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Inflation has long been considered the best way to produce primordial large-scale magnetic fields. To
achieve fields strong enough to seed the galactic dynamo, most of the mechanisms operate outside
conventional electromagnetic theory. The latter is typically restored after the end of the de Sitter phase.
Breaking away from standard electromagnetism can lead to substantially stronger magnetic fields by the
end of inflation, thus compensating for their subsequent adiabatic depletion. We argue that the drastic
magnetic enhancement during the de Sitter era may no longer be necessary because, contrary to the
widespread perception, superhorizon-sized magnetic fields decay at a slower pace after inflation. The
principle behind this claim is causality, which confines the postinflationary electric currents inside
the horizon. Without the currents there can be no magnetic-flux freezing on super-Hubble lengths. There,
the magnetic decay rate slows down, thus making it much easier to produce primordial fields of
astrophysical interest. To quantify this qualitative statement, one can start from the current galactic-dynamo
requirements and “reverse engineer” the magnetic strengths needed at the end of inflation in order to
produce astrophysically relevant residual seeds today. Our numerical estimates suggest that, depending on
the magnetic scale, mechanisms of inflationary magnetogenesis generating fields stronger than 1017 G by
the end of the de Sitter phase could successfully seed the galactic dynamo at present.
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Magnetic (B) fields appear everywhere in the Universe
[1], but their origin remains an open issue [2]. Inflation has a
“natural” way of producing large-scale magnetic fields.
However, to seed the galactic dynamo, the current strength
of the field should lie between 10−22 and 10−12 Gauss,
depending on the efficiency of the dynamo amplification [3].
Most mechanisms achieve such magnitudes by going
beyond conventional electromagnetic theory during inflation
[2]. This can considerably increase the strength of the B field
by the end of the de Sitter phase and thus produce seeds that
meet the galactic-dynamo requirements today. Maxwellian
electromagnetism is restored after inflation and the magnetic
flux is assumed to remain conserved for the rest of the field’s
evolution. In other words, the B field is allowed to decay
adiabatically (i.e.B ∝ a−2, where a is the cosmological scale
factor) from the end of inflation to the present.
Assuming magnetic-flux conservation (i.e. that B ∝ a−2)

on all scales, means applying the ideal magnetohydrody-
namic (MHD) approximation both inside and outside the
particle horizon. After inflation, the latter essentially equals
the Hubble radius. However, the MHD limit is the macro-
scopic outcome of causal microphysical processes that
operate within the horizon. Extending the ideal-MHD
approximation on super-Hubble scales, a priori accepts
the presence of highly conductive electric currents with
super-Hubble correlations. Recall that it is the currents which
eliminate the electric fields and then freeze the accompanying
magnetic fields into the cosmic fluid. These electric currents,
however, are produced after inflation and their coherence
length is always smaller than the horizon. Moreover, the
processes of electric-field elimination and magnetic-flux

freezing are not instantaneous but causal. Inside the horizon,
the time required for the aforementioned processes to
complete is typically much shorter than the expansion
timescale. However, the time required to, say, freeze-in the
superhorizon-sized magnetic fields is longer that the age of
the Universe. Put another way, the whole of the B field must
come into causal contact before it freezes-in. Hence, we
cannot apply the ideal-MHD limit outside the Hubble radius
without violating causality. All these mean that, even after
inflation is over, on super-Hubble scales we are still dealing
with the free magnetic fields left there from inflation.
The aforementioned causality claim was put forward in

[4]. An extensive discussion of this argument and of its
potentially pivotal implications for cosmic magnetogenesis
(conventional or not), namely that it allows for residual B
fields much stronger than those anticipated in the standard
literature, was given in [5]. Very recently, the same
causality claim and its implications were used to revisit
the Ratra model of primordial magnetic generation [6].
Here, we will first outline how by appealing to causality
one can slow down the postinflationary adiabatic decay of
superhorizon-sized magnetic fields on spatially flat
Friedmann-Robertson-Walker (FRW) universes. We will
then proceed to our main objective, which is to “reverse
engineer” the magnetic strengths needed by the end of
inflation, in order to produce seeds that lie within the
galactic-dynamo requirements today. Our numerical
estimates (summarised in Table I) are scale dependent
and show that, when causality is accounted for, the
standard limits on inflationary magnetogenesis can relax
considerably.
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We begin by recalling that the galactic dynamo typically
requires seeds with strengths in the range

10−22 G≲ B0 ≲ 10−12 G; ð1Þ
where B0 is the magnetic field today [3]. Moreover, these
fields must also have a minimum (comoving) coherence
length of approximately 10 Kpc. Magnetic fields weaker
than the above given lower limit are very unlikely to sustain
the dynamo.1 Those exceeding the upper limit, on the other
hand, would probably lead to galactic fields stronger than
the observed and perhaps violate cosmological constraints,
like those set by primordial nucleosynthesis or by the
cosmic microwave background isotropy (around 10−7 and
10−9 G, respectively; e.g., see [2] and references therein).
Assuming that magnetic fields decay adiabatically

throughout their postinflationary evolution and keeping
in mind that a ∝ T−1 always (where T is the temperature of
the Universe), we find that BRH ¼ B0ðTRH=T0Þ2 at the end
of reheating. Then, at the end of the de Sitter phase, we
have

BDS ∼ B0

M8=3

T2
0T

2=3
RH

; ð2Þ

whereM is the energy scale of the adopted inflation model.
In deriving the above, we have used the fact that ρ ∝ a−3

throughout reheating (where ρ is the density of the
dominant matter component) and have set ρDS ∼M4 and
ρRH ∼ T4

RH (with M, T0 and TRH measured in GeV).
Consequently, if magnetic fields were to decay adiabati-
cally after inflation and still fulfill the galactic dynamo
requirement today [i.e. satisfy constraint (1)], their value (in
Gauss) at the end of the de Sitter phase must lie within the
range

10−22
M8=3

T2
0T

2=3
RH

≲ BDS ≲ 10−12
M8=3

T2
0T

2=3
RH

: ð3Þ

Setting T0 ∼ 10−13 GeV, TRH ∼ 1010 GeV and assuming
GUT-scale inflation with M ∼ 1017 GeV, the above trans-
lates into

1043 G≲ BDS ≲ 1053 G: ð4Þ

This stringent constraint, which is generally very hard to
satisfy, applies to magnetic fields that have been frozen into
the cosmic medium from the end of inflation to the present.

However, causality guarantees that there are no coherent
electric currents with superhorizon correlations, which in
turn implies that there is no magnetic flux-freezing on
super-Hubble scales. Put another way, the adiabatic decay
law in not guaranteed on superhorizon lengths [4,5]. Let us
consider the implications of this claim, referring the reader
to [5] for further discussion. In the absence of electric
currents and on a spatially flat FRW background, the
magnetic (Ba) component of the Maxwell field obeys
the linear wavelike formula [2]

B00
a − a2D2Ba ¼ 0: ð5Þ

Here, Ba ¼ a2Ba is the rescaled magnetic field, primes
denote differentiation with respect to the conformal time (η)
and D2 ¼ DaDa is the three-dimensional Laplacian.2 After
harmonically decomposing Ba, Eq. (5) accepts the solution

BðnÞ ¼ C1 cosðnηÞ þ C2 sinðnηÞ; ð6Þ

where n (with n ≥ 0) is the comoving wave number of the
magnetic mode and C1;2 are the integration constants. Here,
we will only be interested in superhorizon scales, where
nη ≪ 1. There, a simple Taylor expansion reduces (6) to
the power law

B ¼ a2B ¼ C1 þ C2nη: ð7Þ

The second mode on the right-hand side of the above
ensures that postinflationary B fields do not necessarily
decay adiabatically, as long as they are outside the Hubble
radius. Note that the fact that nη ≪ 1 does not guarantee
that the second mode of solution (7) is negligible. For
example, when the initial conditions lead to C2 ≫ C1, the
second mode could play the key role. One, therefore, needs
to evaluate the integration constants first, which is what we
are going to do next.
Throughout reheating and during the dust era a ∝ η2.

Then, C1 ¼ −ð3B� þ η�B0�Þa2� and C2 ¼ ð4B� þ η�B0�Þ×
a2�=nη�, with the “�”-suffix indicating the transition
moment from one cosmological epoch to the next. Since
nη�≪1, we deduce that C2≫C1 (unless 4B�þη�B0�¼0),
which shows why we cannot a priori ignore the second
mode of (7). Then, we arrive at

B ¼ −ð3Bþ� þ ηþ� B0þ� Þ
�
aþ�
a

�
2

þ ð4Bþ� þ ηþ� B0þ� Þ
�
aþ�
a

�
3=2

; ð8Þ1Conventional inflationary magnetogenesis, where the B field
is allowed to decay adiabatically after the end of the de Sitter
phase, leads to B0 ∼ 10−53 G on scales close to 10 Kpc [2]. Note
that this translates into BDS ∼ 1012 G at the end of inflation
proper [see Eq. (2)]. The aforementioned extreme weakness of
the residual field has so far been the main reason for seeking
solutions outside the realm of standard electromagnetic theory.

2Inside the horizon the currents have the time to freeze the
magnetic fields into the matter and the ideal-MHD holds. There,
B fields no longer obey Eq. (5) but decay adiabatically (i.e.
B ∝ a−2), irrespective of the type of matter that fills the Universe.
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with the “þ”-superscript marking the start of the associated
era. Similarly, evaluating C1 and C2 in the radiation era,
when a ∝ η, recasts Eq. (7) into

B ¼ −ðBþ� þ ηþ� B0þ� Þ
�
aþ�
a

�
2

þ ð2Bþ� þ ηþ� B0þ� Þ
�
aþ�
a

�
: ð9Þ

Solutions (8) and (9) containmodes that decay slower than the
adiabatic rate. More specifically, B ∝ a−3=2 during reheating
and after equipartition, while B ∝ a−1 in the radiation epoch.
Thus, as long as it remains outside the Hubble radius, the B
field is superadiabatically amplified throughout its postinfla-
tionary evolution. Once back inside the horizon, on the other
hand, the adiabatic decay law is “reinstated.”
The integration constants of (8) and (9) depend on the

initial conditions. At the start of reheating, these are
decided by the magnetic evolution in the de Sitter phase
and by the nature of the transition from inflation to
reheating. The same principles also apply to the radiation
and the dust epochs. As long as the initial conditions allow
the slowly decaying modes of (8) and (9) to survive,
superhorizon-sized magnetic fields will be superadiabati-
cally amplified. This happens in nonconventional scenarios
of cosmic magnetogenesis.3 There, B fields typically decay
as B ∝ a−m (with 0 ≤ m < 2, a ∝ −1=η and η < 0) all
along the de Sitter expansion (e.g. see [7]). This implies
B0−� ¼ mB−� =η−� at the end of inflation. Setting ηþ� ¼ −η−� ,
Bþ� ¼ B−� and B0þ� ¼ B0−� on either side of the transition
hypersurface (recall that η−� < 0 and ηþ� > 0), gives B0þ� ¼
−mBþ� =ηþ� at the start of reheating. With these initial
conditions, solution (8) reads

B ¼ −ð3 −mÞBþ�

�
aþ�
a

�
2

þ ð4 −mÞBþ�

�
aþ�
a

�
3=2

: ð10Þ

Since 0 ≤ m < 2, the above confirms that B ∝ a−3=2 and a
superadiabatic amplification for the field throughout the
reheating era. Similarly, one can demonstrate that the
magnetic (superadiabatic) amplification carries on during
the radiation and the dust epochs, as long as the B field is
still outside the horizon [5].
All these mean that magnetic fields generated by non-

conventional mechanisms during inflation can have much
stronger residual values than those anticipated. Then itmight
not be necessary to producevery strongB fields by the end of
inflation to achieve astrophysically interesting values today.
In other words, the standard constraints (3) and (4) can relax
considerably. To estimate how much is our main objective

and in order to do so we need to know the scale of the
magnetic field. This determines the time of horizon entry,
which marks the transition from superadiabatic amplifica-
tion (outside the Hubble radius) to adiabatic decay (inside
the Hubble length). The longer a magnetic mode stays
outside the horizon the stronger its amplifucation, in which
case (3) and (4) can relax considerably. Next, we will
reevaluate these constraints for fields that enter the horizon
(i) in the radiation era and (ii) during the dust epoch.

(i) Suppose that a magnetic mode crosses inside the
Hubble radius some time in the radiation epoch.
Then onwards B ∝ a−2, which means that BHC ¼
B0ðTHC=T0Þ2 at horizon crossing. Earlier in the
radiation era and also during reheating, the mode is
outside the Hubble scale and decays as B ∝ a−1 and
B ∝ a−3=2, respectively. With these in mind, a
straightforward calculation leads to

BDS ∼ B0

THCM2

T2
0TRH

; ð11Þ

at the end of the de Sitter expansion (recall that
ρDS ∼M4 and ρRH ∼ T4

RH in natural units). There-
fore, to achieve astrophysically relevant residual
values today, the magnetic strength (in Gauss) must
lie within the range

10−22
THCM2

T2
0TRH

≲ BDS ≲ 10−12
THCM2

T2
0TRH

; ð12Þ

at the end of inflation proper.
Let us evaluate the above in a particular case.

Consider a B field with current scale λ0 ∼ 10 Kpc,
which is the minimum required for the galactic
dynamo to work. Since λ ∝ a always and λH ∝ a3=2

during the dust era, we have ðλH=λÞEQ ¼ ðλH=λÞ0×
ðT0=TEQÞ1=2 ∼ 103, when T0 ∼ 10−13 GeV, TEQ ∼
10−9 GeV and ðλHÞ0 ∼ 103 Mpc. Therefore, a
mode of approximately 10 Kpc at present entered
the horizon before equipartition. In the radiation
era λH ∝ a2, which means that ðλH=λÞHC ¼
ðλH=λÞEQðTEQ=THCÞ. Then, the aforementioned
magnetic mode crossed inside the Hubble radius
at THC ∼ 10−6 GeV. Substituting the above into
(12), setting TRH ∼ 1010 GeV and assuming GUT-
scale inflation with M ∼ 1017 GeV gives

1022 G≲ BDS ≲ 1032 G: ð13Þ
Therefore, inflationary B fields with current size
close to 10 Kpc can seed the galactic dynamo
without satisfying the “adiabatic” constraint (4),
but the drastically more relaxed limits given above
(see also Table I).

3Initial conditions allowing the slowly decaying modes of
solutions (8), (9) to survive are possible in conventional scenarios
of cosmic magnetogenesis as well [5].
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(ii) Consider magnetic fields entering the horizon after
matter-radiation equality. If B0 is the magnetic
strength today, we have BHC ¼ B0ðTHC=T0Þ2 at
horizon crossing. Then, given that B ∝ a−3=2 on
super-Hubble scales as long as dust dominates, we
find that

BEQ ¼ B0

T1=2
HCT

3=2
EQ

T2
0

; ð14Þ

at equilibrium. Proceeding exactly as before (see
case (i) previously), we arrive at

BDS ∼ B0

T1=2
HCT

1=2
EQM

2

T2
0TRH

; ð15Þ

at the end of inflation. This magnetic field will
satisfy the dynamo requirements today if

10−22
T1=2
HCT

1=2
EQM

2

T2
0TRH

≲ BDS ≲ 10−12
T1=2
HCT

1=2
EQM

2

T2
0TRH

:

ð16Þ

Wavelengths entering the horizon at THC >
10−6 GeV have current sizes greater that 10 Kpc
(see case (i) above) and fulfill the dynamo’s scale
requirement. Also, B fields on such scales have
stayed outside the Hubble radius longer and, there-
fore, their residual values are stronger. This means
that they can have smaller magnitudes at the end
of inflation and still seed the galactic dynamo.
For example, according to (16), a magnetic field
entering the horizon today (i.e. with THC ∼ T0∼
10−13 GeV) will work if it satisfied the constraint

1017 G≲ BDS ≲ 1027 G ð17Þ

at the end of the de Sitter expansion (see also
Table I). The above limits are clearly more relaxed
than those of (13) and far more relaxed than those of
the adiabatic scenario (see constraint (4) earlier).

To achieve current magnetic strengths that satisfy the
‘adiabatic’ constraints (3) and (4), nonconventional mech-
anisms of inflationary magnetogenesis enhance their B
fields substantially in the de Sitter phase. Producing strong
magnetic fields during inflation, however, is not a problem-
free exercise. One issue is the so-called backreaction effect,
where the B field becomes strong enough to interfere with
the dynamics of the expansion [8,9].
As long as they remain outside the Hubble radius,

however, the aforementioned fields decay at a pace slower
than the adiabatic for the rest of their evolution. Then,
strong amplification during inflation is not only unneces-
sary, but it can be problematic as well. Instead, a relatively

weak enhancement in the de Sitter phase could suffice. To
illustrate these points, consider a scenario leading to B
fields as strong as ∼1046 G at the end of inflation on all
scales [8,9]. Magnetic fields of such magnitude satisfy the
dynamo requirements today, even if we assume that they
have been decaying adiabatically throughout their post-
inflationary life [see constraint (4)]. However, causality
ensures that these fields have been decaying at a consid-
erably slower pace for as long as they stayed outside the
Hubble radius. A magnetic mode that enters the horizon
today, for example, will have current strength close to
107 G [see Eq. (15)], which is clearly at odds with the
observations. On the other hand, suppose that the generated
field has strength close to 1022 G at the end of inflation and
current size around 1 Mpc [9]. Such fields cannot seed the
dynamo today, if the adiabatic decay law is imposed on
all scales after inflation. Following Table I, however,
magnetic fields of Mpc size at present and magnitude
close to 1022 G at the end of the de Sitter phase can sustain
the dynamo. This happens because the aforementioned
fields have remained outside the Hubble radius until late
into the radiation era and crossed inside at THC ∼
10−8 GeV (see Table I). As long as they stayed outside
the horizon, these B fields were superadiabatically ampli-
fied. Consequently, their residual strength increases to
10−20 G [see Eq. (11)], which can seed the dynamo.
The origin of cosmic magnetism remains unresolved

and, over the years, mechanisms of inflationary magneto-
genesis that operate outside standard electromagnetic
theory have become increasingly popular. The aim is to
produce substantially strong B fields already by the end of
the de Sitter phase. Then, although classical electromag-
netism is restored after inflation, the residual B field is still
capable of seeding the galactic dynamo.
A common and key assumption in all these scenarios is

that postinflationary B fields decay adiabatically, even on
superhorizon scales. This, however, violates causality,
which confines the processes of electric-current generation
and magnetic-flux freezing within the causal horizon. Put
another way, the ideal-MHD limit and the adiabatic

TABLE I. The strength-range of inflationary magnetic fields,
measured at the end of the de Sitter phase, capable of seeding the
galactic dynamo today [compare to the standard—“adiabatic”—
range given in Eq. (4)]. The first row corresponds to B fields with
the minimum required scale for the dynamo to work. The third
and forth rows refer to magnetic modes that crossed inside the
horizon at recombination and at present respectively. In all cases
M ∼ 1017 and TRH ∼ 1010 GeV.

λ0 (Mpc) THC (GeV) BDS (G)

10−2 10−6 1022 ≲ BDS ≲ 1032

1 10−8 1020 ≲ BDS ≲ 1030

103=2 10−10 1018 ≲ BDS ≲ 1028

103 10−13 1017 ≲ BDS ≲ 1027
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B ∝ a−2-law do not apply on scales larger than the Hubble
radius. There, B fields decay slower throughout their
postinflationary life. Consequently, the final magnetic
strengths produced by the majority of these nonconven-
tional mechanisms are much larger than anticipated. In fact,
most of the B fields produced in these scenarios are so
strong by the end of the de Sitter phase that their current
strengths are well in excess of those measured in the
galaxies, or of those allowed by the observations.
Every cloud has a silver lining, however. The slow decay

of superhorizon-sized B fields after inflation means that a
relatively mild amplification during the de Sitter phase can
suffice. Put another way, inflationary magnetic seeds may
not need to satisfy the stringent requirements set by
constraint (4), in order to be of astrophysical relevance.
Indeed, starting from the current galactic-dynamo require-
ments and “reverse engineering” the magnetic strengths, we
found that mechanisms of magnetic generation producing

fields stronger than 1017 G at the end of inflation can seed
the dynamo today (see Table I). These new limits mainly
target the nonconventional scenarios of inflationary mag-
netogenesis, since their conventional counterparts typically
produce considerably weaker B fields. In [9], for example,
the authors discuss a (nonconventional) scenario that pro-
duces magnetic fields close to 1022 G at the end of the de
Sitter expansion, with current size around 1Mpc. Assuming
adiabatic decay on all scales after inflation, brings the
magnitude of the aforementioned field to 10−43 Gat present,
which cannot seed the dynamo. In view of our revised
limits, however, the aforementioned field can seed the
dynamo (see Table I, second row). This happens because
causality and the absence of superhorizon-sized electric
currents has slowed down the postinflationary evolution of
this field and thus increased the previously quoted strength
to 10−20 G. The latter lies within the typical galactic-
dynamo requirements.
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