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The transition in quantum chromodynamics from hadronic matter to the quark-gluon plasma at high
temperatures and/or net-baryon densities is associated with the restoration of chiral symmetry and can be
investigated in the laboratory via heavy-ion collisions. We study this chiral transition within the functional
renormalization group approach applied to the two-flavor version of the extended linear sigma model
(eLSM). The eLSM is an effective model for the strong interaction and features besides scalar and
pseudoscalar degrees of freedom also vector and axial-vector mesons. We discuss the impact of the quark
masses and the axial anomaly on the order of the chiral transition. We also confirm the degeneracy of the
masses of chiral partners above the transition temperature. We find that the mass of the a1 meson (ρmeson)
decreases (increases) towards the chiral transition.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory of the strong interaction. For massless quarks,
the QCD Lagrangian has a global UðNfÞR ×UðNfÞL ≅
SUðNfÞV × SUðNfÞA ×Uð1ÞV ×Uð1ÞA symmetry, where
Nf denotes the number of quark flavors. The Uð1ÞV
symmetry corresponds to baryon-number conservation,
which is always respected. At the quantum level, Uð1ÞA
is broken to ZðNfÞA, a phenomenon which is referred to as
the axial anomaly [1]. In the QCD vacuum, the remaining
SUðNfÞV ×SUðNfÞA symmetry, termed “chiral symmetry”
in the following, is further spontaneously broken to
SUðNfÞV by a nonvanishing quark condensate hq̄qi,
inducing N2

f − 1 Goldstone bosons [2–4]. For nonzero
and degenerate quark masses, the chiral symmetry is also
explicitly broken to SUðNfÞV .
At high temperatures and/or net-baryon number den-

sities, the quark condensate melts and chiral symmetry is
effectively restored. This chiral transition is commonly
associated with the so-called QCD transition between a
hadronic phase and the quark-gluon plasma (QGP). The
QGP state has existed during the early stages of the
Universe. Experiments at accelerator facilities, such as
the SPS and LHC at CERN, RHIC at BNL, or SIS–100/300
at the FAIR project in Darmstadt, aim to explore the QGP
via heavy-ion collisions [5]. Above the chiral transition,
the masses of chiral partners, such as the sigma and the pion
or the ρ and the a1 meson, become degenerate [6]. In
particular, dropping ρ and a1 meson masses were suggested
as signatures for chiral symmetry restoration [7–9]. The

change of the spectral properties of the ρ meson during the
chiral transition could, e.g., be detected via its decay into
dileptons [10]. Modifications of the dilepton spectrum have
been observed in Pbþ Pb [11] and Inþ In [12] collisions.
Concerning the axial anomaly, it was claimed in Ref. [13]
that data for Auþ Au collisions at RHIC energies show a
reduction of the η0 meson mass, which was interpreted
as a precursor for an effective restoration of the Uð1ÞA
symmetry [14].
In general, the order of the chiral transition depends on

the number Nf of quark flavors and their masses [15].
Furthermore, for Nf ¼ 2, the order depends on whether the
Uð1ÞA symmetry is restored prior to the restoration of chiral
symmetry [16], or whether it remains broken by the axial
anomaly. For vanishing quark masses, Pisarski andWilczek
[17] have argued that, in the absence of theUð1ÞA anomaly,
the chiral phase transition for Nf ≥ 2 is of first order and,
in the presence of the Uð1ÞA anomaly, can be of second
order for Nf ¼ 2. For an infinite anomaly strength and if
the transition is of second order, it definitely falls into the
Oð4Þ-universality class (as originally conjectured by the
authors of Ref. [17]). Recently, however, it was argued that
the chiral transition can be of second order for Nf ¼ 2, no
matter whether the axial anomaly is present [18] or not
[19,20]; only the associated universality class differs: it
was conjectured that the second-order transition can be in
the SUð2ÞA ×Uð2ÞV class for finite anomaly strength, and
in the Uð2ÞA ×Uð2ÞV class for zero anomaly strength,
respectively. For nonzero quark masses, the second-order
transition is smeared out into a crossover.
The chiral transition has been extensively investigated

from first principles via lattice QCD [21–29]. The critical
temperature for vanishing quark-chemical potential, μ ¼ 0,
was estimated to be ≈160 MeV [29–33]. Lattice-QCD
calculations do not agree upon whether the Uð1ÞA
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symmetry has already been restored at the chiral transition
temperature [34,35] or not [36–38]. Unfortunately, pertur-
bative methods fail to achieve reliable results in the low-
energy range, where the gauge coupling is strong. Besides,
they are plagued by severe infrared divergences. Therefore,
nonperturbative continuum methods, such as the functional
renormalization group (FRG) [39–42], are complementary
to lattice QCD and hence indispensable for exploring the
nature of QCD matter.
FRG studies of the chiral transition using effective models

for QCD have a long tradition [43]: a quark-meson model
withUð2ÞR×Uð2ÞL symmetry has been investigated beyond
the local potential approximation (LPA) in Refs. [44,45]. An
OðNÞ-symmetric quark-meson model was studied in
Ref. [46]. The phase structures of the chiral quark-meson
model and the (Polyakov-)quark-meson(-diquark) model for
the two lightest flavors as well as for 2þ 1 flavors were
determined in Refs. [47–57]. Uð1ÞA-violating terms in the
FRG were introduced in Ref. [58]. For massless up and
down quarks and a physical strange quark, the chiral
transition was shown to be of first/second order without/
with theUð1ÞA anomaly in the framework of a quark-meson
model [59,60]. Also nonvanishing external magnetic fields
were studied in such a model [61,62]. Recent insights
into second-order and fluctuation-induced first-order phase
transitions in a Uð2ÞR ×Uð2ÞL-symmetric model with
scalar and pseudoscalar mesons were provided e.g. in
Refs. [63,64]. The influence of the Uð1ÞA anomaly in a
purely mesonic model was studied in Ref. [18].
The infrared-stable Uð2ÞV ×Uð2ÞA fixed point detected in
Ref. [19] was also found with the help of the FRG technique,
but the subsequent stability analysis remained inconclusive
[20]. FRG studies based on QCD degrees of freedom were
presented in Refs. [41,65–69].
Vector-meson fields were introduced into a chiral effec-

tive nucleon-meson Lagrangian in Refs. [70–74] and the
phase diagram at nonvanishing net-baryon density was
studied within the FRG. However, the vector-meson
degrees of freedom were only considered to be background
fields, i.e., their fluctuations were neglected in the FRG
flow. A first FRG study of (axial-)vector mesons in QCD at
T ¼ μ ¼ 0 was performed in Ref. [75], revealing that the
hadronic contributions to the flow in vacuum are dominated
by the sigma meson and the pions.
A study of the chiral transition at nonzero temperature

within the FRG including vector and axial-vector mesons
is, however, still missing. In this work, we fill this gap by
applying the FRG to a purely mesonic model. We ascertain
the mass degeneracy of chiral partners above the transition
and identify its order. We consider the so-called extended
linear sigma model (eLSM) [76–78] as an effective model
for the strong interaction at nonzero T and for vanishing μ.
This model has been shown to reproduce hadronic vacuum
properties such as masses and decay widths to a surprising
degree of accuracy [78]. Furthermore, it has the same

low-energy limit as QCD [79]. We study this model
in a limit where it resembles the time-honored Sakurai
model [80,81].
This paper is organized as follows: in Sec. II A we

introduce the two-flavor version of the eLSM. The sub-
sequent part (Sec. II B) discusses the FRG formalism to
describe fluctuations of spin-zero and spin-one mesons.
The numerical results for vanishing quark masses in the
absence (or presence) of the axial anomaly are presented in
Sec. III A (Sec. III B). The case of explicit breaking of
chiral symmetry by nonzero quark masses is discussed in
Sec. III C. Section IV concludes this work with a summary
of our results and an outlook.
We use natural units ℏ ¼ c ¼ kB ¼ 1 and work in a

finite ð3þ 1Þ-dimensional Euclidean spacetime volume
V × ð0; 1=T� at nonzero temperature T with periodic
boundary conditions and, consequently, a discrete momen-
tum spectrum: q ¼ ðωn; ~qÞ, where the Matsubara frequen-
cies for bosonic fields are given by ωn ¼ 2nπT. We use a
shorthand notation for spacetime integrations:Z

V
d3þ1x ¼

Z
1=T

0

dτ
Z
V
d3x ¼

Z
x
; ð1Þ

with V ¼ V=T. We employ Einstein’s summation conven-
tion, i.e., indices appearing twice are summed over. If
these indices are Lorentz indices, μ ¼ 0, 1, 2, 3, it does not
matter whether they appear as co- or contravariant indices,
because we work in Euclidean spacetime. We always use
covariant Lorentz indices.

II. METHODS

A. Extended linear sigma model

At low energies, quarks and gluons are confined inside
hadrons, which are thus the effective degrees of freedom.
An effective theory for hadrons must incorporate the chiral
symmetry of QCD, as well as its spontaneous breaking. We
work with a mesonic linear sigma model [82,83] as an
effective implementation of the strong interaction, which,
besides scalar and pseudoscalar mesons, also includes
vector and axial-vector mesons [6,76,84–86]: the so-called
eLSM [77]. The scalar and pseudoscalar fields are the
real and imaginary parts of a complex Nf × Nf matrix Σ
that lives in the ½N�

f; Nf� representation of the group
UðNfÞR ×UðNfÞL. Under transformations of this group,
Σ behaves as follows:

Σ → U†
RΣUL; ð2Þ

where the group elementsUR;L are unitary matrices. In terms
of hadronic fields, Σ ¼ ðσa þ iπaÞta, with the generators ta
of UðNfÞ in the fundamental representation (tr½tatb� ¼
δab=2). Here, σa and πa represent scalar and pseudoscalar
degrees of freedom, respectively. Analogously, we define
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right- and left-handed fields for (axial-)vector mesons (parametrized by axial-vector fields Aa;μ and vector fields Va;μ):
Rμ ¼ ðVa;μ þ Aa;μÞta, Lμ ¼ ðVa;μ − Aa;μÞta. They transform as

Rμ → U†
RRμUR; Lμ → U†

LLμUL: ð3Þ
The globally chirally symmetric Lagrangian is given by [77]

L¼ tr½ðDμΣÞ†DμΣ� þm2
0trðΣ†ΣÞ þ λ1½trðΣ†ΣÞ�2 þ λ2tr½ðΣ†ΣÞ2� þ 1

4
trðL2

μν þR2
μνÞ

þ tr

��
m2

1

2
þΔ

�
ðL2

μ þR2
μÞ
�
− tr½HðΣþΣ†Þ�− cAðdetΣþ detΣ†Þ

− ig2ðtrfLμν½Lμ;Lν�g þ trfRμν½Rμ;Rν�gÞ þ
h1
2
trðΣ†ΣÞtrðL2

μ þR2
μÞ

þ h2trðjRμΣj2 þ jΣLμj2Þ þ 2h3trðΣLμΣ†RμÞ− g3½trðLμLνLμLνÞ þ trðRμRνRμRνÞ�
− g4½trðLμLμLνLνÞ þ trðRμRμRνRνÞ�− g5trðLμLμÞtrðRνRνÞ
− g6½trðLμLμÞtrðLνLνÞ þ trðRμRμÞtrðRνRνÞ�; ð4Þ

with the covariant derivative DμΣ¼∂μΣþig1ðΣLμ−RμΣÞ
and the right-/left-handed field-strength tensors Rμν¼
∂μRν−∂νRμ and Lμν¼∂μLν−∂νLμ. The term detΣþdetΣ†

accounts for the Uð1ÞA anomaly by breaking UðNfÞR ×
UðNfÞL to SUðNfÞV × SUðNfÞA × Uð1ÞV . Its strength
is determined by the coupling constant cA. The flavor-
diagonal terms tr½HðΣþ Σ†Þ� and tr½ΔðL2

μ þ R2
μÞ� corre-

spond to explicit symmetry breaking (ESB) in the
(pseudo-)scalar and (axial-)vector sector, respectively:

H ¼
XNf

i¼1

hi
2−1
0 ti2−1;

Δ ¼ diag½δ1; δ2;…; δNf
�

∝ diag½m2
u; m2

d;…; m2
Nf
�: ð5Þ

For nonzero and degenerate quark masses m2
u ¼ m2

d ¼ � � �
(h00 ≠ 0, while all other hi

2−1
0 vanish; Δ ∝ 1 has no further

impact), these terms break the UðNfÞR ×UðNfÞL sym-
metry to UðNfÞV .
It should be mentioned that there is a second way of

introducing spin-one degrees of freedom to this effective
theory. Within the gauged linear sigma model (gLSM)
[81,84], (axial-)vector mesons are treated as massive Yang-
Mills fields, accounting for the phenomenon of vector-meson
dominance [80,87]. This model is constructed by requiring
local UðNfÞR ×UðNfÞL symmetry. The gauge principle
calls for a universal coupling of right- and left-handed vector
fields to (pseudo-)scalars as well as among spin-one fields
themselves. But due to the nonzero mass of the “gauge
bosons,” of course, the gLSM is not a true gauge theory and
the local invariance is already broken down to a global one.
Since chiral symmetry is of global nature in QCD anyway,
it seems to be logical to work with the Lagrangian (4).

Moreover, the “local” version does not reproduce the correct
phenomenology of ρ and a1 mesons [6,87], a problem which
is solved by the globally symmetric eLSM [78].
In this study, we restrict ourselves to the isospin-

symmetric two-flavor case, i.e., up and down quarks have
the same mass. Hence we are dealing with scalar fields
ðσ; ~a0Þ, pseudoscalars ðη; ~πÞ, and with ðf1; ~a1Þ as well as
ðω; ~ρÞ in the (axial-)vector mesonic sector. The fields σ, η,
ω, and f1 are SUð2Þ-singlet states, whereas the others form
isospin triplets. The field η does not correspond to the
physical η=η0 mesons, which are mixtures of n̄n and s̄s
(n ¼ u, d stands for the nonstrange up and down quarks,
s for the strange quark). As a first step in applying the FRG
to the eLSM, we want to keep things simple and set the
constants g2; g3;…; g6 as well as h1, h2, h3 to zero. The
above defined complex 2 × 2-matrices explicitly read

Σ ¼ ðσ þ iηÞt0 þ ð~a0 þ i~πÞ · ~t; ð6Þ

Rμ ¼ ðωμ þ f1μÞt0 þ ð~ρμ þ ~a1μÞ · ~t; ð7Þ

Lμ ¼ ðωμ − f1μÞt0 þ ð~ρμ − ~a1μÞ · ~t; ð8Þ

and the different parts of L can be expressed as

tr½ðDμΣÞ†DμΣ� ¼
1

2
½∂μσþ g1ðηf1μ þ ~π · ~a1μÞ�2

þ 1

2
½∂μη− g1ðσf1μ þ ~a0 · ~a1μÞ�2

þ 1

2
½∂μ~a0 þ g1ð~ρμ × ~a0 þ η~a1μ þ ~πf1μÞ�2

þ 1

2
½∂μ~π − g1ð~π × ~ρμ þ σ~a1μ þ ~a0f1μÞ�2;

ð9Þ
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m2
0trðΣ†ΣÞ ¼ m2

0

2
ðσ2 þ ~a20 þ η2 þ ~π2Þ; ð10Þ

λ1½trðΣ†ΣÞ�2 ¼ λ1
4
ðσ2 þ ~a20 þ η2 þ ~π2Þ2; ð11Þ

λ2tr½ðΣ†ΣÞ2� ¼ λ2
4

�
1

2
ðσ2 þ ~a20 þ η2 þ ~π2Þ2

þ 2½ðσ2 þ ~π2Þðη2 þ ~a20Þ

− ðση − ~π · ~a0Þ2�
�
; ð12Þ

1

4
trðL2

μν þ R2
μνÞ ¼

1

4
ð∂μων − ∂νωμÞ2 þ

1

4
ð∂μ~ρν − ∂ν~ρμÞ2

þ 1

4
ð∂μf1ν − ∂νf1μÞ2

þ 1

4
ð∂μ~a1ν − ∂ν~a1μÞ2; ð13Þ

m2
1

2
trðL2

μ þ R2
μÞ ¼

m2
1

2
ðf21μ þ ~a21μ þ ω2

μ þ ~ρ2μÞ; ð14Þ

tr½HðΣþ Σ†Þ� ¼ h00σ; ð15Þ

cAðdetΣþ detΣ†Þ ¼ cA
2
ðσ2 − ~a20 − η2 þ ~π2Þ: ð16Þ

Obviously, the ω meson completely decouples from any
interactions. This would not be the case had we included
other terms from Eq. (4).
In the low-temperature broken phase, the isoscalar σ

field acquires a nonvanishing expectation value hσi0 ¼
hq̄qi ¼ const ≠ 0 (here, the angular brackets are the
notation for expectation values and the subscript 0 denotes
the absence of external sources). Therefore, one has to
consider fluctuations around the physical ground state
and thus a shift of the σ field by its expectation value:
σ → hσi0 þ σ. The expectation value hσi0 acts as the order
parameter for the chiral phase transition. After accounting
for this shift, integration by parts then gives rise to the
bilinear terms g1hσi0η∂μf1μ and g1hσi0~π · ∂μ~a1μ. They
represent the so-called π − a1- and η − f1-mixing, leading
to nondiagonal elements in the scattering matrix. Usually
these terms are eliminated. Following Ref. [81], this is done
by shifting the axial-vector fields: f1μ → f1μ þ w∂μη and
~a1μ → ~a1μ þ w∂μ~π with w ¼ g1hσi0=½m2

1 þ ðg1hσi0Þ2�. In
turn, the axial-vector fields become explicitly renormaliza-
tion group (RG)-scale dependent (through the dependence
of w on hσi0) and the pseudoscalar states need to be
renormalized: πa →

ffiffiffiffiffiffi
Zπ

p
πa, Zπ ¼ 1þ ðg1hσi0Þ2=m2

1. This
provides the canonical normalization of all one-meson
states, such that their Fourier components can be inter-
preted as creation and annihilation operators in the process
of quantization [84]. For a precise discussion of the σ

shift and its implications on the FRG flow we refer to
Ref. [75]. Instead of redefining the a1 and f1 fields, one
may also work with nondiagonal propagators as performed
in Ref. [87].
The vacuum expectation value hσi0 is the minimum of

the classical potential energy density VðhσiÞ:

VðhσiÞ ¼ 1

2
ðm2

0− cAÞhσi2þ
1

4

�
λ1þ

λ2
2

�
hσi4−h00hσi;

dV
dhσi

				
hσi¼hσi0

¼ 0: ð17Þ

Thewave-function renormalization Zπ is related to hσi0 and
to the masses of the a1 and ρ mesons by

hσi0 ¼
ffiffiffiffiffiffi
Zπ

p
fπ ≡ fπ

ma1

mρ
; ð18Þ

where fπ ≃ 93 MeV is the pion decay constant. The
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin relation
[88,89] predicts that Zπ ¼ 2. This slightly differs from
the value of Zπ ≃ ðma1=mρÞ2 ≃ 2.552 quoted by the
Particle Data Group (PDG) [90].
The identification of the mesonic fields with measured

resonances listed in Ref. [90] is partly straightforward:
the pions and the η (as the pure n̄n state arising from
unmixing the physical η and η0) have a mass around 140
and 700 MeV, respectively. The vector fields ω and ρ
represent the ωð782Þ and ρð770Þ resonances. The axial
vectors f1 and a1 correspond to the f1ð1285Þ and
a1ð1260Þ. For the σ and the a0 fields, however, it is
controversial whether they should describe ff0ð500Þ;
a0ð980Þg or ff0ð1370Þ; a0ð1450Þg. It was argued in
Refs. [76–78] that the latter option might be favored.

B. Functional renormalization group

The Wilsonian RG performs the mode integration of
(quantum-)statistical fluctuations from the ultraviolet (UV)
to the infrared (IR) in a stepwise manner, i.e., it succes-
sively takes momentum shell by momentum shell into
account [91–97]. The FRG is an implementation of this
procedure which allows us to nonperturbatively formulate
quantum field theories in terms of a differential equation.
This flow equation dictates the scale (k-)dependence of the
effective average action Γk, which interpolates between the
bare interactions at some UV cutoff scale kUV ¼ Λ and
the macroscopic physics including all fluctuations in the
IR, kIR ¼ 0. A k-dependent term ΔSk is added to the action
S in order to provide an effective cutoff at momenta
q2 ≃ k2, such that only modes with q2 ≳ k2 are integrated
out in the RG flow. The term ΔSk regulates the scale
evolution of Γk in such a way that the full effective action
Γ≡ Γk→0 is obtained in the IR limit. The effective action Γ
is the generating functional of one-particle irreducible
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vertex diagrams of the theory. For k → Λ, in contrast, the
classical action is recovered: Γk→Λ ¼ S.
Our investigations focus on the theory defined by

the Lagrangian (4). In order to simplify the following
discussion, we denote (pseudo-)scalar fields by φi and
(axial-)vector fields by Ai;μ. The field-strength tensors of
the latter are denoted as Fi;μν ¼ ∂μAi;ν − ∂νAi;μ. The fields
φi and Ai;μ are subject to thermal (for T > 0) as well as
to quantum fluctuations (also at T ¼ 0). Following the
discussion in Ref. [98], we apply Stueckelberg’s
Lagrangian [99,100] with coupling λSt to derive the FRG
flow equation:

S ¼
Z
x
L →

Z
x

�
Lþ λSt

2
∂μAi;μ∂νAi;ν

�
: ð19Þ

(Axial-)vector mesonic fields usually have three physical
degrees of freedom. The additional term in Eq. (19),
however, promotes the unphysical fourth to a physical
one. Hence, in the following, all vector fields initially have
four instead of three degrees of freedom. Although not
necessary to ensure renormalizability [75], this formalism
guarantees that we work with invertible inverse tree-level
propagators [81]. Furthermore, this strategy allows one to
derive the grand canonical partition function in a simple
manner [98].
As a starting point for deriving the FRG flow equation

of the theory at hand, we consider the scale-dependent
generating functional Wk for connected Green’s functions:

Wk½Ji; Ji;μ�≡ lnZk½Ji; Ji;μ�

¼ ln
Z

DφiDAi;μe−S½φi;Ai;μ�−ΔSk½φi;Ai;μ�

× e
R
x
Jiφiþ

R
x
Ji;μAi;μ : ð20Þ

As discussed above, we add a regulator term ΔSk to the
action,

ΔSk½φi; Ai;μ� ¼
1

2
V
X
q

½φið−qÞRS
kðqÞφiðqÞ

þ Ai;μð−qÞRV
k;μνðqÞAi;νðqÞ�; ð21Þ

which can be interpreted as a momentum-dependent mass
term, and we also included sources Ji and Ji;μ for scalar
and vector fields. To ensure the required UV/IR limits for
the flow of Γk, the regulator functions RS

kðqÞ and RV
k;μνðqÞ

must fulfill the following relations: RS
kðqÞ, RV

k;μνðqÞ → 0 for
k → 0, as well as RS

kðqÞ, RV
k;μνðqÞ → ∞ for k → Λ. On top

of that, the regulators should satisfy RS
kðqÞ, RV

k;μνðqÞ ∼ k2

for q → 0 and RS
kðqÞ, RV

k;μνðqÞ ∼ 0 for q → ∞. Apparently,
low-energy fluctuations (q2 ≪ k2) are effectively separated

from the RG integration process by giving them an addi-
tional “mass” ∼k2, while fast modes (q2 ≫ k2) are not
influenced. The effective average action Γk þ ΔSk is the
Legendre transform of Wk, or in other words

Γk½ϕk;i;Ak;i;μ� ¼ V
X
q

½Jið−qÞϕk;iðqÞ þ Ji;μð−qÞAk;i;μðqÞ�

−Wk½Ji; Ji;μ� − ΔSk½ϕk;i;Ak;i;μ�; ð22Þ

where ϕk;iðqÞ ¼ hφiðqÞi ≡ V−1δWk=δJið−qÞ and
Ak;i;μðqÞ¼hAi;μðqÞi≡V−1δWk=δJi;μð−qÞ are the expect-
ation values of the fields in the presence of the sources Ji
and Ji;μ. Although the Legendre transform Γk þ ΔSk is
convex by definition, this does not hold for Γk itself, asΔSk
is not necessarily curved in the same way. Exclusively
in the case k → 0, where ΔSk → 0, Γk→0 ¼ Γ becomes
the true Legendre transform of Wk→0 ≡W, and thus is
definitely convex.
For fixed values of the fields, differentiation of Eq. (22)

with respect to k yields the FRG flow equation:

∂kΓk ¼
1

2
V
X
q

ftr½GS
kðq; qÞ∂kRS

kðqÞ�

þ tr½GV
k;μνðq; qÞ∂kRV

k;νμðqÞ�g: ð23Þ

Here, GS
k and GV

k;μν denote the full propagators for
scalar and vector fields. Introducing the general field
notation Φ ¼ ðϕk;i;Ak;i;μÞ and using the fact that VGk ¼
ðΓð2Þ

k þRkÞ−1, Eq. (23) simplifies to

∂kΓk ¼
1

2
tr½ðΓð2Þ

k þRkÞ−1∂kRk�: ð24Þ

The momentum summation has been included in the
definition of the trace. The propagator Gk as well as

Γð2Þ
k and Rk are matrix valued in momentum space and

in all internal spaces. The matrix Γð2Þ
k is the second

functional derivative of Γk with respect to the fields:

ðΓð2Þ
k Þijðq0; qÞ ¼ V−1 δ2Γk

δΦiðq0ÞδΦjð−qÞ
: ð25Þ

In principle, the FRG equation and the resulting macro-
scopic physical observables should be independent of the
form of the regulators, which are only restricted by the limits
discussed above. In this case, all trajectories in coupling
space predicted by different choices of Rk start at the point
Γk→Λ ¼ S and terminate at Γk→0 ¼ Γ. In practice, however,
one needs to truncate the infinite hierarchy of flow equations
arising from Eq. (24) in order to solve them. Indeed, this fact
inevitably leads to a regulator-dependent bias, which, for-
tunately, can be minimized by working with the optimized
Litim regulator [101].
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One convenient truncation scheme is the expansion of Γk
in terms of field derivatives [42,43]. For a purely scalar
theory, this would read

Γk½Φ�¼
Z
x

�
UkðΦÞþ

1

2
ZkðΦÞ∂μΦ ·∂μΦþOð∂4Þ

�
: ð26Þ

Uk is the scale-dependent effective potential; Zk symbol-
izes the wave-function renormalization associated to the
scaling of the kinetic part. The LPA assumes the wave-
function renormalization in the derivative expansion (26)
to be field independent and fixed to its initial value
of 1, ZkðΦÞ ¼ Zk ¼ 1, which corresponds to a vanishing
anomalous dimension. Momentum-dependent interactions
are neglected in LPA. In the case of the eLSM, the second
term in Eq. (26) is given by the kinetic terms of spin-
zero and spin-one fields (modified by Stueckelberg’s
Lagrangian):

Γk½ϕi;Ai� ¼
Z
x

�
1

2
∂μϕi∂μϕi þ

1

4
F i;μνF i;μν

þ λSt
2
ð∂μAi;μÞ2 þUkðϕi;AiÞ

�
; ð27Þ

F i;μν ¼ ∂μAi;ν − ∂νAi;μ. At nonzero temperature, it is
technically advantageous to employ the three-dimensional
version of Litim’s optimal regulator ∝ ðk2 − ~q2ÞΘðk2 − ~q2Þ
[102,103]. Remembering the above discussion about their
various limits, the regulating functions are chosen as

RS
kðqÞ ¼ ðk2 − ~q2ÞΘðk2 − ~q2Þ; ð28Þ

RV
k;μνðqÞ ¼ ½ΠT

μνðqÞ þ λStΠL
μνðqÞ� ðk2 − ~q2ÞΘðk2 − ~q2Þ;

ð29Þ

where we have defined the transversal and longitudinal
projection operators ΠT

μνðqÞ¼δμν−qμqν=q2 and ΠL
μνðqÞ ¼

qμqν=q2, respectively. Since ∂kΓk ¼ V∂kUk for spatially
uniform field configurations ΦiðxÞ ¼ Φi, and since in the
limit V → ∞ we have 1=V

P
~q →

R
d3q=ð2πÞ3, using

Eq. (28) as well as Eq. (29), Eq. (23) becomes

∂kUk ¼ T
X
n

Z
VðkÞ

d3q
ð2πÞ3 kftr Ḡ

S
kðωn; ~qÞ

þ ½ΠT
μνðqÞ þ λStΠL

μνðqÞ�tr ḠV
k;νμðωn; ~qÞg; ð30Þ

where Ḡ ¼ VG and VðkÞ denotes the spherical volume
with radius k in three-momentum space.

III. RESULTS

In this section, we numerically solve the FRG flow
equations in LPA for the eLSM introduced in Sec. II A

for three scenarios: (i) the Uð2ÞR × Uð2ÞL-symmetric case,
(ii) the case with Uð1ÞA anomaly, and (iii) the case with
Uð1ÞA anomaly and ESB. To this end, we discuss the
expansion of the potential Uk in terms of the respective
invariants under the given symmetry and fix the bare
couplings in the UV such that the renormalization flow
produces reasonable values for the physical observables in
the IR. From the behavior of the chiral order parameter hσi0
as a function of temperature we infer the order of the phase
transition and illustrate the restoration of chiral symmetry
by computing various mesonic screening masses.
Let us remark that there are, in principle, two different

strategies to proceed [47]. In the first strategy one expands
the potential Uk around a (local) minimum. The advantage
of this method is that one has to solve only a few flow
equations (one for each coupling and an additional one for
the scale-dependent order parameter). In doing so, how-
ever, we can only deduce the potential right at a local
minimum. It is not clear whether this local minimum is
also the global one. Especially in the case of a first-order
transition with two emerging minima, it is crucial not just
to know the potential at the expansion point but also at
any other local extremum.
To overcome this difficulty, in this paper we follow the

second strategy, where Uk is discretized on a grid. Here we
gain information about the entire form of the potential, but
this strategy needs a lot of computational power as we have
to solve flow equations for each grid point. Nevertheless,
we utilize this approach because it allows us to figure out
the transition order in a comparatively quick and uncom-
plicated fashion. We tune the potential in such a way that
the physical configuration is located at hσi0 ¼

ffiffiffiffiffiffi
Zπ

p
fπ

for k → 0.
Remember also that the effective action Γk is a functional

of the classical fields ϕk;i ¼ hφii and Ak;i;μ ¼ hAi;μi,
cf. Eq. (22), but for the sake of simplicity the brackets
indicating expectation values will be omitted in the follow-
ing, e.g. hηi → η. Another point is that we are setting

certain fields to zero after the calculation of Γð2Þ
k , since we

only need to consider as many fields to be nonvanishing
as there are independent invariants.

A. Chiral limit without anomaly

For zero quark masses and in the absence of Uð1ÞA-
symmetry breaking (h00 ¼ 0 as well as cA ¼ 0), the
Lagrangian (4) is invariant under the full Uð2ÞR ×
Uð2ÞL symmetry. In the LPA neither wave-function
renormalization nor momentum-dependent interactions
are taken into account. Since the involved (axial-)vector
mesons typically have a mass of ≲1.2 GeV, an ultraviolet
cutoff of Λ ¼ 1.2 GeV is chosen. After substituting the
fields by their expectation values, in compliance with
Eq. (27) we derive from Eq. (4) the following effective
average action at the UV scale:
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ΓΛ ¼
Z
x

�
1

2
∂μσ∂μσ þ 1

2
∂μ~a0 · ∂μ~a0 þ

1

2
∂μη∂μηþ

1

2
∂μ~π · ∂μ~π þ 1

4
ð∂μων − ∂νωμÞ2 þ

1

4
ð∂μ~ρν − ∂ν~ρμÞ2

þ 1

4
ð∂μf1ν − ∂νf1μÞ2 þ

1

4
ð∂μ~a1ν − ∂ν~a1μÞ2 þ

λSt
2
½ð∂μωμÞ2 þ ð∂μ~ρμÞ2 þ ð∂μf1μÞ2 þ ð∂μ~a1μÞ2�

þ c1;Λξ1 þ c2;Λξ21 þ c3;Λξ2 þ c4;Λξ3 þ c5;Λξ4

�
: ð31Þ

In Eq. (31) we have introduced the Oð8Þ mass invariants ξ1
and ξ4 as well as the other Uð2ÞR × Uð2ÞL- symmetric
expressions ξ2, ξ3 contained in Eq. (4). They are linear
combinations of the different interaction terms in the
effective potential, namely,

ξ1 ¼ σ2 þ ~a20 þ η2 þ ~π2; ð32Þ

ξ2 ¼ ðσ2 þ ~π2Þðη2 þ ~a20Þ − ðση − ~π · ~a0Þ2; ð33Þ

ξ3 ¼ ð~π · ~a1μ þ ηf1μÞ2 þ ð~a0 · ~a1μ þ σf1μÞ2
þ ð~ρμ × ~a0 þ η~a1μ þ ~πf1μÞ2
þ ð~π × ~ρμ þ σ~a1μ þ ~a0f1μÞ2; ð34Þ

ξ4 ¼ f21μ þ ~a21μ þ ω2
μ þ ~ρ2μ: ð35Þ

The scale-dependent couplings are defined as

c1;k ¼
m2

0;k

2
;

c2;k ¼
1

4

�
λ1;k þ

1

2
λ2;k

�
;

c3;k ¼
λ2;k
2

;

c4;k ¼
g21;k
2

;

c5;k ¼
m2

1;k

2
: ð36Þ

For the expansion of Uk we have to replace all nonvanishing
field variables by appropriate expressions of the invariants
fξ1; ξ2; ξ3; ξ4g. In order to do this, we keep the fields σ, a10,
a110, and ρ10 nonzero. All others are set to zero. Solving the
four equations (32)–(35) for these four variables yields

σ2 ¼ 1

2



ξ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − 4ξ2

q �
;

ða10Þ2 ¼
1

2



ξ1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 − 4ξ2

q �
;

ða110Þ2 ¼
ξ3
ξ1

;

ðρ10Þ2 ¼ ξ4 −
ξ3
ξ1

: ð37Þ

At first glance, this mapping seems to be singular for
ξ1 → 0, but we have checked that all parts of the
flow equations ∝ ξ−11 cancel for ξ1 ¼ 0, cf. also
Refs. [63,104]. Furthermore, the mapping does not
preserve Euclidean invariance, since we keep only the
μ ¼ 0-component of the vector fields ρ1μ and a11μ. This
gives rise to unequal screening masses of some vector
components with differences ∝ ξ2, ξ3, or ξ4, but this is
also not relevant since we assume that only the sigma
field acquires a nonvanishing vacuum expectation value
(and hence ξ1 → ξ10 ≡ σ20 and ξ2, ξ3, ξ4 → 0). This
means that we are concerned with a one-dimensional
investigation along the ξ1-axis and that, in this limit,
Euclidean symmetry is restored again.
Without axial anomaly and quark masses, we expect

the chiral phase transition to be of first order as argued
in Ref. [17] (among many other studies) and summa-
rized by the “Columbia plot” [105,106]. Since ξ2, ξ3,
and ξ4 are set to zero in the end, it is reasonable to
truncate Uk at linear order in these invariants (although
the flow equation generates terms of arbitrary order in
these invariants), with coefficients that are functions
of ξ1:

Ukðξ1; ξ2; ξ3; ξ4Þ ¼ Vkðξ1Þ þWkðξ1Þξ2
þ Xkðξ1Þξ3 þ Ykðξ1Þξ4: ð38Þ

The physical vacuum is specified by the condition
∂Uk=∂σ ¼ 0 for σ ¼ σ0, and the squared mass of the σ
field is identical to the curvature of the effective
potential:

∂Uk

∂σ
				
σ¼σ0

¼ 2
ffiffiffiffiffiffi
ξ10

p
V 0
kðξ10Þ ¼ 0; ð39Þ

∂2Uk

∂σ2
				
σ¼σ0

¼ 2V 0
kðξ10Þ þ 4ξ10V 00

kðξ10Þ: ð40Þ

From Eq. (39) one sees that, for ξ10 ≠ 0, the minimum
of the effective potential can also be determined from
the condition Vk

0 ¼ 0. Once the system changes to the
restored phase (σ20 ¼ ξ10 ¼ 0), Vk

0 can be nonzero,
though.
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The explicit flow equations for Vk, Wk, Xk, and Yk are obtained by differentiating Eq. (30) and evaluating it for the
physical configuration:

∂kVkðξ1Þ ¼ ∂kUkðξ1; ξ2; ξ3; ξ4Þjξ2;ξ3;ξ4¼0 ≡ 1

2
trðGk∂kRkÞjξ2;ξ3;ξ4¼0; ð41Þ

∂kWkðξ1Þ ¼ ∂k∂ξ2Ukðξ1; ξ2; ξ3; ξ4Þjξ2;ξ3;ξ4¼0
≡ 1

2
Vtrð−GkΓ

ð3Þ
k;ξ2

Gk∂kRkÞjξ2;ξ3;ξ4¼0
; ð42Þ

∂kXkðξ1Þ ¼ ∂k∂ξ3Ukðξ1; ξ2; ξ3; ξ4Þjξ2;ξ3;ξ4¼0
≡ 1

2
Vtrð−GkΓ

ð3Þ
k;ξ3

Gk∂kRkÞjξ2;ξ3;ξ4¼0
; ð43Þ

∂kYkðξ1Þ ¼ ∂k∂ξ4Ukðξ1; ξ2; ξ3; ξ4Þjξ2;ξ3;ξ4¼0
≡ 1

2
Vtrð−GkΓ

ð3Þ
k;ξ4

Gk∂kRkÞjξ2;ξ3;ξ4¼0
: ð44Þ

The equation for Vk turns out to be equivalent to the flow equation for free fields, as interactions are no longer present
for ξ2; ξ3; ξ4 ¼ 0:

∂kVkðξ1Þ ¼
Tk4

6π2
X
n

�
4

ω2
n þ k2 þ 2V 0

k

þ 1

ω2
n þ k2 þ 2V 0

k þ 4ξ1V 00
k

þ 3

ω2
n þ k2 þ 2V 0

k þ 2ξ1Wk

þ 12

ω2
n þ k2 þ 2Yk

þ 12

ω2
n þ k2 þ 2ðYk þ ξ1XkÞ

þ 4

ω2
n þ k2 þ 2Yk=λSt

þ 4

ω2
n þ k2 þ 2ðYk þ ξ1XkÞ=λSt

�
: ð45Þ

Here, explicit ξ1-dependences on the right-hand side are
implied. The masses of the fields ρ and ω as well as f1 and
a1 are equal in the presence of SUð2ÞV invariance.
Equation (45) reveals some characteristics of the consid-
ered model: the 4þ 1þ 3 ¼ 8 (pseudo-)scalar degrees of
freedom are represented by the first line. The first term of
Eq. (45) corresponds to the mass-degenerate η and ~π. The
second and the third describe the σ and the ~a0, respectively.
As a cross-check, note that the mass eigenvalues of these
spin-zero fields are equal to the ones quoted in Ref. [63].
The second line corresponds to the physical degrees of
freedom of the (axial-)vector mesons [ð4 × 3Þ þ ð4 × 3Þ ¼
12þ 12 fields], whereas the last line corresponds to their
unphysical degrees of freedom (4þ 4) introduced via
Stueckelberg’s Lagrangian. Obviously, these eight addi-
tional degrees of freedom decouple from the flow for
λSt → 0. The Matsubara sum over n can be carried out
analytically, e.g. by a contour integral in the complex plane
[107]. The flow of Vkðξ1Þ entangles with the flow of
Wkðξ1Þ, Xkðξ1Þ, and Ykðξ1Þ. Thus the flow equations for
these coefficients are necessary to obtain a closed set of
differential equations. For the sake of clarity, they are
presented in Appendix A.
Figure 1(a) summarizes the dependence of σ0 on T. The

order parameter σ0 becomes successively smaller and drops
discontinuously to zero at Tc ≃ 147.4 MeV, indicating a
first-order phase transition. The discontinuity occurring at

this temperature is marked with a dashed line. Figure 1(b)
demonstrates how, as the temperature increases, the
mesonic screening masses of chiral partners approach each
other. These are (i) ρ and a1, (ii) ω and f1 (their masses are
not shown explicitly, since mω ¼ mρ and mf1 ¼ ma1),
(iii) σ and π, as well as (iv) a0 and η (mη ¼ mπ; thus
we do not show mη explicitly). The masses of chiral
partners become degenerate at the transition temperature
and above. Note that solid lines correspond to data
interpolated using cubic splines. In cases where the data
points are explicitly given in terms of colored crosses,
however, the lines represent a cubic smoothing spline fit.
Details are provided in Appendix B.
The ρ=a1 mass increases/decreases before the transition

point is reached. Pions and η are the Goldstone bosons of
chiral symmetry breaking, and thus necessarily massless in
the broken phase. This is explained by Eq. (39): if ξ10 ≠ 0,
the physical minimum is located at the point where
V 0
kðξ1Þ ¼ 0. Inspecting Eq. (45), we see that V 0

k is indeed
proportional to the (squared) mass of pion and η. However,
for T > Tc the ground state is characterized by ξ10 ¼ 0, and
thus V 0

kð0Þ (i.e., the masses of pions and η) may differ
from zero.
We tuned the UV parameters in the vacuum to achieve

the most “realistic” mesonic screening masses and a non-
zero value for σ0 of around 147.9 MeV (the tree-level value
is σ0 ¼

ffiffiffiffiffiffi
Zπ

p
fπ ≃ 148.8 MeV). Apparently, the IR vacuum
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masses of the σ and a0 mesons are far too small com-
pared to what we expect from the PDG [90], no matter
whether we choose the assignment ff0ð500Þ;a0ð980Þg or
ff0ð1370Þ;a0ð1450Þg. We return to a discussion of this
issue below. Furthermore, the masses of ω and ρ are too
heavy. The ratio between the masses of ρ and a1 is smaller
than expected (experimentally it should be around 1.6).

B. Chiral limit with Uð1ÞA anomaly

As a second scenario we study how the Uð1ÞA anomaly
influences the order of the transition and the mesonic
masses. The coupling cA in Eq. (4) is now nonzero and
quantifies the strength of the Uð1ÞA-symmetry breaking.
Proceeding similarly as above, ΓΛ is slightly modified:

ΓΛ ¼
Z
x

�
1

2
∂μσ∂μσ þ 1

2
∂μ~a0 · ∂μ~a0 þ

1

2
∂μη∂μηþ

1

2
∂μ~π · ∂μ~π þ 1

4
ð∂μων − ∂νωμÞ2 þ

1

4
ð∂μ~ρν − ∂ν~ρμÞ2

þ 1

4
ð∂μf1ν − ∂νf1μÞ2 þ

1

4
ð∂μ~a1ν − ∂ν~a1μÞ2 þ

λSt
2
½ð∂μωμÞ2 þ ð∂μ~ρμÞ2 þ ð∂μf1μÞ2 þ ð∂μ~a1μÞ2�

þ c̄1;Λξ̄1 þ c̄2;Λξ̄21 þ c̄3;Λξ̄1ξ̄2 þ c̄4;Λξ̄2 þ c̄5;Λξ̄22 þ c̄6;Λξ̄3 þ c4;Λξ3 þ c5;Λξ4

�
; ð46Þ

with the new invariants ξ̄1, ξ̄2, ξ̄3:

ξ̄1 ¼ σ2 þ ~π2; ð47Þ

ξ̄2 ¼ η2 þ ~a20; ð48Þ

ξ̄3 ¼ ðση − ~π · ~a0Þ2: ð49Þ

The former invariants ξ1 and ξ2 are functions of the new
invariants ξ̄1, ξ̄2, and ξ̄3: ξ1 ¼ ξ̄1 þ ξ̄2, ξ2 ¼ ξ̄1ξ̄2 − ξ̄3. The
origin of the new invariants is the Uð1ÞA-symmetry break-
ing term ∼ detΣþ detΣ† in Eq. (4). The invariants ξ3 and
ξ4 remain unchanged. The scale-dependent couplings of the
effective potential are now defined as follows:

c̄1;k ¼
1

2
ðm2

0;k − cA;kÞ;

c̄2;k ¼
1

4

�
λ1;k þ

1

2
λ2;k

�
;

c̄3;k ¼
1

2

�
λ1;k þ

3

2
λ2;k

�
;

c̄4;k ¼
1

2
ðm2

0;k þ cA;kÞ;

c̄5;k ¼
1

4

�
λ1;k þ

1

2
λ2;k

�
;

c̄6;k ¼ −
λ2;k
2

;

c4;k ¼
g21;k
2

;

c5;k ¼
m2

1;k

2
: ð50Þ

(a) (b)

FIG. 1 (color online). Phase transition in the eLSM with Uð2ÞR × Uð2ÞL symmetry. (a) Order parameter σ0 as a
function of temperature. (b) Screening masses as a function of temperature.
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We again want to expand Uk in terms of ξ̄1;…; ξ4. For five different invariants we have to keep at least five fields nonzero.
In addition to σ, a10, a

1
10, and ρ10 we decided to take the η field into account and map those variables onto the set

fξ̄1; ξ̄2; ξ̄3; ξ3; ξ4g:
σ2 ¼ ξ̄1;

ða10Þ2 ¼ ξ̄2 −
ξ̄3
ξ̄1

;

η2 ¼ ξ̄3
ξ̄1

;

ða110Þ2 ¼
ξ3

ξ̄1 þ ξ̄2
;

ðρ10Þ2 ¼ ξ4 −
ξ3

ξ̄1 þ ξ̄2
: ð51Þ

Similarly to Sec. III A, the potential is now discretized with respect to ξ̄1 and one assumes that the physical minimum is
attained for ξ̄10 ≡ σ20 and ξ̄2, ξ̄3 ¼ 0. Thus, in the ansatz for the effective potential, we restrict ourselves to the linear order
in ξ̄2, ξ̄3, ξ3, and ξ4:

Ukðξ̄1; ξ̄2; ξ̄3; ξ3; ξ4Þ ¼ V̄kðξ̄1Þ þ W̄kðξ̄1Þξ̄2 þ X̄kðξ̄1Þξ̄3 þ Ȳkðξ̄1Þξ3 þ Z̄kðξ̄1Þξ4: ð52Þ
The flow equation for V̄kðξ̄1Þ reads

∂kV̄kðξ̄1Þ ¼
Tk4

6π2
X
n

�
3

ω2
n þ k2 þ 2V̄ 0

k

þ 1

ω2
n þ k2 þ 2V̄ 0

k þ 4ξ̄1V̄ 00
k

þ 3

ω2
n þ k2 þ 2W̄k

þ 1

ω2
n þ k2 þ 2ðW̄k þ ξ̄1X̄kÞ

þ 12

ω2
n þ k2 þ 2Z̄k

þ 12

ω2
n þ k2 þ 2ðZ̄k þ ξ̄1ȲkÞ

þ 4

ω2
n þ k2 þ 2Z̄k=λSt

þ 4

ω2
n þ k2 þ 2ðZ̄k þ ξ̄1ȲkÞ=λSt

�
: ð53Þ

Note that the η meson now attains a mass different from that
of the pions: it becomes massive in the spontaneously broken
phase, as it should, since Uð1ÞA is explicitly broken and
there are only three (and no longer four) Goldstone bosons.
Again we tune the bare parameters such that most

realistic meson masses are obtained in the IR. The order

parameter σ0 continuously decreases with increasing T,
until it vanishes at a critical temperature of approximately
276.5 MeV; see Fig. 2(a). We conclude that the axial
anomaly turns the first-order transition, found in the
Uð2ÞR ×Uð2ÞL-symmetric theory, into a second-order
phase transition with a significantly higher critical

(a) (b)

FIG. 2 (color online). Phase transition in the eLSM with SUð2ÞV × SUð2ÞA × Uð1ÞV symmetry. (a) Order parameter σ0 as a function
of the temperature T. (b) Screening masses as a function of temperature.
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temperature. Figure 2(b) shows the evolution of the masses
of (pseudo-)scalar and (axial-)vector mesons. Again, there
are four different pairs of chiral partners, (ρ,a1), (ω,f1) (the
masses of which are identical to the corresponding mesons
in the first pair and thus not shown explicitly), (σ,π), as well
as (η,a0). The masses of chiral partners become degenerate
at the transition temperature. The pions assume a non-
vanishing mass above the critical temperature for the same
reason as discussed in the previous section. At zero
temperature, the ρðωÞ meson mass is close to its physical
value, but the a1ðf1Þmass is too small. The mass difference
between vector (ω, ρ) and axial-vector mesons (f1, a1)
comes out to be≃268.7 MeV and is of the same magnitude
as for the Uð2ÞR ×Uð2ÞL-symmetric case (≃265.4 MeV).
The η-meson mass is too large compared with the values
stated in Refs. [77,108]. The vacuum mass of the σ of
around 357.4 MeV is now only slightly smaller than the
experimental value for the mass of f0ð500Þ, while the
vacuum mass of a0 is very close to its experimental value.
The data points for the mass of the σ fluctuate strongly as a
function of temperature, since the potential is rather flat in
this case and its curvature (the squared σ mass) is rather
hard to determine numerically with reasonable accuracy.

C. Explicitly broken chiral symmetry with anomaly

Finally, we apply our FRG analysis to the case of
ESB due to nonzero and degenerate quark masses
(h00 ≠ 0). The truncation of the effective potential (52) is
still valid. In the case of ESB, the root of V̄ 0

k no longer
coincides with the one of ∂Uk=∂σ for nonzero vacuum
expectation values of the σ field. The global minimum ξ̄10
must now fulfill the following relation:

2

ffiffiffiffiffiffi
ξ̄10

q
V̄ 0
kðξ̄10Þ − h00 ¼ 0; ð54Þ

i.e., the expansion coefficients W̄k, X̄k, etc., are evaluated
for a shifted ξ̄10, producing massive pseudo-Goldstone
bosons π (which have a nonzero mass even for σ0 ≠ 0).

According to Eq. (54), the potential never has a global
minimum at ξ̄1 ¼ 0. Solving the flow equations on the
ξ̄1 grid, the results are shown in Fig. 3. In Fig. 3(a), we
see that σ0 decreases and tends asymptotically towards
zero. Consequently, the transition is a crossover transition.
At an estimated pseudocritical temperature of Tpc≃
354.8 MeV, the curvature changes its sign. Figure 3(b)
reveals that, with the choice h00 ¼ 3 × 106 MeV3, the pions
exhibit a nonzero mass of ≃142.5 MeV in vacuum. The
masses of chiral partners approach each other, but do not
become identical. We further observe a dropping a1 meson
mass but an increasing ρ mass. The vacuum σ mass of
598.5 MeV is a little larger than the physical value for the
f0ð500Þ resonance. The remaining masses are in good
agreement with the results of Sec. III B. The gap between
the masses of the ρ and a1 mesons is now 314.5 MeV
(compared to 268.7 MeV in the previous case).

IV. SUMMARY AND OUTLOOK

The QCD transition is commonly associated with the
restoration of chiral symmetry. Experimentally, this could
be detected by a change of the in-medium masses of
(axial-)vector mesons. It is therefore essential to include
them in a theoretical analysis. Nonperturbative continuum
methods, such as the FRG, provide new insights into the
QCD transition, as they do not rely on weak couplings and
are applicable at nonzero net-baryon density where lattice
QCD suffers from the fermion-sign problem.
In this study, we investigated the chiral transition for two

flavors by applying the FRG formalism to the eLSM, an
effective low-energy model for QCD. Thus, our work is an
extension of many studies involving two-flavor effective
models for QCD, see e.g. Refs. [18,63,64], in the sense
that vector and axial-vector mesonic degrees of freedom
are now incorporated into the FRG flow. In order to
derive the FRG flow equations with (axial-)vector mesons,
Stueckelberg’s Lagrangian has been employed [98–100].
We use the grid method and the LPA to compute the flow of

(a) (b)

FIG. 3 (color online). Phase transition in the eLSM with ESB andUð1ÞA anomaly. (a) Order parameter σ0 as a function of temperature.
(b) Screening masses as a function of temperature.
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the effective potential. The order of the phase transition and
the meson screening masses were determined in three
different scenarios: (i) the chiral limit without Uð1ÞA
anomaly, (ii) the chiral limit with Uð1ÞA anomaly, and
(iii) the realistic case with nonvanishing quark masses and
Uð1ÞA anomaly.
Overall, our numerical results are broadly consistent

with previous findings. Regarding the full Uð2ÞR ×Uð2ÞL-
symmetric theory, cf. Sec. III A, our conclusion is com-
patible with Ref. [64] and the statement of Pisarski and
Wilczek [17] that the chiral phase transition is of first order
for Nf ¼ 2 and massless quarks. Reducing the symmetry
to SUð2ÞV × SUð2ÞA ×Uð1ÞV (Sec. III B) turns it into a
second-order transition, which is also in agreement with
Ref. [17] as well as with the three-flavor study of Ref. [60].
Explicitly breaking chiral symmetry to an exact isospin
symmetry generates a crossover transition (Sec. III C).
In comparisonwith the results from theCornwall-Jackiw-

Tomboulis (CJT) formalism [81] or lattice-QCD simula-
tions [22,23,109], the pseudocritical temperature Tpc ≃
354.8 MeV of the crossover transition comes out larger,
cf. Tpc ≃ 195 MeV resp. 155 MeV in the aforementioned
approaches. It is conceivable that this deviation arises from
the lack of quark fields in our approach, which, being rather
light degrees of freedom, evidently contribute substantially
to the FRG flow [75], and from the fact that presently our
approach ignores momentum-dependent vertices and inter-
actions among (axial-)vector mesons. It has to be clarified
how higher orders in the derivative expansion affect the
transition. We hope that by additional investigations, as
stated below, we are able to improve our results.
We note that at temperatures T > Λ=ð2πÞ thermal

fluctuations still contribute above the cutoff scale [55].
This means that, in principle, one should choose a larger
cutoff in our scenarios with a continuous transition in order
to include those fluctuations. We have checked that,
choosing a cutoff Λ ¼ 1.5 GeV, the picture does not
change dramatically. One should keep in mind that the
eLSM is a low-energy description of the strong interaction;
thus the cutoff should not be much larger than the confine-
ment scale (≃1 GeV).
In all three scenarios studied here, it was demonstrated

how the masses of chiral partners become degenerate at the
phase boundary and beyond; see Figs. 1(b)–3(b). The mass
degeneracy is a necessary condition for the restoration of
chiral symmetry [6–9]. Let us note that in our study the
mass of the a1 decreases towards the chiral transition, but
not the mass of the ρ, cf. Fig. 3(b). In the CJT study of
Ref. [81] the authors also found an increasing ρ mass
towards the chiral transition. In principle, Ref. [6] argues
that the ρmeson mass has to increase in the framework of a
gauged two-flavor LSM, but a globally symmetric LSM
could also allow for a dropping ρ mass.
In the physically most realistic scenario with ESB and

Uð1ÞA anomaly, the vacuum masses of ðσ; a0Þ come out to

be (598.5, 996.3) MeV. This is in the range of the masses of
the light scalar resonances ff0ð500Þ; a0ð980Þg. However,
Refs. [76–78] suggested that the chiral partners of π and η
should be ff0ð1370Þ; a0ð1450Þg. This seems to be a natural
scenario, if the latter are (predominantly) quark-antiquark
states. Then the light resonances ff0ð500Þ; a0ð980Þg are
most likely made of four quarks, e.g. in the form of
resonances in the scattering continuum, or even bound
states, of two pseudoscalar mesons. Also bound states of
diquark and antidiquark molecules have been suggested
to explain their nature. As suggested a long time ago by
Jaffe [110], this “tetraquark” interpretation of the light
scalar resonances would naturally explain the “inverse mass
ordering” of these states. By construction, the FRG
approach resums correlations of infinite order and thus,
if ff0ð500Þ; a0ð980Þg are correlated states of pseudoscalar
mesons, would naturally generate these mesons dynami-
cally. This could be an explanation of why the masses of σ
and a0 come out close to those of ff0ð500Þ; a0ð980Þg.
[In fact, we were not able to find UV parameters such that
the IR vacuum masses of σ and a0 are close to those of
ff0ð1370Þ; a0ð1450Þg.] Note that the chiral transition was
studied in the presence of both a light and a heavy scalar
state in Ref. [111]. There it was shown that there is actually
no conflict with the “tetraquark” scalar state being light and
the heavy scalar state being the chiral partner of the pion.
There are many questions left open for future study, e.g.

one should investigate the order of the phase transition as a
function of the anomaly strength. The first-order transition
in Sec. III A should smoothly pass into one of second order,
as shown in Sec. III B. Moreover, one needs to figure out
when exactly the Uð1ÞA anomaly disappears for high
temperatures. This can be done by assuming cA to be
proportional to an explicitly T-dependent instanton density.
In order to decide whether the transition lies in the Oð4Þ-
universality class or not [17,18], the critical exponents
have to be calculated. A natural next step in our analysis is
to account for nontrivial wave-function renormalization
factors, i.e., going beyond the LPA. One can readily
extend our investigations to Nf ¼ 3 quark flavors, but in
this case one has an additional order parameter (the
strange condensate) which necessitates the use of a
two-dimensional grid [60] and thus considerably increases
the numerical effort. Baryonic degrees of freedom should
also be involved in the FRG flow, since they noticeably
influence the dilepton production [10]. The first candidate
for such an extension would be the nucleon and its chiral
partner [81,112,113], for which the Nð1535Þ resonance
could be an adequate choice [114]. As this resonance has a
larger mass than the Δ baryons, for reasons of consistency
one should furthermore consider the fluctuations of spin-
3=2 fields as well as their respective chiral partners
[81,115]. Finally, another topic for future studies is to
introduce quarks in the FRG. Since these are light degrees
of freedom, quarks will substantially contribute to the
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FRG flow. We expect that the inclusion of quarks will
also lower the (unnaturally) large transition temperature
found in the cases where the Uð1ÞA symmetry is explicitly
broken.
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APPENDIX A: FLOW EQUATIONS

The flow equations for the expansion coefficients of the
effective potential Uk are generally of the form

∂kFk;i ¼
T
2π2

X
n

Z
k

0

dq~q2fk;iðFk; F0
k; F

00
k;ω

2
n; ~q2Þ; ðA1Þ

with Fk ¼ ðVk;Wk;…Þ, fk ¼ ðvk; wk;…Þ, and q ¼ j~qj.
Dependences on ξ1, ξ̄1 were omitted. The derivatives
F0
k ¼ ∂Fk=∂ξ1 and F00

k ¼ ∂2Fk=ð∂ξ1Þ2 (or F0
k ¼ ∂Fk=∂ξ̄1

and F00
k ¼ ∂2Fk=ð∂ξ̄1Þ2, respectively) are approximated by

finite differences, which leads to a solvable system:

∂kFk;i ¼
T
2π2

X
n

Z
k

0

dq~q2fk;iðFk;ω2
n; ~q2Þ: ðA2Þ

The functions fk;i are specified in subsections A 1–A 2.
The sum over Matsubara frequencies is performed analyti-
cally, e.g.

X
n

Z
k

0

dqq4
1

E4
σðω2

n þ q2Þ

¼
Z

k

0

dqq4

2
64 cothð q

2TÞ
2qTðk2 þ 4ξ1V 00

k þ 2V 0
k − q2Þ2 −

csch2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þ4ξ1V 00
kþ2V 0

k

p
2T

�
8T2ðk2 þ 4ξ1V 00

k þ 2V 0
k − q2Þ2

þ
q2csch2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4ξ1V 00

kþ2V 0
k

p
2T

�
8T2ðk2 þ 4ξ1V 00

k þ 2V 0
kÞðk2 þ 4ξ1V 00

k þ 2V 0
k − q2Þ2 þ

q2 sinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þ4ξ1V 00
kþ2V 0

k

p
T

�
csch2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4ξ1V 00

kþ2V 0
k

p
2T

�
8Tðk2 þ 4ξ1V 00

k þ 2V 0
kÞ3=2ðk2 þ 4ξ1V 00

k þ 2V 0
k − q2Þ2

−
3 sinh


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4ξ1V 00

kþ2V 0
k

p
T

�
csch2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4ξ1V 00

kþ2V 0
k

p
2T

�
8T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ξ1V 00

k þ 2V 0
k

q
ðk2 þ 4ξ1V 00

k þ 2V 0
k − q2Þ2

3
75: ðA3Þ

Where necessary, the momentum integration is performed by using numerical quadrature.
The potentials Vk and V̄k are initialized as follows:

VΛðξ1Þ ¼ aΛðξ1 − b2ΛÞ2; ðA4Þ
V̄Λðξ̄1Þ ¼ āΛðξ̄1 − b̄2ΛÞ2; ðA5Þ

where aΛ ¼ 4.0, bΛ ¼ 297.6 MeV, āΛ ¼ 5.5, and b̄Λ ¼ 255.0 MeV. Furthermore, we have WΛðξ1Þ ¼ 30, XΛðξ1Þ ¼ 20,
YΛðξ1Þ ¼ 2.87 × 105 MeV2, W̄Λðξ̄1Þ ¼ 2.5 × 105 MeV2, X̄Λðξ̄1Þ ¼ −1.0, ȲΛðξ̄1Þ ¼ 31.0, and Z̄Λ ¼ 1.27 × 105 MeV2.
Under the assumption of ESB, the UV parameters change to W̄Λðξ̄1Þ ¼ 2.0 × 105 MeV2, ȲΛðξ̄1Þ ¼ 45.0, and
Z̄Λ ¼ 1.1 × 105 MeV2, while the rest remains identical.

1. Flow equations without Uð1ÞA anomaly

In the case without Uð1ÞA anomaly, the quantities fk;i in Eq. (A2) read

vk ¼ k

�
3

E2
a0

þ 12

E2
a1

þ 12

E2
ρ
þ 1

E2
σ
þ 4

E2
π

�
; ðA6Þ

wk ¼
1

2
k

�
−
4½2V 00

kð8Wk − 3ξ1W0
kÞ þ 15ξ1WkW0

k þ 4ξ21W
02
k þW2

k�
E4
a0ξ1ðWk − 2V 00

kÞ
þ 24Xk

E4
a1ξ1

þ 192X2
k

E6
a1

−
4½2V 00

kð2ξ21W00
k þ 9ξ1W0

k þ 6WkÞ þ ξ1Wkð3W0
k − 2ξ1W00

kÞ þ 4ξ21W
02
k þ 3W2

k�
ξ1E4

σð2V 00
k −WkÞ

−
8ð2ξ1W0

k þWkÞ
E4
πξ1

þ 16W2
k

E6
π

−
24Xk

ξ1E4
ρ

�
;

ðA7Þ
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xk ¼
1

2
k

�
−

16~q2X2
k

E4
πE2

a1ðω2
n þ ~q2Þ þ

32~q2X2
k

E4
a0E

2
a1ðω2

n þ ~q2Þ −
16~q2X2

k

E2
πE4

a1ðω2
n þ ~q2Þ þ

32~q2X2
k

E2
a0E

4
a1ðω2

n þ ~q2Þ

þ 32~q2ðξ1X0
k þ Xk þ Y 0

kÞ2
E2
a1E

4
σðω2

n þ ~q2Þ þ 32~q2ðξ1X0
k þ Xk þ Y 0

kÞ2
E4
a1E

2
σðω2

n þ ~q2Þ −
16~q2X2

k

E4
a0ðω2

n þ ~q2Þðξ1Xk þ YkÞ

þ
4½Xkð 4Xk

ξ1XkþYk
þ 1

ξ1
Þ − 3X0

k�
E4
a0

þ 16~q2X2
k

E4
πE2

ρðω2
n þ ~q2Þ þ

16~q2X2
k

E2
πE4

ρðω2
n þ ~q2Þ

−
16~q2ðξ1X0

k þ Xk þ Y 0
kÞ2

E4
σðω2

n þ ~q2Þðξ1Xk þ YkÞ
−

8ξ1~q2X3
k

E4
πYkðω2

n þ ~q2Þðξ1Xk þ YkÞ
−

32~q2Y 02
k

E4
ρE2

σðω2
n þ ~q2Þ −

32~q2Y 02
k

E2
ρE4

σðω2
n þ ~q2Þ

þ 16~q2Y 02
k

E4
σYkðω2

n þ ~q2Þ þ
4
h
−2ξ1X00

k −
Xk
ξ1
þ 4ðξ1X0

kþXkþY 0
kÞ2

ξ1XkþYk
− 5X0

k −
4Y 02

k
Yk

i
E4
σ

þ
8



ξ1X3
k

ξ1XkYkþY2
k
− 2X0

k

�
E4
π

�
; ðA8Þ

yk ¼
1

2
k
�

16ξ1~q2X2
k

E4
πE2

a1ðω2
n þ ~q2Þ þ

16ξ1~q2X2
k

E2
πE4

a1ðω2
n þ ~q2Þ −

4ð2Xk þ 3Y 0
kÞ

E4
a0

−
8ξ1~q2X2

k

E4
πðω2

n þ ~q2Þðξ1Xk þ YkÞ

þ 32ξ1~q2Y 02
k

E4
ρE2

σðω2
n þ ~q2Þ þ

32ξ1~q2Y 02
k

E2
ρE4

σðω2
n þ ~q2Þ −

16ξ1~q2Y 02
k

E4
σYkðω2

n þ ~q2Þ þ
8


− XkYk

ξ1XkþYk
− 2Y 0

k

�
E4
π

−
4½Ykð2ξ1Y 00

k þ Y 0
kÞ − 4ξ1Y 02

k �
E4
σYk

�
; ðA9Þ

with

E2
σ ¼ k2 þ ω2

n þ 2V 0
k þ 4ξ1V 00

k; ðA10Þ

E2
π ¼ k2 þ ω2

n þ 2V 0
k; ðA11Þ

E2
a0 ¼ k2 þ ω2

n þ 2V 0
k þ 2ξ1Wk; ðA12Þ

E2
ρ ¼ k2 þ ω2

n þ 2Yk; ðA13Þ

E2
a1 ¼ k2 þ ω2

n þ 2Yk þ 2ξ1Xk: ðA14Þ

The meson masses are given by

mσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0

k þ 4ξ1V 00
k

q
; ðA15Þ

mπ ¼
ffiffiffiffiffiffiffiffi
2V 0

k

q
; ðA16Þ

ma0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0

k þ 2ξ1Wk

q
; ðA17Þ

mρ ¼
ffiffiffiffiffiffiffiffi
2Yk

p
; ðA18Þ

ma1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Yk þ 2ξ1Xk

p
: ðA19Þ

2. Flow equations with Uð1ÞA anomaly

In the case with Uð1ÞA anomaly, the quantities fk;i in Eq. (A2) read

v̄k ¼
1

2
k

�
24

�
1

E2
a1

þ 1

E2
ρ

�
þ 6

E2
a0

þ 2

E2
η
þ 2

E2
σ
þ 6

E2
π

�
; ðA20Þ
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w̄k ¼
1

2
k

�
32ξ̄1W̄02

k

E2
a0E

4
σ

þ 32ξ̄1W̄02
k

E4
a0E

2
σ

þ 192ξ̄1Ȳ2
k

E6
a1

−
24Ȳk

E4
a1

−
4ð2ξ̄1W̄00

k þ W̄0
kÞ

E4
σ

−
4ð3W̄0

k þ X̄kÞ
E4
π

þ 8ξ̄1X̄2
k

E4
πE2

η
þ 8ξ̄1X̄2

k

E2
πE4

η
−
24Ȳk

E4
ρ

�
; ðA21Þ

x̄k ¼
1

2
k

�
−
32W̄02

k

E2
a0E

4
σ
−
32W̄02

k

E4
a0E

2
σ
þ 24X̄2

k

E4
πE2

a0

þ 24X̄2
k

E2
πE4

a0

−
24Ȳk

E4
a1 ξ̄1

−
192Ȳ2

k

E6
a1

þ 4X̄2
k

E4
ηð−V̄ 0

k þ W̄k þ ξ̄1X̄kÞ

−
2X̄2

k

E2
ηðV̄ 0

k − W̄k − ξ̄1X̄kÞ2
þ 4X̄kðW̄k − V̄ 0

kÞ
E2
πE2

ηξ̄1ð−V̄ 0
k þ W̄k þ ξ̄1X̄kÞ

þ 2X̄2
k

E2
πðV̄ 0

k − W̄k − ξ̄1X̄kÞ2

þ
4½X̄kð 1ξ̄1 −

X̄k

−V̄ 0
kþW̄kþξ̄1X̄k

Þ − 3X̄0
k�

E4
π

þ 32ðW̄0
k þ ξ̄1X̄0

k þ X̄kÞ2
E4
ηE2

σ
þ 32ðW̄0

k þ ξ̄1X̄0
k þ X̄kÞ2

E2
ηE4

σ

−
4X̄k

E2
πE2

ηξ̄1
−
4ð2ξ̄1X̄00

k þ X̄k

ξ̄1
þ 5X̄0

kÞ
E4
σ

þ 24Ȳk

ξ̄1E4
ρ

�
; ðA22Þ

ȳk ¼
1

2
k

(
−

16~q2Ȳ2
k

E4
πE2

a1ðω2
n þ ~q2Þ þ

32~q2Ȳ2
k

E4
a0E

2
a1ðω2

n þ ~q2Þ −
16~q2Ȳ2

k

E2
πE4

a1ðω2
n þ ~q2Þ þ

32~q2Ȳ2
k

E2
a0E

4
a1ðω2

n þ ~q2Þ

þ 32~q2ðξ̄1Ȳ 0
k þ Ȳk þ Z̄0

kÞ2
E2
a1E

4
σðω2

n þ ~q2Þ þ 32~q2ðξ̄1Ȳ 0
k þ Ȳk þ Z̄0

kÞ2
E4
a1E

2
σðω2

n þ ~q2Þ −
16~q2Ȳ2

k

E4
a0ðω2

n þ ~q2Þðξ̄1Ȳk þ Z̄kÞ

þ 4Ȳkð5ξ̄1Ȳk þ Z̄kÞ
E4
a0 ξ̄1ðξ̄1Ȳk þ Z̄kÞ

þ 16~q2Ȳ2
k

E4
πE2

ρðω2
n þ ~q2Þ þ

16~q2Ȳ2
k

E2
πE4

ρðω2
n þ ~q2Þ

−
16~q2½Z̄kðξ̄1Ȳ 0

k þ ȲkÞ22Z̄kZ̄0
kðξ̄1Ȳ 0

k þ ȲkÞ − ξ̄1ȲkZ̄02
k �

E4
σZ̄kðω2

n þ ~q2Þðξ̄1Ȳk þ Z̄kÞ
−

8ξ̄1~q2Ȳ3
k

E4
πZ̄kðω2

n þ ~q2Þðξ̄1Ȳk þ Z̄kÞ

−
32~q2Z̄02

k

E4
ρE2

σðω2
n þ ~q2Þ −

32~q2Z̄02
k

E2
ρE4

σðω2
n þ ~q2Þ −

4Ȳk

E4
ηξ̄1

þ
4


Ȳk

ξ̄1
þ 2ξ̄1Ȳ3

k

ξ̄1ȲkZ̄kþZ̄2
k
− 3Ȳ 0

k

�
E4
π

þ
4
h
−2ξ̄1Ȳ 00

k −
Ȳk

ξ̄1
þ 4Z̄kðξ̄1Y 0

kþȲkÞ2þ8Z̄kZ̄0
kðξ̄1Ȳ 0

kþȲkÞ−4ξ̄1ȲkZ̄02
k

Z̄kðξ̄1ȲkþZ̄kÞ − 5Ȳ 0
k

i
E4
σ

)
; ðA23Þ

z̄k ¼
1

2
k

�
16ξ̄1~q2Ȳ2

k

E4
πE2

a1ðω2
n þ ~q2Þ þ

16ξ̄1~q2Ȳ2
k

E2
πE4

a1ðω2
n þ ~q2Þ −

8Ȳk

E4
a0

−
8ξ̄1~q2Ȳ2

k

E4
πðω2

n þ ~q2Þðξ̄1Ȳk þ Z̄kÞ
þ 32ξ̄1~q2Z̄02

k

E4
ρE2

σðω2
n þ ~q2Þ

þ 32ξ̄1~q2Z̄02
k

E2
ρE4

σðω2
n þ ~q2Þ −

16ξ̄1~q2Z̄02
k

E4
σZ̄kðω2

n þ ~q2Þ þ
4


− 2ȲkZ̄k

ξ̄1ȲkþZ̄k
− 3Z̄0

k

�
E4
π

−
4½Z̄0

kðZ̄k − 4ξ̄1Z̄0
kÞ þ 2ξ̄1Z̄kZ̄00

k�
E4
σZ̄k

�
; ðA24Þ

with

E2
σ ¼ k2 þ ω2

n þ 2V̄ 0
k þ 4ξ̄1V̄ 00

k; ðA25Þ

E2
π ¼ k2 þ ω2

n þ 2V̄ 0
k; ðA26Þ

E2
a0 ¼ k2 þ ω2

n þ 2W̄k; ðA27Þ

E2
η ¼ k2 þ ω2

n þ 2W̄k þ 2ξ̄1X̄k; ðA28Þ

E2
ρ ¼ k2 þ ω2

n þ 2Z̄k; ðA29Þ

E2
a1 ¼ k2 þ ω2

n þ 2Z̄k þ 2ξ̄1Ȳk: ðA30Þ

In this case, the meson masses read

mσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V̄ 0

k þ 4ξ̄1V̄ 00
k

q
; ðA31Þ

mπ ¼
ffiffiffiffiffiffiffiffi
2V̄ 0

k

q
; ðA32Þ
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ma0 ¼
ffiffiffiffiffiffiffiffiffi
2W̄k

q
; ðA33Þ

mη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W̄k þ 2ξ̄1X̄k

q
; ðA34Þ

mρ ¼
ffiffiffiffiffiffiffiffi
2Z̄k

q
; ðA35Þ

ma1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z̄k þ 2ξ̄1Ȳk

q
: ðA36Þ

APPENDIX B: DATA INTERPOLATION

n data points yj at sites xj are approximated by a
cubic spline f, such that the following expression is
minimized:

p
Xn
j¼1

wj½yj − fðxjÞ�2 þ ð1 − pÞ
Z

λðtÞjD2fðtÞj2dt:

ðB1Þ

The first term is an error measure, whereas the second
is a roughness measure. The default value for the
weights wj as well as for the weight function λ is one.
The integration has to be performed over the smallest
interval containing all data sites. p is a smoothing
parameter. This method is used via the MATLAB csaps
function.
For both fits in Fig. 1, all weights are equal to one and p

is chosen to be 1 × 10−4. In Fig. 2, we have p ¼ 1 × 10−5

and w1 ¼ 1 × 104 at x1 ¼ 1.0 MeV.
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