change too
much with the density (γ ≃ 0). In our approach, we have a
single dark fluid described by an equation of state PðρÞ
unifying dark matter and dark energy: in Eq. (9), the rest-
mass term ρc2 mimics “dark matter” and the internal energy
term uðρÞ mimics “dark energy” (or, more generally, a new
fluid).7 We suggest that the dark fluid may be in the form of
relativistic self-interacting BECs at T ¼ 0 although other

6We call it “new” because in the CDMmodel where P ¼ 0, the
energy density is just equal to ϵ ¼ ρ0c2ða0=aÞ3. However, as
soon as P ≠ 0, an additional term appears in the energy density as
a direct consequence of relativistic thermodynamics. In this
sense, there is nothing really new or surprising.

7Let us be more precise by considering the polytropic model.
For the internal energy to mimic dark energy, we need γ < 1 so
that the internal energy u ¼ Kργ=ðγ − 1Þ ¼ P=ðγ − 1Þ dominates
the rest-mass ρc2 in the late universe where the density is low. We
also need u > 0 since the observations reveal that some energy is
missing with respect to the pressureless dark matter model (EdS
model), i.e. ϵ > ρc2. These two conditions (γ < 1 and u > 0)
imply that the pressure must be negative (P < 0). When γ < 1
and P > 0, the internal energy is negative (u < 0), so it mimics
anti-dark energy (like a negative cosmological constant). On the
other hand, when γ > 1, the internal energy u dominates the rest-
mass ρc2 in the early universe where the density is high. In that
case, the internal energy mimics a new primordial fluid like the
stiff fluid considered in this paper (when P ¼ Kρ2). We have
u > 0 when P > 0 and u < 0 when P < 0.
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possibilities may be contemplated. In the BEC model, the
pressure is negative when the self-interaction is attractive
(K < 0). This may justify equations of state with a negative
pressure (such as the equation of state of dark energy) as
suggested in Ref. [11].
Since dark matter and dark energy can be unified by a

single dark fluid with a polytropic equation of state P ¼
Kργ with an almost vanishing index γ ≃ 0, it is relevant to
consider the logotropic equation of state [19,70]:

P ¼ A lnðρ=ρ�Þ; ðC13Þ

which can be viewed as the limiting form of a polytrope of
index γ → 0 (n → −1) with K → ∞ such that A ¼ Kγ is
finite [19]. If the dark fluid is made of BECs, using the
formalism of Ref. [11], the logotropic equation of state can
be derived from a GP equation of the form

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þm

�
Φ −

A
Nmjψ j2

�
ψ : ðC14Þ

This corresponds to a GP equation with an inverted
quadratic potential, i.e. with the exponent −2 instead of
þ2 in the usual GP equation [12]. This equation can also be
obtained as the limiting form of Eq. (C3) when γ → 0 and
K → ∞ with A ¼ Kγ finite. For the logotropic equation of
state (C13), the energy relation (9) becomes

ϵ ¼ ρc2 − A ln

�
ρ

ρ�

�
− A: ðC15Þ

Combining Eq. (12) and Eq. (C15), we obtain

ϵ ¼ ρ0c2
�
a0
a

�
3

− A ln

�
ρ0
ρ�

�
a0
a

�
3
�
− A: ðC16Þ

For a → 0, ϵ ∝ a−3 like in a pressureless universe. For
a → þ∞, ϵ ∼ 3A ln a (assuming A > 0). Integrating the
Friedmann equation (3), we obtain the “super–de Sitter”
asymptotic behavior

a ∝ e
2πGA
c2

t2 ; ϵ ∼
6πGA2

c2
t2; ðt → þ∞Þ: ðC17Þ

The evolution of the scale factor is given by a stretched
exponential. It exhibits a typical time scale tL¼c=

ffiffiffiffiffiffiffiffiffiffiffiffi
2πGA

p
.

Since the energy density increases as the scale factor
increases, the Universe is phantom [28] (this is a particular
case of the models of a phantom universe studied in
Ref. [71]). However, it is nonsingular since the scale factor
and the energy density become infinite in infinite time. This
is called a little rip [72]. Furthermore, we have _H →
4πGA=c2 ¼ 2=t2L as t → þ∞. The logotropic model was
studied in detail in Ref. [18]. It is able to account for
cosmological and galactic (dark matter) observations

remarkably well. This may be a hint that dark matter
and dark energy are the manifestation of a single dark fluid
with a logotropic equation of state.
Remark: At the background level, a single dark fluid

with an equation of state PðρÞ is equivalent to two non-
interacting fluids [73]: a dark matter fluid with an equation
of state Pm ¼ 0 and a new fluid with an equation of state
PnewðϵnewÞ defined in implicit form by Pnew ¼ PðρÞ and
ϵnew ¼ uðρÞ where uðρÞ is defined by Eq. (C12) and ρ is a
running parameter (in the two-fluids model, it does not
have a physical interpretation). For the polytropic equation
of state (C1), we find Pnew ¼ ðγ − 1Þϵnew and for the
logotropic equation of state (C13) we get Pnew ¼
−ϵnew − A [73].

APPENDIX D: EVOLUTION OF THE UNIVERSE
AS A FUNCTION OF THE POLYTROPIC INDEX

We consider a universe filled with a single relativistic
dark fluid at T ¼ 0 described by the polytropic equation of
state (C1). We first assume γ ≠ 1 (the case γ ¼ 1 is treated
in Appendix D 3). The relation between the energy density
and the rest-mass density is given by Eq. (9) or, equiv-
alently, by Eq. (C7). The rest-mass density evolves with the
scale factor according to Eq. (12) and the energy density
evolves with the scale factor according to Eq. (C9) or,
equivalently, according to Eq. (C11). The Friedmann
equation (3) with Λ ¼ 0 can be written as

_a
a
¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

ða=a0Þ3
þ Ωγ;0

ða=a0Þ3γ
s

ðD1Þ

with Ωm;0 þ Ωγ;0 ¼ 1. Its formal solution is

Z
a=a0

0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

x3 þ Ωγ;0

x3γ

q ¼ H0t: ðD2Þ

This integral can be expressed in terms of hypergeometric
functions, but we shall not need this result here.

1. The case γ < 1

When γ < 1 the rest-mass energy (dark matter) domi-
nates in the early universe where ρ is large and the internal
energy (new fluid) dominates in the late universe where ρ
is small.

a. The early universe (dark matter)

In the early universe, for ρ → þ∞, the relations between
the energy density, the rest-mass energy and the pressure
reduce to

ϵ ∼ ρc2; P ¼ Kργ; P ∼ K

�
ϵ

c2

�
γ

: ðD3Þ
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The dark fluid has a polytropic equation of state with index
γ. However, since P ≪ ϵ when ϵ → þ∞, everything
happens in the Friedmann equations as if the fluid were
pressureless (P ¼ 0). The relation between the energy
density and the scale factor reduces to

ϵ

ϵ0
∼

Ωm;0

ða=a0Þ3
: ðD4Þ

The early universe is normal since the energy density
decreases as the scale factor increases. The Friedmann
equation

_a
a
∼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

ða=a0Þ3
s

ðD5Þ

can be integrated easily. For t → 0, we have

a
a0

∼
�
3

2

ffiffiffiffiffiffiffiffiffi
Ωm;0

p
H0t

�
2=3

; ðD6Þ

ϵ

ϵ0
∼

1

ð3
2
H0tÞ2

; ϵ ∼
c2

6πGt2
: ðD7Þ

The scale factor starts from a ¼ 0 and increases with time.
The energy density starts from þ∞ and decreases with
time. The early universe is decelerating. This corresponds
to the EdS solution (63) that is usually derived for a
pressureless fluid (P ¼ 0).

b. The late universe with K < 0 (dark energy)

We now consider the late universe. We first assume
K < 0 so that the internal energy is positive
(u ¼ Kργ=ðγ − 1Þ > 0) and the pressure is negative
(P ¼ Kργ < 0). This implies Ωγ;0¼Kργ0=½ðγ−1Þϵ0�>0.
In that case, the new fluid mimics dark energy. For
ρ → 0, the relations between the energy density, the rest-
mass energy and the pressure reduce to

ϵ ∼
K

γ − 1
ργ; P ¼ Kργ; P ∼ ðγ − 1Þϵ: ðD8Þ

The dark fluid has a linear equation of state with a negative
coefficient α ¼ γ − 1 < 0. For a → þ∞, the relation
between the energy density and the scale factor reduces to

ϵ

ϵ0
∼

Ωγ;0

ða=a0Þ3γ
: ðD9Þ

In order to integrate the Friedmann equation

_a
a
∼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ;0

ða=a0Þ3γ
s

; ðD10Þ

we have to consider different cases.

We first assume 0 < γ < 1 (i.e. −1 < α < 0). In that
case, the late universe is normal since the energy density
decreases as the scale factor increases. For t → þ∞, we
have

a
a0

∼
�
3γ

2

ffiffiffiffiffiffiffiffiffi
Ωm;0

p
H0t

�
2=3γ

; ðD11Þ

ϵ

ϵ0
∼

1

ð3γ
2
H0tÞ2

; ϵ ∼
c2

6πGγ2t2
: ðD12Þ

The scale factor increases algebraically with time and tends
to infinity as t → þ∞. The energy density decreases
algebraically with time and tends to zero as t → þ∞.
The late universe is decelerating if γ > 2=3 (i.e. α > −1=3)
and accelerating if γ < 2=3 (i.e. α < −1=3). Coming back
to the general equations, the Universe starts accelerating
when w ¼ P=ϵ < −1=3, corresponding to a > ac with

ac
a0

¼
�

Ωm;0

ð2 − 3γÞΩγ;0

�
1=½3ð1−γÞ�

: ðD13Þ

We now assume γ ¼ 0 (i.e. α ¼ −1) corresponding to a
constant negative pressure P ¼ −ϵΛ. In that case, the
energy density tends to a constant in the late universe:
ϵ → ΩΛ;0ϵ0 ¼ ϵΛ. For t → þ∞, we have

a
a0

∝ e
ffiffiffiffiffiffiffi
ΩΛ;0

p
H0t: ðD14Þ

The scale factor increases exponentially rapidly with time
and tends to infinity as t → þ∞. This corresponds to the de
Sitter solution of Eq. (62). The late universe is accelerating.
If we come back to the general equations, the polytropic
model with γ ¼ 0 corresponds to the ΛCDM model for
which we have the analytical solution of Eqs. (60) and (61).
We finally assume γ < 0 (i.e. α < −1). In that case, the

late universe is phantom since the energy density increases
as the scale factor increases. The universe is accelerating
and undergoes a future finite time singularity called a big
rip [74]. The scale factor and the energy density become
infinite in a finite time tBR. Close to the big rip time, we
have

a
a0

∼
1

½3jγj
2

ffiffiffiffiffiffiffiffiffi
Ωm;0

p
H0ðtBR − tÞ�2=3jγj

; ðD15Þ

ϵ

ϵ0
∼

1

½3jγj
2
H0ðtBR − tÞ�2

: ðD16Þ

Coming back to the general equations, the Universe is
accelerating for a ≥ ac given by Eq. (D13) and becomes
phantom for a ≥ aM with
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aM
a0

¼
�

Ωm;0

jγjΩγ;0

�
1=½3ðjγjþ1Þ�

: ðD17Þ

At that point, the energy density reaches its minimum value
( _H ¼ 0):

ϵM
ϵ0

¼ Ωm;0

�
1þ 1

jγj
��jγjΩγ;0

Ωm;0

�
1=ð1þjγjÞ

: ðD18Þ

The big rip occurs at

H0tBR ¼
Z þ∞

0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

x3 þΩγ;0x3jγj
q : ðD19Þ

For completeness, we consider the logotropic equation
of state (C13) which is intermediate between a constant
equation of state (γ ¼ 0) and a polytropic equation of state
with γ ¼ 0−. We assume A > 0. In that case, the late
universe is phantom since the energy density increases as
the scale factor increases [see Eq. (C16)]. However, there is
no future singularity. The scale factor increases super-
exponentially rapidly with time [see Eq. (C17)] and tends to
infinity as t → þ∞. The energy density increases quad-
ratically with time [see Eq. (C17)] and tends to infinity as
t → þ∞. This corresponds to a little rip [72]. We note that
the logotropic model is the only model of the polytropic
family that is phantom but nonsingular. The phantom
models without future singularity are attractive from the
physical viewpoint because the occurrence of a finite time
singularity may lead to some inconsistencies. More details
on the logotropic universe can be found in Ref. [18].

c. The late universe with K > 0 (anti-dark energy)

We now assume K > 0 so that the internal energy is
negative (u¼Kργ=ðγ−1Þ<0) and the pressure is positive
(P ¼ Kργ > 0). This implies Ωγ;0 ¼ Kργ0=½ðγ − 1Þϵ0� < 0.
In that case, the new fluid mimics anti-dark energy. The
energy density vanishes at

af
a0

¼
�jΩγ;0j
Ωm;0

�
1=½3ðγ−1Þ�

: ðD20Þ

At that moment H ¼ _a=a ¼ 0. The scale factor starts from
a ¼ 0 at t ¼ 0 (big bang), increases, reaches its maximum
value af at a time

H0t1 ¼
Z

af=a0

0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

x3 − jΩγ;0j
x3γ

q ; ðD21Þ

decreases, and vanishes at t ¼ t2 ¼ 2t1 (big crunch).
During the phase of expansion, the Universe is decelerat-
ing. The energy density starts from infinity at t ¼ 0,
decreases, vanishes at t ¼ t1 (the Universe disappears),

increases, and tends to infinity at t ¼ t2 ¼ 2t1. This process
continues periodically in time. Close to t1, we have the
behaviors

a
af

≃ 1 −
3

4

Ωm;0

ðaf=a0Þ3
ð1 − γÞH2

0ðt1 − tÞ2; ðD22Þ

ϵ

ϵ0
≃ 9

4

Ω2
m;0

ðaf=a0Þ6
ð1 − γÞ2H2

0ðt1 − tÞ2: ðD23Þ

For γ ¼ 0, we recover the anti-ΛCDM model of
Sec. VIII C.
The logotropic equation of state with A < 0 behaves

similarly.

2. The case γ > 1

When γ > 1 the rest-mass energy (dark matter) domi-
nates in the late universe where ρ is small and the internal
energy (new fluid) dominates in the early universe where ρ
is large.

a. The late universe (dark matter)

In the late universe, for ρ → 0, the relations between the
energy density, the rest-mass energy and the pressure
reduce to Eq. (D3). Therefore, Eqs. (D4)–(D7) remain
valid except that they now apply to the late universe, for
t → þ∞. The scale factor increases algebraically with time
and tends to infinity as t → þ∞. The energy density
decreases algebraically with time and tends to zero as
t → þ∞. The late universe is decelerating. This corre-
sponds to the EdS solution (63) that is usually derived for a
pressureless fluid (P ¼ 0).

b. The early universe with K > 0 (primordial fluid)

We now consider the early universe. We first assume
K > 0 so that the internal energy is positive (u ¼ Kργ=
ðγ − 1Þ > 0) and the pressure is positive (P ¼ Kργ > 0).
This implies Ωγ;0 ¼ Kργ0=½ðγ − 1Þϵ0� > 0. In that case, the
new fluid mimics a primordial fluid. For ρ → þ∞, the
relations between the energy density, the rest-mass energy
and the pressure reduce to Eq. (D8). Therefore, Eqs. (D9)–
(D12) remain valid except that they now apply to the early
universe, for t → 0. The scale factor starts from a ¼ 0 at
t ¼ 0 and increases algebraically with time. The energy
density starts from infinity at t ¼ 0 and decreases alge-
braically with time. The early universe is always deceler-
ating. For γ ¼ 2, we recover the stiff matter model of
Sec. VI B.

c. The early universe with K < 0 (anti-primordial fluid)

We now assume K < 0 so that the internal energy is
negative (u ¼ Kργ=ðγ − 1Þ < 0) and the pressure is negative
(P ¼ Kργ < 0). This implies Ωγ;0¼Kργ0=½ðγ−1Þϵ0�<0. In
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that case, the new fluid mimics an anti-primordial fluid. The
energy density vanishes at

ai
a0

¼
�jΩγ;0j
Ωm;0

�
1=½3ðγ−1Þ�

: ðD24Þ

At that moment H ¼ _a=a ¼ 0. The energy density reaches
its maximum value

ϵ�
ϵ0

¼ ðγ − 1ÞΩm;0

γðγjΩγ;0j
Ωm;0

Þ1=ðγ−1Þ
ðD25Þ

at

a�
a0

¼
�
γjΩγ;0j
Ωm;0

�
1=½3ðγ−1Þ�

: ðD26Þ

At that moment _H ¼ 0. The scale factor starts from a ¼ ai
at t ¼ 0 and increases with time. The energy density starts
from ϵ ¼ 0 at t ¼ 0, increases, reaches its maximum value
ϵ� at a time

H0t� ¼
Z

a�=a0

0

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

x3 − jΩγ;0j
x3γ

q ; ðD27Þ

and decreases. The universe is phantom for t < t� and
normal for t > t�. It is accelerating for a < ac and decel-
erating for a > ac with

ac
a0

¼
�ð3γ − 2ÞjΩγ;0j

Ωm;0

�
1=½3ðγ−1Þ�

: ðD28Þ

Close to t ¼ 0, we have the behaviors

a
ai

≃ 1þ 3

4

Ωm;0

ðai=a0Þ3
ðγ − 1ÞH2

0t
2; ðD29Þ

ϵ

ϵ0
≃ 9

4

Ω2
m;0

ðai=a0Þ6
ðγ − 1Þ2H2

0t
2: ðD30Þ

For γ ¼ 2, we recover the anti-stiff matter model of
Sec. VII B.

3. The case γ ¼ 1

For γ ¼ 1, the relation between the energy density and
the rest-mass density is given by Eq. (9) or, equivalently, by
Eq. (C6). The rest-mass density evolves with the scale
factor according to Eq. (12) and the energy density evolves
with the scale factor according to Eq. (C8) or, equivalently,
according to Eq. (C10). The energy density starts from
infinity at a ¼ 0, decreases and vanishes at

af
a0

¼
�
Ωm;0ϵ0
ρ�c2

�
1=½3ð1−Ωm;0Þ�

; ðD31Þ

where we have used Ωm;0 þΩ0
m;0 ¼ 1. At that moment

H ¼ _a=a ¼ 0. The relation between the energy density and
the scale factor can be rewritten as

ϵ

ϵ0
¼ 1

ða=a0Þ3
lnðaf=aÞ
lnðaf=a0Þ

: ðD32Þ

The Friedmann equation (3) with Λ ¼ 0 takes the
form

_a
a
¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ða=a0Þ3
lnðaf=aÞ
lnðaf=a0Þ

s
: ðD33Þ

Its solution is

erfc

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ln

�
af
a

�s 3
5 ¼ t=t1; ðD34Þ

where

H0t1 ¼
�
2π

3

�
1=2
�
af
a0

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
af
a0

�s
ðD35Þ

is the time at which the energy density vanishes (a ¼ af).
The scale factor starts from a ¼ 0 at t ¼ 0 (big bang),
increases until its maximum value af (corresponding to
ϵ ¼ 0) is reached at t ¼ t1, decreases, and vanishes at t ¼
t2 ¼ 2t1 (big crunch). During the phase of expansion, the
universe is decelerating. The energy density starts from
infinity at t ¼ 0, decreases, vanishes at t ¼ t1 (the Universe
disappears), increases and tends to infinity at t ¼ t2 ¼ 2t1.
This process continues periodically in time. Using the
equivalent erfcðxÞ ∼ e−x

2

=x
ffiffiffi
π

p
for x → þ∞, we obtain for

t → 0 the modified EdS solution

�
a
a0

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðaf=a0Þ
lnðaf=aÞ

s
¼ 3

2
H0t; ðD36Þ

ϵ

ϵ0
∼

1

ð3
2
H0tÞ2

: ðD37Þ

Using the expansion erfcðxÞ≃ 1 − 2x=
ffiffiffi
π

p þ… for x → 0,
we find for t → t1

a
af

≃ 1 −
π

6

�
1 −

t
t1

�
2

; ðD38Þ
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ϵ

ϵ0
≃ π

6

1

ðaf=a0Þ3 lnðaf=a0Þ
�
1 −

t
t1

�
2

: ðD39Þ

Final remark: the models of the Universe just described
that are based on the polytropic equation of state of type II
defined by P ¼ Kργ, where ρ is the rest-mass density, are

very different from the models of the Universe based on the
polytropic equation of state of type I defined by P ¼ Kϵγ,
where ϵ is the energy density [15,16,71]. The evolution of
the polytropic universe of type I as a function of the
polytropic index γ is reviewed in the Appendix B
of Ref. [71].
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