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We revisit the neutrino magnetic moments (MMs) in the left-right model with nonmanifest symmetry.
After deriving an expression in terms of the Dirac and Majorana phases, we analyze the sensitivity of
neutrino MMs to these CP-violating phases in two scenarios: (1) a maximal right mixing in which left- and
right-handed neutrinos are mixed by the same matrix, and (2) a right-handed neutrino mixing whose off
diagonal entries are much smaller than the elements in the diagonal, but where the CP phases remain
general. Our results show that, even though certain values of the Majorana phases can eliminate neutrino
MMs, the presence of a maximal CP-violating phase in neutrino mixing matrix, as favored by the
discrepancy between T2K results and reactor measurements in neutrino oscillations, requires that at least
one neutrino have a large nonzero MM.
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I. INTRODUCTION

The detection [1] of a Higgs-like particle with mass
around 125 GeV at the CERN Large Hadron Collider has
been a quite significant discovery. Though, so far, analyses
of experimental data by the ATLAS [2] and CMS [3]
Collaborations on such scalar particle are consistent with
the Standard Model (SM) candidate, which points towards
the conclusion of this beautiful low-energy description of
nature, the community is convinced that extension of such
model is imperious. It is currently accepted that the SM has
theoretical problems, which call for a solution. Even more
important, there is clear experimental evidence of physical
phenomena that remain outside the reach of the SM: no role
is played by the gravitational interaction, no explanation is
provided for the existence of dark matter nor dark energy,
and the neutrinos are massive.
When the existence of neutrinos was first proposed by

Pauli [4], their properties, at the time considered exotic and
very challenging to measure, included the possibility that
these particles were massive. The remarkable idea that
neutrino flavors oscillate with distance [5,6] has driven
trends of research in neutrino physics. The most important
reason for this is, perhaps, that the main interpretation of
neutrino oscillations requires neutrinos to be massive in
order for such a phenomenon to take place.1 The already
accomplished measurement [8] of the last neutrino mixing
angle has supplied strong evidence supporting this idea.

Since neutrinos are neutral and massive fermions, they
can be represented by either Dirac or Majorana fields [6,9].
This interesting possibility incarnates one of the most
relevant questions about neutrino physics at present. An
answer has been looked for by several experimental groups
that aim at observing the rare neutrinoless double beta
decay (2β0ν), which can occur only in the presence of
Majorana neutrinos. Experimental setups are based on the
double beta decay of diverse isotopes: 76Ge [10]
(Hiedelberg–Moscow, IGEX, GERDA), 100Mo and 82Se
[11] (NEMO), 130Te [12] (CUORICINO), 150Nd [13]
(NEMO), and 136Xe [14] (KamLAND–Zen, EXO). One
important difference among the Dirac and Majorana cases
lies on the number of CP-violating phases involved in the
parametrization of neutrino mixing. Sensitivity of physical
phenomena to these CP-violating phases may provide
information on the nature of neutrinos, so the analysis of
observables depending on them is relevant and interesting.
Investigations centered on the electromagnetic properties

of neutrinos [15] constitute an active topic in neutrino
physics. Works concerning the neutrino anapole moment
[16], charge radius [17], and electric dipole moment
[18–20] exist, but most studies have explored the neutrino
magnetic moments (MMs). This quantity has been calcu-
lated in gauge theories [21] and in a model-independent
manner [22] as well. Nice and detailed analyses of these
MMs, including the full structure of the neutrino electro-
magnetic vertex and the issue of gauge independence, were
carried out in Refs. [20,23], within the so-called minimally
extended Standard Model. Mechanisms to produce large
contributions to neutrino MMs have been propounded [24].
Astrophysical approaches [25] have been quite relevant in

1Other sorts of new physics, such as violation of Lorentz
invariance, provide alternative interpretations [7] of neutrino
oscillations.
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this branch of physics. In the SM, neutrinos are Dirac
massless particles that can only have one electromagnetic
property [26], namely, the anapole moment. In general, the
introduction of massive neutrinos changes the game rules,
opening [15] the possibility of encountering more electro-
magnetic properties, which are very different [27] depend-
ing on whether neutrinos are Dirac or Majorana particles.
Indeed, it has been claimed [22,28] that the measurement of
a neutrino magnetic moment larger than or equal to
10−15μB would indicate that neutrinos are Majorana par-
ticles. The simplest SM extension that yields neutrino
masses is achieved just by adding the right-handed com-
ponents of the neutrino fields. The prediction of this
minimal extension for the neutrino magnetic moment is
about 8 orders of magnitude smaller than the best upper
limits reached by experiments so far, which renders this
quantity attractive to look for new physics.
Motivated by this, we direct the attention of the present

work to the MMs of neutrinos. A popular and well-known
SM extension that yields large contributions to the MMs of
Majorana neutrinos is based on the gauge group SUð2ÞL ×
SUð2ÞR × Uð1ÞB−L [29], which is broken down to
SUð2ÞL × Uð1ÞY and then to the electromagnetic gauge
group through different stages of spontaneous symmetry
breaking. These models, best known as left right, give rise
to a new heavy charged gauge boson, WR, which comes
along with a rich phenomenology. The production ofWR as
a mean to test the Majorana nature of neutrinos was
discussed in Ref. [30]. It has been shown that the presence
of such new boson would have effects on various physical
phenomena, such as the neutron electric dipole moment
[31], decays of the Higgs boson [32], the forward-
backward asymmetry [33], and K [34,35], B [36,37],
and D [38] physics. The possible discovery of the WR at
the Large Hadron Collider has also been discussed [39,40],
and its role in charged Higgs production [41] and lepton
flavor violation [42] at this collider has been explored. The
decay of this heavy boson to SM gauge bosons has been
analyzed as a probe of the symmetry breaking sector [43].
A model-independent global analysis concerning new
charged gauge bosons, including this one, can be found
in Ref [44].
In this paper, we consider a left-right model with

nonmanifest left-right symmetry that is endowed with
two scalar triplets and one scalar bidoublet defining the
Higgs sector. We assume that the right (heavy) charged
gauge bosonWR mixes with the left–handedWL, with such
mixture being parametrized by an angle ζ. A calculation of
the contributions from this model to neutrino MMs [45],
carried out in the unitary gauge, showed that the leading
term, which does not involve the mass of light neutrinos,
yields contributions as large as 10−11μB. In the present
paper, we compute the contributions from heavy gauge
bosons in the Rξ-gauge and then take the unitary gauge,
finding agreement with the results of Ref. [45]. Then we

express the MMs in terms of the CP-violating phases and
analyze the sensitiveness of this electromagnetic property
to them, with special focus on the Majorana phases. First,
we carry out our analysis under the assumption that the
mixing of right-handed neutrinos is realized by the same
matrix that mixes left-handed neutrinos. This is a particular
case of maximal right-handed neutrino mixing. After that,
we examine a scenario defined by a less democratic
neutrino mixing, which involves a mixing matrix that we
assume to be close to identity, except for the CP-violating
matrices, which we keep general. In both cases, we find
that, while for each neutrino there are sets of nonzero
specific values of CP phases that cancel its MM, at least
one of the three neutrinos must have a nonzero MM when
neutrino mixing violates CP invariance.
We have organized the paper in the following way: in

Sec. II, we specify our setup and provide the necessary
information to perform the calculation. The one-loop ννγ
vertex is calculated in Sec. III, and the resulting contribu-
tion to the MM is presented. In Sec. IV, we analyze our
result, carrying out the discussion around the role played by
the Majorana phases. We also show estimations in this
section. Finally, we present our conclusions in Sec. V.

II. THE MODEL

The essential ingredient of left–right models is the gauge
group SUð2ÞL × SUð2ÞR × Uð1ÞB−L, which is a simple
extension of the electroweak SM. The enlargement of
the SM gauge group by the SUð2ÞR introduces a new
set of gauge fields, although the fermionic content of the
SM remains, in principle, intact. The presence of the new
gauge degrees of freedom then allows one to define
charged-current interactions for right-handed fermions,
which include right-handed neutrinos.
The set of SUð2ÞR degrees of freedom is represented by

three gauge bosons. The Higgs sector of the left-right
model considered in the present paper includes a left triplet,
ΔL, and a right triplet, ΔR. These multiplets can be
represented by the 2 × 2 matrices

ΔL ¼
�
δþL=

ffiffiffi
2

p
δþþ
L

δ0L −δþL=
ffiffiffi
2

p
�
;

ΔR ¼
�
δþR=

ffiffiffi
2

p
δþþ
R

δ0R −δþR=
ffiffiffi
2

p
�
; ð1Þ

in which doubly charged, singly charged, and neutral
scalars, respectively, represented by δþþ

L;R, δ
þ
L;R, and δ0L;R,

are involved. The interactions of these scalars with the
SUð2ÞL and SUð2ÞR gauge bosons take place through the
covariant derivatives

DμΔL ¼ ∂μΔL − i
gL
2
½Wμ

L;ΔL� − igBμΔL; ð2Þ
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DμΔR ¼ ∂μΔR − i
gR
2
½Wμ

R;ΔR� − igBμΔR; ð3Þ

in which gL is the SUð2ÞL coupling, gR is the SUð2ÞR
coupling, g is the Uð1ÞB−L coupling, Wμ

L ¼ Waμ
L τa=2, and

Wμ
R ¼ Waμ

R τa=2. Here, the τa is a Pauli matrix. In order to
couple left- and right-handed fermionic doublets, and
generate fermionic masses, the scalar sector of this model
has another multiplet structure, which is a Higgs bidoublet,
Φ. The bidoublet Φ is a 2 × 2 matrix,

Φ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
; ð4Þ

transforming as Φ → ULΦUR under the full gauge group.
The bidoublet interacts only with the SUð2ÞL and SUð2ÞR
gauge bosons of the theory. The corresponding interactions
are defined by the covariant derivative,

DμΦ ¼ ∂μΦ − iðgLWμ
LΦ − gRΦW

μ
RÞ: ð5Þ

In a first stage of spontaneous symmetry breaking, the
gauge group SUð2ÞR × Uð1ÞB−L is broken down to Uð1ÞY ,
so that the remaining gauge group corresponds to the
electroweak SM. This is achieved when the ΔR triplet
acquires the vacuum expectation value

hΔRi ¼
�

0 0

vR 0

�
: ð6Þ

This stage of symmetry breaking generates the masses of
two charged gauge bosons, Wþ

R and W−
R, defined as

Wþμ
R ¼ 1ffiffiffi

2
p ðW1μ

R − iW2μ
R Þ; ð7Þ

W−μ
R ¼ 1ffiffiffi

2
p ðW1μ

R þ iW2μ
R Þ; ð8Þ

and the mass of one neutral boson, Z0
μ, as well, while

leaving a massless Uð1ÞY gauge boson.
A second symmetry breaking occurs when the Higgs

multipletsΦ andΔL develop the vacuum expectation values

hΦi ¼
�
κ 0

0 κ0

�
; hΔLi ¼

�
0 0

vL 0

�
; ð9Þ

where we allow κ and κ0 to be complex numbers. The
symmetry breaking produces bilinear terms in the renor-
malizable scalar sector, including mixings among the W3μ

L
and the Uð1ÞY gauge boson. An outcome of this is the
definition of the massive Zμ boson and the photon field, Aμ.
On the other hand, the mass eigenstates

Wþμ
L ¼ 1ffiffiffi

2
p ðW1μ

L − iW2μ
L Þ; ð10Þ

W−μ
L ¼ 1ffiffiffi

2
p ðW1μ

L þ iW2μ
L Þ; ð11Þ

are defined.
As we mentioned above, the covariant derivative for the

bidoublet Φ defines interactions of this multiplet with both
the SUð2ÞL and the SUð2ÞR gauge bosons. The renorma-
lizable interactions of the bidoublet then induce a bilinear
mixing of the left and right charged bosons:

ðWþμ
L Wþμ

R Þ

×

� 1
2
ðv2L þ jκj2 þ jκ0j2Þg2L −gLgRjκκ0jeiω
−gLgRjκκ0je−iω 1

2
ðv2R þ jκj2 þ jκ0j2Þg2R

�

×

�
W−

Lμ

W−
Rμ

�
; ð12Þ

with ω being the complex phase of the product κ�κ0.
Diagonalization of this mixing matrix leads to the mass
eigenstates W1 and W2, given by

Wþμ
L ¼ cos ζWþμ

1 − sin ζWþμ
2 ; ð13Þ

Wþμ
R ¼ eiωðsin ζWþμ

1 þ cos ζWþμ
2 Þ: ð14Þ

For an SUð2ÞR breaking scale such that vR ≫ jκj; jκ0j; vL,
the mixing angle ζ, and the masses of the W1 and W2

bosons can be expressed as

ζ ≃ gL
gR

2jκκ0j
v2R

; ð15Þ

m2
W1

≃ g2L
2
ðv2L þ jκj2 þ jκ0j2Þ; ð16Þ

m2
W2

≃ g2R
2
v2R: ð17Þ

The simple expression for the ζ angle, given in Eq. (15),
shows that in the limit vR → ∞, the mixing of the WL and
WR bosons, Eqs. (13) and (14), vanishes, so that the W1

boson coincide with theWL, while theW2 is essentially the
WR charged gauge boson. Note that the W2 mass is
proportional to the vR scale.
One of the first great incentives behind left-right models

lied on the capability of some of its versions to incorporate
[46] parity as a fundamental symmetry of nature, while
describing a world that does not distinguishes chirality. In
these models, the gauge group SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L is broken into SUð2ÞL × Uð1ÞY at the vR scale,
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entailing, as a collateral effect, breaking of parity sym-
metry, which thus provides an elegant explanation of why
left and right states couple differently at the electroweak
scale. In order for this mechanism to work, a discrete
symmetry of the theory under the interchange of left and
right states is assumed, which implies the important relation
gL ¼ gR. This assumption, which characterizes models
with manifest left–right symmetry, leads to strong con-
straints on the mass of the heavy charged boson, which is
found to be in the TeV range. Indeed, the analysis of the
first data provided by the Large Hadron Collider was used
recently to establish that mWR

≳ 1.4 TeV for masses of
right-handed neutrinos of order of a few GeV [47]. Mass
differences of neutral kaon and Bmeson, on the other hand,
have been employed to derive the even more stringent
bound mWR

> 2.5 TeV [48]. Concerning the mixing angle
ζ, the upper limit arising within the manifest left-right
symmetry scenario is ζ < 0.005 [49].
These constraints can be relaxed in more general

scenarios. An alternative type of left-right models involves
nonmanifest left-right symmetry. It is assumed that there is
a discrete left-right symmetry, but it is broken at a much
higher scale than the distinctive scale of the gauge group
SUð2ÞL × SUð2ÞR × Uð1ÞB−L. Within such framework, the
couplings gL and gR can be different. An appealing feature
of models with nonmanifest left-right symmetry is that the
bounds on the charged boson mass and on the mixing angle
ζ are relaxed. It has been shown that in such context, the
WR boson mass can be as light as 0.3 TeV [50] and the
mixing as large as ζ < 0.02 [51]. Besides yielding more
relaxed bounds, nonmanifest left-right symmetry is inter-
esting because it is an efficacious mean to enhance CP-
violating effects through the WL −WR mixing [52,53].
Interactions of gauge bosons with leptons take place

within the fermionic kinetic sector of the left-right model.
Contrastingly to what happens in the SM, the fermionic
fields in left-right models are all arranged in left- and right-
handed doublets, which couple, respectively, to the SUð2ÞL
and SUð2ÞR gauge bosons. Such interactions include, by
construction, right-handed neutrinos. The leptonic doublets
are given as

Li
L ¼

�
νi

li

�
L

; Li
R ¼

�
νi

li

�
R

; ð18Þ

where νi ¼ νe, νμ, ντ and li ¼ le, lμ, lτ (charged lepton
fields). The gauge couplings of the left- and right-handed
leptons, generically denoted by l, are introduced through
the covariant derivatives

DμfL ¼ ∂μfL −
i
2
ðgLτaWaμ

L þ gYBμÞfL; ð19Þ

DμfR ¼ ∂μfR −
i
2
ðgRτaWaμ

R þ gYBμÞfR; ð20Þ

defined by the charge assignments LL∶ ð0; 1=2;−1Þ
and LR∶ ð1=2; 0;−1Þ.
Neutrino oscillations, first proposed by Bruno

Pontecorvo [5], is a quantum phenomenon that consists
in the existence of nonzero transition probabilities that
neutrinos created with certain flavor be measured, after
traveling some distance, as neutrinos with different flavors.
In order for this to happen, neutrino oscillations require a
mixing among neutrino flavors. This mixing, which con-
nects neutrino flavor states νe, νμ, ντ to mass eigenstates ν1,
ν2, ν3, is characterized by the unitary transformation

νj ¼
X

α¼1;2;3

Ujανα; ð21Þ

where Ujα is the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) mixing matrix. A convenient parametrization
[6,54] of the PMNS matrix is given in terms of three
angles and, depending on whether the massive neutrinos
are Dirac or Majorana fermions, of one Dirac or one Dirac
and two Majorana CP-violating phases. Since the neutrino
flavor transition probabilities depend on differences of
neutrino masses, the occurrence of this effect implies that
neutrinos are massive. The relatively recent measurement
[8] of the last mixing angle has elevated the status of this
interesting conclusion to a fact of great relevance.
The description of flavor neutrino mixing by means of

the PMNS matrix introduces CP violation, similarly to
what happens in the case of the Cabibbo–Kobayashi–
Maskawa (CKM) mixing matrix, nested in the quark sector
of the SM. Violations of CP invariance in the lepton sector
are driven by the complex phases that are present in such
parametrization of the PMNS matrix. Neutrino oscillations
can be used to investigate CP violation introduced by the
complex character of the PMNS matrix. Transition prob-
abilities Pðνk → νjÞ and Pðν̄k → ν̄jÞ, among different
neutrino flavors, νk and νj, and antineutrino flavors, ν̄k
and ν̄j, involve quartic products of PMNS matrix elements
that look like U�

jαUkαUjβU�
jβ, which are invariant under

the rephasing transformations Ujα → eiψ jUjαeiϕα . The
Majorana CP-violating phases, which exist in the PMNS
matrix only if neutrinos are Majorana particles, can be
factored out, leaving a CKM-like matrix, involving only the
Dirac phase, and a diagonal matrix whose nonzero entries
are Majorana phases and 1. Invariance under the rephasings
that we just commented yields the cancellation of all
Majorana phases in the transition probabilities between
neutrino flavors and between antineutrino flavors as well,
so that CP-violating effects due to Majorana phases are
[6,55] innocuous to neutrino oscillations. Thus, violation of
CP invariance in neutrino oscillations is solely produced by
the Dirac phase, which determines whether the CP asym-
metries ACP

kj ¼ Pðνk → νjÞ − Pðν̄k − ν̄jÞ vanish or not.
Now we separate the couplings that will be used in the

calculation of the γνν vertex, to be carried out in the next
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section. A major motivation for studying left–right models
has been that some varieties give rise [56] to masses of
Majorana neutrinos. Indeed, the necessity of right–handed
neutrinos in this formulation is the origin of the celebrated
seesaw mechanism [46]. The nature of the scalar multiplets
of a given left–right model determines [51] whether
neutrino masses are Majorana or Dirac. The Higgs triplets
ΔL and ΔR, considered in the present paper, yield neutrino
masses of Majorana type. In a general context, the PMNS
matrix mixing left-handed neutrinos may be different to the
one that mixes right–handed neutrinos. For now, we
maintain this possibility, so we assume the relations

νj;L ¼
X

α¼1;2;3

Ljανα;L; ð22Þ

νj;R ¼
X

α¼1;2;3

Rj;ανα;L; ð23Þ

where L and R denote, respectively, the left and right
PMNS matrices [57]. The leptonic kinetic terms of the left-
right model considered here can be written as

iL̄Lγ
μDμLL þ iL̄Rγ

μDμLR

¼ il̄kDμγμlk þWþ
aμν̄αγ

μðva;αk − aa;αkγ5Þlk
þW−

aμ l̄kγμðv�a;αk − a�a;αkγ
5Þνα þ � � � ; ð24Þ

where any pair of repeated indices indicates a sum. Here,
a ¼ 1, 2, α ¼ 1, 2, 3, j ¼ e, μ, τ, while Dμ ¼ ∂μ þ ieAμ is
the Uð1Þe covariant derivative. The couplings va;αk and
aa;αk are given by

v1;αk ¼
1

2
ffiffiffi
2

p ½gReiω sin ζR�
kα þ gL cos ζL�

kα�; ð25Þ

v2;αk ¼
1

2
ffiffiffi
2

p ½gReiω cos ζR�
kα − gL sin ζL�

kα�; ð26Þ

a1;αk ¼
1

2
ffiffiffi
2

p ½−gReiω sin ζR�
kα þ gL cos ζL�

kα�; ð27Þ

a2;αk ¼
1

2
ffiffiffi
2

p ½−gReiω cos ζR�
kα − gL sin ζL�

kα�: ð28Þ

The ellipsis in Eq. (24) represent other terms that include
the kinetic terms of neutrinos and couplings involving the
neutral massive gauge bosons Zμ and Z0

μ. On the other
hand, the sum of the SUð2ÞL and SUð2ÞR pure-gauge terms
can be expanded to get

−
1

2
Tr½Wμν

R WRμν� −
1

2
Tr½Wμν

L WLμν�
¼ ie½ðWþμν

a W−
aμ −W−μν

a Wþ
aμÞAν þWþ

aμW−
aνFμν� þ � � � ;

ð29Þ

where only the trilinear gauge couplings WWγ have been
written explicitly and, again, any pair of repeated indices
denotes a sum. As it can be appreciated from this
expression, there are no mixings of mass eigenstates W1

and W2 in these interactions. Such interesting mixings
might be produced, for instance, in effective theories since,
due to the mechanism producing the nonmanifest left-right
symmetry scenario, high-energy scales suppressing non-
renormalizable left and right pure-gauge interactions are, in
general, different of each other.

III. MAGNETIC MOMENT OF NEUTRINOS

The determination of whether neutrinos are Majorana or
Dirac particles might be attained by experiments that are
trying to measure the elusive 2β0ν decay. This process
consists in the simultaneous β decays of two neutrons or
two protons, within the same nucleus, which interchange a
virtual neutrino, so that the final state comprises the same
nucleus and two beta particles, but no neutrinos. For the
propagation of such virtual neutrino to happen, the total
lepton number must be violated by two units, so that 2β0ν
decay is forbidden in the context of the SM, which, on the
other hand, assumes neutrinos to be massless and, thus,
does not properly describe them. In particular, massive
neutrinos of Majorana type gather the sufficient and
necessary conditions that allow the occurrence of 2β0ν
decay. Indeed, the observation of this rare decay would
indicate that neutrinos are Majorana particles. Despite
experimental efforts, so far no measurement [58] of a
2β0ν decay has been accomplished, and current lower
bounds on the half-life are of order 1025 years.
While the observation of the 2β0ν decay would be a

proof that neutrinos are Majorana type,2 studies about the
CP–violating phases are interesting as the cases of Dirac
and Majorana neutrinos feature a different number of them.
The amplitude of a 2β0ν decay is proportional to the
effective Majorana mass,

m2β ¼
X3
α¼1

U2
eαmα; ð30Þ

which is given in terms of PMNS matrix elements. So, in
general, this amplitude depends on the CP-violating phases
of the PMNS matrix, both of Dirac and Majorana type. The

2Note that, in left right, the presence of the WR and heavy
neutrinos might be the cause behind a 2β0ν decay measurement
[59].

INTERPLAY BETWEEN NEUTRINO MAGNETIC MOMENTS … PHYSICAL REVIEW D 92, 095016 (2015)

095016-5



possibility of bounding Majorana phases by means of the
2β0ν decay has been considered in Refs. [60,61]. There are
other approaches to explore these phases, which naturally
appear in physical observables associated to violation of
CP invariance. For instance, it has been pointed out that, in
the presence of Majorana neutrinos, electric dipole
moments of charged leptons depend on these CP-violating
phases, and that precise measurements of such electric
dipoles might be a way to be sensitive to Majorana
phases [62].
Assuming that neutrinos are massive, that Lorentz and

Uð1Þe symmetries hold, and following the conventions
shown in Fig. 1, it is found3 that the general parametrization
of the γνν electromagnetic current has the following
structure:

Λfi
μ ðq2Þ ¼

�
γμ −

qμq

q2

�
½ffiQ ðq2Þ þ ffiA ðq2Þq2γ5�

þ iσμνqν½ffiMðq2Þ þ iffiE ðq2Þγ5�; ð31Þ

where the i and f indices take values corresponding to
initial and final neutrino states. The parameters ffiQ , f

fi
A , f

fi
M,

and ffiE , which depend only on the squared photon
momentum q2, are, respectively, the charge, anapole,
magnetic dipole, and electric dipole form factors. If a real
photon is considered, which imposes the condition q2 ¼ 0,
they define the neutrino charge, q, anapole moment, a,
magnetic moment, μ, and electric dipole moment, ϵ:

ffiQ ð0Þ ¼ qfi; ffiA ð0Þ ¼ afi;

ffiMð0Þ ¼ μfi; ffiE ð0Þ ¼ ϵfi: ð32Þ

Those factors for which i ¼ f are known as diagonal
electromagnetic form factors, while those for which i ≠ f
are called transition electromagnetic form factors.
The structure of the γνν electromagnetic vertex, given in

Eq. (31), holds regardless of whether the neutrinos are
Dirac or Majorana particles. However, it must be kept in
mind that form factors of Dirac neutrinos have different

properties than those corresponding to Majorana neutrinos
[27]. In the case of Majorana neutrinos, the condition ν ¼
νc yields an exact cancellation of all the diagonal form
factors, but the anapole, so that Majorana neutrinos can
only have transition electromagnetic form factors and the
diagonal anapole form factor. Moreover, in the case of
transition form factors of Majorana neutrinos, contributions
to the γνν vertex that preserve invariance under CP involve
either the electric dipole or the magnetic dipole form factor.
If the magnetic dipole form factor is the one that arises in a
given calculation, the anapole form factor is forbidden,
while a nonzero electric dipole moment solely allows a
nonvanishing anapole form factor. Contrastingly, all the
diagonal from factors of Dirac neutrinos are, in general,
nonzero and all form factors, but the diagonal electric
dipole, are allowed if CP is conserved. It is worth
emphasizing, from this discussion, that nondiagonal mag-
netic moments of neutrinos may involve CP-violating
effects and, thus, they may depend, in general, on the
CP-violating phases.
Just for a moment, forget about the left-right model and

consider some given formulation that involves three mas-
sive neutrinos να, with masses mα, and a set of charged
gauge bosonsWaμ, whose masses are denoted by ma. Then
assume that these particles gather with the ordinary charged
leptons lk, with massesmk, to define charged currents of the
form

Wþ
aμν̄αγ

μðva;αk − aa;αkγ5Þlk
þW−

aμl̄kγμðv�a;αk − a�a;αkγ
5Þνα; ð33Þ

where pairs of repeated indices always indicate sums. Here,
α ¼ 1, 2, 3, j ¼ e, μ, τ, while the index a labels all the
charged gauge bosons, from the SM and from some new-
physics description as well. Note that the charged currents
given in Eq. (24), which correspond to the left-right model,
fit Eq. (33). Also assume a general γWW coupling, like that
of Eq. (29). The one-loop contributions from these general
couplings to the vertex γνν are given by the Feynman
diagrams of Figs. 2(a)–2(d). As we commented before,
neutrinos in the left–right model with scalar Higgs triplets
are described by Majorana fields. The Majorana condition,
ν ¼ νc, gives rise to important differences, with respect to
the case of Dirac neutrinos, of the manner [63] in which
contributions to the neutrino electromagnetic vertex must
be calculated. While Figs. 2(a) and 2(c), corresponding to
external neutrinos, should be calculated if we were dealing
with Dirac neutrinos, Figs. 2(b) and 2(d), which involve
external antineutrinos, should not. Nevertheless, for
Majorana neutrinos the consideration of all four diagrams
is mandatory. The result of performing a CPT trans-
formation on Eq. (33) is

FIG. 1. The γνν vertex.

3For general and detailed discussions on this parametrization,
see Ref. [15].
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ðCPTÞ−1½Wþ
aμν̄αγ

μðva;αk − aa;αkγ5Þlk
þW−

aμl̄kγμðv�a;αk − a�a;αkγ
5Þνα�CPT

¼ −Wþ
aμl̄ckγ

μðva;αk þ aa;αkγ5Þνcα
−W−

aμν̄
c
αγ

μðv�a;αk þ a�a;αkγ
5Þlck: ð34Þ

By virtue of the Majorana condition, νc ¼ ν, these cou-
plings generate contributions to the γνν vertex, for they
become building blocks of Figs. 2(b) and 2(d). Now
consider the transformation under CP of Eq. (33), which
yields

ðCPÞ−1½Wþ
aμν̄αγ

μðva;αk − aa;αkγ5Þlk
þW−

aμl̄kγμðv�a;αk − a�a;αkγ
5Þνα�CP

¼ Wþ
aμν̄αγ

μðv�a;αk − a�a;αkγ
5Þlk

þW−
aμl̄kγμðva;αk − aa;αkγ5Þνα: ð35Þ

As it can be appreciated from this expression, tree-level CP
violation arises from the general charged currents of Eq. (33)
as long as the couplingsva;αk andaa;αk are complexquantities.
Using Eqs. (29), (33), and (34), we write the total contribu-

tions from diagrams of form Figs. 2(a) or 2(b) generically as

Λβα
μ ðq2Þ ¼ ð−1Þzie

X
a;b

X
i

δabμ4−D
Z

dDk
ð2πÞD

ūβðp2ÞγσðVb;βi þ Ab;βiγ
5ÞðkþmiÞγλðV�

a;αi þ A�
a;αiγ

5Þuαðp1Þ
½ðk − p1Þ2 −m2

a�½ðk − p2Þ2 −m2
b�½k2 −m2

i �

×

�
gσρ − ð1 − ξÞ ðk − p2Þσðk − p2Þρ

ðk − p2Þ2 − ξm2
b

��
gνλ − ð1 − ξÞ ðk − p1Þνðk − p1Þλ

ðk − p1Þ2 − ξm2
a

�

× ½ð2p2 − p1 − kÞνgμρ þ ð2p1 − p2 − kÞρgνμ þ ð2k − p1 − p2Þμgρν�; ð36Þ

where ξ is the gauge-fixing parameter. The loop integral is
carried out within the dimensional regularization approach,
so we have set it in an arbitrary dimension, D. The factor
μ4−D is then intended to appropriately correct units of the
D-dimensional loop integral. Note that, in the right-hand
side of Eq (36), z ¼ 1 for diagrams Fig. 2(a) and z ¼ 0 for
diagrams Fig. 2(b). The definitions of the factors Va;αi and
Aa;αi are given in Table I. The indices α ¼ 1, 2, 3 and

(a) (b)

(c) (d)

FIG. 2. One-loop diagrams with internal charged gauge bosons.

TABLE I. Couplings and global factors of loop integrals in
terms of the couplings defined in Eqs. (25) to (28).

Va;αi Aa;αi ð−1Þz
Diagrams Figs. 2(a) and 2(c) va;αi −aa;αi −1
Diagrams Figs. 2(b) and 2(d) v�a;αi a�a;αi þ1
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β ¼ 1, 2, 3 are used to label different neutrino mass
eigenstates. All other greek indices denote space-time
components. The index i corresponds to different charged
leptons, and the indices a ¼ 1, 2 and b ¼ 1, 2 label mass
eigenstates of charged gauge bosons, W1 and W2. The

generic loop integral appearing in this vertex function has
terms with four and five poles, but it can be decomposed
into a sum of four terms, each one involving just three
poles. Similarly, the total contributions from diagrams of
form Figs. 2(c) or 2(d) can be expressed as

Λ̄βα
μ ðq2Þ ¼ −ð−1Þzie

X
a

X
i

μ4−D
Z

dDk
ð2πÞD

�
gρν − ð1 − ξÞ kρkν

k2 − ξm2
a

�

×
ūβðp2ÞγρðVa;βi þ Aa;βiγ

5Þðk − p2 −miÞγμðk − p1 −miÞγνðV�
a;αi þ A�

a;αiγ
5Þuαðp1Þ

½ðk − p1Þ2 −m2
i �½ðk − p2Þ2 −m2

i �½k2 −m2
a�

; ð37Þ

where we have employed the notation of the vertex
functions for diagrams Fig. 2(a) and 2(c), given in
Eq. (36). In this case, however, z ¼ 1 for diagrams
Fig. 2(c) and z ¼ 0 for diagrams Fig. 2(d).
To solve the loop integrals, we have assumed that the

photon is off shell, so that q2 ≠ 0. We have followed the
Feynman parameters technique and, using dimensional
regularization, we have isolated the ultraviolet–diverging
terms, which exactly vanish in the magnetic dipole and
electric dipole form factors, so that the total, and finite,
contributions from diagrams of Figs. 2(a)–2(d) to these
form factors have the following structure:

fβαM ðq2Þ ¼ me

8π2
μB

X
i

X
a

½ðaa;βia�a;αi − a�a;βiaa;αiÞI1

þ ðva;βiv�a;αi − v�a;βiva;αiÞI2�; ð38Þ

fβαE ðq2Þ ¼ e
ð4πÞ2

X
i

X
a

½ðaa;βiv�a;αi þ a�a;βiva;αiÞI3

þ ðva;βia�a;αi þ v�a;βiaa;αiÞI4�; ð39Þ

where μB is the Bohr magneton and I1, I2, I3, and I4 are
parametric integrals which depend on the gauge-fixing
parameter ξ. Despite the intricate structure of all integrals,
one can verify that some properties [15] of the electro-
magnetic form factors hold. From the factors multiplying
parametric integrals in Eq. (38), it is explicit that diagonal
magnetic dipole form factors, for which β ¼ α, vanish.
A cancellation of diagonal electric dipole form factors also
happens, but it cannot be determined simply from the
general structure of Eq. (39), since it requires manipula-
tions of the integrands of I3 and I4. We have verified that
the contributions to diagonal charge form factors vanish as
well, but contributions to diagonal anapole form factors
remain. On the other hand, notice that the only sources of
CP-violation in diagrams of Figs. 2(a)–2(d) are the
couplings Wlν. As we explicitly showed in Eq. (35),
violation of CP invariance in such couplings requires

the coefficients va;αi and aa;αi to be complex quantities.
Otherwise, CP is conserved in these interactions and,
consequently, in the corresponding contributions to the
γνν electromagnetic vertex. Keeping this in mind, it can be
appreciated, from the general structure of Eq. (38), that the
assumption of CP invariance yields a cancellation of the
magnetic dipole form factor. Moreover, we have verified
that CP-conservation consistently yields an analogous
elimination of contributions to charge form factors, but
electric dipole and anapole form factors perdure.
The contributions to the neutrino electromagnetic vertex

that originate in the left-right model considered in the
present study enter through on–loop diagrams like those of
Figs. 2(a)–2(d), which in this particular context incorporate
only the charged W1 and W2 bosons. Additionally, dia-
grams involving neutral Z and Z0 bosons, physical scalar
fields, and pseudo-Goldstone bosons contribute. Up to this
point, we have performed a general calculation of the
contributions from charged gauge bosons in the Rξ gauge,
but in the end, we will get rid of spurious degrees of
freedom by taking the unitary gauge, so that a calculation of
diagrams involving pseudo-Goldstone bosons is not nec-
essary. Furthermore, since we are particularly interested in
the contributions to the magnetic dipole form factor, we
neglect those diagrams involving Z and Z0 bosons. Finally,
it has been claimed that diagrams with physical scalars
produce contributions to the magnetic dipole form factor
that are small in comparison with the ones coming from
diagrams with charged gauge bosons4 [45]. Thus, we
consider exclusively the contributions from the diagrams
shown in Figs. 2(a)–2(d). In the case of the electric dipole
moment, a GIM cancellation takes place, which severely
attenuates the contributions to this electromagnetic factor.

4This is to be contrasted with Ref. [64], where a calculation of
the neutrino MMs in left right was performed with special
emphasis on the light–heavy neutrino mixing. The authors report
that contributions from singly charged scalars may be even larger
than those from charged gauge bosons. Our analytic expressions
for the W bosons contributions coincide, in the unitary gauge,
with those given in this reference.
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In view of this, we will not further analyze the electric
dipole moment.
In the next step, we insert the definitions of the

coefficients va;αk and aa;αk for the left-right model, which
are listed in Eqs. (25) to (28), into Eq. (38) and set q2 ¼ 0,
in order to obtain the expression for the neutrino magnetic
moments. We solve parametric integrals and find that the
dominant contributions can be written as

μMβα ≈ iμB
gLgR
ð4πÞ2 sinζ cosζme

m2
2 −m2

1

m2
2m

2
1

2ξ2 − 3ξ− ξ logξþ 1

ðξ− 1Þ2
×

X
i¼e;μ;τ

miIm½eiωðR†
αiLiβ −R†

βiLiαÞ�: ð40Þ

From this expression, it is clear that the resulting MM is an
imaginary quantity, which is consistent with the general
properties of the electromagnetic form factors of Majorana
neutrinos [15]. Notice that μMβα ¼ −μMαβ, which means that
there are only three independent neutrino MMs.
The mixings of Majorana left–handed neutrinos can be

parametrized by a set of three mixing angles, one Dirac
phase and two Majorana phases. In general, there is an
analogous, but independent, set for right–handed neutrinos.
The left and right Majorana mixing matrices can be
expressed as L ¼ VLPL and R ¼ VRPR. The Majorana
phases l2, l3, r2, and r3 are incorporated by the matrices

PL ¼ diagð1; eil22 ; eil32 Þ and PR ¼ diagð1; eir22 ; eir32 Þ, while
the rest of the mixing parameters are located in the matrices
VL and VR. From Eq. (40), notice that the L andR mixing
matrices enter the MMs μMβα only in products of two of
them, so that the result can be written in terms of Majorana
phase differences, ϕβα ¼ ðlβ − rαÞ=2, with l1 ¼ 0 and
r1 ¼ 0. Recall that the contributions that generate the
MMs exhibited in Eq. (40) come from diagrams with
external neutrinos and from diagrams involving external
antineutrinos as well. If neutrinos in this formulation were
Dirac-like, only the former type of diagrams should be
calculated, and the corresponding Dirac MMs, which we
denote by μDβα, would be

μDβα ≈ μB
gLgR
2ð4πÞ2 sinζ cos ζme

m2
1 −m2

2

m2
1m

2
2

2ξ2 − 3ξ− ξ logξþ 1

ðξ− 1Þ2
×

X
i¼e;μ;τ

mi½eiωR†
βiLiα þ e−iωL†

βiRiα�: ð41Þ

Clearly, the μDβα contributions are complex quantities,
contrastingly to the case of the MMs μMβα, which are purely
imaginary. Notice that the Dirac case forbids the presence
of Majorana CP phases. If we take the Majorana phases
equal to zero in μMβα, we get the simple relation

μMβαjϕβα¼0
¼ μDβα − ðμDβαÞ�: ð42Þ

This sum consistently eliminates the real parts of the MMs
and renders the resulting expression imaginary.

IV. ESTIMATIONS AND DISCUSSION
OF RESULTS

In this section, we discuss our results. To this aim, we
explore two scenarios, distinguished of each other by
different shapes of the right PMNS matrix, R. The first
case that we take into account is a particular sort of
maximal mixing, defined by the assumption that the left
and right mixings are equal. For the second R shape, we
consider a CKM-like right mixing, which we assume to be
close to the identity matrix, except for the CP phases,
which remain general.

A. Maximal right mixing

Here, we assume that left- and right-handed neutrinos
share the same mixing matrix, that is, L ¼ R. In such case,
the Majorana phases for left- and right-handed neutrino
states are the same, and, in what follows, we denote them
by φα ¼ lα ¼ rα. Furthermore, any Majorana phase differ-
ence ϕβα is antisymmetric with respect to β and α and
vanishes for β ¼ α. Now we eliminate the unphysical
degrees of freedom by taking the unitary gauge, ξ → ∞
and express the neutrino MM as

μMβα ¼ iμB
gLgR
ð2πÞ2 sin ζ cos ζme

m2
2 −m2

1

m2
2m

2
1

× cosω½sinϕβαm1;βα þ sinðδþ ϕβαÞm2;βα

− sinðδþ ϕαβÞm2;αβ�; ð43Þ

where the coefficients mj;βα are defined in terms of masses
of charged leptons and mixing angles θ12, θ23, and θ13.
Their explicit expressions are provided in Appendix A. The
MM that we showed in Eq. (43) is given explicitly in terms
of the Dirac CP-violating phase, δ, and phase differences,
ϕβα, of Majorana phases φα. It also depends on the complex
phase ω, which originates in the second stage of symmetry
breaking and is incorporated to the charged currents as a
consequence of the mixing of left and right charged gauge
bosons. For ω ¼ �π=2, these leading contributions cancel,
despite CP violation is present. This feature is not general,
for it arises as a consequence of our assumption of equal
left and right mixings. On the other hand, we are particu-
larly interested in the sensitivity of the neutrino MMs to the
PMNS CP phases. For these reasons we assume, from now
on, that cosω ¼ 1, which leaves all CP–violation in the
hands of the PMNS phases.
The dependence of the μMβα on the mass of the heavy

charged gauge boson improves the contributions to the
MMs for larger values of such mass, that is, the larger the
W2 mass, the greater the MMs. Small values of the m2

mass, which are already discarded [50], would play an

INTERPLAY BETWEEN NEUTRINO MAGNETIC MOMENTS … PHYSICAL REVIEW D 92, 095016 (2015)

095016-9



important role, since in that light-mass region, the MMs are
very sensitive to them. However, as larger values of the m2

mass are considered, the contributions to MMs soon
stabilize and grow very slowly. A hint pointing towards
a TeV-scale mass for the right charged gauge boson was
presented recently by the CMS Collaboration [65], which
set a lower bound of 3.0 TeV on this mass. Moreover, an
excess with significance 2.8σ in two leptons and two jets
events that was reported in that paper has been interpreted
[66–72] as a signal of right-handed charged gauge bosons
with masses within the range 1.9–2.4 TeV.
Left–right mixing of charged gauge bosons is important

to the μMβα, for a nonzero value of the mixing angle ζ avoids
GIM suppression, thus enlarging the contributions to MMs.
But whether MMs of neutrinos are actually generated or not
is defined by the CP-violating phases of the PMNS matrix.
According to the bound [51] on the mixing angle ζ, to the
current best directly measured values [73] of the PMNS
mixing angles, and assuming that theW2 mass is within the
range of a few TeVs, we write the magnitude of the MM of
neutrinos as

jμMβαj < μBð4 × 10−11 GeV−1Þjm1;βα sinϕβα

þ ðm2;βα −m2;αβÞ sin δ cosϕβα

þ ðm2;βα þm2;αβÞ cos δ sinϕβαj: ð44Þ

The mj;βα are of order 10−1, so that neutrino MMs are, at
most, of order 10−11. As we pointed out before, if violation
of CP invariance were absent, all contributions to the
neutrino MM would be eliminated, which evidently occurs
with the leading effects shown in Eq. (44). In case that CP

invariance is violated, the Dirac and Majorana phases
determine the size of the contributions. Up to now, the
Dirac phase has not been measured, although studies aimed
to find the value of this quantity are available. The best fit
δ≃ 3π=2 for the Dirac phase was reported in Ref. [74],
where the value π=2 was disfavored. In Ref. [75], on the
other hand, the Dirac phase was found to be around δ≃ π
for a bimaximal shape of the PMNS matrix, while for a
tribimaximal neutrino mixing this phase is reported to be
around δ≃ 3π=2 or π=2, with the exclusion of the values
δ ¼ 0, π, 2π at greater than 4σ. The T2K Collaboration
recently reported [76] electron-neutrino appearance from a
muon-neutrino beam beyond 5σ, finding that the value δ ¼
−π=2 is preferred by combined T2K data and reactor
measurements.
For illustrative purposes, we assume that δ ¼ −π=2, so

that

jμMβαj < μBð4 × 10−11 GeV−1Þjm1;βα sinϕβα

− ðm2;βα −m2;αβÞ cosϕβαj: ð45Þ

The behavior of the MMs is exemplified in Fig. 3, which
exhibits what happens in case of the magnitude jμM21j for
different elections of the Dirac phase. The curves represent
upper limits on the jμM21j, for different Majorana phase
differences, while the region under these curves (a shaded
region in the case of δ ¼ −π=2) comprehends all allowed
values of the MMs, which can be defined, for instance, by
the amount of mixing of left and right charged gauge
bosons. As it can be appreciated from these plots, the value
δ ¼ −π=2, favored by Ref. [76], does not produce the

FIG. 3 (color online). Dependence of the transition Magnetic moment jμM21j on the Majorana phase φ2 for different Dirac phases δ. The
upper bound on the Dirac MM magnitude jμD21j, for δ ¼ −π=2, is represented by a horizontal line.

D. DELEPINE AND H. NOVALES–SÁNCHEZ PHYSICAL REVIEW D 92, 095016 (2015)

095016-10



largest contributions to the neutrino MMs, since angles
such as −π yield larger results. The upper bounds on the
MMs reach their maxima at phase differences ϕmax

βα given
by

tanϕmax
βα ¼ m1;βα

m2;αβ −m2;βα
; for ϕβα ≠ � π

2
; ð46Þ

cotϕmax
βα ¼ m2;αβ −m2;βα

m1;βα
; for ϕβα ≠ π; 0; ð47Þ

so that

jμMβαj < μBð4 × 10−11 GeV−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1;βα þ ðm2;αβ −m2;βαÞ2
q

:

ð48Þ

Recall that φ1 ¼ 0, so that ϕ21 ¼ φ2=2 and ϕ31 ¼ φ3=2,
which means that the MMs jμM21j and jμM32j grant us direct
access to the Majorana phases. From the last equations, we
estimate, for δ ¼ −π=2, the upper bound on each MM, the
ϕmax
βα phase differences yielding these maxima, and the

corresponding Majorana phases:

jμM21j≲ 1.62 × 10−11; ϕmax
21 ≈ 71.62°;−108.29°;

φ2 ≈ 143.24°; ð49Þ

jμM31j≲ 1.88 × 10−11; ϕmax
31 ≈ 73.91°;−106°;

φ3 ≈ 147.82°; ð50Þ

jμM32j≲ 2.76 × 10−11; ϕmax
32 ≈ 97.4°;−83.08°: ð51Þ

Figure 3 also provides a comparison between the Majorana
and Dirac cases. It shows the upper bound on the jμD21j
magnitude of the Dirac MM, which is obtained by setting
the condition L ¼ R in Eq. (41), for a Dirac phase
δ ¼ −π=2. Such upper bound is, in this case, a horizontal
line defined by jμD21j ≈ 8.13 × 10−12μB.

Is there any set of values for the PMNS phases that
violates CP invariance and eliminates all neutrino MMs at
the same time? As Fig. 3 illustrates, even in the presence of
Dirac CP-violation, certain Majorana phase differences
may eliminate a particular neutrino MM. Indeed, at the
saddle points, ϕ0

βα, determined by

tanϕ0
βα ¼ −

m2;αβ −m2;βα

m1;βα
; for ϕβα ≠ � π

2
; ð52Þ

cotϕ0
βα ¼ −

m1;βα

m2;αβ −m2;βα
; for ϕβα ≠ π; 0; ð53Þ

the MM μMβα vanishes. The corresponding angles are

jμM21j ≈ 0; φ0
2 ≈ −36.86°; ð54Þ

jμM31j ≈ 0; φ0
3 ≈ −31.98°; ð55Þ

jμM32j ≈ 0; ϕ0
32 ≈ −172.87°; 7.13°: ð56Þ

Recall that, by definition, the relation ϕ32 ¼ ðφ3 − φ2Þ=2
must hold for any acceptable pair of Majorana phases φ2

and φ3. This means that the hypothetical extraction of the
values of the Majorana phases from the MMs μM21 and μM31
would automatically establish the value of the Majorana
phase difference ϕ32, which is a parameter of μM32.
Nevertheless, from the estimations given in Eqs. (54),
(55), and (56), it is clear that ðφ0

3 − φ0
2Þ=2 ≈ 2.44° ≠ ϕ0

32. In
other words, if CP is violated by PMNS phases, at least one
neutrino MM must have a nonzero value. An analogous
situation happens when one observes Eqs. (49), (50), and
(51), according to which ϕmax

32 si very different to
ðφmax

3 − φmax
2 Þ=2. A similar reasoning indicates that no

more than two MMs can be maximal.

B. CKM-like mixing

In general, the right PMNS matrix, R, can be para-
metrized as [6]

R ¼

0
B@

c12c13 s12c13 s13e−iδR

−s12c23 − c12s23s13eiδR c12c23 − s12s23s13eiδR s23c13
s12s23 − c12c23s13eiδR −c12s23 − s12c23s13eiδR c23c13

1
CA; ð57Þ

where the sine and the cosine of the right mixing angles are,
respectively, denoted by sjk ¼ sin θRjk, cjk ¼ cos θRjk, and δR is
the right Dirac phase. Assuming that themixing angles θRjk are
very close to 0 or to π, the off diagonal terms are suppressed
and the role played by the right Dirac phase δR becomes
marginal. In such context,R is very close to the identitymatrix
and is almost real. Assuming that ω ¼ 0, we find

jμMβαj ≈ μB
gLgR
8π2

sin ζ cos ζme
m2

2 −m2
1

m2
2m

2
1

× jce;βαRe1 þ cμ;βαRμ2 þ cτ;βαRτ3j
≲ μBð2 × 10−11 GeV−1Þ
× ðjce;βαj þ jcμ;βαj þ jcτ;βαjÞ: ð58Þ
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The whole set of coefficients cj;βα is provided in Appen-
dix B. Each μMβα involves one cj;βα coefficient that is equal
to zero and two coefficients which are not. Each nonzero
coefficient depends on only one charged-lepton mass, to
which it is proportional, so that any MM involves only two
different charged-lepton masses. Dependence on the left
Dirac phase δ and on two Majorana phase differences, ϕβα

and ϕαβ, is also present. However, any MM is mostly
sensitive to only one of such Majorana phase differences.
This feature is dictated by the largest charged-lepton mass
upon which a given MM depends. To illustrate this point,
consider the case of the μM21 MM, which involves the
coefficients ce;21 ∝ me, cμ;21 ∝ mμ, and cτ;21 ¼ 0. Since
the muon mass is much larger than the electron mass, the
contribution enclosed by ce;21 is suppressed with respect to
cμ;21. Noting that the Majorana phase difference ϕ21 only
appears in the ce;21 coefficient, it is clear that the
magnitude of this MM is mainly sensitive to the phase
difference ϕ12. The Dirac phase, being involved in the
dominant cμ;21 coefficient also plays a role. This domi-
nance of only one Majorana phase difference is even more
dramatic in the case of μM32, which depends on the masses
of the electron and the tau lepton. Since here the ratio
between the charged-lepton masses is an order of magni-
tude larger than the in previous case, the effect of the ϕ31

phase is even more suppressed. The case of the remaining
MM, μM32, is a little bit more equilibrated, for the difference
between mμ and mτ is the smallest among all the
differences of masses of charged leptons. The behavior
of this MM, as a function of ϕ23, is illustrated in Fig. 4,
where the magnitude jμM32j has been plotted for δ ¼ −π=2

and different choices of the Majorana phase difference ϕ32.
This MM is mostly sensitive to the ϕ23 phase difference,
but the effects of the phase difference ϕ32 can be
appreciated in this figure. This contrasts with the situation
of the other two MMs, whose graphs would look
practically the same for any value of the subdominant
Majorana phase differences. Additionally, Fig. 4 shows the
upper bound on the contributions to the Dirac-like MM
μD32, which is represented by a horizontal line at jμD32j≈
1.07 × 10−11μB.
Using the value δ ¼ −π=2, for the Dirac phase, yields the

following upper bounds on the neutrino MMs:

jμM21j≲ 8.89 × 10−13μB;�
ϕmax
12 ≈ 102.00°;−78.00°; rmax

2 ≈ 156°;

ϕmax
21 ¼ �90°; lmax

2 ¼ 180°;
ð59Þ

jμM31j≲1.36×10−11μB;�
llϕmax

13 ≈75.59°;−104.41°;rmax
3 ≈−151.18;

ϕmax
31 ¼ 0;180°; lmax

3 ¼ 0°;
ð60Þ

jμM32j≲ 2.15 × 10−11μB;

�
ϕmax
23 ≈ 96.40°;−83.60°;

ϕmax
32 ¼ �90°:

ð61Þ

In the last three equations, we have provided the phase
differences ϕmax

βα yielding these maxima, and the Majorana
phases associated to such differences. From Eq. (59), a
difference among the maximal right mixing, discussed in
the last subsection, and the CKM-like right mixing can be

FIG. 4 (color online). Allowed regions for jμ32j, as a function of ϕ23, for δ ¼ −π=2 and different Majorana phase differences ϕ32, in a
scenario characterized by a CKM-like right-lepton mixing. The upper bound on the contributions to the corresponding MM of Dirac
type, also shown in this figure, is represented by the horizontal line.
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pointed out: the upper bound on the magnitude of the μM21 is
more than one order of magnitude larger in the former case
than in the latter. This means that if experiments measured a
μM21 within the range 10−11–10−12, the scenario with
maximal right mixing L ¼ R would be favored, with
respect to the case of CKM-like mixing, in the context
of the left–right model considered in the present work.
Similarly to what occurred in the context of the maximal

neutrino mixing that we discussed in the previous sub-
section, here each neutrino transition MM μMβα vanish for
certain Majorana phase differences ϕ0

βα and ϕ0
αβ. For

δ ¼ −π=2, we find the following sets of angles:

jμM21j ≈ 0;

�
ϕ0
12 ≈ 12.00°;−168.00°; r02 ≈ −24°;

ϕ0
21 ¼ 0°; 180°; l02 ¼ 0°;

jμM31j ≈ 0;

�
ϕ0
13 ≈ 165.59°;−14.41°; r03 ≈ 28.82°;

ϕ0
31 ¼ �90°; l03 ¼ 180°;

jμM32j ≈ 0;

�
ϕ0
23 ≈ 6.40°;−173.60°;

ϕ0
32 ¼ 0°; 180°:

Keeping in mind these results, visualize a setting in which
we have Majorana phase differences ϕ21 ¼ ϕ0

21, ϕ12 ¼ ϕ0
12,

ϕ31 ¼ ϕ0
31, and ϕ13 ¼ ϕ0

13, so that μM21 ≈ 0 and μM31 ≈ 0.
Then note that

l02 − r03
2

≈ −14.41° ≠ ϕ0
23; ð62Þ

l03 − l02
2

≈ 102° ≠ ϕ0
32: ð63Þ

We find, then, that there cannot be a set of Majorana
phase differences that make all three MMs equal to zero
and satisfy the equations ϕ0

23 ¼ ðl02 − r03Þ=2 and ϕ0
32 ¼

ðl03 − r02Þ=2, at the same time, so that two vanishing
neutrino MMs require the third one to be nonzero. This
means that, in the presence of CP violation driven by
Majorana and Dirac phases, there must be, at least, one
nonzero neutrino MM. Finally, as it happened in the case
L ¼ R, we observe that optimal sets of Majorana phase
differences cannot generate more than two maximal MMs.

V. CONCLUSIONS

In this paper, we have studied the magnetic moments of
neutrinos living in a world in which nonmanifest left-right
symmetry, lying beyond the Standard Model, describes
nature at a high-energy scale. The resulting contributions
arose from the calculation, performed at the one-loop level,
of the neutrino electromagnetic vertex γνν, for which we
took into account the role of charged currents featuring
light and heavy mixed charged gauge bosons that couple to
Majorana neutrinos. We derived an expression for the

magnetic moments, of which only off diagonal terms are
nonzero. This is a characteristic of Majorana neutrinos, as
the ones living within this description of new physics. We
carried out the calculation in the general Rξ-gauge and, in
the limit corresponding to the unitary gauge, we found
agreement with previous investigations. However, we went
further and expressed our result explicitly in terms of the
CP-violating phases that are part of the parametrization of
neutrino mixing. The full set of neutrino magnetic moments
can be seen as entries of a 3 × 3 hermitian matrix, which
turns out to be antisymmetric. This reduces the number of
independent magnetic moments to just three. Since we
dealt with Majorana neutrinos, there were three CP-
violating phases: one Dirac and two Majorana. We con-
sidered two manners in which right–handed neutrino
mixing may be realized. In the first place, we examined
a maximal right neutrino mixing in which the right mixing
matrix coincides with the one describing the mixing of left–
handed neutrinos. Then, we considered a right-handed
neutrino mixing matrix in which off diagonal terms are
suppressed with respect to those in the diagonal. Though
we attenuated the effects from off diagonal terms by
assuming right mixing angles that are close to 0 or π,
we left the CP Majorana and Dirac phases free of
assumptions. Then we discussed the effect of CP violation,
driven by these phases, and found that even in the case that
Dirac CP-violation is present, certain values of the
Majorana phases may attenuate the contributions, and even
eliminate them. Nevertheless, we have pointed out that at
least one of the neutrino magnetic moments must be
nonzero. Similarly, we found that a no more than two
neutrino magnetic moments can have a maximum value.
Estimations show that the MMs are, at most, of order
10−11μB.
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APPENDIX A: DEFINITIONS
OF COEFFICIENTS mj;βα

The coefficients mj;βα, used in Eqs. (43), are defined as

m1;11 ¼ cos2θ12ðmecos2θ13

þ sin2θ13ðmμsin2θ23 þmτcos2θ23ÞÞ
þ sin2θ12ðmμcos2θ23 þmτsin2θ23Þ; ðA1Þ
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m1;12¼ sinθ12 cosθ12ðmecos2θ13þ sin2θ23ðmμsin2θ13−mτÞ
þcos2θ23ðmτsin2θ13−mμÞÞ; ðA2Þ

m1;13 ¼ sin θ12 sin θ23 cos θ13 cos θ23ðmτ −mμÞ; ðA3Þ

m1;22 ¼ sin2θ12ðmecos2θ13

þ sin2θ13ðmμsin2θ23 þmτcos2θ23ÞÞ
þ cos2θ12ðmμcos2θ23 þmτsin2θ23Þ; ðA4Þ

m1;23 ¼ sin θ23 cos θ12 cos θ13 cos θ23ðmμ −mτÞ; ðA5Þ

m1;33 ¼ mesin2θ13

þ cos2θ13ðmμsin2θ23 þmτcos2θ23Þ; ðA6Þ

m2;11 ¼ sin θ12 sin θ13 sin θ23 cos θ12

× cos θ23ðmμ −mτÞ; ðA7Þ

m2;12 ¼ sin θ13 sin θ23cos2θ12 cos θ23ðmτ −mμÞ; ðA8Þ

m2;13 ¼ sin θ13 cos θ12 cos θ13

× ðme −mμsin2θ23 −mτcos2θ23Þ; ðA9Þ

m2;21 ¼ sin2θ12 sin θ13 sin θ23 cos θ23ðmμ −mτÞ; ðA10Þ

m2;22 ¼ sin θ12 sin θ13 sin θ23 cos θ12 cos θ23

× ðmτ −mμÞ; ðA11Þ

m2;23 ¼ sin θ12 sin θ13 cos θ13

× ðme −mμsin2θ23 −mτcos2θ23Þ; ðA12Þ

Additionally, m1;βα ¼ m1;αβ and m2;3α ¼ 0.

APPENDIX B: DEFINITIONS
OF COEFFICIENTS cj;βα

The coefficients cj;βα are antisymmetric, that is,
cj;βα ¼ −cj;αβ. Their explicit expressions are

ce;21 ¼ me cos θ13 sin θ12 sinϕ21; ðB1Þ

cμ;21 ¼ mμðcos θ23 sin θ12 sinϕ12

þ cos θ12 sin θ13 sin θ23 sinðδþ ϕ12Þ; ðB2Þ

cτ;21 ¼ 0; ðB3Þ

ce;31 ¼ −me sin θ13 sinðδ − ϕ31Þ; ðB4Þ

cμ;31 ¼ 0; ðB5Þ

cτ;31 ¼ mτðcos θ12 cos θ23 sin θ13 sinðδþ ϕ13Þ
− sin θ12 sin θ23 sinϕ13Þ; ðB6Þ

ce;32 ¼ 0; ðB7Þ

cμ;32 ¼ mμ cos θ13 sin θ23 sinϕ32; ðB8Þ

cτ;32 ¼ mτðcos θ12 sin θ23 sinϕ23

þ cos θ23 sin θ12 sin θ13 sinðδþ ϕ23ÞÞ: ðB9Þ
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