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We extend our previous work on mapping gravitational-wave backgrounds using techniques borrowed
from the analysis of cosmic microwave background data to backgrounds which have non-general-relativity
(non-GR) polarisations. Our analysis and results are presented in the context of pulsar timing array
observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA
observations using appropriately modified response functions. Analytic expressions for the pulsar timing
response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted
spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky
to any desired resolution. We also derive the pulsar timing overlap reduction functions for the various non-
GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse (“breathing”)
and vector-longitudinal polarisations, and a semianalytic form for scalar-longitudinal backgrounds. Our
results indicate that pulsar timing observations will be completely insensitive to scalar-transverse mode
anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole.
Analogous to our previous findings that pulsar timing observations lack sensitivity to tensor-curl modes
for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a
vector-longitudinal background.
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I. INTRODUCTION

A massive international effort is currently under way to
observe gravitational waves across a wide range of frequen-
cies. The second generation of ground-based gravitational-
wave interferometers is about to start collecting data, with
Advanced LIGO [1] observation runs expected to begin
before the end of 2015. The two Advanced LIGO detectors
will form part of a global network of kilometer-scale laser
interferometers, with other instruments due to come on-line
during the rest of this decade. These detectors will employ
advanced technologies to detect gravitational waves from
stellar-mass compact binary systems emitting gravitational
radiation in thekHzband [2–5]. TheEuropeanSpaceAgency
recently selected a science theme based around an ∼109 m
arm-length space-based gravitational-wave interferometer
(eLISA) for the L3 mission slot, due to launch in 2034.
Such a detector will observe gravitational waves in the
millihertz band, which are generated by binaries involving
the massive black holes that reside in the centers of galaxies,

with mass about 106 times the mass of the Sun. These
observations will permit tests of fundamental physics to
exquisite precision, while also affording detailed demo-
graphic studies of massive black-hole populations [6].
Complementary to these experiments are ongoing efforts

to characterize nanohertz gravitational waves through their
perturbation to the arrival times of radio signals from
precisely timed ensembles of millisecond pulsars spread
throughout our Galaxy [7–10]. As a gravitational wave
transits between Earth and a pulsar, it induces a change in
their proper separation, leading to a redshift in the arrival
rate of the pulsar signals [11–14]. It is the exceptional
stability of the integrated pulse profiles of millisecond
pulsars, and the resulting accuracy of the models for the
pulse times of arrival (TOAs), that allow gravitational
waves to be detected in this way.
The differences between the modeled TOAs and the

actual observed TOAs are known as the timing residuals.
These residuals contain the influence of all unmodeled
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phenomena, such as additional receiver noise, interstellar
medium effects, errors resulting from drifts in clock
standards or ephemeris inaccuracies, and, most tantalizing,
gravitational radiation. The signature of gravitational waves
in these residuals may be deterministic or stochastic. The
gravitational-wave sources expected to dominate the signal
in the nanohertz frequency band are the early adiabatic
inspirals of supermassive black-hole binary (SMBHB)
systems [15–17]. Such systems are expected to form
following the (suspected ubiquitous) mergers of massive
galaxies during the hierarchical formation of structure. If
there is a system which is particularly loud in gravitational-
wave emission then this signal may be individually
resolved and detected with pipelines dedicated to searches
for the deterministic signals of single sources [18–20]. If,
however, there are many sources which pile up in the
frequency domain beyond the ability of our techniques to
separately resolve them, then the combined signal will form
a stochastic background of gravitational waves. Although
there are other mechanisms which may contribute to a
stochastic nHz gravitational-wave background (decay of
cosmic-string networks [21–24] or primordial remnants
[25,26]), this incoherent superposition of signals from
many SMBHB systems is expected to dominate the signal.
Standard pipelines in use today employ cross-correlation

techniques to search for stochastic backgrounds. The
presence of a common background of gravitational waves
affecting the TOAs of all pulsars in an array (a so-called
pulsar timing array, PTA [27]) makes a cross-correlation
search effective in leveraging the signal against uncorre-
lated noise processes. The concept of an overlap reduction
function is common to stochastic background searches for
all types of gravitational-wave detectors, and describes the
sky-averaged overlap of the antenna pattern functions of the
two detectors whose data are being correlated [28]. In PTA
analysis, the overlap reduction function for a Gaussian,
stationary, unpolarised, isotropic stochastic background
composed of transverse-traceless (TT) gravitational-wave
modes is a smoking-gun signature of the signal known as
the Hellings and Downs curve [29]. It is a function of one
variable: the angular separation between a pair of pulsars.
For anisotropic distributions of gravitational-wave power
on the sky, the overlap reduction function is no longer
merely a function of the pulsars’ angular separation. It will
also depend on the positions of the pulsars on the sky
relative to the distribution of gravitational-wave power, and
thus will be a rich source of information in the precision
science era of PTAs [30,31]. Furthermore, the overlap
reduction function can be shown to vary when describing
backgrounds where the graviton is permitted to have a
small but nonzero mass [32].
The same is true when describing the overlap reduction

functions induced by gravitational-wave polarisation states
present in modified (metric) theories of gravity [33]. In
metric theories of gravity the only direct coupling between

matter and space-time is through the metric tensor gμν,
whereas any other additional fields just contribute to space-
time curvature. These modifications to general relativity are
being explored to ameliorate various unsolved problems
in cosmology and astrophysics, such as the origin of
the accelerated expansion of the Universe and the nature
of dark matter, while also trying to couch the gravitational
influence within a quantized framework. In addition to
the usual general relativity (GR) transverse-traceless tensor
polarisation states, general metric theories permit 4
additional degrees of freedom in the Riemann tensor [34],
leading to a scalar-transverse (“breathing”) state, a scalar-
longitudinal state, and two vector-longitudinal states, each
inducing PTA correlation signatures which are markedly
distinct from the Hellings and Downs curve [35,36]. Metric
theories fall into several broad classes, including scalar-
tensor theories (metric tensor plus an additional scalar
field), vector-tensor theories (metric tensor plus an additional
gravitational four-vector field), and bimetric theories
(space-time characterized by prior geometry described by
scalar, vector, and tensor fields) (see [37] and references
therein). Within each class are theories which have differing
relative combinations of polarization states in the gravita-
tional-wave emission from a compact binary system.
However in the following we take an agnostic approach
by avoiding the specifics of each particular theory, and
instead investigate the correlation signatures induced by
each individual beyond-GR state. Convincing evidence of
gravitational-wave polarization states beyond the usual
tensor polarization states will be a death knell for GR, and
indicates the path toward futuremodifications [33,34,38,39].
Several previous studies have explored the ability of

ground-based laser interferometers to measure the proper-
ties of gravitational-wave backgrounds with non-GR polar-
isations (see for example [40–42]). In this work we focus
instead on the response of pulsar timing observations to
gravitational-wave backgrounds with non-GR polarisation
states. Previous studies have looked at the detectability of
isotropic stochastic backgrounds of gravitational waves
with PTAs [35,36], but in this work we drop both of those
assumptions and we show how PTAs can be used to
construct maps of both the amplitude and the phase of
gravitational-wave backgrounds with non-GR polarisa-
tions. By decomposing a background of given polarisation
in terms of spin-weighted spherical harmonics, we are able
to derive analytic expressions for the detector response
functions for each mode of each non-GR polarisation
state as a function of the harmonic multipole. We discuss
the implications of these results for mapping non-GR
backgrounds to any desired angular resolution. We are
also able to present analytic expressions for the overlap
reduction functions of anisotropic scalar-transverse and
vector-longitudinal backgrounds, while significant analytic
headway is made for the corresponding function for
scalar-longitudinal backgrounds.
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In Sec. II we introduce the concept of the measured
signal in a gravitational-wave detector being a convolution
of the metric perturbations with the response tensor of the
detector. We discuss the six distinct polarisation states of
gravitational waves which are permitted within a general
metric theory of gravity by virtue of obeying Einstein’s
equivalence principle. The basis tensors for these polar-
isations are explicitly given. We also discuss the decom-
position of the metric perturbations in terms of appropriate
spin-weighted spherical harmonics. In [43], the Fourier
amplitudes of a plane-wave expansion of the metric pertur-
bations for an arbitrary transverse-traceless gravitational-
wave background were decomposed in terms of a basis of
spin-weight �2 spherical harmonics. In the case of scalar-
transverse and scalar-longitudinal polarisations discussed
in this paper, we decompose the Fourier amplitudes in
terms of ordinary (spin-weight 0) spherical harmonics.
For the vector-longitudinal polarisations, we decompose
the Fourier amplitudes in terms of spin-weight�1 spherical
harmonics. In Sec. II, we also give expressions for the
pulsar timing response functions, for either the polarisation
or spin-weighted spherical-harmonic expansion coeffi-
cients. The polarisation basis response functions for a pair
of pulsars are given explicitly in the computational frame,
where one pulsar lies along the z axis and the other lies in
the x-z plane. These are needed for the overlap reduction
functions calculations given in the following section.
The overlap reduction functions for the different polar-

isation states are studied in Sec. III. This function describes
the response of a pair of pulsars to a gravitational-wave
background in a cross-correlation analysis, and is computed
by integrating the overlap of the response of each pulsar to
a particular gravitational-wave polarisation over the entire
sky. For a gravitational-wave background with arbitrary
angular structure, this sky integral must be weighted by the
gravitational-wave power at each sky location. We find an
analytic expression for the overlap reduction function for a
background with scalar-transverse (breathing) polarisation,
and show that a PTA will lack sensitivity to angular
structure beyond quadrupole in a cross-correlation analysis
for this type of background. We also make significant
analytic headway for the overlap reduction function of a
scalar-longitudinal background, and find analytic forms for
the limiting value in the case of codirectional and antidirec-
tional pulsars. The overlap reduction function for a vector-
longitudinal background with arbitrary angular structure is
found analytically, with superficially perceived divergences
in the overlap reduction function for codirectional pulsars
resolved by correctly incorporating the pulsar term in our
calculations.
In Sec. IV we extend our previous work on mapping

gravitational-wave backgrounds using techniques bor-
rowed from the analysis of cosmic microwave background
(CMB) data [43] to non-GR polarisations. We derive
analytic expressions for the response of a pulsar to each

mode (corresponding to a particular spin-weighted spheri-
cal harmonic) of the background, including the contribution
from the pulsar term. In the process of doing these
calculations, we find that the reason for the PTA insensi-
tivity to angular structure beyond quadrupole in the
gravitational-wave power of a scalar-transverse back-
ground is due entirely to the corresponding lack of
sensitivity of a single pulsar response to structure in the
polarisation amplitudes beyond dipole. We verify this
analytic result with numerical map making and recovery.
The pulsar response to individual modes of a scalar-
longitudinal and vector-longitudinal background are given
analytically, where in the latter case we find that PTAs
completely lack sensitivity to vector-curl modes, analogous
to our previous finding that PTAs lack sensitivity to tensor-
curl modes of a transverse-traceless background [43]. We
discuss these findings further in Sec. VI, along with
suggestions for future study and implications for the
forthcoming analysis of real PTA data.
Finally, we include several appendixes (Appendixes A–L)

containing relevant information (e.g., definitions, identities,
recurrence relations) for spin-weighted and tensor spherical
harmonics, Legendre polynomials, Bessel functions, etc., as
well as providing technical details for the overlap reduction
function and response function calculations described in
Secs. III and IV.

II. RESPONSE FUNCTIONS

A. Detector response

The response of a detector to a passing gravitational
wave is given by the convolution of the metric perturba-
tions habðt; ~xÞ with the impulse response Rabðt; ~xÞ of the
detector:

rðtÞ ¼
Z

∞

−∞
dτ

Z
d3yRabðτ; ~yÞhabðt − τ; ~x − ~yÞ: ð1Þ

If we write the metric perturbations as a superposition of
plane waves

habðt; ~xÞ ¼
Z

∞

−∞
df

Z
S2
d2Ωk̂habðf; k̂Þei2πfðt−k̂·~x=cÞ; ð2Þ

then

rðtÞ ¼
Z

∞

−∞
df

Z
S2
d2Ωk̂R

abðf; k̂Þhabðf; k̂Þei2πft; ð3Þ

where

Rabðf; k̂Þ ¼ e−i2πfk̂·~x=c

×
Z

∞

−∞
dτ

Z
d3yRabðτ; ~yÞe−i2πfðτ−k̂·~y=cÞ: ð4Þ

Further specification of the response function depends on
the choice of gravitational-wave detector as well as on

MAPPING GRAVITATIONAL-WAVE BACKGROUNDS OF … PHYSICAL REVIEW D 92, 102003 (2015)

102003-3



the basis tensors used to expand habðf; k̂Þ, as we explain
below.

B. Polarisation basis

In standard GR, the Fourier components habðf; k̂Þ are
typically expanded in terms of the þ and × polarisation
basis tensors:

habðf; k̂Þ ¼ hþðf; k̂Þeþabðk̂Þ þ h×ðf; k̂Þe×abðk̂Þ; ð5Þ

where

eþabðk̂Þ ¼ θ̂aθ̂b − ϕ̂aϕ̂b;

e×abðk̂Þ ¼ θ̂aϕ̂b þ ϕ̂aθ̂b; ð6Þ

and θ̂, ϕ̂ are the standard unit vectors tangent to the sphere:

k̂ ¼ sin θ cosϕx̂þ sin θ sinϕŷþ cos θẑ;

θ̂ ¼ cos θ cosϕx̂þ cos θ sinϕŷ − sin θẑ;

ϕ̂ ¼ − sinϕx̂þ cosϕŷ: ð7Þ

In this paper, we also consider modified metric theories
of gravity, which admit four other types of polarisation:
a scalar-transverse (or breathing) mode (B), a scalar-
longitudinal mode (L), and two vector-longitudinal modes
(X, Y). The polarisation basis tensors for these modes are

eBabðk̂Þ ¼ θ̂aθ̂b þ ϕ̂aϕ̂b; ð8Þ

eLabðk̂Þ ¼
ffiffiffi
2

p
k̂ak̂b; ð9Þ

eXabðk̂Þ ¼ θ̂ak̂b þ k̂aθ̂b; ð10Þ

eYabðk̂Þ ¼ ϕ̂ak̂b þ k̂aϕ̂b: ð11Þ

In terms of the polarisation tensors, the Fourier components
habðf; k̂Þ can be expanded generally as

habðf; k̂Þ ¼
X
A

hAðf; k̂ÞeAabðk̂Þ ð12Þ

where A is some subset of fþ;×; B; L; X; Yg. The
associated response function for a plane wave with fre-
quency f, propagation direction k̂, and polarisation A is
given by

RAðf; k̂Þ ¼ Rabðf; k̂ÞeAabðk̂Þ; ð13Þ

and is related to the detector response rðtÞ via

rðtÞ ¼
Z

∞

−∞
df

Z
S2
d2Ωk̂

X
A

RAðf; k̂ÞhAðf; k̂Þei2πft: ð14Þ

Wewill work with the polarisation basis response functions
when calculating the various overlap reduction functions
in Sec. III.

C. Spherical-harmonic basis

Alternatively, we can expand the Fourier components
habðf; k̂Þ in terms of the appropriate spin-weighted spheri-
cal harmonics, as was done in [43]. A spin-weighted
function is a function of both position on the sphere
labeled k̂, and of a choice of an orthonormal basis labeled
l̂, m̂, at points on the sphere. Under a rotation of the
orthonormal basis, spin-weight functions transform in a
particular way

fðk̂; cosψ l̂ − sinψm̂; sinψ l̂þ cosψm̂Þ ¼ eisψfðk̂; l̂; m̂Þ
ð15Þ

where s is the spin weight of the function. Any spin-weight
s function can be expanded as a combination of spin-
weighted spherical harmonics of the same weight, sYlmðk̂Þ.
A spin-weight s spherical harmonic can be related to s
derivatives of an ordinary spherical harmonic, as described
in Appendix A.
For the standard GR tensor modes, if we define m̂a

� ¼
l̂a � im̂a, we see that the combinations m̂a

�m̂
b
�habðf; k̂Þ are

spin-weight �2 functions on the sphere. This allows the
GR tensor modes to be expanded as combinations of spin-
weight �2 spherical harmonics, or equivalently in terms of
the rank-2 gradient and curl spherical harmonics YG

ðlmÞabðk̂Þ,
YC
ðlmÞabðk̂Þ defined by Eq. (C1) in Appendix C:

habðf; k̂Þ ¼
X∞
l¼2

Xl

m¼−l
½aGðlmÞðfÞYG

ðlmÞabðk̂Þ

þ aCðlmÞðfÞYC
ðlmÞabðk̂Þ�: ð16Þ

For the breathing and scalar-longitudinal modes, the
functions m̂a

�m̂
b
�habðf; k̂Þ are spin weight 0 and so we can

expand habðf; k̂Þ in terms of ordinary (scalar) spherical
harmonics:

habðf; k̂Þ ¼
1ffiffiffi
2

p
X∞
l¼0

Xl

m¼−l
aBðlmÞðfÞYlmðk̂ÞeBabðk̂Þ; ð17Þ

habðf; k̂Þ ¼
1ffiffiffi
2

p
X∞
l¼0

Xl

m¼−l
aLðlmÞðfÞYlmðk̂ÞeLabðk̂Þ; ð18Þ

since the polarisation tensors eBabðk̂Þ and eLabðk̂Þ are invari-
ant under a rotation of θ̂, ϕ̂. For the vector-longitudinal
modes, m̂a

�m̂
b
�habðk̂Þ have spin weight �1 and so we can

expand habðf; k̂Þ in terms of spin-weight �1 spherical
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harmonics or, equivalently, in terms of tensor fields
YVG
ðlmÞabðk̂Þ, YVC

ðlmÞabðk̂Þ constructed from the rank-1 vector

spherical harmonics YG
ðlmÞaðk̂Þ, YC

ðlmÞaðk̂Þ defined by

Eqs. (B1) and (B9) in Appendix B:

habðf; k̂Þ ¼
X∞
l¼1

Xl

m¼−l
½aVG

ðlmÞðfÞYVG
ðlmÞabðk̂Þ

þ aVC
ðlmÞðfÞYVC

ðlmÞabðk̂Þ�: ð19Þ

The above expressions for habðf; k̂Þ can be written in
compact form

habðf; k̂Þ ¼
X
ðlmÞ

X
P

aPðlmÞðfÞYP
ðlmÞabðk̂Þ ð20Þ

if we take P to be a subset of fG;C; B; L; VG; VCg, and
define

YB;L
ðlmÞabðk̂Þ≡

1ffiffiffi
2

p Ylmðk̂ÞeB;Lab ðk̂Þ ð21Þ

to unify the notation for the spherical-harmonic basic
tensors. [The factor of 1=

ffiffiffi
2

p
is needed for the tensor

spherical harmonics YB;L
ðlmÞabðk̂Þ to satisfy orthonormality

relations similar to Eqs. (B11) and (C8).] The associated
response function for a given spherical-harmonic mode is

RP
ðlmÞðfÞ ¼

Z
S2
d2Ωk̂R

abðf; k̂ÞYP
ðlmÞabðk̂Þ; ð22Þ

and is related to the detector response rðtÞ via

rðtÞ ¼
Z

∞

−∞
df

X
ðlmÞ

X
P

RP
ðlmÞðfÞaPðlmÞðfÞei2πft: ð23Þ

We will work with these response functions for the
mapping discussion in Sec. IV.

D. Pulsar timing response

A gravitational wave transiting an Earth-pulsar line of
sight creates a perturbation in the intervening metric. This
causes a change in their proper separation, which is
manifested as a redshift in the pulse frequency [11–14],

zðt; k̂Þ≡ ΔvðtÞ
ν0

¼ 1

2

ûaûb

1þ k̂ · û
Δhabðt; k̂Þ; ð24Þ

where k̂ is the direction of propagation of the gravitational
wave, û is the direction to the pulsar, and Δhabðt; k̂Þ is
the difference between the metric perturbation at Earth,
ðt; ~xÞ, and at the pulsar some distance L from Earth,
ðtp; ~xpÞ ¼ ðt − L=c; ~xþ LûÞ:

Δhabðt; k̂Þ≡
Z

∞

−∞
df

X
A

hAðf; k̂ÞeAabðk̂Þ½ei2πfðt−k̂·~x=cÞ − ei2πfðtp−k̂·~xp=cÞ� ð25Þ

¼
Z

∞

−∞
df

X
A

hAðf; k̂ÞeAabðk̂Þei2πfðt−k̂·~x=cÞ½1 − e−i2πfLð1þk̂·ûÞ=c�: ð26Þ

For a gravitational-wave background, which is a superposition of waves from all directions on the sky, the pulsar redshift
integrated over k̂ is given by

zðtÞ ¼
Z

∞

−∞
df

Z
S2
d2Ωk̂

X
A

1

2

ûaûb

1þ k̂ · û
eAabðk̂Þ½1 − e−i2πfLð1þk̂·ûÞ=c�hAðf; k̂Þei2πfðt−k̂·~x=cÞ: ð27Þ

Comparing the above expression with Eq. (14), we see that the detector response function RAðf; k̂Þ for a Doppler frequency
measurement rðtÞ≡ zðtÞ is given by

RAðf; k̂Þ ¼ 1

2

ûaûb

1þ k̂ · û
eAabðk̂Þe−i2πfk̂·~x=c½1 − e−i2πfLð1þk̂·ûÞ=c�: ð28Þ

For a timing residual measurement rðtÞ≡ R
t
0 dt

0zðt0Þ, the above response function RAðf; k̂Þwould need to be multiplied by a
factor of 1=ði2πfÞ. The response functions for individual spherical-harmonic modes are similarly given by

RP
ðlmÞðfÞ ¼

Z
S2
d2Ωk̂

1

2

ûaûb

1þ k̂ · û
YP
ðlmÞabðk̂Þe−i2πfk̂·~x=c½1 − e−i2πfLð1þk̂·ûÞ=c�: ð29Þ
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E. Response functions for a pair of pulsars in the computational frame

In the following section, we will calculate the correlated response of a pair of pulsars to a gravitational-wave background.
This calculation is most easily done in the so-called computational frame [30,43,44], in which the two pulsars are in the
directions

û1 ¼ ð0; 0; 1Þ;
û2 ¼ ðsin ζ; 0; cos ζÞ: ð30Þ

In addition, we can choose the origin of the computational frame to be at the Solar System barycenter (SSB), for which a

detector (i.e., a radio telescope on Earth) has ~x ≈ ~0. In this frame the polarisation basis response functions given in Eq. (28)
simplify to

Rþ
1 ðf; k̂Þ ¼

1

2
ð1 − cos θÞð1 − e−2πifL1ð1þcos θÞ=cÞ; ð31Þ

Rþ
2 ðf; k̂Þ ¼

1

2

�
ð1 − sin ζ sin θ cosϕ − cos θ cos ζÞ − 2sin2ζsin2ϕ

1þ sin ζ sin θ cosϕþ cos θ cos ζ

�
× ð1 − e−2πifL2ð1þsin ζ sin θ cosϕþcos θ cos ζÞ=cÞ; ð32Þ

R×
1 ðf; k̂Þ ¼ 0; ð33Þ

R×
2 ðf; k̂Þ ¼ −

1

2

�
sin2ζ cos θ sinð2ϕÞ − sinð2ζÞ sin θ sinϕ

1þ sin ζ sin θ cosϕþ cos θ cos ζ

�
ð1 − e−2πifL2ð1þsin ζ sin θ cosϕþcos θ cos ζÞ=cÞ; ð34Þ

RB
1 ðf; k̂Þ ¼

1

2
ð1 − cos θÞð1 − e−2πifL1ð1þcos θÞ=cÞ; ð35Þ

RB
2 ðf; k̂Þ ¼

1

2
ð1 − sin ζ sin θ cosϕ − cos θ cos ζÞð1 − e−2πifL2ð1þsin ζ sin θ cosϕþcos θ cos ζÞ=cÞ; ð36Þ

RL
1 ðf; k̂Þ ¼

1ffiffiffi
2

p cos2θ
1þ cos θ

ð1 − e−2πifL1ð1þcos θÞ=cÞ; ð37Þ

RL
2 ðf; k̂Þ ¼

1ffiffiffi
2

p ðsin ζ sin θ cosϕþ cos θ cos ζÞ2
1þ sin ζ sin θ cosϕþ cos θ cos ζ

ð1 − e−2πifL2ð1þsin ζ sin θ cosϕþcos θ cos ζÞ=cÞ; ð38Þ

RX
1 ðf; k̂Þ ¼

− cos θ sin θ
1þ cos θ

ð1 − e−2πifL1ð1þcos θÞ=cÞ; ð39Þ

RX
2 ðf; k̂Þ ¼

ðsin ζ sin θ cosϕþ cos θ cos ζÞðsin ζ cos θ cosϕ − sin θ cos ζÞ
1þ sin ζ sin θ cosϕþ cos θ cos ζ

× ð1 − e−2πifL2ð1þsin ζ sin θ cosϕþcos θ cos ζÞ=cÞ; ð40Þ

RY
1 ðf; k̂Þ ¼ 0; ð41Þ

RY
2 ðf; k̂Þ ¼

− sinϕ sin ζðsin ζ sin θ cosϕþ cos θ cos ζÞ
1þ sin ζ sin θ cosϕþ cos θ cos ζ

ð1 − e−2πifL2ð1þsin ζ sin θ cosϕþcos θ cos ζÞ=cÞ: ð42Þ

The second (exponential) term inside the bracketed term at
the end of each of these expressions is the contribution from
the pulsar term. We are in general interested in the regime
yI ≡ 2πfLI=c ≫ 1 (I ¼ 1, 2), and we will present results

below to leading order in this limit. In the GR case, this
limit is equivalent to setting the pulsar term equal to 0 in the
above expressions, i.e., replacing the whole bracketed term
by 1. This is also the correct thing to do for the breathing
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modes, but more care is needed for the other non-GR
modes as the term multiplying the pulsar term is singular at
cos θ ¼ −1, so we leave this term in for now. We will use
the above expressions for the response functions in Sec. III,
when deriving the overlap reduction functions for the
different polarisation states.

III. OVERLAP REDUCTION FUNCTIONS

The statistical properties of a Gaussian-stationary
background are encoded in the quadratic expectation
values of the Fourier components of the waveform, e.g.,
hhAðf; k̂Þh�A0 ðf0; k̂0Þi, where A ¼ fþ;×; B; L; X; Yg, in a
decomposition with respect to the polarisation basis ten-
sors. For an uncorrelated, anisotropic background these
quadratic expectation values take the form

hhAðf; k̂Þh�A0 ðf0; k̂0Þi ¼ HAðfÞPAðk̂ÞδAA0δ2ðk̂; k̂0Þδðf − f0Þ;
ð43Þ

where HAðfÞ and PAðk̂Þ encode the spectral and angular
properties of the Ath gravitational-wave polarisation,
respectively. [We are assuming here that the spectral and
angular dependence of the background factorize as
PAðk̂ÞHAðfÞ.] If the background is unpolarised then there
is the restriction Pþ ¼ P× and PX ¼ PY , and similarly for
Hþ, H×, and HX, HY .
The functions PAðk̂Þ define the anisotropic gravitational-

wave power distribution on the sky for polarisation A, and
can be expanded as sums of scalar spherical harmonics

PAðk̂Þ ¼
X∞
l¼0

Xl

m¼−l
PA
lmYlmðk̂Þ: ð44Þ

The expectation value of the correlation between two
detectors labeled 1 and 2 can be written in the form

hr1ðtÞr2ðt0Þi ¼
X
A

Z
∞

−∞
dfe2πifðt−t0ÞHAðfÞΓAðfÞ; ð45Þ

where the overlap reduction function ΓAðfÞ is given by

ΓAðfÞ ¼
X∞
l¼0

Xl

m¼−l
PA
lmΓA

lmðfÞ; ð46Þ

with

ΓA
lmðfÞ ¼

Z
S2
d2Ωk̂Ylmðk̂ÞRA

1 ðf; k̂ÞRA�
2 ðf; k̂Þ: ð47Þ

Note that a repeated polarisation index A, as in the last two
equations, is not summed over, unless explicitly indicated
with a summation sign. Note also that to simplify the
notation, we have not included a 12 subscript on the overlap
reduction functions, as we did in [43], to indicate the two
pulsars.
In the following subsections we calculate the overlap

reduction functions, ΓA
lmðfÞ, for each mode of the power

distribution and for each polarisation state, by evaluating
the right-hand side of Eq. (47) and using the expressions for
the response functions RAðf; k̂Þ given at the end of Sec. II.

(a) (b)

(c) (d)

FIG. 1. Plots of Γþ
lm for l ¼ 0 [panel (a)], l ¼ 1 [panel (b)], l ¼ 2 [panel (c)] and l ¼ 3 [panel (d)], as a function of the angle

between the two pulsars for an uncorrelated, anisotropic background. Note that the vertical scale is not the same in all plots, but has
been adjusted to more clearly show the curves in each panel.
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It turns out that we are able to derive analytic expressions
for the overlap reduction functions for the þ, ×, breathing,
and two vector-longitudinal polarisation modes. For
scalar-longitudinal backgrounds, we are able to do the ϕ
integration of (47) analytically, but need to resort to
numerical integration to do the integral over θ. Details
of the calculations are given in several appendixes. Plots
of ΓA

lmðfÞ as a function of the angle between the two
pulsars are given in Figs. 1, 2, 3, and 5. We only show plots
for m ≥ 0, since ΓA

lm ¼ ð−1ÞmΓA
l;−m as a consequence of

Ylmðk̂Þ ¼ ð−1ÞmYl;−mðk̂Þ.

A. Transverse-tensor backgrounds

Analytic expressions for the overlap reduction func-
tions ΓA

lmðfÞ for uncorrelated, anisotropic ðþ;×Þ tensor

backgrounds in GR were derived in [43]. For such back-
grounds, we can work in the limit 2πfL=c ≫ 1 and set the
pulsar terms to zero (for which the frequency dependence
goes away), obtaining finite expressions for the overlap
reduction function, even for potentially troublesome cases
such as cos ζ ¼ �1. Appendix F summarizes the key
analytic expressions derived in that paper. Plots of Γþ

lm
for l ¼ 0, 1, 2, 3 and m ≥ 0 as a function of the angle
between the two pulsars are shown in Fig. 1. [Γ×

lm ¼ 0 as a
consequence of R×

1 ðf; k̂Þ ¼ 0 in the computational frame.]

B. Scalar-transverse backgrounds

For scalar-transverse (breathing mode) backgrounds, we
can again make the assumption 2πfL=c ≫ 1 and set the
pulsar term to zero. It then follows that

ΓB
lm ¼ 1

4

Z
1

−1
dx

Z
2π

0

dϕð1 − xÞð1 − x cos ζ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cosϕ sin ζÞNm

l P
m
l ðxÞeimϕ

¼ πNm
l

4

Z
1

−1
dx½2δm0ð1 − xÞð1 − x cos ζÞPlðxÞ − ðδm1P1

l ðxÞ þ δm;−1P−1
l ðxÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1 − xÞ sin ζ�

¼ πNm
l δm0

��
1þ 1

3
cos ζ

�
δl0 −

1

3
ð1þ cos ζÞδl1 þ

2

15
cos ζδl2

�
þ πNjmj

l ð−1Þm−jmj
2 δjmj;1 sin ζ

�
1

3
δl1 −

1

5
δl2

�
; ð48Þ

where we have used the definition of the scalar spherical harmonics given in Eq. (A1) of Appendix A and properties of
the associated Legendre polynomials summarized in Appendix D. We see that we are only sensitive to modes of the
background with l ≤ 2 and jmj ≤ 1. Plots of ΓB

lm for l ¼ 0, 1, 2, 3 and m ≥ 0 are shown in Fig. 2.

(a) (b)

(c) (d)

FIG. 2. Plots of ΓB
lm for l ¼ 0 [panel (a)], l ¼ 1 [panel (b)], l ¼ 2 [panel (c)] and l ¼ 3 [panel (d)], as a function of the angle

between the two pulsars for an uncorrelated, anisotropic background. As mentioned in the text, the overlap functions are identically
zero for l ≥ 3 or jmj ≥ 2. We note that, as in Fig. 1, the vertical scale is not the same in all plots, but has been adjusted to more
clearly show the curves in each panel.
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C. Scalar-longitudinal backgrounds

The response for a scalar-longitudinal background
Eq. (37) is singular at cos θ ¼ −1 if the pulsar term is
not included. We must therefore include the pulsar term

when evaluating the overlap reduction function for back-
grounds of this form. Using the notation y1 ¼ 2πfL1=c,
y2 ¼ 2πfL2=c, where LI is the distance to pulsar I,
the overlap reduction function for a given (lm) is given
explicitly by

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Plots of the real part (left column) and imaginary part (right column) of ΓL
lmðfÞ for l ¼ 0 (first row), l ¼ 1 (second row), l ¼ 2

(third row), l ¼ 3 (bottom row) as a function of the angle between the two pulsars for an uncorrelated, anisotropic background. These
were calculated using the semianalytic approximation described in the main text. For these plots we have chosen y1 ¼ 100 and
y2 ¼ 200, where yI ¼ 2πfLI=c and LI is the distance to pulsar I. As in previous figures, we note that the vertical scale is not the same in
all plots, but has been adjusted to more clearly show the curves in each panel.
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ΓL
lmðfÞ ¼

1

2
Nm

l

Z
1

−1
dx

�
x2

1þ x
ð1 − e−iy1ð1þxÞÞImðy2; xÞ

�
Pm
l ðxÞ; ð49Þ

where

Imðy; xÞ ¼
Z

2π

0

dϕ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕþ x cos ζÞ2

1þ x cos ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕ

ð1 − eiyð1þx cos ζþ
ffiffiffiffiffiffiffiffi
1−x2

p
sin ζ cosϕÞÞeimϕ: ð50Þ

The integral for Imðy; xÞ is challenging to evaluate in
general; however see Appendix G for an approximate
expression valid for large y. As shown in Appendixes H
and I, it can be more simply evaluated for codirectional
pulsars (i.e., cos ζ ¼ 1) and for antidirectional pulsars (i.e.,
cos ζ ¼ −1). Using the approximate expression for Imðy; xÞ
evaluated in Appendix G, we then do the integration over x
given in Eq. (49) numerically. The results of this semi-
analytic calculation for ΓL

lmðfÞ for l ¼ 0, 1, 2, 3 and jmj> 0
are shown in Fig. 3. For these plots we have chosen
y1 ¼ 100 and y2 ¼ 200. We note that the vertical scale on
these plots has been truncated so that the details of the
curves at moderate separations can be seen. The overlap
reduction function for small separations is therefore not
shown in full. We note that, as discussed earlier, the overlap
reduction function does not diverge at ζ ¼ 0 for finite
pulsar distances, but it tends to a constant value which can
be computed using the result in Appendix H. The values of
the overlap reduction function at ζ ¼ 0 are given in Table I.
The semianalytic calculation agrees quite well with a

full ðθ;ϕÞ sky integration, as shown in Fig. 4. (The two-
dimensional sky integration was actually done using a
HEALPix [45] pixelization of the sky.) This plot shows the
fractional percentage difference between the values of the
l ¼ 0, m ¼ 0 overlap reduction function ΓL

00ðfÞ calculated
using these two methods. As can be seen from the figure,
the agreement is best for values of ζ that stay away from
ζ ¼ 0 and ζ ¼ π. However, at those special points we can
use the analytic expressions given in Appendixes H and I,
and these are tabulated for l ¼ 0, 1, 2, 3 in Table I. This
allows us to obtain a good approximation to the overlap

reduction function for all ζ. We note that Fig. 4 shows that
the percentage difference between the numerical and semi-
analytic curves becomes smaller for larger values of y1 and
y2, which is consistent with the semianalytic expression
being valid for large y.
The large value of the overlap reduction function for

small values of ζ suggests that only pulsar pairs with small
angular separations might contribute to inference about
scalar-longitudinal backgrounds. In practice, we do not
have control over where pulsars are on the sky, or what the
angular separation between pulsars with the lowest timing
noise will be. It is clear that pulsar pairs with small angular
separations have the potential to contribute most to signal-
to-noise ratio and hence the prospects of detection of a
background. However, to distinguish the different polar-
isation states of the background and to measure individual l
and m modes, the full range of pulsar separations is
required, since it is how the correlations vary with that
separation that is unique to each individual mode. As a
simple example, if a background is detected using a pair of
pulsars with small separation, a nondetection of the back-
ground in a pulsar pair with larger separation would point
towards the background being longitudinal in nature, while
a detection at larger separations would point to it being
transverse. Distinguishability of different backgrounds
will be discussed in more detail in Secs. IV and V.

D. Vector-longitudinal backgrounds

If we ignore the pulsar term, then the response for a
vector-longitudinal background Eq. (39) looks singular at
cos θ ¼ −1. However, due to the factor of sin θ in the
numerator this is a (1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos θ

p
)-type singularity which

is integrable. We can therefore also ignore the pulsar term
for these backgrounds and obtain a finite result. The
analytic calculation is very similar to that in Appendix E
of [43] for the standard ðþ;×Þ tensor backgrounds of GR.
Details of the calculation are given in Appendix J. Plots of
ΓX
lm for l ¼ 0, 1, 2, 3 and m ≥ 0 are shown in Fig. 5.

[ΓY
lm ¼ 0 as a consequence of RY

1 ðf; k̂Þ ¼ 0 in the computa-
tional frame.]
We note that in the limit cos ζ → 1, the m ¼ 0 overlap

reduction functions diverge. This is because in that limit
the singularities at ð1þ k̂ · û1Þ ¼ 0 and ð1þ k̂ · û2Þ ¼ 0
coincide and behave like 1=ð1þ cos θÞ rather than
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos θ

p
. Again, this singularity is eliminated if the

TABLE I. Values of the codirectional (ζ ¼ 0) and antidirec-
tional (ζ ¼ π) overlap reduction function for a scalar-longitudinal
gravitational-wave background given for l ¼ 0, 1, 2, 3. The
pulsars have y1 ¼ 100 and y2 ¼ 200. The values in the table
correspond to m ¼ 0 modes since all other values of m give zero
overlap reduction function values.

l ζ ¼ 0 ζ ¼ π
Real Imaginary Real Imaginary

0 261 117 3.31 0.254
1 −445 −201 −6.78 −0.388
2 561 254 6.19 0.567
3 −639 −290 −6.44 −0.590
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pulsar terms are included in the integrand and the pulsars
are assumed to be at finite distance. Details of that
calculation are given in Appendix J 1. For finite pulsar
distances, the limit cos ζ → 1 is still large compared to the

value at more moderate separations. The implications for
this in terms of background detectability and characteri-
zation are as discussed for scalar-longitudinal backgrounds
in the previous section.

(a) (b)

(c) (d)

FIG. 5. Plots of ΓX
lm for l ¼ 0 [panel (a)], l ¼ 1 [panel (b)], l ¼ 2 [panel (c)] and l ¼ 3 [panel (d)], as a function of the angle between

the two pulsars for an uncorrelated, anisotropic background. As in previous figures, we note that the vertical scale is not the same in
all plots, but has been adjusted to more clearly show the curves in each panel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
radians0.001

0.01

0.1

1

10

100

FIG. 4. Fractional percentage difference between the values of the l ¼ 0, m ¼ 0 overlap reduction function ΓL
00ðfÞ calculated

(i) semianalytically [i.e., using the analytic expression for Ilmðy; xÞ derived in Appendix G, and doing the x integration numerically], and
(ii) doing the full ðθ;ϕÞ sky integration numerically using a HEALPix [45] pixelization of the sky. The dotted curve is for y1 ¼ 10,
y2 ¼ 20, the dashed curve is for y1 ¼ 50, y2 ¼ 100, and the solid curve is for y1 ¼ 100, y2 ¼ 200, where yI ¼ 2πfLI=c and LI is the
distance to pulsar I. Note that the percentage difference decreases as y1 and y2 increase. The vertical dashed grey lines at the left- and
right-hand edges of the plot correspond to the minimum and maximum angular separation (0.95° and 174°, respectively) over all pairs
of pulsars in the European Pulsar Timing Array.
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IV. MAPPING THE BACKGROUND

In [43] we applied the methodology used to characterize
CMB polarisation to describe gravitational-wave back-
grounds in general relativity. This involved expanding a
transverse-tensor GR background in terms of (rank-2)
gradients and curls of spherical harmonics, which are
closely related to spin-weight �2 spherical harmonics.
As described in Sec. II C, we can use a similar decom-
position to represent arbitrary backgrounds with alternative
polarisation states. As explained earlier, for scalar-
transverse and scalar-longitudinal backgrounds, we expand
in terms of the ordinary (scalar) spherical harmonics, while
for vector-longitudinal backgrounds we must expand in
terms of spin-weight �1 spherical harmonics.
In the following subsections, we derive analytic

expressions for the pulsar response functions RP
ðlmÞðfÞ

defined in Eq. (29), for each mode of a background with
each of the different polarisation states labeled by
P ¼ fG;C; B; L; VG; VCg. We calculate the response in
the “cosmic” reference frame, where the angular depend-
ence of the gravitational-wave background is to be
described. The origin of this frame is at the SSB and a
pulsar is located in direction û, with angular coordinates
ðζ; χÞ, i.e.,

ûa ¼ ðsin ζ cos χ; sin ζ sin χ; cos ζÞ; ð51Þ

and is at a distance L from the SSB. In this frame, we can

again make the approximation ~x ≈ ~0 for the detector

locations (i.e., radio receivers on Earth). As was done
in [43], it is simplest to evaluate the response in the
cosmic frame by making a change of variables of the
integrand of Eq. (29), so that û points along the z axis. This
corresponds to a rotation defined by the Euler angles
ðα; β; γÞ ¼ ðχ; ζ; 0Þ. Using the transformation properties
of the tensor spherical harmonics YP

ðlmÞabðk̂Þ under a

rotation, it follows that

RP
ðlmÞðfÞ ¼ YlmðûÞRP

l ð2πfL=cÞ; ð52Þ

where RP
l ð2πfL=cÞ is proportional to the m ¼ 0 compo-

nent of the response function calculated in the rotated frame
(with the pulsar directed along the z axis):

RP
l ð2πfL=cÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
RP
ðl0ÞðfÞjû¼ẑ: ð53Þ

Note that we need only consider the m ¼ 0 component,
since the pulsar response must be axisymmetric in the
rotated frame, while the tensor spherical harmonics we
consider are all proportional to eimϕ in this frame. Thus, we
see from Eq. (52) that the dependence on the direction to
the pulsar is given simply by YlmðûÞ, while the distance
to the pulsar is responsible for the frequency dependence of

the response function. Finally, using Eq. (29) with ~x ≈ ~0
and doing the integration over ϕ, we find

RP
l ð2πfL=cÞ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Z
1

−1
dx

1

2

1

1þ x
YP
ðl0Þzzðθ; 0Þð1 − e−i2πfLð1þxÞ=cÞ; ð54Þ

where x ¼ cos θ. It is this function that we need to evaluate
in the following subsections.
We finish this subsection by noting an important result

implicit in Eq. (52) connected to the distinguishability of
different background polarisation states. For every polar-
isation type, the response of a pulsar factorizes into a piece
that is dependent on pulsar position, which is YlmðûÞ for all
polarisation types, and a piece that depends only on the
distance to the pulsar. Even if we had infinitely many
pulsars distributed across the sky, at any given frequency,
the best we could do would be to construct a pulsar
response map across the sky and decompose it into (scalar)
spherical harmonics. The coefficient of each term would be
a sum of the RP

l ð2πfL=cÞ’s for all polarisation states, P,
which at face value means that it would not be possible to
disentangle the different polarisation states. However, as we
will see below, a scalar-transverse and transverse-tensor
background can always be distinguished as current PTAs
operate in a regime in which the response functions are

effectively independent of the pulsar distance; i.e., the
pulsar term can be ignored. In that limit, we are only
sensitive to modes with l < 2 of scalar-tensor backgrounds,
while transverse-tensor backgrounds can only contain
modes with l ≥ 2. The longitudinal modes cannot be
distinguished from the transverse modes, however, unless
we have several pulsars, at different distances, in each
direction on the sky. For the longitudinal modes the finite-
distance corrections introduced by the pulsar term are
important for typical pulsar distances of current PTAs,
which gives an additional handle to identify those modes.
Alternatively, if we made some assumption about how the
background amplitude was correlated at different frequen-
cies, e.g., that it followed a power law, we would also break
this degeneracy as the response of the array to longitudinal
modes has a frequency dependence through the same term.
Thus, it is in principle possible to disentangle every
component of the background for each polarisation state
at each frequency, given sufficiently many pulsars at a
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sufficient variety of distances along each line of sight. In
practice, a pulsar timing array containing Np pulsars can
only measure 2Np real components of the background at
any given frequency [43,46] and so the resolution of any
reconstructed map of the background will be limited by the
size of the pulsar timing array. Roughly speaking, to probe
an angular scale of the order 1=lmax we would require
Np ¼ ðlmax þ 1Þ2 − 4 pulsars, if we assumed the back-
ground was consistent with GR and therefore contained

only transverse-tensor polarisation modes. If we allow for
arbitrary polarisations we would expect to need Np ¼
3ðlmax þ 1Þ2 − 1 pulsars, since we now have structure
down to l ¼ 0, and we effectively have three different
possible polarisation states—transverse (either scalar or
tensor, but they are distinguished by the l of the mode),
scalar longitudinal, or vector longitudinal. A preliminary
investigation of what is possible to measure for the different
polarization modes is given in Sec. V.

A. Transverse-tensor backgrounds

In [43], the standard transverse-tensor modes of GR were expanded in terms of gradient and curl tensor spherical
harmonics, and the corresponding response functions were calculated to be

RG
ðlmÞðfÞ ≈ 2πð−1Þlð2ÞNlYlmðûÞ; RC

ðlmÞðfÞ ≈ 0; ð55Þ

where ð2ÞNl is a normalization constant defined in Eq. (C2) of Appendix C, and the ≈ signs mean that the pulsar term was
ignored for this calculation. Extending the analysis given in [43] to include the pulsar term, we find

RG
ðlmÞðfÞ ¼ YlmðûÞRG

l ð2πfL=cÞ; RC
ðlmÞðfÞ ¼ 0; ð56Þ

where

RG
l ðyÞ ¼ 2π

ð2ÞNl

4

Z
1

−1
dx

�
ð1 − xÞð1 − x2Þð1 − e−iyð1þxÞÞ d

2Pl

dx2

�
: ð57Þ

Integrating Eq. (57) by parts twice,

RG
l ðyÞ ¼ πð2ÞNlð−iÞle−iy

�
ð2 − 2iyþ y2ÞjlðyÞ − ið6þ 4iyþ y2Þ djl

dy
− ð6iy − y2Þ d

2jl
dy2

− iy2
d3jl
dy3

�
; ð58Þ

where jlðyÞ denotes a spherical Bessel function, as defined in Appendix E, and djl=dy, d2jl=dy2, and d3jl=dy3 can be
simplified using Eqs. (E9)–(E11). Taking the usual limit that the pulsar is many gravitational-wave wavelengths from Earth
(y ≫ 1), we find RG

l ðyÞ ≈ 2πð−1Þlð2ÞNl, which is consistent with Eq. (55), where the response functions were calculated
without the pulsar term.

B. Scalar-transverse backgrounds

Repeating the calculation in [43] for an arbitrary scalar-transverse (breathing mode) background, we find

RB
ðlmÞðfÞ ¼ YlmðûÞRB

l ð2πfL=cÞ; ð59Þ

with

RB
l ðyÞ ¼ 2π

1ffiffiffi
2

p
Z

1

−1
dx

1

2
ð1 − xÞPlðxÞð1 − e−ið1þxÞyÞ

¼ 2π
1ffiffiffi
2

p
�
δl0 −

1

3
δl1 − ð−iÞle−iy

��
1 − i

l
y

�
jlðyÞ þ ijlþ1ðyÞ

��
; ð60Þ

where we used Eqs. (E2), (E9) from Appendix E to get the terms involving the spherical Bessel functions. Since the
spherical Bessel functions behave like 1=y for large y, the terms in square brackets tend to zero as y → ∞, leading to the
approximate expression for the response function
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RB
ðlmÞðfÞ ≈ 2πYlmðûÞ

1ffiffiffi
2

p
�
δl0 −

1

3
δl1

�
; ð61Þ

which is valid in the limit where we ignore the pulsar term.
Equation (61) contains a key result of this paper. In the

limit that y → ∞, where the influence of the pulsar term
tends to zero, we find that PTAs will completely lack
sensitivity to any angular structure beyond l ¼ 1 in a
gravitational-wave background with scalar-transverse
polarisation. We can verify this analytic result through
numerical map making and recovery. Using

hBðf; k̂Þ ¼
1ffiffiffi
2

p
X∞
l¼0

Xl

m¼−l
aBlmðfÞYlmðk̂Þ; ð62Þ

which relates the expansion coefficients hBðf; k̂Þ and
aBðlmÞðfÞ in the polarisation and spherical-harmonic bases
(see Secs. II B, II C), we generate a random scalar-trans-
verse (breathing mode) background with angular structure
up to and including l ¼ 10. This injected map is shown in
the left panel of Fig. 6. To compute the PTA response to
such a background, we generate a random array of Np ¼
50 pulsars scattered isotropically across the sky. Wework in
the polarisation basis rather than the spherical-harmonic
basis here, since the PTA response to different angular
scales in the gravitational-wave background is trivial in the
latter, and we seek a numerical confirmation of Eq. (61).
The PTA response is computed (with a sky resolution set by
a given number of pixels Npix) using the Earth term
component of Eq. (28), by taking the dot product of the
array response matrix, R, with the vector of amplitude
values at each sky location, h. The matrix R has dimen-
sions ðNp × NpixÞ, with each element corresponding to the
response of a particular pulsar to gravitational waves

propagating in a certain direction (denoted by a map pixel),
as given by Eq. (28). The resulting vector is the signal
observed by the full array, r ¼ Rh. We can invert this
in a noiseless map recovery by taking the dot product
of the Moore-Penrose pseudoinverse of R with this
observed signal vector. The recovered scalar-transverse
sky is shown in the right-hand panel of Fig. 6, where
we note a lack of small-scale angular structure. We
compute an estimator of the angular power spectrum for
the recovered and injected maps via HEALPix [45], which
is capable of rapid map decompositions. This estimator is
Ĉl ¼

P
l
m¼−l jâBlmj2=ð2lþ 1Þ, whereas the true spectrum

would be computed from the intrinsic variance of the
background modes. The results are shown in the left-hand
panel of Fig. 7, where we see that despite the injected map
having structure up to l ¼ 10, the recovered map only
contains structure up to and including the dipole. This
numerical result is a confirmation of the corresponding
analytic computation in Eq. (61).
We can also check Eqs. (59) and (60), which imply that

the PTA response to a scalar-transverse background will
extend beyond the dipole for pulsars at finite distances. We
do so again with numerical map making and recovery, by
using the full Earth and pulsar-term scalar-transverse
response function given in Eq. (28). The pulsar term will
be highly oscillatory across the sky, so we expect some
numerical fluctuations in our results. For this study we
inject white Gaussian noise in each pulsar measurement,
with an amplitude such that the gravitational-wave back-
ground remains in the strong signal limit. In the right-hand
panel of Fig. 7 we see that the PTA has increasing
sensitivity to higher multiple moments in the background
as y is increased. At y ∼ 5–10 the PTA is able to recover the
full angular structure of the background, but also suffers
from noise leakage at higher multipoles, since the nonzero

FIG. 6 (color online). Maps of the real amplitude component of a scalar-transverse (breathing mode) background. (Left) A randomly
generated scalar-transverse gravitational-wave sky, with structure up to and including l ¼ 10. (Right) The corresponding recovered sky
computed by first forming the observed signal vector for an array of Np ¼ 50 pulsars via r ¼ Rh, where each element of the array
response matrix R corresponds to the response of a particular pulsar to gravitational waves propagating in a given sky direction.
We perform a noiseless map recovery by computingRþr (whereRþ is the pseudoinverse ofR) which gives the map in the right panel.
We note the lack of small-scale angular structure in the recovered map compared to the injected map.
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response of the pulsar term at these higher multipoles
amplifies noise arising from the pixelation of the sky. The
pulsar-term response peaks at l ∼ y, such that for PTAs with
y ¼ 15, 20 we see a dropoff in sensitivity at l ∼ 15, 20, even
though the response ismerely amplifying pixel noise at these
multipoles. For y≳ 20 the Earth term behavior is recovered,
andwe observe a lack of sensitivity tomodes beyond dipole.
To put these results into context, we recall that y ¼ 2πfL=c
and peak PTA sensitivity to a gravitational-wave back-
ground occurs at f ∼ 1=T where T is the total observation
time. For T ¼ 20 yr, this gives f ∼ 1.6 nHz. Thus in order
for a PTA to have sensitivity to structure in a scalar-
transverse sky beyond dipole, we need y≲ 10, which
corresponds to all pulsars in our array being at a distance
of≲0.01 kpc fromEarth. Given that most timedmillisecond

pulsars have distances ≳0.2 kpc, it is unlikely that this
extended reach to sensitivity beyond dipole modes will be
possible with current arrays.
Using the mapping response functions RB

ðlmÞðfÞ calcu-
lated above, we can also compute the overlap reduction
function for an uncorrelated, anisotropic background,
recovering the result given in Sec. III B. Details of that
calculation are given in Appendix L.

C. Scalar-longitudinal backgrounds

For an arbitrary scalar-longitudinal background we find

RL
ðlmÞðfÞ ¼ YlmðûÞRL

l ð2πfL=cÞ; ð63Þ
where

RL
l ðyÞ≡ 2π

Z
1

−1
dx

1

2

x2

1þ x
PlðxÞð1 − e−iyð1þxÞÞ

¼ 2π

Z
1

−1
dx

1

2

�
−1þ xþ 1

1þ x

�
PlðxÞð1 − e−iyð1þxÞÞ

¼ 2π

�
−δl0 þ

1

3
δl1 þ ð−iÞle−iy

��
1 − i

l
y

�
jlðyÞ þ ijlþ1ðyÞ

�
þ 1

2
HlðyÞ

�
; ð64Þ

where HlðyÞ is defined by Eq. (H6) in Appendix H. Since the spherical Bessel functions behave like 1=y for large y, the
terms in the square brackets above tend to zero as y → ∞, yielding

RL
ðlmÞðfÞ ≈ 2πYlmðûÞ

�
−δl0 þ

1

3
δl1 þ

1

2
HlðyÞ

�
: ð65Þ

This is valid for y ≫ 1, but y finite.

(a) (b)

FIG. 7 (color online). (Left) A comparison of the angular power spectrum estimator, Ĉl ¼
P

l
m¼−l jâBlmj2=ð2lþ 1Þ, of the injected

scalar-transverse sky map shown in the left-hand panel of Fig. 6, and the PTA-recovered map shown in the right-hand panel of the same
figure. We see that PTAs will completely lack sensitivity to angular structure in a scalar-transverse gravitational-wave sky beyond the
dipole level. This result is confirmed analytically in Eq. (61). (Right) We use the full Earth and pulsar-term response from Eq. (28) to
investigate map recovery with finite y. The pulsar term will be highly oscillatory across the sky, so we expect some numerical
fluctuations in our results. As y is increased the PTA shows greater sensitivity to higher multipole moments in the gravitational-wave
background. At y ¼ 10 the PTA is able to recover all modes in the injected map, although the nonzero sensitivity of the pulsar-term
response at higher multipoles amplifies noise from the pixelation of the sky. For y≳ 20 the Earth term behavior is recovered, and we
observe a lack of sensitivity to modes beyond dipole. See text for further details.
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D. Vector-longitudinal backgrounds

As discussed in Sec. II B, we can expand each Fourier component of a vector-longitudinal background in terms of
gradient and curl tensor spherical harmonics YVG

ðlmÞabðk̂Þ, YVC
ðlmÞabðk̂Þ, which are simply related to the spin-weight �1

spherical harmonics defined in Appendix B. It is convenient to relate this expansion

habðf; k̂Þ ¼
X∞
l¼1

Xl

m¼−l
½aVG

ðlmÞðfÞYVG
ðlmÞabðk̂Þ þ aVC

ðlmÞðfÞYVC
ðlmÞabðk̂Þ� ð66Þ

to a similar expansion in terms of the polarisation basis:

habðf; k̂Þ ¼ hXðf; k̂ÞeXabðk̂Þ þ hYðf; k̂ÞeYabðk̂Þ: ð67Þ
The relationship is

hXðf; k̂Þ � ihYðf; k̂Þ ¼ ∓ 1ffiffiffi
2

p
X
lm

ðaVG
ðlmÞðfÞ � iaVC

ðlmÞðfÞÞ�1Ylmðk̂Þ; ð68Þ

or, equivalently,

hXðf; k̂Þ ¼
1

2
ffiffiffi
2

p
X
lm

½aVG
ðlmÞðfÞð−1Ylmðk̂Þ − 1Ylmðk̂ÞÞ − iaVC

ðlmÞðfÞð−1Ylmðk̂Þ þ 1Ylmðk̂ÞÞ�;

hYðf; k̂Þ ¼
1

2
ffiffiffi
2

p
X
lm

½aVC
ðlmÞðfÞð−1Ylmðk̂Þ − 1Ylmðk̂ÞÞ þ iaVG

ðlmÞðfÞð−1Ylmðk̂Þ þ 1Ylmðk̂ÞÞ�; ð69Þ

where �1Ylmðk̂Þ are the spin-weight �1 spherical harmonics defined in Appendix A.
The expressions for the grad and curl response functions for an arbitrary vector-longitudinal background can be

calculated using the same methods as in the preceding subsections. We find

RVG
ðlmÞðfÞ ¼ YlmðûÞRVG

l ð2πfL=cÞ; RVC
ðlmÞðfÞ ¼ 0; ð70Þ

where

RVG
l ðyÞ ¼ πð1ÞNl

Z
1

−1
dx

�
xð1 − xÞð1 − e−iyð1þxÞÞ dPl

dx

�
: ð71Þ

Thus, the response to vector-curl modes is identically zero for pulsar timing arrays, as is the case for tensor-curl modes, as
shown in [43]. Evaluating the integral in Eq. (71) by parts we find

RVG
l ðyÞ ¼ πð1ÞNl

�
−2δl0 þ

4

3
δl1 þ ð−1Þle−iy

Z
1

−1
dxð1þ ð2þ iyÞxþ iyx2ÞeiyxPlðxÞ

�

¼ πð1ÞNl

�
4

3
δl1 þ 2ð−iÞle−iy

��
1 −

il
y

�
ðlþ 1ÞjlðyÞ − ðy − ið2lþ 3ÞÞjlþ1ðyÞ − iyjlþ2ðyÞ

��
; ð72Þ

where we have dropped the δl0 term since for spin-weight
�1 harmonics we have l ≥ 1. Taking the usual limit that the
pulsar is many gravitational-wave wavelengths from Earth,
y ≫ 1, and using the asymptotic result

jlðyÞ ≈
1

y
sin

�
y −

lπ
2

�
þO

�
1

y
3
2

�
; for y ≫ 1; ð73Þ

we find

RVG
lm ðfÞ ≈ 2πYlmðûÞð1ÞNl

�
2

3
δl1 þ ð−1Þl

�
: ð74Þ

As expected, this agrees with the result obtained by
evaluating the integral in Eq. (71) without the pulsar term,
i.e., making the replacement f1 − exp½−iyð1þ xÞ�g → 1.

E. Overlap reduction function for statistically
isotropic backgrounds

For a statistically isotropic, unpolarized, and parity-
invariant background (see, for example, Eqs. (52)–(54)
of [43])

ΓðfÞ ¼
X
l

ClΓlðfÞ; ð75Þ
where

ΓlðfÞ ¼
Xl

m¼−l

X
P

RP
1ðlmÞðfÞRP�

2ðlmÞðfÞ: ð76Þ

Here
P

P is a sum over the polarization states for a
particular type of background (e.g., P ¼ fVG; VCg or
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P ¼ fG;Cg for vector-longitudinal or transverse-tensor
backgrounds). Using the results of the previous subsec-
tions, we have in the limit y1 ≫ 1, y2 ≫ 1 (where yI ¼
2πfLI=c as before):
Transverse-tensor modes (l ≥ 2):

ΓT
l ðfÞ ≈ πð2lþ 1ÞðNT

l Þ2Plðcos ζÞ; ð77Þ
which was found in [43].
Scalar-transverse modes (l ≥ 0):

ΓB
l ðfÞ ≈ πð2lþ 1Þ 1

2

�
δl0 þ

1

9
δl1

�
Plðcos ζÞ: ð78Þ

Scalar-longitudinal modes (l ≥ 0):

ΓL
l ðfÞ ≈ πð2lþ 1Þ

�
δl0

�
1 −

1

2
ðH0ðy1Þ þH�

0ðy2ÞÞ
�

þ δl1

�
1

9
þ 1

6
ðH1ðy1Þ þH�

1ðy2ÞÞ
�

þ 1

4
Hlðy1ÞH�

l ðy2Þ
�
Plðcos ζÞ: ð79Þ

Vector-longitudinal modes (l ≥ 1):

ΓV
l ðfÞ ≈ πð2lþ 1Þðð1ÞNlÞ2

�
−
8

9
δl1 þ 1

�
Plðcos ζÞ: ð80Þ

Note that only the scalar-longitudinal overlap reduction
functions ΓL

l ðfÞ are actually frequency dependent in the
large-y limit, via their dependence on HlðyIÞ. The other
overlap reduction functions depend only on the angular
separation ζ between the pair of pulsars.
As shown in [43], an isotropic, unpolarized, and uncor-

related background has Cl ¼ 1 for all l. In Fig. 8 we plot
approximations to ΓB, ΓL, ΓV , and ΓT corresponding to
different values of lmax in the summation of Eq. (75), taking
Cl ¼ 1 for all l up to lmax. (Recall that for the vector overlap
reduction function, the summation starts at l ¼ 1, while for
the tensor overlap reduction function, it starts at l ¼ 2.)
These finite lmax expressions are compared to the l ¼ 0,
m ¼ 0 components of the overlap reduction functions
calculated in Sec. III and plotted in Figs. 1, 2, 3, 5. The
normalization is different than in those figures, since the
l ¼ 0, m ¼ 0 components need to be multiplied by

ffiffiffiffiffiffi
4π

p
=2

(a) (b)

(c) (d)

FIG. 8 (color online). Approximations to the overlap reduction functions for an isotropic, unpolarized, and uncorrelated stochastic
background plotted as a function of the angle between a pair of pulsars. The approximations are obtained by summing products of the
response functions over l for different values of lmax. Panel (a): transverse-tensor background. Panel (b): scalar-transverse (breathing)
background. Panel (c): scalar-longitudinal background. Panel (d): vector-longitudinal background. We are working in the large-y limit
for all of these cases. For the scalar-longitudinal background, we have taken y1 ¼ 100 and y2 ¼ 200. The thick black line in each plot is
the “full” expression for the overlap reduction function, corresponding to the limit lmax → ∞. (These limiting expressions equal

ffiffiffiffiffi
4π

p
=2

times the l ¼ 0, m ¼ 0 component of the overlap reduction functions calculated in Sec. III.) For the scalar-longitudinal case, the full
expression was calculated numerically.
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in order to obtain the isotropic overlap reduction function.
[The factor of

ffiffiffiffiffiffi
4π

p
comes from Y00ðk̂Þ ¼ 1=

ffiffiffiffiffiffi
4π

p
; the

factor of 1=2 is needed to get agreement between Eqs. (43)
and (32) of [43] for isotropic, unpolarized backgrounds.]
Figure 8 confirms what was found for the transverse-

tensor modes in [43], namely that a good approximation
to the full overlap reduction function can be obtained by
including only a relatively small number of modes in the
sum.Themaximum l required in the sum is approximately 1,
4, 10, and 20 for the scalar-transverse, transverse-tensor,
vector-longitudinal, and scalar-longitudinal backgrounds
respectively.

V. SENSITIVITY TO DIFFERENT
POLARISATION MODES

The results in the preceding sections tell us what will be
possible to measure in principle with a sufficiently extensive
pulsar timing array. The dependence of the response on the
pulsar location on the sky is proportional to YlmðûÞ, where û
is the direction to the pulsar, for all polarisation types.
By decomposing the pulsar response map, at a particular
frequency, into regular (scalar) spherical harmonics, the
coefficients of each YlmðûÞ mode of the response map can
be determined, but these coefficients will be a sum of the
contributions from each of the polarisation types. Scalar-
transverse and transverse-tensor backgrounds can be distin-
guished because PTAs typically operate in a regime in which
the pulsar term is negligible and so the response is indepen-
dent of the distance to the pulsar. In that regime, PTAs are
only sensitive to modes of the scalar-transverse background
with l < 2, while transverse-tensor backgrounds can only
contain modes with l ≥ 2. However, longitudinal back-
grounds can only be distinguished from transverse back-
grounds if there are multiple pulsars along a given line of
sight, or if there is a known correlation (e.g., a power law)
between the background amplitudes at different frequencies.
In either of these scenarios, we can exploit the dependence of
the pulsar term on 2πfL=c, which is much more significant
for the longitudinal modes of the background. Thus, in the
limit of infinitely many pulsars distributed across the sky at a
range of distances, wewould expect to be able tomeasure the
entire content of the background in each polarisation state and
at each frequency. In practice, of course, a pulsar timing array
of Np pulsars can only measure 2Np real components of the
background [43,46], and so the resolution of anymap that we
produce will be limited by the number of pulsars in the array.
Roughly speaking, to produce a map of the gravitational-
wave sky in all polarisation states to an angular resolution of
Δθ ≈ 180°=lmax would requireNp¼3ðlmaxþ1Þ2−1 pulsars.
To understand the possible detectability of these aniso-

tropic backgrounds, we can refer to previous work in related
contexts. In [35], the detectability of isotropic backgrounds
of different polarisations was considered. They found that
the scalar-transverse background would be detectable with

comparable signal-to-noise ratio as the transverse-tensor
background (requiring 40 pulsars timed for five years with
100 ns timing precision for a first confident detection),
but the longitudinal modes would require 50%more pulsars
(60 pulsars) to be detected in a comparable time with the
same signal-to-noise ratio. However, this analysis was done
assuming that the correlation at zero pulsar separation was
fixed for all modes, rather than the intrinsic strain amplitude.
For fixed strain amplitude, the longitudinal modes have
much higher responses at low pulsar separations and so
would be detectable much more quickly. In [31] the
detectability of anisotropic transverse-tensor backgrounds
of gravitational waves was investigated. It was found that,
assuming the correct form for the anisotropy in the search,
anisotropic backgrounds would be detectable at the same
intrinsic amplitude as an isotropic background. Searching
over the parameters characterizing possible anisotropies
would increase the required amplitude by a factor of a few.
To confidently distinguish between an anisotropic and
isotropic model of the background, the amplitude would
have to be a factor of ∼10 higher. While that work was for
stochastic transverse-tensor backgrounds only and consid-
ered only dipole and quadrupole anisotropies, the conclu-
sions are likely to carry over to backgrounds of arbitrary
polarisation. We would therefore expect to be able to detect
an anisotropic background at the same amplitude as we
would detect an isotropic background (which was deter-
mined in [35] as described above), but would require a factor
of a few to 10 higher signal-to-noise ratio to accurately
characterize the anisotropy. While this previous work can
tell us about the possible detectability and identifiability of
anisotropic backgrounds, the formalism described in this
paper allows us to go much further and also determine
which modes of the background we will be most sensitive
to and which we will therefore characterize well.
To obtain a quantitative comparison of the sensitivity of

the mapping search to the different components aPðlmÞðfÞ of
the background, we can perform the equivalent of a Fisher
informationmatrix calculation, using the response functions
RP
ðlmÞðfÞ calculated in the previous section. For simplicity,

we will restrict attention to a single discrete frequency
component f ¼ f0, and assume that the distances LI to the
individual pulsars ðI ¼ 1; 2;…; NpÞ are such that the large-
y approximation is valid, where yI ¼ 2πfLI=c. Explicitly,
for the transverse-tensor and scalar-transverse polarisations,
we use the yI → ∞ expressions for the response functions
given by Eqs. (55) and (61). While for the scalar-longi-
tudinal and vector-longitudinal polarisations, we keep the y
dependence given in Eqs. (64) and (72), to help distinguish
the different modes in the recovery of the background. As in
previous sections, we let P ¼ fG;C; B; L; VG; VCg label
the different polarisation states, and ðlmÞP label the tensor
spherical-harmonic components corresponding to polarisa-
tion P. Recall that for scalar-transverse (i.e., breathing)
mode backgrounds,
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RB
ðlmÞðfÞ ¼ 0; for l ≥ 2; ð81Þ

and

RC
ðlmÞðfÞ ¼ 0; RVC

ðlmÞðfÞ ¼ 0 ð82Þ
for the transverse-tensor and vector-longitudinal curl
modes. In addition, the tensor spherical-harmonic multipole
indices start at l ¼ 1 for vector-longitudinal polarisations
and at l ¼ 2 for transverse-tensor polarisations. Given these
restrictions on the response functions, it follows that the
response matrix R [having components RP

IðlmÞðf0Þ] is an

Np×M matrix, where Np is the total number of pulsars
and M ¼ 3ðlmax þ 1Þ2 − 1.
As described in [47], the covariance matrix for the

maximum-likelihood estimates aML of the components
aPðlmÞðf0Þ can be written as

covðaMLÞ≡ haMLa
†
MLi − haMLiha†MLi ¼ R̄þðR̄þÞ†; ð83Þ

where R̄ is the whitened response matrix R̄≡L†R, withL
the lower triangular matrix defined by the Cholesky
decomposition of the inverse noise covariance matrix,
C−1

n ¼ LL†. The superscript þ denotes the pseudoinverse
of the matrix R̄, which can be defined in terms of the
singular value decomposition

R̄ ¼ Ū Σ̄ V̄†; ð84Þ
for which

R̄þ ¼ V̄Σ̄þŪ†: ð85Þ
Here Σ̄þ is obtained by taking the reciprocal of each
nonzero singular value of Σ̄, leaving the zeros in places, and
then transposing the resulting matrix. The uncertainties in
the estimates are then given by the square root of the
diagonal elements of the covariance matrix,

σML ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½covðaMLÞ�

p
: ð86Þ

To simplify the calculation further, we will also assume
that the noise covariance matrix Cn is diagonal [i.e.,
CnII0 ðf0Þ ¼ CnIðf0ÞδII0], and that the power spectral den-
sities CnIðf0Þ for the noise are the same for all pulsars
I ¼ 1; 2;…; Np, for which R̄P

IðlmÞðf0Þ ∝ RP
IðlmÞðf0Þ. For

convenience, we set this proportionality constant to unity,
as it does not affect the relative sensitivity to the different
polarisation modes.
We can apply this formalism to a simple scenario in

which we assume that the background contains modes up to
lmax ¼ 2 only and our pulsar array comprises 30 pulsars
with distances chosen at random uniformly between 1 and
10 kpc. [For frequency f0 ¼ 3 × 10−9 Hz, corresponding
to 1=ð10 yrÞ, yI ¼ 2πf0LI=c for the different pulsars range
between ∼2000 and ∼20000.] In this case the system is
fully determined sincewe havemore pulsars,Np ¼ 30, than
modes of the background,M ¼ 26. In Table II we show how
the uncertainties in our measurements of each mode of the
background change as we go from searching for only the
transverse-tensor modes, to searching for both transverse-
tensor and scalar-transverse modes, to searching for all
transverse modes and the scalar-longitudinal modes, to
searching for all possible modes. We see that there is little
change in the precision of determination of the transverse-
tensor modes when scalar-transverse modes are also
searched for, and the precision of determination of all of
these modes is comparable. This is to be expected—as
argued above the two families of transverse modes have an
essentially orthogonal effect on the response, since the
transverse-tensor modes have l ≥ 2 only, while the scalar-
transverse modes have l < 2 only. When we include scalar-
longitudinal modes in the analysis as well we would expect
to see some confusion since scalar-longitudinal modes
can take all values of l. However, the response to

TABLE II. The uncertainties, σML, for the transverse-tensor, scalar-transverse, scalar-longitudinal, and vector-longitudinal polarisation
modes searched for separately or in various combinations for lmax ¼ 2 and N ¼ 30 pulsars.

ðl; mÞ mode

(0, 0) ð1;−1Þ (1, 0) (1, 1) ð2;−2Þ ð2;−1Þ (2, 0) (2, 1) (2, 2)

G: transverse tensor (gradient) � � � � � � � � � � � � 0.44 0.38 0.32 0.38 0.44

G: transverse tensor (gradient) � � � � � � � � � � � � 0.49 0.39 0.37 0.39 0.49
B: scalar transverse (breathing) 0.16 0.53 0.46 0.53 � � � � � � � � � � � � � � �

G: transverse tensor (gradient) � � � � � � � � � � � � 16.2 10.5 11.4 10.5 16.2
B: scalar transverse (breathing) 4.36 16.1 14.1 16.1 � � � � � � � � � � � � � � �
L: scalar longitudinal 0.71 0.96 0.84 0.96 1.21 0.78 0.86 0.78 1.21

G: transverse tensor (gradient) � � � � � � � � � � � � 1.4e5 5.4e4 8.0e4 5.4e4 1.4e5
B: scalar transverse (breathing) 18.4 9.4e4 6.2e4 9.4e4 � � � � � � � � � � � � � � �
L: scalar longitudinal 3.08 11.5 8.68 11.5 20.9 7.51 11.9 7.52 20.9
VG: vector longitudinal (gradient) � � � 6.6e4 4.4e4 6.6e4 7.0e4 2.7e4 4.0e4 2.7e4 7.0e4
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scalar-longitudinal modes depends strongly on the distance
to the pulsar and this should allowus to break the degeneracy.
This is precisely what is seen in Table II—measurements are
a little worse than in the previous case, since the information
is being used to determine more parameters, but all modes
can still be measured. The determination of the scalar-
longitudinal modes is a factor of 10 more precise than the
determination of the transverse modes, since this formalism
effectively assumes equal intrinsic amplitude for all modes
and the scalar-longitudinal modes give a much larger
response for small pulsar angular separations. The inclusion
of vector-longitudinal modes in the analysis leads to a
slightly worse determination of the scalar-longitudinal
amplitudes, again because the available information is
being used to measure more parameters. However, it also
significantly degrades the measurements of all the other
modes. This behavior can also be understood from the results
derived in Sec. IV. As for the scalar-longitudinal modes, the
only thing that allows the vector-longitudinal modes to be
disentangled from the transverse modes is the dependence
of the responses on distance. However, this dependence is
much weaker for the vector-longitudinal modes than the
scalar-longitudinal modes. We therefore expect, and see, a
much greater confusion between the vector-longitudinal
modes and the transverse modes. This degrades the meas-
urement of any individual mode amplitude, although certain
combinations of transverse and vector-longitudinal mode
amplitudes will still be accurately measured.
These results provide quantitative confirmation of the

qualitative statements made earlier in this paper and
illustrate some of the potential difficulties with mapping
gravitational-wave backgrounds with PTAs. However, this
analysis makes various simplifications:

(i) The above implicitly assumes that the intrinsic
amplitudes of different polarisation backgrounds
are equal. If we had prior beliefs that the trans-
verse-tensor modes should be of much greater am-
plitude, this could be folded into the above and we
would conclude that we would be able to measure
those modes much more accurately. Imposing such a
prior could only be done by reference to a specific
alternative theory and specific astrophysical model
for the background.

(ii) Results have been presented for only one pulsar
array and implicitly assume that all the pulsars are
equally sensitive, i.e., have equal timing precision.

(iii) Only one frequency component of the background
has been included. Including more frequency com-
ponents could help improve measurements, but only
if some relationship between the mode amplitudes at
different frequencies is assumed.

(iv) The analysis has been presented in the frequency
domain and ignored complexities that arise in such
an approach, such as uneven sampling of the data.
These complications are straightforward to consider

in this kind of analysis (see, e.g., [43]), but will
impact the conclusions.

(v) The case above was a fully determined situation in
which there were fewer modes in the background
than pulsars in the array. More generally, we would
want to allow for many more l and m modes in the
background. In that case, it is not possible to
measure all the modes of the background, but there
will be certain backgrounds to which any given
pulsar timing array is sensitive and others to which it
is blind. This was discussed in detail in [43,46].

The impact of each of these assumptions on the results
should be fully investigated in the future. This will require a
large campaign of simulations which are beyond the scope
of the current work, so we defer a fuller investigation to the
future.

VI. CONCLUSION

In this paper we have investigated the overlap reduction
functions and response functions of PTAs for non-GR
polarisations of gravitational waves. The overlap reduction
function describes the sensitivity of a pair of pulsars to a
gravitational-wave background in a cross-correlation analy-
sis. The cross-correlation signature traced out by the
overlap reduction function from an entire array of precisely
timed millisecond pulsars will aid in isolating any gravi-
tational-wave signal from other stochastic processes which
may have similar spectral properties. Hence, current
searches for stochastic gravitational-wave backgrounds
rely on models of the overlap reduction function as the
smoking-gun signature of a signal. For an isotropic
stochastic background in GR, the overlap reduction func-
tion is known as the Hellings and Downs curve, and
depends only on the angular separation between pulsars in
the array. The overlap reduction functions for arbitrary
anisotropic stochastic backgrounds in GR were investi-
gated in Mingarelli et al. [30] and Gair et al. [43], where it
was shown that these functions are now dependent on the
positions of each pulsar relative to the distribution of
gravitational-wave power on the sky.
The gravitational-wave polarisation has a strong influ-

ence on the overlap reduction function through the form of
the pulsar response functions. Chamberlin and Siemens
[36] studied the form of the overlap reduction functions for
isotropic backgrounds of gravitational waves for scalar-
transverse, scalar-longitudinal, and vector-longitudinal
polarisation modes. In this paper, we have extended that
analysis to find analytic expressions for the overlap
reduction functions for anisotropic non-GR backgrounds.
A key result of this work is that PTAs will completely lack
sensitivity to structure beyond quadrupole in the power of a
scalar-transverse background. This result holds regardless
of the number of pulsars, timing precision, or observational
schedules—it is a property of the geometric sensitivity of
PTAs to gravitational-wave signals of scalar-transverse
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polarisation. Additionally, we have found analytic expres-
sions for the overlap reduction functions for arbitrary
anisotropic vector-longitudinal backgrounds. We have also
derived a semianalytic expression for the overlap reduction
functions of anisotropic scalar-longitudinal backgrounds,
in which case a consideration of the pulsar term is crucial to
avoid divergences.
In the second half of this paper, we have extended the

formalism of our previous work in Gair et al. [43], where
the Fourier amplitudes in a plane-wave expansion of the
GR metric perturbation were decomposed with respect to a
basis of gradient and curl spherical harmonics, which are
related to spin-weight �2 spherical harmonics. By deter-
mining the components of the background in such a
decomposition it is possible to construct a map of both
the amplitude and the phase of the gravitational-wave
background across the sky, rather than simply reconstruct-
ing the power distribution. The decomposition in terms of
spin-weight �2 spherical harmonics is made possible by
the transverse-traceless nature of the GR gravitational-wave
metric perturbations. Here we have appealed to the struc-
ture of the gravitational-wave metric perturbations for non-
GR polarisations to perform the same procedure—the
Fourier amplitudes of scalar modes can be expanded in
terms of ordinary spin-weight 0 spherical harmonics, while
the vector mode amplitudes can be expanded in terms of a
spin-weight �1 spherical-harmonic basis. In so doing, we
have found that PTAs lack sensitivity to structure in the
polarisation amplitude of a scalar-transverse background
beyond dipole anisotropy, which can be used to explain the
lack of sensitivity to power anisotropies beyond quadru-
pole. This result was verified through numerical map
making and recovery, where we have found some sensi-
tivity to modes beyond dipole when y ¼ 2πfL=c was very
small, but this would require all pulsars to lie within a
distance of 0.01 kpc from Earth. We also have found that
PTAs will lack sensitivity to vector-curl modes for a vector-
longitudinal background, which is analogous to the finding
in Gair et al. [43] that PTAs are insensitive to the tensor-
curl modes of gravitational-wave backgrounds in GR.
This paper has provided several ready-to-use expressions

for overlap reduction functions for non-GR stochastic back-
grounds with arbitrary anisotropy. These expressions can be
trivially plugged into any current or planned PTA stochastic
background search pipeline to obtain limits on the strain
amplitude of a non-GR gravitational-wave sky.We also have
provided several ready-to-use expressions for the response
functions of a single pulsar to anisotropies in a non-GR
gravitational-wave background. The implications of this are
that we can use an array of pulsars to perform a Bayesian or
frequentist search for the angular dependence of the Fourier
modes of a plane-wave expansion of the gravitational-wave
metric perturbations, and in so doing produce maps of the
polarisation content of the sky that include phase information
rather than simply map the distribution of power.

The results in this paper also have indicated what is
possible to measure in principle with a sufficiently exten-
sive pulsar timing array, and in Sec. V we have discussed
this both qualitatively and have given some simple quanti-
tative examples. For a further discussion of the prospects of
this type of mapping analysis in the case of GR-polarised
gravitational-wave backgrounds, we refer the reader to
Gair et al. [43] and Cornish and van Haasteren [46]. In the
future, we plan to apply the results of this paper to the
analysis of real data, to map the amplitude and phase
content of non-GR gravitational-wave backgrounds influ-
encing the arrival times of millisecond pulsars. This will
allow us to place constraints on beyond-GR polarisations
of nanohertz gravitational waves.

ACKNOWLEDGMENTS

J. G.’s work is supported by the Royal Society. This
research was in part supported by S. T.’s appointment
to the NASA Postdoctoral Program at the Jet Propulsion
Laboratory administered by Oak Ridge Associated
Universities through a contract with NASA. J. D. R.
acknowledges support from NSF Grants No. PHY-
1205585, No. PHY-1505861, No. HRD-1242090, and
the NANOGrav Physics Frontier Center, NSF Grant
No. PFC-1430284. This research has made use of Python

and its standard libraries: NUMPYand MATPLOTLIB. We have
also made use of MEALPix (a Matlab implementation of
HEALPix [45]) developed by the GWAstro Research Group
and available from http://gwastro.psu.edu. This work was
performed using the Darwin Supercomputer of the
University of Cambridge High Performance Computing
Service (http://www.hpc.cam.ac.uk/) provided by Dell Inc.
using Strategic Research Infrastructure Funding from the
Higher Education Funding Council for England and fund-
ing from the Science and Technology Facilities Council.
The authors also acknowledge support of NSF Grant
No. PHY-1066293 and the hospitality of the Aspen
Center for Physics, where this work was completed.

APPENDIX A: SPIN-WEIGHTED
SPHERICAL HARMONICS

This appendix summarizes some useful relations
involving spin-weighted and ordinary spherical harmon-
ics, sYlmðk̂Þ and Ylmðk̂Þ. For more details, see e.g.,
Goldberg et al. [48] and del Castillo [49]. Note that
we use a slightly different normalization convention than
in Goldberg et al. [48]. Namely, we put the Condon-
Shortley factor ð−1Þm in the definition of the associated
Legendre functions Pm

l ðxÞ, and thus do not explicitly
include it in the definition of the spherical harmonics.
Also, for our analysis, we can restrict attention to spin-
weighted spherical harmonics having integral spin weight
s, even though spin-weighted spherical harmonics with
half-integral spin weight do exist.
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Ordinary spherical harmonics:

Ylmðk̂Þ ¼ Ylmðθ;ϕÞ ¼ Nm
l P

m
l ðcos θÞeimϕ; where Nm

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
: ðA1Þ

Relation of spin-weighted spherical harmonics to ordinary spherical harmonics:

sYlmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞ!
ðlþ sÞ!

s
∂
̬ s
Ylmðθ;ϕÞ for 0 ≤ s ≤ l;

sYlmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞ!
ðl − sÞ!

s
ð−1Þs ¯∂

̬
−sYlmðθ;ϕÞ for − l ≤ s ≤ 0; ðA2Þ

where

∂
̬
η ¼ −ðsin θÞs

� ∂
∂θ þ i csc θ

∂
∂ϕ

�
ðsin θÞ−sη;

¯∂
̬
η ¼ −ðsin θÞ−s

� ∂
∂θ − i csc θ

∂
∂ϕ

�
ðsin θÞsη; ðA3Þ

and η ¼ ηðθ;ϕÞ is a spin-s scalar field.
Series representation:

sYlmðθ;ϕÞ ¼ ð−1Þm
�ðlþmÞ!ðl −mÞ!
ðlþ sÞ!ðl − sÞ!

2lþ 1

4π

�
1=2

ðsin θ=2Þ2l
Xl−s
k¼0

�
l − s
k

��
lþ s

kþ s −m

�
ð−1Þl−k−seimϕðcot θ=2Þ2kþs−m:

ðA4Þ

Complex conjugate:

sY�
lmðθ;ϕÞ ¼ ð−1Þmþs−sYl;−mðθ;ϕÞ: ðA5Þ

Relation to Wigner rotation matrices:

Dl
m0mðϕ; θ;ψÞ ¼ ð−1Þm0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
mYl;−m0 ðθ;ϕÞe−imψ ; ðA6Þ

or

½Dl
m0mðϕ; θ;ψÞ�� ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
−mYl;m0 ðθ;ϕÞeimψ : ðA7Þ

Parity transformation:

sYlmðπ − θ;ϕþ πÞ ¼ ð−1Þl−sYlmðθ;ϕÞ: ðA8Þ

Orthonormality (for fixed s):Z
S2
d2Ωk̂ sYlmðk̂ÞsY�

l0m0 ðk̂Þ≡
Z

2π

0

dϕ
Z

π

0

sin θdθ sYlmðθ;ϕÞsY�
l0m0 ðθ;ϕÞ ¼ δll0δmm0 : ðA9Þ

Addition theorem for spin-weighted spherical harmonics:

Xl

m¼−l
sYlmðθ1;ϕ1Þs0Y�

lmðθ2;ϕ2Þ ¼ ð−1Þ−s0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
−s0Ylsðθ3;ϕ3Þeis0χ3 ; ðA10Þ

where

cos θ3 ¼ cos θ1 cos θ2 þ sin θ1 sin θ2 cosðϕ2 − ϕ1Þ; ðA11Þ
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and

e−iðϕ3þχ3Þ=2 ¼ cos 1
2
ðϕ2 − ϕ1Þ cos 12 ðθ2 − θ1Þ − i sin 1

2
ðϕ2 − ϕ1Þ cos 12 ðθ1 þ θ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 1
2
ðϕ2 − ϕ1Þcos2 1

2
ðθ2 − θ1Þ þ sin2 1

2
ðϕ2 − ϕ1Þcos2 1

2
ðθ1 þ θ2Þ

q ;

eiðϕ3−χ3Þ=2 ¼ cos 1
2
ðϕ2 − ϕ1Þ sin 1

2
ðθ2 − θ1Þ þ i sin 1

2
ðϕ2 − ϕ1Þ sin 1

2
ðθ1 þ θ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 1
2
ðϕ2 − ϕ1Þsin2 1

2
ðθ2 − θ1Þ þ sin2 1

2
ðϕ2 − ϕ1Þsin2 1

2
ðθ1 þ θ2Þ

q : ðA12Þ

Addition theorem for ordinary spherical harmonics:Xl

m¼−l
Ylmðk̂1ÞY�

lmðk̂2Þ ¼
2lþ 1

4π
Plðk̂1 · k̂2Þ: ðA13Þ

Integral of a product of spin-weighted spherical harmonics:Z
S2
d2Ωk̂s1Yl1m1

ðk̂Þs2Yl2m3
ðk̂Þs3Yl3m3

ðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3
m1 m2 m3

��
l1 l2 l3
−s1 −s2 −s3

�
; ðA14Þ

where

�
l1 l2 l3
m1 m2 m3

�
is a Wigner 3j symbol, which can be written as

�
l l0 L

m m0 M

�
¼


ðlþ l0 − LÞ!ðl − l0 þ LÞ!ð−lþ l0 þ LÞ!ðlþmÞ!ðl −mÞ!ðl0 þm0Þ!ðl0 −m0Þ!ðLþMÞ!ðL −MÞ!

ðlþ l0 þ Lþ 1Þ!

s

×
X
z∈Z

ð−1Þzþlþl0−M

z!ðlþ l0 − L − zÞ!ðl −m − zÞ!ðl0 þm0 − zÞ!ðL − l0 þmþ zÞ!ðL − l −m0 þ zÞ! : ðA15Þ

See, for example, Wigner [50], Messiah [51], Landau and Lifshitz [52] and references therein. Note that although this
sum is over all integers it contains only a finite number of nonzero terms since the factorial of a negative number is
defined to be infinite.

APPENDIX B: GRADIENT AND CURL RANK-1 (VECTOR) SPHERICAL HARMONICS

The gradient and curl rank-1 (vector) spherical harmonics are defined for l ≥ 1 by

YG
ðlmÞa ≡

1

2
ð1ÞNl∂aYlm ¼ 1

2
ð1ÞNl

�∂Ylm

∂θ θ̂a þ
1

sin θ
∂Ylm

∂ϕ ϕ̂a

�
;

YC
ðlmÞa ≡

1

2
ð1ÞNlð∂bYlmÞϵba ¼

1

2
ð1ÞNl

�
−

1

sin θ
∂Ylm

∂ϕ θ̂a þ
∂Ylm

∂θ ϕ̂a

�
; ðB1Þ

where θ̂ and ϕ̂ are the standard unit vectors tangent to the 2-sphere

θ̂ ¼ cos θ cosϕx̂þ cos θ sinϕŷ − sin θẑ;

ϕ̂ ¼ − sinϕx̂þ cosϕŷ; ðB2Þ
ð1ÞNl is a normalization constant

ð1ÞNl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 1Þ!
ðlþ 1Þ!

s
; ðB3Þ

and ϵab is the Levi-Cività antisymmetric tensor

ϵab ¼
ffiffiffi
g

p �
0 1

−1 0

�
; g≡ detðgabÞ: ðB4Þ
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Following standard practice, we use the metric tensor on the 2-sphere gab and its inverse gab to “lower” and “raise” tensor
indices—e.g., ϵcb ≡ gcaϵab. In standard spherical coordinates ðθ;ϕÞ,

gab ¼
�
1 0

0 sin2θ

�
;

ffiffiffi
g

p ¼ sin θ: ðB5Þ

The grad and curl spherical harmonics are related to the spin-weight �1 spherical harmonics

�1Ylmðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
Nm

lffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
�ð1 − x2Þ dP

m
l

dx
þmPm

l ðxÞ
�
eimϕ; where x ¼ cos θ ðB6Þ

via

YG
ðlmÞaðk̂Þ � iYC

ðlmÞaðk̂Þ ¼ � 1ffiffiffi
2

p ðθ̂a � iϕ̂aÞ∓1Ylmðk̂Þ ðB7Þ
or, equivalently,

YG
ðlmÞaðk̂Þ ¼

1

2
ffiffiffi
2

p ½ð−1Ylmðk̂Þ − 1Ylmðk̂ÞÞθ̂a þ ið−1Ylmðk̂Þ þ 1Ylmðk̂ÞÞϕ̂a�;

YC
ðlmÞaðk̂Þ ¼

1

2
ffiffiffi
2

p ½ð−1Ylmðk̂Þ − 1Ylmðk̂ÞÞϕ̂a − ið−1Ylmðk̂Þ þ 1Ylmðk̂ÞÞθ̂a�: ðB8Þ

For decompositions of vector-longitudinal backgrounds, as discussed in the main text, it will be convenient to construct
rank-2 tensor fields

YVG
ðlmÞab ¼ YG

ðlmÞak̂b þ YG
ðlmÞbk̂a;

YVC
ðlmÞab ¼ YC

ðlmÞak̂b þ YC
ðlmÞbk̂a; ðB9Þ

where k̂ is the unit radial vector orthogonal to the surface of the 2-sphere:

k̂ ¼ sin θ cosϕx̂þ sin θ sinϕŷþ cos θẑ: ðB10Þ
These fields satisfy the following orthonormality relationsZ

S2
d2Ωk̂Y

VG
ðlmÞabðk̂ÞYVG

ðl0m0Þ
ab�ðk̂Þ ¼ δll0δmm0 ;Z

S2
d2Ωk̂Y

VC
ðlmÞabðk̂ÞYVC

ðl0m0Þ
ab�ðk̂Þ ¼ δll0δmm0 ;Z

S2
d2Ωk̂Y

VG
ðlmÞabðk̂ÞYVC

ðl0m0Þ
ab�ðk̂Þ ¼ 0: ðB11Þ

APPENDIX C: GRADIENT AND CURL RANK-2 (TENSOR) SPHERICAL HARMONICS

The gradient and curl rank-2 (tensor) spherical harmonics are defined for l ≥ 2 by

YG
ðlmÞab ¼ Nl

�
YðlmÞ;ab −

1

2
gabYðlmÞ;cc

�
;

YC
ðlmÞab ¼

Nl

2
ðYðlmÞ;acϵcb þ YðlmÞ;bcϵcaÞ; ðC1Þ

where a semicolon denotes covariant derivative on the 2-sphere, and ð2ÞNl is a normalization constant

ð2ÞNl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 2Þ!
ðlþ 2Þ!

s
: ðC2Þ

Using the standard polarisation tensors on the 2-sphere:

eþabðk̂Þ ¼ θ̂aθ̂b − ϕ̂aϕ̂b;

e×abðk̂Þ ¼ θ̂aϕ̂b þ ϕ̂aθ̂b; ðC3Þ
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where θ̂, ϕ̂ are given by Eq. (B2), we have [53]

YG
ðlmÞabðk̂Þ ¼

ð2ÞNl

2
½WðlmÞðk̂Þeþabðk̂Þ þ XðlmÞðk̂Þe×abðk̂Þ�;

YC
ðlmÞabðk̂Þ ¼

ð2ÞNl

2
½WðlmÞðk̂Þe×abðk̂Þ − XðlmÞðk̂Þeþabðk̂Þ�; ðC4Þ

where

WðlmÞðk̂Þ ¼
� ∂2

∂θ2 − cot θ
∂
∂θ þ

m2

sin2θ

�
Ylmðk̂Þ ¼

�
2
∂2

∂θ2 þ lðlþ 1Þ
�
Ylmðk̂Þ;

XðlmÞðk̂Þ ¼
2im
sin θ

� ∂
∂θ − cot θ

�
Ylmðk̂Þ: ðC5Þ

These functions enter the expression for the spin-weight �2 spherical harmonics [48,54]:

�2Ylmðk̂Þ ¼
ð2ÞNlffiffiffi

2
p ½WðlmÞðk̂Þ � iXðlmÞðk̂Þ�; ðC6Þ

which are related to the grad and curl spherical harmonics via

YG
ðlmÞabðk̂Þ � iYC

ðlmÞabðk̂Þ ¼
1ffiffiffi
2

p ðeþabðk̂Þ � ie×abðk̂ÞÞ∓2Ylmðk̂Þ: ðC7Þ

Note that the grad and curl spherical harmonics satisfy the orthonormality relationsZ
S2
d2Ωk̂Y

G
ðlmÞabðk̂ÞYG

ðl0m0Þ
ab�ðk̂Þ ¼ δll0δmm0 ;Z

S2
d2Ωk̂Y

C
ðlmÞabðk̂ÞYC

ðl0m0Þ
ab�ðk̂Þ ¼ δll0δmm0 ;Z

S2
d2Ωk̂Y

G
ðlmÞabðk̂ÞYC

ðl0m0Þ
ab�ðk̂Þ ¼ 0: ðC8Þ

APPENDIX D: LEGENDRE POLYNOMIALS AND ASSOCIATED LEGENDRE FUNCTIONS

The following is a list of some useful identities involving Legendre polynomials PlðxÞ and associated Legendre functions
Pm
l ðxÞ. For additional properties see e.g., Abramowitz and Stegun [55].

Differential equation:

ð1 − x2Þ d2

dx2
Pm
l ðxÞ − 2x

d
dx

Pm
l ðxÞ þ

�
lðlþ 1Þ − m2

ð1 − x2Þ
�
Pm
l ðxÞ ¼ 0: ðD1Þ

Useful recurrence relations:

ð1 − x2Þ d
dx

Pm
l ðxÞ ¼

1

2lþ 1
½ðlþ 1ÞðlþmÞPm

l−1ðxÞ − lðl −mþ 1ÞPm
lþ1ðxÞ�;ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p d

dx
Pm
l ðxÞ ¼

1

2
½ðlþmÞðl −mþ 1ÞPm−1

l ðxÞ − Pmþ1
l ðxÞ�: ðD2Þ

Orthogonality relation (for fixed m): Z
1

−1
dxPm

l ðxÞPm
l0 ðxÞ ¼

2ðlþmÞ!
ð2lþ 1Þðl −mÞ! δll0 ;Z

1

−1
dxPlðxÞPl0 ðxÞ ¼

2

ð2lþ 1Þ δll0 : ðD3Þ
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Relation to ordinary Legendre polynomials, for m ¼ 0; 1;…; l:

Pm
l ðxÞ ¼ ð−1Þmð1 − x2Þm=2 dm

dxm
PlðxÞ;

P−m
l ðxÞ ¼ ð−1Þm ðl −mÞ!

ðlþmÞ!P
m
l ðxÞ: ðD4Þ

Rodrigues’s formula for PlðxÞ:

PlðxÞ ¼
1

2ll!
dl

dxl
½ðx2 − 1Þl�: ðD5Þ

Series representation of Legendre polynomials:

PlðxÞ ¼
Xl

k¼0

ð−1Þk ðlþ kÞ!
ðk!Þ2ðl − kÞ!

�
1 − x
2

�
k
¼

Xl

k¼0

ð−1Þlþk ðlþ kÞ!
ðk!Þ2ðl − kÞ!

�
1þ x
2

�
k
: ðD6Þ

Useful recurrence relation:

ð2lþ 1ÞxPlðxÞ ¼ ðlþ 1ÞPlþ1ðxÞ þ lPl−1ðxÞ; ðD7Þ
which iterated yields

x2PlðxÞ ¼
ðlþ 2Þðlþ 1Þ
ð2lþ 3Þð2lþ 1ÞPlþ2ðxÞ þ

4l3 þ 6l2 − 1

ð2lþ 3Þð2lþ 1Þð2l − 1ÞPlðxÞ þ
lðl − 1Þ
4l2 − 1

Pl−2ðxÞ: ðD8Þ

APPENDIX E: BESSEL FUNCTIONS

The following is a list of some useful identities involving Bessel functions and spherical Bessel functions of the first kind,
JνðyÞ and jlðyÞ. For additional properties, see e.g., Abramowitz and Stegun [55].
Integral representation of ordinary Bessel functions:

JnðyÞ ¼
1

2π

1

in

Z
2π

0

dϕeiðnϕþy cosϕÞ: ðE1Þ

Integral representation of spherical Bessel functions:

2ð−iÞljlðyÞ ¼
Z

1

−1
dxPlðxÞe−iyx: ðE2Þ

Relationship between ordinary and spherical Bessel functions:

jlðyÞ ¼
ffiffiffiffiffi
π

2y

r
Jlþ1

2
ðyÞ: ðE3Þ

Plane-wave expansion:

e−i2πfk̂·~x=c ¼ e−iy cos θ ¼
X∞
l¼0

ð−iÞljlðyÞð2lþ 1ÞPlðcos θÞ: ðE4Þ

Asymptotic behavior:

JnðyÞ ≈
1

Γðnþ 1Þ
�
y
2

�
n
; for 0 < y ≪

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
; ðE5Þ

JnðyÞ ≈
ffiffiffiffiffi
2

πy

s �
cos

�
y −

nπ
2

−
π

4

�
þO

�
1

x

��
; for y ≫ 1; ðE6Þ
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jlðyÞ ≈
1

y
sin

�
y −

lπ
2

�
þO

�
1

y
3
2

�
; for y ≫ 1: ðE7Þ

A useful recurrence relation:

jl−1ðyÞ þ jlþ1ðfÞ ¼
2lþ 1

y
jlðyÞ: ðE8Þ

Another useful recurrence relation:

djl
dy

¼ l
y
jlðyÞ − jlþ1ðyÞ; ðE9Þ

which iterated once yields

d2jl
dy2

¼ lðl − 1Þ
y2

jlðyÞ −
2lþ 1

y
jlþ1ðyÞ þ jlþ2ðyÞ; ðE10Þ

and twice yields

d3jl
dy3

¼ lðl − 1Þðl − 2Þ
y3

jlðyÞ −
3l2

y2
jlþ1ðyÞ þ

3ðlþ 1Þ
y

jlþ2ðyÞ − jlþ3ðyÞ: ðE11Þ

APPENDIX F: ANALYTIC CALCULATION OF THE OVERLAP REDUCTION FUNCTIONS
FOR TRANSVERSE-TENSOR BACKGROUNDS

For completeness, we include here expressions for the overlap reduction functions for anisotropic, uncorrelated
backgrounds having the standard transverse-tensor polarization modes of GR. These were derived in Appendix E of [43].
Here we present only the final results; readers should consult [43] for details.
For all l, m:

Γ×
lmðfÞ ¼ 0; ðF1Þ

which trivially follows from the fact that R×
1 ðf; k̂Þ ¼ 0 in the computational frame.

For m ¼ 0:

Γþ
l0ðfÞ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þπ

p ��
1þ 1

3
cos ζ

�
δl0 −

1

3
ð1þ cos ζÞδl1 þ

2

15
cos ζδl2 − ð1þ cos ζÞF−

0;0;l;0ðcos ζÞ

− ð1 − cos ζÞFþ
1;1;l;0ðcos ζÞ

�
: ðF2Þ

For m ¼ 1:

Γþ
l1ðfÞ ¼

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þπ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s �
2 sin ζ

�
1

3
δl1 −

1

5
δl2

�
−
ð1þ cos ζÞ3=2
ð1 − cos ζÞ1=2 F

−
1;0;l;1ðcos ζÞ −

ð1 − cos ζÞ3=2
ð1þ cos ζÞ1=2F

þ
2;1;l;1ðcos ζÞ

�
:

ðF3Þ

For m ¼ 2; 3;…:

Γþ
lmðfÞ ¼ −

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þπ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!
ðlþmÞ!

s �ð1þ cos ζÞm2þ1

ð1 − cos ζÞm2 F−
m;0;l;mðcos ζÞ −

ð1þ cos ζÞm2
ð1 − cos ζÞm2−1F

−
m−1;−1;l;mðcos ζÞ

þ ð1 − cos ζÞm2þ1

ð1þ cos ζÞm2 Fþ
mþ1;1;l;mðcos ζÞ −

ð1 − cos ζÞm2
ð1þ cos ζÞm2−1F

þ
m;0;l;mðcos ζÞ

�
: ðF4Þ
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For m < 0:
Γþ
lmðfÞ ¼ ð−1ÞmΓþ

l;−mðfÞ: ðF5Þ

The functions F�
q;r;l;mðcos ζÞ which appear in the above equations are defined by

F−
q;r;l;mðcos ζÞ≡

Z
− cos ζ

−1
dx

ð1þ xÞq
ð1 − xÞr

dm

dxm
PlðxÞ;

Fþ
q;r;l;mðcos ζÞ≡

Z
1

− cos ζ
dx

ð1 − xÞq
ð1þ xÞr

dm

dxm
PlðxÞ: ðF6Þ

These functions also arise when calculating the overlap reduction functions for the vector-longitudinal polarization modes.
The F� integrals can be evaluated analytically as shown in Appendix K of this paper (or in Appendix E of [43]).

APPENDIX G: EVALUATING THE Imðy;xÞ INTEGRAL FOR THE OVERLAP REDUCTION FUNCTION
FOR SCALAR-LONGITUDINAL BACKGROUNDS

The response for a scalar-longitudinal background Eq. (37) is singular at cos θ ¼ −1 if the pulsar term is not included. We
must therefore include the pulsar term when evaluating the overlap reduction function for backgrounds of this form. We use
the notation y1 ¼ 2πfL1=c, y2 ¼ 2πfL2=c, where LI is the distance to pulsar I, that was introduced in the main body of this
paper. In the following, we will ensure that we keep all terms up to constant order ðy1Þ0, ðy2Þ0. The final expression
Eq. (G12) contains some terms of higher order, but these are incomplete. This will be discussed further below. The
components of the overlap reduction function are given by

ΓL
lmðfÞ ¼

1

2
Nm

l

Z
1

−1
dx

�
x2

1þ x
ð1 − e−iy1ð1þxÞÞImðy2; xÞ

�
Pm
l ðxÞ; ðG1Þ

where

Imðy; xÞ ¼
Z

2π

0

dϕ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕþ x cos ζÞ2

1þ x cos ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕ

ð1 − eiyð1þx cos ζþ
ffiffiffiffiffiffiffiffi
1−x2

p
sin ζ cosϕÞÞeimϕ: ðG2Þ

The integral for Imðy; xÞ can be simplified by writing

Imðy; xÞ ¼
Z

2π

0

dϕ½x cos ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕ − 1�ð1 − eiyð1þx cos ζþ

ffiffiffiffiffiffiffiffi
1−x2

p
sin ζ cosϕÞÞeimϕ þ ~Imðy; xÞ

¼ 2πðx cos ζ − 1Þðδm0 − imJmðy sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þeiyð1þx cos ζÞÞ

þ π sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ðδjmj;1 − imþ1½Jmþ1ðy sin ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ − Jm−1ðy sin ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ�eiyð1þx cos ζÞÞ þ ~Imðy; xÞ; ðG3Þ

where

~Imðy; xÞ ¼
Z

2π

0

dϕ
ð1 − eiyð1þx cos ζþ

ffiffiffiffiffiffiffiffi
1−x2

p
sin ζ cosϕÞÞ

1þ x cos ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕ

eimϕ; ðG4Þ

and JnðyÞ denotes the Bessel function of the first kind. For large values of y, Bessel functions have the asymptotic form
given in Eq. (E6), and we will use this to drop certain terms when we take the limit yI → ∞ later.
To evaluate the integral ~Imðy; xÞ, we first note that ~Imð0; xÞ ¼ 0 and

∂ ~Im
∂y ¼ −i

Z
2π

0

dϕeimϕþiyð1þx cos ζþ
ffiffiffiffiffiffiffiffi
1−x2

p
sin ζ cosϕÞ

¼ −2πimþ1eiyð1þx cos ζÞJm
	
y sin ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p 

: ðG5Þ

This last equation can be integrated as follows. For 1þxcosζ≠ sinζ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
(which corresponds to xþ cos ζ ≠ 0) the

integral to infinity can be computed as

~Imð∞; xÞ ¼ 2πð−1Þm 1

j cos ζ þ xj
�

sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

1þ x cos ζ þ jxþ cos ζj
�jmj

: ðG6Þ
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This is divergent at x ¼ − cos ζ, but that is an artifact of taking the limit y → ∞. To evaluate ~Imðy; xÞ for finite y we can
write

~Imðy; xÞ ¼ ~Imð∞; xÞ þ 2πimþ1

Z
∞

y
dȳeiȳð1þx cos ζÞJmðȳ sin ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ: ðG7Þ

For the range of ȳ in the integral, we can approximate the Bessel function using Eq. (E6). The corrections to this
approximation take the form of trigonometric functions times factors of 1=ȳ3=2 and will contribute terms of order 1=

ffiffiffi
y

p
and

smaller to the result. To obtain a result accurate to at least Oðy01; y02Þ, we therefore just need to evaluateffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
s Z

∞

y
dȳ

1ffiffiffī
y

p eiȳð1þx cos ζÞ cos
�
ȳ sin ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
−
mπ

2
−
π

4

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

π sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
s �

imeiπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x−

p Fcð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1þ x−Þ

p
Þ þ ð−iÞme−iπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xþ
p Fcð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1þ xþÞ

p
Þ
�
; ðG8Þ

where x� is shorthand notation for

x� ≡ x cos ζ � sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
; ðG9Þ

and

FcðyÞ ¼
Z

∞

y
du eiu

2 ¼
ffiffiffi
π

p
2

eiπ=4 −
ffiffiffi
π

2

r �
C
� ffiffiffi

2

π

r
y
�
þ iS

� ffiffiffi
2

π

r
y
��

: ðG10Þ

Here CðxÞ and SðxÞ are the Fresnel cosine and sine integrals defined by

CðyÞ ¼
Z

y

0

du cos

�
π

2
u2
�
; SðyÞ ¼

Z
y

0

du sin

�
π

2
u2
�
: ðG11Þ

Thus,

~Imðy; xÞ ¼ 2πð−1Þm
�

1

j cos ζ þ xj
�

sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

1þ x cos ζ þ jxþ cos ζj
�jmj

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
s �

eiπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ x−Þ
p Fc

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1þ x−Þ

p 


þ ð−1Þme−iπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xþÞ
p Fc

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1þ xþÞ

p 
��
: ðG12Þ

Although the first term above is singular at x ¼ − cos ζ, it becomes finite when combined with the term proportional to
Fcð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1þ x−Þ

p Þ. To see this note that

1

j cos ζ þ xj
�

sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

1þ x cos ζ þ jxþ cos ζj
�jmj

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
s

eiπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x−

p Fc

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1þ x−Þ

p 


¼ 1

j cos ζ þ xj
�

sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

1þ x cos ζ þ jxþ cos ζj
�jmj

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

pq ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x−

p þ � � �

¼ 1

j cos ζ þ xj
��

sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

1þ x cos ζ þ jxþ cos ζj
�jmj

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xþ

2 sin ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
s �

þ � � � ; ðG13Þ

where we used ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x−

p
¼ jxþ cos ζj ðG14Þ

to get the last line, and where the dots correspond to the Fresnel cosine and sine integral terms from Fc. Since, to leading
order in xþ cos ζ, the expression in curly brackets is −jmjj cos ζ þ xj=sin2ζ, it follows that (G12) for ~Imðy; xÞ is actually
finite at x ¼ − cos ζ and therefore integrable. For small values of the argument CðyÞ ≈ y and SðyÞ ≈ πy3=6, so the terms
in Eq. (G13) represented by the dots are also finite for all x, and proportional to

ffiffiffi
y

p
near x ¼ − cos ζ.
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In deriving expression (G12), we have neglected some terms of Oð1= ffiffiffi
y

p Þ, but terms of that order and higher are present
in Eq. (G12) so these orders have been treated inconsistently. To obtain a consistent result atOðy01; y02Þ, we could expand this
expression and drop terms of higher order. However, keeping the incomplete higher order terms in Eq. (G12) was found
empirically to give a better approximation to numerically computed overlap reduction functions.

APPENDIX H: ANALYTIC CALCULATION OF THE OVERLAP REDUCTION FUNCTION
FOR CODIRECTIONAL PULSARS FOR SCALAR-LONGITUDINAL BACKGROUNDS

For two pulsars that lie along the same line of sight as seen from Earth (i.e., cos ζ ¼ 1), the calculation of Imðy; xÞ can be
done analytically. For this case

Imðy; xÞjcos ζ¼1 ¼
Z

2π

0

dϕ
x2

1þ x
ð1 − eiyð1þxÞÞeimϕ ¼ 2πδm0

x2

1þ x
ð1 − eiyð1þxÞÞ: ðH1Þ

The integral for ΓL
lmðfÞ then takes the form

ΓL
lmðfÞjcos ζ¼1 ¼ πNm

l δm0

Z
1

−1
dx

�
x4

ð1þ xÞ2 PlðxÞð1 − e−iy1ð1þxÞÞð1 − eiy2ð1þxÞÞ
�

¼ πNm
l δm0½GL

l ðy1Þ þ GL
l ð−y2Þ −GL

l ðy1 − y2Þ�; ðH2Þ
where

GL
l ðyÞ ¼

Z
1

−1
dx

�
x4

ð1þ xÞ2 PlðxÞð1 − e−iyð1þxÞÞ
�
: ðH3Þ

By making the expansion

x4

ð1þ xÞ2 ¼ 3 − 2xþ x2 −
4

ð1þ xÞ þ
1

ð1þ xÞ2 ; ðH4Þ
we can write

GL
l ðyÞ ¼

Z
1

−1
dx

�
3 − 2xþ x2 −

4

ð1þ xÞ þ
1

ð1þ xÞ2
�
PlðxÞð1 − e−iyð1þxÞÞ

¼ 20

3
δl0 −

4

3
δl1 þ

4

15
δl2 − 2ð−iÞle−iy

�
−
�ðl − 1Þl

y2
þ 2i

l
y
− 3

�
jlðyÞ þ

�
2lþ 1

y
þ 2i

�
jlþ1ðyÞ − jlþ2ðyÞ

�
− 4HlðyÞ þ KlðyÞ; ðH5Þ

where

HlðyÞ ¼
Z

1

−1
dx

1

ð1þ xÞPlðxÞð1 − e−iyð1þxÞÞ; ðH6Þ

KlðyÞ ¼
Z

1

−1
dx

1

ð1þ xÞ2 PlðxÞð1 − e−iyð1þxÞÞ: ðH7Þ

These last two integrals are most easily evaluated using the recursion relation in Eq. (D7) for Legendre polynomials, which
for this calculation is most conveniently rewritten as

PlðxÞ ¼ −
ð2l − 1Þ

l
Pl−1ðxÞ −

ðl − 1Þ
l

Pl−2ðxÞ þ
ð2l − 1Þ

l
ð1þ xÞPl−1ðxÞ; for l ≥ 2: ðH8Þ

This leads to

H0ðyÞ ¼ Cinð2yÞ þ iSið2yÞ;

H1ðyÞ ¼ −H0ðyÞ þ 2þ i
y
ð1 − e−2iyÞ;

HlðyÞ ¼ −
ð2l − 1Þ

l
Hl−1ðyÞ −

ðl − 1Þ
l

Hl−2ðyÞ − 2ð−iÞl−1 ð2l − 1Þ
l

e−iyjl−1ðyÞ; for l ≥ 2; ðH9Þ
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and

K0ðyÞ ¼
�
cosð2yÞ − 1

2
þ ySið2yÞ

�
þ i

�
−
1

2
sinð2yÞ − yCinð2yÞ þ y

�
1þ

Z
1

−1

dx
1þ x

��
;

K1ðyÞ ¼ H0ðyÞ − K0ðyÞ;

KlðyÞ ¼ −
ð2l − 1Þ

l
Kl−1ðyÞ −

ðl − 1Þ
l

Kl−2ðyÞ þ
ð2l − 1Þ

l
Hl−1ðyÞ; for l ≥ 2; ðH10Þ

where SiðxÞ and CinðxÞ denote the sine and cosine integrals respectively, defined by

SiðxÞ ¼
Z

x

0

dt
sin t
t

; CinðxÞ ¼
Z

x

0

dt
1 − cos t

t
: ðH11Þ

Note that the last two terms (in square brackets) in the above expression for K0ðyÞ will cancel when forming
the combination K0ðy1Þ þ K0ð−y2Þ − K0ðy1 − y2Þ, which enters the expression for ΓL

lmðfÞ. The above recursion relations
are particularly useful when the values of HlðyÞ and KlðyÞ are required at fixed y for all l ≤ lmax.
For isotropic backgrounds (l ¼ m ¼ 0), an expression for the scalar-longitudinal overlap reduction function for

equidistant (y1 ¼ y2 ≡ y), codirectional (cos ζ ¼ 1) pulsars valid in the limit y ≫ 1 was given in Chamberlin and Siemens
[36]. Equation (H2) reduces to that result in the appropriate limit, as we now show.
For equidistant pulsars and l ¼ 0, m ¼ 0, the last term in Eq. (H2) is GL

0 ð0Þ, which is zero. This can be seen by direct
evaluation or by noting that the last term in square brackets in Eq. (H5) reduces to ½3j0ðyÞ þ ð1=yþ 2iÞj1ðyÞ − j2ðyÞ� for
l ¼ 0, which tends to 10=3 as y → 0. When multiplied by the prefactor of −2, this cancels the first term in Eq. (H5).
Likewise, H0ð0Þ ¼ 0 and K0ð0Þ ¼ 0, so GL

0 ð0Þ ¼ 0. The equidistant, coaligned, isotropic overlap reduction function is
therefore

ΓL
00ðfÞjcos ζ¼1 ¼

ffiffiffi
π

p
2

½GL
0 ðyÞ þ GL

0 ð−yÞ� ¼
ffiffiffi
π

p
2

½GL
0 ðyÞ þ GL

0 ðyÞ�� ¼
ffiffiffi
π

p
RefGL

0 ðyÞg: ðH12Þ

We now evaluate this expression in the limit y ≫ 1. All spherical Bessel functions decay to zero as y → ∞, so the term in
square brackets in Eq. (H5) makes no contribution in this limit. Hence, we focus on the behavior of H0ðyÞ and K0ðyÞ for
large y. We make use of the following asymptotic expressions:

SiðyÞ ≈ π

2
; y ≫ 1;

CinðyÞ ≈ γ þ lnðyÞ; y ≫ 1; ðH13Þ
where γ is the Euler-Masheroni constant, γ ¼ 0.57722 � � �. We deduce that, for large y,

GL
0 ðyÞ ≈

20

3
− 4ðγ þ lnð2yÞÞ − i2π −

1

2
þ πy

2
− iyðγ þ lnð2yÞÞ þ 1

2
e−2iy; ðH14Þ

so

RefGL
0 ðyÞg ≈

37

6
− 4γ − 4 lnð2yÞ þ πy

2
þ 1

2
cosð2yÞ;

≈
37

6
− 4γ − 4 lnð2yÞ þ πy

2
; ðH15Þ

and

ΓL
00ðfÞjcos ζ¼1 ≈

ffiffiffi
π

p �
37

6
− 4γ − 4 lnð2yÞ þ πy

2

�
;

≈
ffiffiffi
π

p �
37

6
− 4γ − 4 ln

�
4πfL
c

�
þ π2fL

c

�
; ðH16Þ

where f is the gravitational-wave frequency and L is the distance of the two pulsars from Earth. This agrees with
Eq. (40) of Chamberlin and Siemens [36], apart from a factor of

ffiffiffi
π

p
, which comes from a difference in our normalization

convention.
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APPENDIX I: ANALYTIC CALCULATION OF THE OVERLAP REDUCTION FUNCTION
FOR ANTIDIRECTIONAL PULSARS FOR SCALAR-LONGITUDINAL BACKGROUNDS

For two pulsars that lie in antipodal positions along the same line of sight as seen from Earth (i.e., cos ζ ¼ −1),
the calculation of Imðy; xÞ can also be done analytically. For this case

Imðy; xÞjcos ζ¼−1 ¼
Z

2π

0

dϕ
x2

1 − x
ð1 − eiyð1−xÞÞeimϕ ¼ 2πδm0

x2

1 − x
ð1 − eiyð1−xÞÞ: ðI1Þ

The integral for ΓL
lmðfÞ then takes the form

ΓL
lmðfÞjcos ζ¼−1 ¼ πNm

l δm0

Z
1

−1
dx

�
x4

1 − x2
PlðxÞð1 − e−iy1ð1þxÞÞð1 − eiy2ð1−xÞÞ

�
: ðI2Þ

By making the expansion
x4

ð1 − x2Þ ¼ −1 − x2 þ 1

2ð1þ xÞ þ
1

2ð1 − xÞ ; ðI3Þ
we can write

ΓL
lmðfÞjcos ζ¼−1 ¼ πNm

l δm0

Z
1

−1
dx

�
−1 − x2 þ 1

2ð1þ xÞ þ
1

2ð1 − xÞ
�
PlðxÞð1 − e−iy1ð1þxÞÞð1 − eiy2ð1−xÞÞ

¼ πNm
l δm0

�
−
8

3
δl0 −

4

15
δl2 þ 2ð−iÞle−iy1

��
1 −

lðl − 1Þ
y21

�
jlðy1Þ þ

2lþ 1

y1
jlþ1ðy1Þ − jlþ2ðy1Þ

�

þ 2ð−iÞleiy2
��

1 −
lðl − 1Þ

y22

�
jlðy2Þ þ

2lþ 1

y2
jlþ1ðy2Þ − jlþ2ðy2Þ

�

− 2ð−iÞleiðy2−y1Þ
��

1 −
lðl − 1Þ

ðy1 þ y2Þ2
�
jlðy1 þ y2Þ þ

2lþ 1

y1 þ y2
jlþ1ðy1 þ y2Þ − jlþ2ðy1 þ y2Þ

�

þ 1

2
~Hlðy1; y2Þ þ

1

2
~H�
l ðy2; y1Þ

�
; ðI4Þ

where

~Hlðy1; y2Þ ¼
Z

1

−1
dx

1

ð1þ xÞPlðxÞð1 − e−iy1ð1þxÞÞð1 − eiy2ð1−xÞÞ: ðI5Þ

This final integral can be obtained via a recurrence relation using Eq. (H8) from Appendix H. We find

~H0ðy1; y2Þ ¼ Cinð2y1Þ þ iSið2y1Þ þ e2iy2ðCinð2y1Þ þ iSið2y1Þ − Cin½2ðy1 þ y2Þ� − iSi½2ðy1 þ y2Þ�Þ;
~H1ðy1; y2Þ ¼ − ~H0ðy1; y2Þ þ 2

�
1 −

sin y1
y1

e−iy1 −
sin y2
y2

eiy2 þ sinðy1 þ y2Þ
y1 þ y2

eiðy2−y1Þ
�
;

~Hlðy1; y2Þ ¼ −
ð2l − 1Þ

l
~Hl−1ðy1; y2Þ −

ðl − 1Þ
l

~Hl−2ðy1; y2Þ − 2ð−iÞl−1 ð2l − 1Þ
l

½e−iy1jl−1ðy1Þ þ eiy2jl−1ðy2Þ
− eiðy2−y1Þjl−1ðy1 þ y2Þ�; for l ≥ 2; ðI6Þ

where, as before, SiðxÞ and CinðxÞ denote the sine and cosine integrals, which were defined in Eq. (H11). The result for
~H0ðy1; y2Þ can be obtained by rewriting Eq. (I5) as a combination of integrals of the following four forms:Z

2y

0

du

�
1 − cos u

u

�
cosðauÞ ¼ 1

2
Cin½2ðaþ 1Þy� þ 1

2
Cin½2ða − 1Þy� − Cinð2ayÞ;

Z
2y

0

du

�
1 − cos u

u

�
sinðauÞ ¼ Sið2ayÞ − 1

2
Si½2ðaþ 1Þy� − 1

2
Si½2ða − 1Þy�;Z

2y

0

du
sin u
u

cosðauÞ ¼ 1

2
Si½2ðaþ 1Þy� − 1

2
Si½2ða − 1Þy�;Z

2y

0

du
sin u
u

sinðauÞ ¼ 1

2
Cin½2ðaþ 1Þy� − 1

2
Cin½2ða − 1Þy�: ðI7Þ
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APPENDIX J: ANALYTIC CALCULATION OF THE OVERLAP REDUCTION FUNCTIONS
FOR VECTOR-LONGITUDINAL BACKGROUNDS

Ignoring the pulsar terms, the overlap reduction functions for an uncorrelated, unpolarised, anisotropic vector-
longitudinal background are given by ΓY

lmðfÞ ¼ 0 and

ΓX
lmðfÞ¼−Nm

l

Z
1

−1
dx

Z
2π

0

dϕ

�
x

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p

1þx
ðsinζcosϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
þxcosζÞðxsinζcosϕ−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
cosζÞ

1þxcosζþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
sinζcosϕ

�
Pm
l ðxÞeimϕ

¼Nm
l

Z
1

−1
dx

Z
2π

0

dϕ
x

1þx

�
ðxþ cosζð1−x2Þ−x

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
sinζcosϕÞ− ðxþ cosζÞ

ð1þxcosζþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
sinζcosϕÞ

�
Pm
l ðxÞeimϕ

¼ 2πNm
l ðIlmþJlmÞ; ðJ1Þ

where

Ilm ¼ −
sin ζ
2

ðδm;1 þ δm;−1Þ
Z

1

−1
dxx2

ffiffiffiffiffiffiffiffiffiffiffi
1 − x
1þ x

r
Pm
l ðxÞ;

Jlm ¼
Z

1

−1
dx½ðxþ ð1 − x2Þ cos ζÞδm;0 − ðxþ cos ζÞKlmðxÞ�

x
1þ x

Pm
l ðxÞ;

KlmðxÞ ¼
1

2π

Z
2π

0

dϕ
eimϕ

1þ x cos ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ζ cosϕ

: ðJ2Þ

The integral KlmðxÞ can be evaluated using contour integration, as described in [43] for the response of a PTA to anisotropic
backgrounds with GR polarisations. The result is

KlmðxÞ ¼
1

jxþ cos ζj
�jxþ cos ζj − 1 − x cos ζffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

sin ζ

�jmj

¼

8>>><
>>>:

ð−1Þjmj
xþcos ζ

�
ð1−xÞð1−cos ζÞ
ð1þxÞð1þcos ζÞ

�jmj
2

;− cos ζ < cos θ < 1

ð−1Þjmjþ1

xþcos ζ

�
ð1þxÞð1þcos ζÞ
ð1−xÞð1−cos ζÞ

�jmj
2

;−1 < cos θ < − cos ζ:

ðJ3Þ

The nonzero Ilm’s can be straightforwardly evaluated:

N1
l Il1 ¼ −N−1

l Il;−1 ¼
sin ζN1

l

2

�
2ð−1Þlþ1 þ 2δl0 −

4

3
δl1 þ

4

5
δl2

�
: ðJ4Þ

The Jlm’s can be written in terms of the F�
q;r;L;mðcos ζÞ functions defined in [43]:

F−
q;r;L;mðcos ζÞ≡

Z
− cos ζ

−1
dx

ð1þ xÞq
ð1 − xÞr

dm

dxm
PLðxÞ;

Fþ
q;r;L;mðcos ζÞ≡

Z
1

− cos ζ
dx

ð1 − xÞq
ð1þ xÞr

dm

dxm
PLðxÞ: ðJ5Þ

For m ¼ 0 we have

Jl0 ¼
2

3
cos ζ

�
−δl0 þ δl1 −

2

5
δl2

�
− 2δl0 þ F−

1;0;l;0ðcos ζÞ þ 2Fþ
0;1;l;0ðcos ζÞ − Fþ

1;0;l;0ðcos ζÞ; ðJ6Þ

while for m > 0 we have

Jlm ¼
�
1þ cos ζ
1 − cos ζ

�m
2 ðF−

m;0;l;mðcos ζÞ − F−
m−1;0;l;mðcos ζÞÞ −

�
1 − cos ζ
1þ cos ζ

�jmj
2 ðFþ

m;0;l;mðcos ζÞ − Fþ
m;1;l;mðcos ζÞÞ; ðJ7Þ

and N−m
l Jl;−m ¼ ð−1ÞmNm

l Jlm. Explicit expressions for the F�
q;r;L;mðcos ζÞ functions are given in Appendix K.
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1. Limiting case: cos ζ ¼ 1

As noted in the main text, in the limit cos ζ → 1, the m ¼ 0 overlap reduction functions calculated above diverge. This
singularity is eliminated if the pulsar terms are included in the integrand, and the pulsars are assumed to be at finite distance.
Proceeding in a fashion identical to the case of codirectional pulsars in scalar-longitudinal backgrounds, we find

ΓX
lmðfÞjcos ζ¼1 ¼ 2πN0

l δm0

Z
1

−1
dx

x2ð1 − xÞ
1þ x

PlðxÞð1 − e−iy1ð1þxÞÞð1 − eiy2ð1þxÞÞ

¼ 2πN0
l δm0½GX

l ðy1Þ þ GX
l ð−y2Þ −GX

l ðy1 − y2Þ�; ðJ8Þ
where

GX
l ðyÞ¼

Z
1

−1
dx

x2ð1−xÞ
1þx

PlðxÞð1−e−iyð1þxÞÞ

¼
Z

1

−1
dx

�
−2þ2x−x2þ 2

1þx

�
PlðxÞð1−e−iyð1þxÞÞ

¼−
14

3
δl0þ

4

3
δl1−

4

15
δl2−2ð−iÞle−iy

��ðl−1Þl
y2

þ2i
l
y
−2

�
jlðyÞ−

�
2lþ1

y
þ2i

�
jlþ1ðyÞþjlþ2ðyÞ

�
þ2HlðyÞ; ðJ9Þ

with HlðyÞ defined as in Eq. (H6). This is a finite expression provided y1 and y2 are finite.

APPENDIX K: EVALUATING THE F� INTEGRALS FOR TRANSVERSE-TENSOR
AND VECTOR-LONGITUDINAL BACKGROUNDS

The overlap reduction functions for both the standard transverse-tensor and vector-longitudinal backgrounds can be
written in terms of the functions

F−
q;r;L;mðcos ζÞ≡

Z
− cos ζ

−1
dx

ð1þ xÞq
ð1 − xÞr

dm

dxm
PLðxÞ; ðK1Þ

Fþ
q;r;L;mðcos ζÞ≡

Z
1

− cos ζ
dx

ð1 − xÞq
ð1þ xÞr

dm

dxm
PLðxÞ: ðK2Þ

These integrals can be evaluated using the series representation of the Legendre polynomials

PlðxÞ ¼
Xl

k¼0

ð−1Þk ðlþ kÞ!
ðk!Þ2ðl − kÞ!

�
1 − x
2

�
k
¼

Xl

k¼0

ð−1Þlþk ðlþ kÞ!
ðk!Þ2ðl − kÞ!

�
1þ x
2

�
k
: ðK3Þ

Explicitly, we find

F−
q;r;L;mðcos ζÞ≡

Z
− cos ζ

−1
dx

ð1þ xÞq
ð1 − xÞr

dm

dxm
PLðxÞ

¼
Xq
i¼0

XL
j¼m

2i−jð−1Þq−iþjþm q!ðLþ jÞ!
i!ðq − iÞ!j!ðL − jÞ!ðj −mÞ!

Z
− cos ζ

−1
dxð1 − xÞq−i−rþj−m; ðK4Þ

for which

F−
q;0;L;mðcos ζÞ ¼

Xq
i¼0

XL
j¼m

2i−jð−1Þq−iþjþm q!ðLþ jÞ!ð2q−iþj−mþ1 − ð1þ cos ζÞq−iþj−mþ1Þ
i!ðq − iÞ!j!ðL − jÞ!ðj −mÞ!ðq − iþ j −mþ 1Þ ;

F−
q;1;L;mðcos ζÞ ¼

Xq−1
i¼0

XL
j¼m

2i−jð−1Þq−iþjþm q!ðLþ jÞ!ð2q−iþj−m − ð1þ cos ζÞq−iþj−mÞ
i!ðq − iÞ!j!ðL − jÞ!ðj −mÞ!ðq − iþ j −mÞ

þ
XL

j¼mþ1

2q−jð−1Þjþm ðLþ jÞ!ð2j−m − ð1þ cos ζÞj−mÞ
j!ðL − jÞ!ðj −mÞ!ðj −mÞ þ 2q−mðLþmÞ!

m!ðL −mÞ! ln

�
2

1þ cos ζ

�
: ðK5Þ
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Similarly,

Fþ
q;r;L;mðcos ζÞ≡

Z
1

− cos ζ
dx

ð1 − xÞq
ð1þ xÞr

dm

dxm
PLðxÞ

¼
Xq
i¼0

XL
j¼m

2i−jð−1ÞLþq−iþj q!ðLþ jÞ!
i!ðq − iÞ!j!ðL − jÞ!ðj −mÞ!

Z
1

− cos ζ
dxð1þ xÞq−i−rþj−m; ðK6Þ

for which

Fþ
q;0;L;mðcos ζÞ ¼

Xq
i¼0

XL
j¼m

2i−jð−1ÞLþq−iþj q!ðLþ jÞ!ð2q−iþj−mþ1 − ð1 − cos ζÞq−iþj−mþ1Þ
i!ðq − iÞ!j!ðL − jÞ!ðj −mÞ!ðq − iþ j −mþ 1Þ ;

Fþ
q;1;L;mðcos ζÞ ¼

Xq−1
i¼0

XL
j¼m

2i−jð−1ÞLþq−iþj q!ðLþ jÞ!ð2q−iþj−m − ð1 − cos ζÞq−iþj−mÞ
i!ðq − iÞ!j!ðL − jÞ!ðj −mÞ!ðq − iþ j −mÞ

þ
XL

j¼mþ1

2q−jð−1ÞLþj ðLþ jÞ!ð2j−m − ð1 − cos ζÞj−mÞ
j!ðL − jÞ!ðj −mÞ!ðj −mÞ þ ð−1ÞLþm2q−mðLþmÞ!

m!ðL −mÞ! ln

�
2

1 − cos ζ

�
: ðK7Þ

For the standard transverse-tensor backgrounds, we also need to evaluate F−
q;r;l;mðcos ζÞ for r ¼ −1. This can be reduced to

combinations of F−
q;0;l;mðcos ζÞ and F−

qþ1;0;l;mðcos ζÞ by writing ð1 − xÞ ¼ 2 − ð1þ xÞ:

F−
q;−1;l;mðcos ζÞ ¼ 2F−

q;0;l;mðcos ζÞ − F−
qþ1;0;l;mðcos ζÞ: ðK8Þ

Alternatively, we can just evaluate this integral directly, finding

F−
q;−1;l;mðcos ζÞ ¼

Xq
i¼0

Xl

j¼m

2i−jð−1Þq−iþjþm q!ðlþ jÞ!ð2q−iþj−mþ2 − ð1þ cos ζÞq−iþj−mþ2Þ
i!ðq − iÞ!j!ðl − jÞ!ðj −mÞ!ðq − iþ j −mþ 2Þ : ðK9Þ

APPENDIX L: RECOVERING THE OVERLAP REDUCTION FUNCTION FOR AN UNCORRELATED,
ANISOTROPIC SCALAR-TRANSVERSE BACKGROUND

Ignoring the pulsar term, we can show that the response of a pulsar to the individual modes of a scalar-transverse
gravitational-wave background can be used to recover the overlap reduction function for an arbitrary uncorrelated,
anisotropic background. Inverting Eq. (62) to find aBðlmÞðfÞ gives

aBðlmÞðfÞ ¼
ffiffiffi
2

p Z
S2
d2Ωk̂hBðf; k̂ÞY�

lmðk̂Þ; ðL1Þ

from which we deduce the following quadratic expectation values:

CB
lml0m0 ðf; f0Þ≡ haBðlmÞðfÞaB�ðl0m0Þðf0Þi ¼ 2

Z
S2
d2Ωk̂

Z
S02

d2Ωk̂0 hhBðf; k̂Þh�Bðf0; k̂0ÞiY�
lmðk̂ÞYl0m0 ðk̂0Þ; ðL2Þ

where CB
lml0m0 ðf; f0Þ ¼ CB

lml0m0HBðfÞδðf − f0Þ assuming stationarity. For a Gaussian-stationary, uncorrelated, anisotropic
background, the quadratic expectation value of breathing mode amplitudes is given by Eq. (43):

hhBðf; k̂Þh�Bðf0; k̂0Þi ¼ HBðfÞPBðk̂Þδ2ðk̂; k̂0Þδðf − f0Þ: ðL3Þ

The angular distribution of gravitational-wave power can be expanded in terms of scalar spherical harmonics [see Eq. (44)].
Hence the integrals over the sphere in Eq. (L2) can be explicitly evaluated:
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CB
lml0m0 ðf;f0Þ ¼HBðfÞδðf−f0Þ

X∞
L¼0

XL
M¼−L

2PB
LM

Z
S2
d2Ωk̂YLMðk̂ÞY�

lmðk̂ÞYl0m0 ðk̂Þ

¼HBðfÞδðf−f0Þ
X∞
L¼0

XL
M¼−L

2PB
LMð−1Þm

Z
S2
d2Ωk̂YLMðk̂ÞYl;−mðk̂ÞYl0m0 ðk̂Þ

¼HBðfÞδðf−f0Þ
X∞
L¼0

XL
M¼−L

2PB
LMð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1Þð2lþ1Þð2l0 þ1Þ

4π

r �
L l l0

M −m m0

��
L l l0

0 0 0

�
: ðL4Þ

Now the overlap reduction function between pulsars 1 and 2 is given by

ΓB ¼
X
ðlmÞ

X
ðl0m0Þ

CB
lml0m0RB

1ðlmÞR
B�
2ðl0m0Þ

¼
X
ðLMÞ

X
ðlmÞ

X
ðl0m0Þ

2PB
LMð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l0 þ 1Þ

4π

r �
L l l0

M −m m0

��
L l l0

0 0 0

�
RB
1ðlmÞR

B�
2ðl0m0Þ

¼
X
ðLMÞ

PB
LMΓB

LM: ðL5Þ

Note that the breathing response is limited to l ¼ 0, 1. Hence, Wigner 3j selection rules restrict the sensitivity of the
breathing mode overlap reduction function to L ≤ 2. By substituting the breathing response function from Eq. (61) into
Eq. (L5), we fully recover the form of ΓB

LM obtained by direct calculation in Eq. (48). For example, with L ¼ 0, M ¼ 0,
Eq. (L5) gives ΓB

00 ¼ ð ffiffiffi
π

p
=2Þð1þ 1

3
cos ζÞ, where ζ is the angular separation between the two pulsars. (Recall that

PB
00 ¼

ffiffiffiffiffiffi
4π

p
=2 for an isotropic uncorrelated background, as described at the end of Sec. IV E.) This exactly matches the

expression given by Eq. (48), as do the remaining expressions for L ¼ 1, 2.
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