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We present the calculation of the hyperon forward spin polarizability γ0 using manifestly Lorentz-
covariant baryon chiral perturbation theory including the intermediate contribution of the spin-3=2 states.
As at the considered order the extraction of γ0 is a pure prediction of chiral perturbation theory, the obtained
values are a good test for this theory. After including explicitly the decuplet states, our SU(2) results have a
very good agreement with the experimental data and we extend our framework to SU(3) to give predictions
for the hyperons’ γ0 values. Prominent are the Σ− and Ξ− baryons as their photon transition to the decuplet
is forbidden in SU(3) symmetry and therefore they are not sensitive to the explicit inclusion of the decuplet
in the theory.
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I. INTRODUCTION

From the experimental study of Compton scattering on a
baryon target one can extract relevant information about the
inner structure of baryons. With the help of the sum rules
for integral characteristics of the cross sections, very
important observables like polarizabilities can be assessed.
The focus of this work is the forward spin polarizability γ0,
which represents the deformation of a hadron relative to
its spin axis when scattering photons in the extreme
forward direction. It is related to the photoabsorption γN
cross sections σ3=2;1=2 with total helicities 3=2 (for parallel
photon and target helicities) and 1=2 (for antiparallel
photon and target helicities) via the sum rule in Ref. [1],

γ0 ¼ −
1

4π2

Z
∞

ω0

dω
σ3=2ðωÞ − σ1=2ðωÞ

ω3
; ð1Þ

originally found in Ref. [2]. The energy ω0 is the threshold
for an associated neutral pion in the intermediate state.
Experimental results for the proton γ0 were obtained in
Refs. [3,4], and, more recently, in Ref. [5]. Furthermore,
dispersion relation studies have been performed in
Refs. [6–9] for both nucleon spin polarizabilities.
Concerning the theoretical approach, the nucleon’s

structure has been thoroughly studied with the help of
effective field theories on Compton scattering data in
Refs. [10–13]. The spin-dependent piece of the amplitude
ϵμMSD

μν ϵ
�ν attracted particular interest. The term

proportional to ω3 (ω is the photon’s energy) contains
the whole information about γ0, via the master formula

γ0½~σ · ð~ϵ × ~ϵ�Þ� ¼ −
i
4π

∂
∂ω2

ϵμMSD
μν ϵ

�ν

ω

����
ω¼0

; ð2Þ

as described in Refs. [1,14,15]. Here ~σ is the vector of Pauli
matrices, and ~ϵ and ~ϵ� are the polarizations of incoming and
outgoing photons, respectively.
Early calculations in models of chiral perturbation theory

(ChPT) that include only nucleonic intermediate states
have been performed both in a heavy-baryon approach as
well as in fully covariant calculations as in Ref. [16]. In
Refs. [17–19] the theorywas extended to include isospin-3=2
intermediate states, namely the Δð1232Þ resonance. It was
found that the inclusion of the latter state greatly improved
the convergence between theory and empirical evidence.
When considering ChPT in SU(3) models, valuable pre-

dictionsabout thehyperons’polarizabilities canbecalculated,
where there are no experimental data available yet. First
results with the help of heavy-baryon ChPT were obtained
in Ref. [15] and later improved in our work, Ref. [20]. The
predictions are expected to be more reliable when using a
fully covariant model and introducing the Δð1232Þ.
Along this line, in this work we perform a calculation of

the amplitude ϵμMSD
μν ϵ

�ν including corrections induced
both by a fully covariant version and intermediate spin-
3=2 states in a full extension to SU(3) flavor. The leading
ChPT order for the quantity γ0 is a p3 calculation. When
including the Δð1232Þ resonance, the study of Ref. [17]
used the so-called small scale expansion introduced in*astrid.blin@ific.uv.es
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Refs. [21,22]. We opt for a different power-counting
scheme, following Ref. [23] and, furthermore, we introduce
the couplings in a consistent dynamics, using the full
Δð1232Þ propagator as in Refs. [24–27]. A study compar-
ing different effective field theoretical models has been
performed in Ref. [28].
The outline of this paper is as follows. In Sec. II we

give a theoretical introduction to the appropriate chiral
Lagrangians and the power counting used. The kinematical
considerations and assumptions for the calculation of γ0 are
presented in Sec. III, and the results are discussed in
Sec. IV. Finally, we briefly summarize in Sec. V.

II. CHPT INVOLVING PSEUDOSCALAR MESONS,
BARYONS, AND PHOTONS

For the description of hyperon polarizabilities we use a
manifestly Lorentz-covariant SU(3) version of chiral per-
turbation theory involving pseudoscalar mesons, baryons,
and photons (see details in Refs. [29,30]). The lowest-order
chiral Lagrangian involving pseudoscalar mesons ϕ,
baryons B, and photons Aμ reads

L ¼ Lð2Þ
ϕϕ þ Lð1Þ

ϕB; ð3Þ
where

Lð2Þ
ϕϕ ¼ F2

0

4
Trðuμuμ þ χþÞ ð4Þ

is the Oðp2Þ meson Lagrangian and

Lð1Þ
ϕB ¼ TrðB̄ði D −mÞBÞ þD

2
TrðB̄γμγ5fuμ; BgÞ

þ F
2
TrðB̄γμγ5½uμ; B�Þ ð5Þ

is the Oðp1Þ Lagrangian including baryons. The symbols ½�
and fg occurring in Eq. (5) and in the following denote
the commutator and anticommutator in flavor space,
respectively. The vielbein uμ is given by ifu†;∇μug,
with u2 ¼ U ¼ expð iϕF0

Þ, where ∇μu¼ ∂μu− iðvμþaμÞuþ
iuðvμ−aμÞ and DμB ¼ ∂μBþ ½Γμ; B� are the covariant
derivatives acting on meson and baryon octet fields,
respectively, and m denotes the baryon octet mass in
the chiral limit. The chiral connection is given by Γμ¼
1
2
½u†;∂μu�− i

2
u†ðvμþaμÞu− i

2
uðvμ−aμÞu†. Since we are

working with photon fields, we set vμ to eϵμQ and aμ to
0, e the negative elementary charge. The constant F0 is the
meson decay constant in the chiral limit and the low-energy
constants D and F are determined from hyperon β decays,
where the combination F þD corresponds to the low-
energy constant gA in the SU(2) limit. The explicit forms of
the 3 × 3 charge matrixQ, meson ϕ, and baryon Bmatrices
are given in Appendix A. The term TrðχþÞ is responsible
for the explicit breaking of the chiral symmetry due to the
finite quark masses,

TrðχþÞ ¼ TrðχU† þUχ†Þ; ð6Þ

where in our case χ ¼ M2 and M is the meson mass. The
power-counting scheme followed here gives the order

N ¼ 4NL þ
X∞
d¼1

dNd − 2Pϕ − PB ð7Þ

to a diagram, where NL stands for the number of loops, Nd
for the number of vertices from Lagrangians of order d,
and Pϕ and PB for the number of meson and baryon
propagators, respectively (see also Ref. [31]).
In this work we also include isospin-3=2 resonances,

which give significant corrections to the full amplitude. The
relevant terms of the Lagrangians that couple these decuplet
fields to the octets of baryons and mesons were partly given
in Refs. [32–34], where the kinetic term reads

Lð1Þ
Δ ¼ Δ̄abc

μ ½γμναi∂α −MΔγ
μν�Δabc

ν : ð8Þ

We added the missing couplings by extending the known
vertices from SU(2) (see Refs. [27,35]) to SU(3):

Lð1Þ
ΔϕB ¼ −i

ffiffiffi
2

p
C

F0MΔ
B̄abεcdaγμνλð∂μΔνÞdbeðDλϕÞce þ H:c:; ð9Þ

Lð2Þ
ΔB ¼ −

3iegMffiffiffi
2

p
mðmþMΔÞ

B̄abεcdaQceð∂μΔνÞdbe ~Fμν þ H:c:;

ð10Þ

where Δijk are the decuplet states (see details in
Appendix A), ~Fμν ¼ εμναβ∂αAβ is the self-dual stress tensor
of the electromagnetic field, and the Dirac tensors γμν and
γμνλ are specified in Appendix A.
The couplings C and gM are low-energy constants and

MΔ corresponds to the decuplet mass in the chiral limit.
Note that the constant C corresponds to the low-energy
constant hA of SU(2) in Refs. [27,35] by the conversion
C ¼ − hA

2
ffiffi
2

p . This definition of hA differs by a factor of 2

from the definition found in Ref. [17]. This low-energy
constant is extracted from the strong decay of the decuplet
into the baryon octet and has been determined to be hA ¼
2.85 in Ref. [36] for SU(2) and C ¼ −0.85 in Ref. [34] for
SU(3). It is also important to mention that the numerical
value for the coupling constant gM has not yet been studied
when extending the model to SU(3). Therefore the quality
of the predictions very much depends on its correct value.
We follow the method of Ref. [17] and estimate the value
of gM by calculating the width of the electromagnetic decay
of the Δð1232Þ:

ΓEM
Δ ¼−2ImðΣEM

Δ Þ ¼ e2g2MðMΔ −mÞ3ðMΔþmÞ3
4M3

Δm
2π

; ð11Þ
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where ImðΣEM
Δ Þ is the imaginary part of the electromagnetic

Δð1232Þ self-energy amplitude. Therefore, using the rela-
tion ΓEM

Δ =ðΓEM
Δ þ ΓStrong

Δ Þ ¼ 0.55%…0.65% and the strong
decay width ΓStrong

Δ ¼ ð118� 2Þ MeV, we get the value
gM ¼ 3.16� 0.16. Since data on the electromagnetic
decays of the full decuplet are sparse and contain large
errors, a determination of gM in the SU(3) version is not
viable. We therefore also fix gM in SU(3) to the Δ → γN
decay, i.e., we also use the value of gM ¼ 3.16� 0.16 here.
We should keep in mind that the central value of gM will
change when going from SU(2) to SU(3), but we expect
that with the present sizable error on gM this value is
included.
For the covariant derivative we use

ðDλϕÞab ¼
1ffiffiffi
2

p ð∂λϕ
ab − ieAλ½Q;ϕ�abÞ: ð12Þ

The factor 1ffiffi
2

p comes from the definition of the meson-octet
matrix. When introducing the decuplet fields into the
chiral theory, an additional small parameter of the ChPT
expansion appears, δ ¼ MΔ–m ∼ 300 MeV. Therefore, the
counting scheme has to be revised. Here we follow the
δ-counting scheme from Ref. [23], where δ2 is counted as
OðpÞ. It is adequate for the low-energy range close to the
pion-production threshold. Hence, one obtains the rule

N ¼ 4NL þ
X∞
d¼1

dNd − 2Pϕ − PB − 1

2
PΔ; ð13Þ

where now PΔ is the number of Δ propagators. Since the
Δð1232Þ is a spin-3=2 resonance, it does not have the
normal Dirac-propagator form for spin-1=2 particles, but
rather takes the Rarita-Schwinger form given by

SαβΔ ðpÞ ¼ pþMΔ

p2 −M2
Δ þ iε

�
−gαβ þ 1

d − 1
γαγβ

þ 1

ðd − 1ÞMΔ
ðγαpβ − γβpαÞþ d − 2

ðd − 1ÞM2
Δ
pαpβ

�
;

ð14Þ

where d is the number of dimensions of the Minkowski
space, which after dimensional regularization is set
to d ¼ 4.
The calculations in this work are done up to order p3 for

the isospin-1=2 counting scheme, which is the leading-
order calculation for the γ0 observable, and up to order p7=2

in the isospin-3=2 counting scheme. This choice is due to
the fact that in the isospin-1=2 sector the first contributions
appear at loop level, which corresponds to the order p3 if all
the coupling vertices are extracted from the lowest-order
Lagrangian. Instead of going to higher-order couplings and
therefore obtaining loops of order p4, we included the
isospin-3=2 sector, which due to its lower order (the
leading-order diagrams are at order p7=2) is expected to
dominate over those contributions. In addition, there is the
advantage that fewer additional low-energy constants are
needed than for the case of higher orders. All the constants’
values chosen for this work are given in Table I. In order to
obtain the SU(2) results, we simply put all the channels
with nonvanishing strangeness to 0 and keep only those
channels involving nucleons, pions, and the isospin-3=2
quadruplet.

III. THE FORWARD SPIN POLARIZABILITY γ0

The diagrams contributing to the forward spin polar-
izability γ0 are shown in Figs. 1 and 2. The calculation of
the amplitudes corresponding to each of these diagrams is
performed in the rest frame of the baryon. To calculate the
forward spin polarizability one needs to assume conserva-
tion of the photon energy ω ¼ ω0; incoming and outgoing
photons have the same momenta ~q ¼ ~q0. In the following,
the Minkowski-space vectors used are

pμ ¼ p0μ ¼ðm; 0; 0; 0Þ;
ϵμ ¼ð0; ~ϵÞ;
ϵ�μ ¼ð0; ~ϵ�Þ;

qμ ¼ q0μ ¼ðω; ~qÞ; ð15Þ

where q and q0 are the 4-momenta of the incoming and
outgoing photons, ϵ and ϵ� are their respective polar-
izations, and p and p0 are the momenta of the incoming

TABLE I. Numerical values for the hadron masses and decay constants used in the γ0 calculations. All the dimensionful values are
given in units of MeV. The physical choice values for SU(2) were taken as in Ref. [17] (notice the difference by a factor of 2 in the
Lagrangian definitions of hA), whereas for the chiral limit and SU(3) we followed Ref. [34]. The value for the coupling gM is calculated
through Eq. (11). The SU(3) physical choice for the baryon masses is given by the average over all the masses appearing in the octet or
decuplet, respectively.

m MΔ Mπ MK Mη F0 gA D F C hA gM

SU(2) Chiral limit choice 880 1152 140 −− −− 87 1.27 −− −− −− 2.85 3.16
Physical choice 938.9 1232 138.04 −− −− 92.21 1.27 −− −− −− 2.85 3.16

SU(3) Chiral limit choice 880 1152 140 496 547 87 −− 0.623 0.441 −D −− 3.16
Physical choice 1149 1381 140 496 547 108 −− 0.8 0.47 −− −− 3.16
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and outgoing baryons, respectively. We work in the Weyl
gauge, which leads to the condition p · ϵ ¼ 0.
All terms containing the expression ϵ�ϵ contribute to γ0,

as can be seen when comparing Eq. (2) with

ϵ�ϵ ¼ i~σð~ϵ × ~ϵ�Þ − ð~ϵ~ϵ�Þ: ð16Þ

Terms like ϵ�q ϵ yield a contribution of −iω~σð~ϵ × ~ϵ�Þ when
projected onto the baryon states. All the other expressions
that arise can be reduced to this simple case.
While the full set of diagrams in the spin-1=2 sector is

gauge invariant, special care has to be taken when including
the spin-3=2 states. The diagrams which include a minimal
coupling of the photon to the Δð1232Þwould need terms of
higher order to fully restore gauge invariance. In order to be
fully gauge invariant the Lagrangian of Eq. (9) should
include the covariant derivative DμΔν as opposed to the
partial derivative ∂μΔν only. The difference between the two

derivatives are higher-order terms. To solve this discrepancy,
we follow the solution of Ref. [11], where this problem has
already been addressed for the case of the proton. In fact, for
the neutral octet baryons the diagrams of Fig. 2 are fully
gauge invariant.As for the charged octet baryons, this is only
the case for the diagrams with charged mesons. Therefore,
for these baryons, the strategy is to study two sets of
diagrams separately: on the one hand, we have the one-
particle-irreducible diagrams of Figs. 2(b), 2(h), and 2(i),
which are calculated summing over all isospin channels; on
the other hand, the missing one-particle-reducible loop
diagrams of Figs. 2(c) to 2(g) are first calculated only for
the charged meson channels. For the other channels the
isospin factor is chosen such that the ratio between the
isospins of the one-particle-reducible and one-particle-
irreducible diagrams is the same as for the charged meson
channels. When doing so, gauge invariance is ensured and
the restoration procedure involves higher-order terms.

FIG. 1. Diagrams contributing to γ0 with isospin-1=2 intermediate states. The crossed diagrams are obtained by the substitutions
ω↔ − ω and ϵ↔ϵ�.
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IV. RESULTS AND DISCUSSION

The numerical results for our calculations, when includ-
ing nucleons, pions, and Δ resonances only (hadrons with
no strangeness) are given in Table II, where a comparison
with the numerical values found by other groups is also
given. Our calculation for the isospin-1=2 sector com-
pletely agrees with the results of Ref. [17]. For completion,
we also included how the γ0 values vary when taking the
chiral limit, where the masses were set to the best-fit chiral
masses. We compare our results with the heavy baryon
chiral perturbation theory (HBChPT) results from
Refs. [16,18]. The discrepancy between the results does
not lie in the parameter choice but in the heavy-mass
expansion one assumes for HBChPT.
As for the isospin-3=2 sector, our results differ from

those of Ref. [17]. The reason for this is that we use a
different counting scheme, and therefore a different set of
diagrams. We also have a different Lagrangian, which

directly sorts out the spurious spin-1=2 contributions of the
Rarita-Schwinger spin-3=2 spinor. In Ref. [13] theΔð1232Þ
was introduced in the same way as in the present work. One
should remark that there a tree-level diagram of order p9=2

was included, which we left out here for consistency.
Without this diagram, the numerical results in Ref. [13] are
in perfect agreement with ours. The decomposition of our
results for the nucleon polarizabilities of Table II into their
individual parts is listed in Table III. The main correction to
the polarizability results comes from the tree-level dia-
grams with virtual spin-3=2 baryons, while their loop
diagrams give only a small contribution.
We extended the calculations to the SU(3) sector, again

distinguishing between the case where the isospin-3=2
resonances were included and where only octet baryons
were taken into account as intermediate states. Here we also
considered both cases: when taking the physical average
values and when choosing the chiral limit; see Table I. We

TABLE II. Numerical values for γ0 obtained in the SU(2) sector here and in other works in units of 10−4 fm4. The choice of the
numerical values for the constants for our own results can be found in Table I. The error in our results when including the Δð1232Þ
resonance arises from the uncertainty in the value of the low-energy constant gM.

Model Proton Neutron
This work [17] [16] [18] [13] This work [17] [16] [18] [13]

Without Δ HBChPT 4.4 4.4
Covariant chiral limit 2.15 3.24

Covariant physical values 2.07 2.07 3.06 3.06
With Δ HBChPT 1.7 1.7

Covariant chiral limit −1.59ð38Þ −0.59ð38Þ
Covariant physical values −0.76ð28Þ −1.74 −1.00 0.15(28) −0.77

Experiment [5] −0.90� 0.08ðstatÞ � 0.11ðsystÞ
Dispersion relations [9] −1.1 −0.5

FIG. 2. Diagrams contributing to γ0with isospin-3=2 intermediate states. The crossed diagrams are obtained by the substitutionsω↔−ω
and ϵ↔ϵ�. Except for the tree diagram (a), which has vertices of a second-order Lagrangian, all the vertices that appear are couplings of
lowest-order Lagrangians. Furthermore, (b), (h) and (i) are one-particle irreducible, and (c)–(g) are one-particle reducible diagrams.
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also obtain predictions for the hyperon forward spin polar-
izabilities. A full listing of the results for the octet baryons is
given in Table IVand the decomposition of the results for the
nucleons inTable III.When extending themodel fromSU(2)
to SU(3), one takes into account additional virtual states and
different values for the parameters, whose impactwe discuss
in more detail below. Another interesting feature in SU(3) is
the appearance of the SU(3)-flavor forbidden photon tran-
sitions of the negatively charged octet baryons to those of the
decuplet. The results of Table IV are also compared to
HBChPT results (for preliminary results see Ref. [15] and
for a complete and improved analysis see Ref. [20]). For
HBChPT the nucleon values for γ0 change only slightly
when going from SU(2) to SU(3); the results remain large
and positive. When changing to the covariant version
(without the decuplet contribution) the SU(3) case leads
to a reduction of the γ0 results which still are positive. An
additional inclusion of the decuplet leads in both the SU(2)
and SU(3) cases to negative γ0 values closer to the empirical
value for the proton of ð−0.90� 0.08ðstatÞ � 0.11ðsystÞÞ ·
10−4 fm4 presented in Ref. [5].
It is also interesting to compare the γ0 results for the

nucleons to those from dispersion relation studies found
in Ref. [9] to be γp0 ¼ −1.1 × 10−4 fm4 and γn0 ¼−0.5 × 10−4 fm4. The inclusion of isospin-3=2 states,
while already having an important effect in HBChPT, leads
to an even better agreement with the empirical values in the
case of fully covariant calculations, both when taking
the chiral limit as well as when taking the average of

the physical values for the constants. In fact, the difference
between these two parameter sets is of higher chiral order
for the polarizabilities. The main source of uncertainty of
our results is the constant gM, whose variation leads to an
error estimate as shown in Table IV. We would like to stress
that the results obtained here are not subject to uncertainties
related to renormalization schemes; for the considered
order there are no divergences or power-counting breaking
terms entering into the value of γ0.
As already discussed above, the inclusion of virtual

decuplet states is crucial for an agreement of the nucleon
baryon chiral perturbation theory (BχPT) polarizabilities
with phenomenological values, which is dominantly
because of the tree-level diagrams, as shown in
Table III. However, this is not the case for the Σ− and
Ξ− baryons since the photon transitions to the correspond-
ing decuplet states Σ�− and Ξ�− are forbidden in SU(3)
symmetry, and the tree-level diagrams do not appear.
Hence, their values for the polarizabilities change only
slightly by the small loop contributions with virtual
decuplet baryons. To study the polarizabilities in BχPT,
these two baryons might therefore be better suited than the
proton and neutron since nearly all of the uncertainties
coming from the inclusion of the decuplet drop out.
Experimentally, it will be very hard to measure their
polarizabilities, but it is feasible in lattice QCD.
Furthermore, we want to emphasize that the main
differences in numerical values for the proton and neutron
polarizabilities in SU(2) and SU(3) come from the choice of
the parameters in Table I. All contributions coming from K
or η mesons are negligible. Choosing the masses and
constants in SU(3) as in SU(2), which are equivalent
parameter sets in terms of chiral counting up to the order
p3, will give nearly the same results.
The addition of p4 contributions would be the next step

to further refine the calculation.

V. SUMMARY

We have presented an extended calculation for the spin
polarizability γ0 of the baryon octet. The framework we
chose is based on manifestly Lorentz-covariant baryon
chiral perturbation theory, both in the SU(2) as well as
SU(3) versions. Furthermore, we explicitly included

TABLE IV. Numerical values for γ0 obtained in our calculations, in units of 10−4 fm4 in the SU(3) sector. The choice of the numerical
values for the constants in the covariant case can be found in Table I, both for the chiral limit and for the physical average case. As for the
HBChPT limit, we cite the results in Ref. [15], which were later corrected in our work in Ref. [20]. The errors in the results with the
decuplet arise from the uncertainty in the value of the low-energy constant gM.

Model Used values p n Σþ Σ− Σ0 Λ Ξ− Ξ0

Without decuplet, HBChPT [15,20] 4.69 4.53 2.77 2.54 2.44 2.62 0.52 0.68
Without decuplet, covariant Chiral limit 1.53 2.28 0.90 0.89 1.60 1.09 0.08 0.15

Physical values 1.68 2.33 0.93 0.91 1.32 1.28 0.15 0.25
With decuplet, covariant Chiral limit −2.14ð38Þ −1.43ð33Þ −2.72ð33Þ 0.89 0.67(9) −1.69ð28Þ 0.07 −3.51ð38Þ

Physical values −1.64ð33Þ −1.03ð33Þ −2.30ð33Þ 0.90 0.47(8) −1.25ð25Þ 0.13 −3.02ð33Þ

TABLE III. Decomposition of the proton and neutron polar-
izability results in units of 10−4 fm4 into the contributions
coming from the different sets of diagrams, when using the
chiral limit for the masses and low-energy constants. The
difference in results when using physical values or the chiral
limit can be seen as systematical uncertainty.

Virtual spin-
1=2 baryons

Virtual spin-3=2
baryons—tree

level

Virtual
spin-3=2

baryons—loops Total

γp0 SU(2) 2.15 −3.62 −0.13 −1.59
SU(3) 1.53 −3.62 −0.05 −2.14

γn0 SU(2) 3.24 −3.62 −0.21 −0.59
SU(3) 2.28 −3.62 −0.08 −1.43
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intermediate spin-3=2 states. The novel results of the
present work concern both the SU(3) extension of fully
covariant ChPT to the order p3 and the inclusion of the
spin-3=2 decuplet up to order p7=2. Empirical results exist
only for the nucleon case, where in both versions the
inclusion of explicit decuplet states is crucial for finding an
agreement between phenomenology and BχPT. In particu-
lar, it is the tree-level diagram with virtual decuplet baryons
that gives the dominant extra contribution. This also carries
over to the SU(3) case, where all contributions from K and
η loops turn out to be negligible. However, in SU(3) the two
baryons Σ− and Ξ− are prominent as their photon tran-
sitions to the corresponding decuplet states are forbidden in
SU(3) symmetry. As a result, the decuplet tree-level
contributions are not present and their polarizabilities in
pure BχPT remain nearly unchanged, meaning that also
most of the uncertainties connected to the decuplet inclu-
sion drop out. Since experimental polarizability measure-
ments for these baryons are improbable, comparisons to
results from lattice QCD would be very interesting, as
polarizabilities to chiral order p3 are leading-order pre-
dictions of BχPT. The γ0 results for the hyperons, espe-
cially the ones for Σ− and Ξ−, can therefore serve as a
benchmark for other calculations in this sector. At this point
it seems a necessity to extend the present calculation to the
cases of the electric and magnetic polarizabilities αE and
βM of the nucleon and the baryon octet, especially the Σ−
and Ξ−, where probably a similar situation as above occurs
with respect to the inclusion of decuplet states.
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APPENDIX A: BASIC NOTATIONS OF CHPT

The matrices of pseudoscalar mesons ϕ, photons Q, and
baryons B are given by

ϕ ¼
X8
a¼1

λaϕ
a

¼
ffiffiffi
2

p
0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA; ðA1Þ

Q ¼ 1

2

�
λ3 þ

λ8ffiffiffi
3

p
�

¼

0
BB@

2
3

0 0

0 − 1
3

0

0 0 − 1
3

1
CCA; ðA2Þ

and

B ¼ 1ffiffiffi
2

p
X8
a¼1

λaBa

¼

0
BBB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA: ðA3Þ

The decuplet states Δijk are specified as

Δ111 ¼ Δþþ; Δ112 ¼ 1ffiffiffi
3

p Δþ; Δ122 ¼ 1ffiffiffi
3

p Δ0;

Δ222 ¼ Δ−; Δ113 ¼ 1ffiffiffi
3

p Σ�þ; Δ123 ¼ 1ffiffiffi
6

p Σ�0;

Δ223 ¼ 1ffiffiffi
3

p Σ�−; Δ133 ¼ 1ffiffiffi
3

p Ξ�0;

Δ233 ¼ 1ffiffiffi
3

p Ξ�−; Δ333 ¼ Ω−: ðA4Þ

The Dirac tensors γμν are defined as

γμν ¼ 1

2
½γμ; γν� and γμνλ ¼ 1

4
f½γμ; γν�; γλg: ðA5Þ

APPENDIX B: LOOP INTEGRALS AND
DIMENSIONAL REGULARIZATION

The integrals for Figs. 1 and 2 are taken in d dimensions
and later dimensionally regularized to the normal four-
dimensional Minkowski space. To calculate the crossed
diagrams, the simple substitutions

ω↔ − ω and ϵ�↔ ϵ ðB1Þ
have to be performed. To obtain the final numerical results
for the forward spin polarizability, the integrands of the
structure constants of the ϵ�ϵ terms are expanded up to
the order ω3. The coefficients of the third order of the
expansion are then used to evaluate the integrals.
The following loop integrals are of interest in this work:

Z
ddz
ð2πÞd

1

ðz2 − ΔÞn ¼
ð−1Þni
ð4πÞd=2

Γðn − d
2
Þ

ΓðnÞΔn−d
2

; ðB2Þ

Z
ddz
ð2πÞd

zμzν

ðz2 − ΔÞn ¼
ð−1Þn−1i
ð4πÞd=2

Γðn − d
2
− 1Þ

ΓðnÞΔn−d
2
−1

gμν

2
; ðB3Þ
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Z
ddz
ð2πÞd

zμzνzρzσ

ðz2 − ΔÞn ¼
ð−1Þni
ð4πÞd=2

Γðn − d
2
− 2Þ

ΓðnÞΔn−d
2
−2

gμνgρσ þ gμρgνσ þ gμσgνρ

4
: ðB4Þ

As a result, one has to dimensionally regularize the integrals, obtaining the expressions

λ1ðΔÞ ¼
Γð1 − d

2
Þ

ð4πÞd=2Δ1−d
2

¼ − Δ
16π2

�
2

ϵ
− log

�
Δ
μ

�
þ logð4πÞ − γE þ 1þOðϵÞ

�
;

λ2ðΔÞ ¼
Γð2 − d

2
Þ

ð4πÞd=2Δ2−d
2

¼ 1

16π2

�
2

ϵ
− log

�
Δ
μ

�
þ logð4πÞ − γE þOðϵÞ

�
;

λ3ðΔÞ ¼
Γð3 − d

2
Þ

ð4πÞd=2Δ3−d
2

¼ 1

16π2Δ
;

λ4ðΔÞ ¼
Γð4 − d

2
Þ

ð4πÞd=2Δ4−d
2

¼ 1

16π2Δ2
;

where ϵ ¼ 4 − d and μ is the scale parameter set to the proton mass in this work. For regularization, the minimal subtraction
would have to be performed in the extended on-mass shell scheme, where terms proportional to

2

ϵ
þ logð4πÞ − γE þ 1 ðB5Þ

are subtracted. It is interesting to note that in this work no diagram had to be renormalized, as at order p7=2 no divergent or
power-counting breaking terms contribute to γ0.
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