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We perform global fits to the most recent data (after summer 2014) on Higgs boson signal strengths
in the framework of the minimal supersymmetric standard model. We further impose the existing limits on
the masses of charginos, staus, stops, and sbottoms together with the current Higgs mass constraint
jMH1

− 125.5 GeVj < 6 GeV. The heavy supersymmetric (SUSY) particles such as squarks enter into the
loop factors of the Hgg and Hγγ vertices, while other SUSY particles such as sleptons and charginos also
enter into that of the Hγγ vertex. We also take into account the possibility of other light particles, such as
other Higgs bosons and neutralinos, into which the 125.5 GeV Higgs boson can decay. We use the data
from the ATLAS, CMS, and the Tevatron, with existing limits on SUSY particles, to constrain on the
relevant SUSY parameters. We obtain allowed regions in the SUSY parameter space of squark, slepton
and chargino masses, and the μ parameter. We find that jΔSγ=SγSMj ≲ 0.1 at 68% confidence level when
M ~χ�

1
> 300 GeV andM ~τ1 > 300 GeV, irrespective of the squarks masses. Furthermore, jΔSγ=SγSMj ≲ 0.03

when M ~χ�
1
;~τ1 > 500 GeV and M~t1; ~b1

≳ 600 GeV.
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I. INTRODUCTION

The celebrated particle observed by the ATLAS [1] and
the CMS [2] collaborations at the Large Hadron Collider
(LHC) in July 2012 is more consistent with the standard
model (SM) Higgs boson than any scalar particles
appearing in other extensions of the SM [3,4], at least in
terms of some statistical measures. The SM Higgs
boson was proposed in 1960s [5] but only received
the confirmation recently through its decays into γγ and
ZZ� → 4l modes.
Although the data on Higgs signal strengths are best

described by the SM, the other extensions are still viable
options to explain the data. Numerous activities occurred in
the constraining of theSMboson [3,6–23], higher-dimension
operators of theHiggs boson [24–29], the two-Higgs-doublet
models [30–43], and in the supersymmetric framework
[44–53]. A very recent update to all the data as of summer
2014 was performed in Ref. [4]. We shall describe the most
significant change to the data set in Sec. III. In this work,
we perform the fits in the framework of the minimal super-
symmetric standard model (MSSM) to all the most updated
data on Higgs signal strengths as of summer 2014.
In our previous analysis of the two-Higgs-doublet model

(2HDM) [40], we do not specify which neutral Higgs boson
is the observed Higgs boson, so that the whole scenario
can be described by a small set of parameters. The bottom
and leptonic Yukawa couplings are determined through the
topYukawa coupling, and theHWW coupling is determined

via tan β and top Yukawa, so that a minimal set
of parameters includes only tan β and the top Yukawa
coupling. We can easily include the effects of the charged
Higgs boson by the loop factor in theHγγ vertex and include
possibly very lightHiggs bosons by the factorΔΓtot. Herewe
follow the same strategy for the global fits in the framework
of the MSSM, the Higgs sector of which is the same as
Type II of the 2HDM, in order to go alongwith aminimal set
of parameters, unless we specifically investigate the spec-
trum of supersymmetric particles, e.g., the chargino mass.
In this work, we perform global fits in the MSSM

under various initial conditions to the most updated data on
Higgs boson signal strengths. A few specific features are
summarized here.
(1) We use a minimal set of parameters without speci-

fying the spectrum of the supersymmetry (SUSY)
particles. For example, all up-, down-, and lepton-
type Yukawa couplings and the gauge-Higgs cou-
pling are given in terms of the top Yukawa coupling,
tan β, and κd, where κd is the radiative correction in
the bottom Yukawa coupling defined later.

(2) Effects of heavy SUSY particles appear in the loop
factors ΔSg and ΔSγ of the Hgg and Hγγ vertices,
respectively.

(3) Effects of additional light Higgs bosons or light
neutralinos that the 125.5 GeV Higgs boson can
decay into are included by the deviation ΔΓtot in the
Higgs boson width.
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(4) CP-violating effects can occur in Yukawa couplings,
which are quantified by the CP-odd part of the top-
Yukawa coupling. Effects of other CP sources can
appear in the loop factor of Hgg and Hγγ vertices.
We label them as ΔPg and ΔPγ, respectively. In
Ref. [54], we have computed all the Higgs-mediated
CP-violating contributions to the electric dipole
moments (EDMs) and compared them to existing
constraints from the EDM measurements of thal-
lium, a neutron, mercury, and thorium monoxide.
Nevertheless, we are content with CP-conserving
fits in this work.

(5) We impose the existing limits of chargino and stau
masses when we investigate specifically their effects
on the vertex of Hγγ. The current limits on chargino
and stau masses are [55]

M ~χ� > 103.5 GeV; M~τ1 > 81.9 GeV:

Similarly, the current limits for stop and sbottom
masses quoted in Particle Data Group are [55]

M~t1 > 95.7 GeV; M ~b1
> 89 GeV;

whichwill be applied in calculating the effects inHγγ
and Hgg vertices. Note that the current LHC limits
on the stop and sbottom masses are M~t1 > 650 GeV
and M ~b1

> 600 GeV at 95% confidence level in a
simplified model with M ~χ0

1
¼ 0GeV [55]. However,

there often exist underlying assumptions of search
strategies and the mass of the lightest neutralino.
Therefore, we conservatively take the above mass
limits on the stops and sbottoms in most of the
analysis.

(6) Since we shall try to find the implication of the
current Higgs signal strength data on the SUSY
spectrum, which in practice affects the lightest Higgs
boson mass, we therefore also calculate the corre-
sponding Higgs boson mass and impose the current
Higgs mass constraint of MH1

∼ 125.5� 6 GeV,
taking at a roughly 3-σ level.

The organization of the work is as follows. In the next
section, we describe the convention and formulas for all the
couplings used in this work. In Sec. III, we describe various
CP-conserving fits and present the results. In Sec. IV,
we specifically investigate the SUSY parameter space of
charginos, staus, stops, and sbottoms. We put the synopsis
and conclusions in Sec. V.

II. FORMALISM

For the Higgs couplings to SM particles, we assume that
the observed Higgs boson is a generic CP-mixed state
without carrying any definite CP-parity. We follow the
conventions and notation of CPsuperH [56].

A. Yukawa couplings

The Higgs sector of the MSSM is essentially the same
as Type II of the 2HDM. More details of the 2HDM can
be found in Ref. [40]. In the MSSM, the first Higgs doublet
couples to the down-type quarks and charged leptons, while
the second Higgs doublet couples to the up-type quarks
only. After both doublets take on vacuum-expectation
values (VEV), we can rotate the neutral components ϕ0

1,
ϕ0
2, and a into mass eigenstates H1;2;3 through a mixing

matrix O as follows:

ðϕ0
1;ϕ

0
2; aÞTα ¼ OαiðH1; H2; H3ÞTi ;

with the mass ordering MH1
≤ MH2

≤ MH3
. We do not

specify which Higgs boson is the observed one; in fact, it
can be any of the H1;2;3. We have shown in Ref. [40] that
the bottom and lepton Yukawa couplings can be expressed
in terms of the top Yukawa coupling in general 2HDM. We
can therefore afford a minimal set of input parameters.
The effective Lagrangian governing the interactions of

the neutral Higgs bosons with quarks and charged leptons is

LHf̄f ¼ −
X

f¼u;d;l

gmf

2MW

X3
i¼1

Hif̄ðgSHif̄f
þ igP

Hif̄f
γ5Þf: ð1Þ

At the tree level, ðgS; gPÞ ¼ ðOϕ1i=cβ;−Oai tan βÞ and
ðgS;gPÞ¼ ðOϕ2i=sβ;−Oai cotβÞ for f¼ðl;dÞ and f ¼ u,
respectively, and tan β≡ v2=v1 is the ratio of the VEVs of
the two doublets. Threshold corrections to the down-type
Yukawa couplings change the relation between the Yukawa
coupling hd and mass md as1

hd ¼
ffiffiffi
2

p
md

v cos β
1

1þ κd tan β
: ð2Þ

Thus, the Yukawa couplings of neutral Higgs-boson mass
eigenstates Hi to the down-type quarks are modified as

gS
Hid̄d

¼ Re

�
1

1þ κd tan β

�
Oϕ1i

cos β
þ Re

�
κd

1þ κd tan β

�
Oϕ2i

cos β

þ Im

�
κdðtan2β þ 1Þ
1þ κd tan β

�
Oai;

gP
Hid̄d

¼ −Re
�

tan β − κd
1þ κd tan β

�
Oai þ Im

�
κd tan β

1þ κd tan β

�
Oϕ1i

cos β

− Im

�
κd

1þ κd tan β

�
Oϕ2i

cos β
: ð3Þ

In the MSSM, neglecting the electroweak corrections
and taking the most dominant contributions, κb can be split
into [57]

1In general settings, κd and κs are usually the same, but κb
could be very different because of the third-generation squarks.
However, our main concern in this work is the third-generation
Yukawa couplings. Thus, we shall focus on κb, although we are
using the conventional notation κd.
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κb ¼ ϵg þ ϵH;

where ϵg and ϵH are the contributions from the sbottom-
gluino exchange diagram and from the stop-Higgsino
diagram, respectively. Their explicit expressions are

ϵg ¼
2αs
3π

M�
3μ

�Iðm2
~b1
; m2

~b2
; jM3j2Þ;

ϵH ¼ jhtj2
16π2

A�
t μ

�Iðm2
~t1
; m2

~t2
; jμj2Þ;

where M3 is the gluino mass, and ht and At are the top-
quark Yukawa and trilinear couplings, respectively.

B. Couplings to gauge bosons

Here we present the explicit forms of the Higgs cou-
plings to the massive gauge bosons Z andW� and massless
photons and gluons:

(i) Interactions of the Higgs bosons with the gauge
bosons Z and W� are described by

LHVV ¼ gMW

�
Wþ

μ W−μ þ 1

2c2W
ZμZμ

�X
i

gHiVVHi;

ð4Þ
where

gHiVV ¼ cβOϕ1i þ sβOϕ2i: ð5Þ

(ii) Couplings to two photons: The amplitude for the
decay process Hi → γγ can be written as

MγγHi
¼ −

αM2
Hi

4πv

�
SγðMHi

Þðϵ�1⊥ · ϵ�2⊥Þ

− PγðMHi
Þ 2

M2
Hi

hϵ�1ϵ�2k1k2i
�
; ð6Þ

where k1;2 are the momenta of the two photons
and ϵ1;2 are the wave vectors of the corresponding
photons, ϵμ1⊥ ¼ ϵμ1 − 2kμ1ðk2 · ϵ1Þ=M2

Hi
, ϵμ2⊥ ¼ ϵμ2−

2kμ2ðk1 · ϵ2Þ=M2
Hi
, and hϵ1ϵ2k1k2i≡ ϵμνρσϵ

μ
1ϵ

ν
2k

ρ
1k

σ
2.

The decay rate of Hi → γγ is proportional to
jSγj2 þ jPγj2. The form factors are given by

SγðMHi
Þ ¼ 2

X
f¼b;t;τ

NCQ2
fg

S
Hif̄f

FsfðτfÞ

− gHiVVF1ðτWÞ þ ΔSγi ;

PγðMHi
Þ ¼ 2

X
f¼b;t;τ

NCQ2
fg

P
Hif̄f

FpfðτfÞ þ ΔPγ
i ; ð7Þ

where τx ¼ M2
Hi
=4m2

x, and NC ¼ 3 for quarks and
NC ¼ 1 for taus, respectively. In the MSSM, the
factors ΔSγi and ΔPγ

i receive contributions from
charginos, sfermions, and charged Higgs bosons,

ΔSγi ¼
ffiffiffi
2

p
g
X

f¼~χ�
1
;~χ�

2

gS
Hif̄f

v
mf

FsfðτifÞ

−
X

~fj¼~t1;~t2; ~b1; ~b2;~τ1;~τ2

NCQ2
fgHi

~f�j ~fj

v2

2m2
~fj

F0ðτi ~fjÞ

− gHiHþH−
v2

2M2
H�

F0ðτiH�Þ;

ΔPγ
i ¼

ffiffiffi
2

p
g
X

f¼~χ�
1
;~χ�

2

gP
Hif̄f

v
mf

FpfðτifÞ; ð8Þ

where the couplings to charginos, sfermions, and
charged Higgs are defined in the interactions

LH ~χþ ~χ− ¼ −
gffiffiffi
2

p
X
i;j;k

Hk ~χ
−
i ðgSHk ~χ

þ
i ~χ

−
j
þ iγ5gPHk ~χ

þ
i ~χ

−
j
Þ~χ−j ;

LH ~f ~f ¼ v
X
f¼u;d

gHi
~f�j ~fk

ðHi
~f�j ~fkÞ;

L3H ¼ v
X3
i¼1

gHiHþH−HiHþH−: ð9Þ

We shall describe the couplings of the Higgs boson
to the charginos, sfermions, and charged Higgs
boson a little later.

(iii) Couplings to two gluons: Similar to H → γγ, the
amplitude for the decay process Hi → gg can be
written as

MggHi
¼ −

αsM2
Hi
δab

4πv

�
SgðMHi

Þðϵ�1⊥ · ϵ�2⊥Þ

− PgðMHi
Þ 2

M2
Hi

hϵ�1ϵ�2k1k2i
�
; ð10Þ

where a and b (a, b ¼ 1 to 8) are indices of the
eight SUð3Þ generators in the adjoint representation.
The decay rate of Hi → gg is proportional to
jSgj2 þ jPgj2. The fermionic contributions and addi-
tional loop contributions from squarks in the MSSM
to the scalar and pseudoscalar form factors are
given by

SgðMHi
Þ ¼

X
f¼b;t

gS
Hif̄f

FsfðτfÞ þ ΔSgi ;

PgðMHi
Þ ¼

X
f¼b;t

gP
Hif̄f

FpfðτfÞ þ ΔPg
i ; ð11Þ

with

ΔSgi ¼ −
X

~fj¼~t1;~t2; ~b1; ~b2

gHi
~f�j ~fj

v2

4m2
~fj

F0ðτi ~fjÞ;

ΔPg
i ¼ 0; ð12Þ
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where the ΔPg ¼ 0 because there are no colored
SUSY fermions in the MSSM that can contribute to
ΔPg at one-loop level.

C. Interactions of neutral Higgs bosons with charginos,
sfermions, and charged Higgs

The interactions between the Higgs bosons and chargi-
nos are described by the following Lagrangian:

LH ~χþ ~χ− ¼ −
gffiffiffi
2

p
X
i;j;k

Hk ~χ
−
i ðgSHk ~χ

þ
i ~χ

−
j
þ iγ5gPHk ~χ

þ
i ~χ

−
j
Þ~χ−j ;

gSHk ~χ
þ
i ~χ

−
j
¼ 1

2
f½ðCRÞi1ðCLÞ�j2Gϕ1

k þ ðCRÞi2ðCLÞ�j1Gϕ2

k �
þ ½i↔j��g;

gPHk ~χ
þ
i ~χ

−
j
¼ i

2
f½ðCRÞi1ðCLÞ�j2Gϕ1

k þ ðCRÞi2ðCLÞ�j1Gϕ2

k �
− ½i↔j��g; ð13Þ

where Gϕ1

k ¼ ðOϕ1k − isβOakÞ, Gϕ2

k ¼ ðOϕ2k − icβOakÞ, i,
j ¼ 1, 2, and k ¼ 1–3. The chargino mass matrix in the
ð ~W−; ~H−Þ basis,

MC ¼
�

M2

ffiffiffi
2

p
MWcβffiffiffi

2
p

MWsβ μ

�
; ð14Þ

is diagonalized by two different unitary matrices
CRMCC

†
L ¼ diagfM ~χ�

1
;M ~χ�

2
g, where M ~χ�

1
≤ M ~χ�

2
. The

chargino mixing matrices ðCLÞiα and ðCRÞiα relate the
electroweak eigenstates to the mass eigenstates, via

~χ−αL ¼ ðCLÞ�iα ~χ−iL; ~χ−αL ¼ ð ~W−; ~H−ÞTL;
~χ−αR ¼ ðCRÞ�iα ~χ−iR; ~χ−αR ¼ ð ~W−; ~H−ÞTR: ð15Þ

The Higgs-sfermion-sfermion interaction can be written
in terms of the sfermion mass eigenstates as

LH ~f ~f ¼ v
X
f¼u;d

gHi
~f�j ~fk

ðHi
~f�j ~fkÞ; ð16Þ

where

vgHi
~f�j ~fk

¼ ðΓα ~f� ~fÞβγOαiU
~f�
βjU

~f
γk;

with α ¼ ðϕ1;ϕ2; aÞ ¼ ð1; 2; 3Þ, β, γ ¼ L, R,
i ¼ ðH1; H2; H3Þ ¼ ð1; 2; 3Þ, and j, k ¼ 1, 2. The expres-

sions for the couplings Γα ~f� ~f are shown in Ref. [56]. The
stop and sbottom mass matrices may conveniently be
written in the ð ~qL; ~qRÞ basis as

~M2
q ¼

 
M2

~Q3

þm2
q þ c2βM2

ZðTq
z −Qqs2WÞ h�qvqðA�

q − μRqÞ=
ffiffiffi
2

p

hqvqðAq − μ�RqÞ=
ffiffiffi
2

p
M2

~R3

þm2
q þ c2βM2

ZQqs2W

!
; ð17Þ

with q ¼ t, b, R ¼ U,D, Tt
z ¼ −Tb

z ¼ 1=2,Qt ¼ 2=3,Qb ¼ −1=3, vb ¼ v1, vt ¼ v2, Rb ¼ tan β ¼ v2=v1, Rt ¼ cot β, and
hq is the Yukawa coupling of the quark q. On the other hand, the stau mass matrix is written in the ð~τL; ~τRÞ basis as

~M2
τ ¼

 
M2

~L3

þm2
τ þ c2βM2

Zðs2W − 1=2Þ h�τv1ðA�
τ − μ tan βÞ= ffiffiffi

2
p

hτv1ðAτ − μ� tan βÞ= ffiffiffi
2

p
M2

~E3

þm2
τ þ c2βM2

Zs
2
W

!
: ð18Þ

The 2 × 2 sfermion mass matrix ~M2
f for f ¼ t, b, and τ is

diagonalized by a unitary matrix U ~f: U ~f† ~M2
fU

~f ¼
diagðm2

~f1
; m2

~f2
Þ with m2

~f1
≤ m2

~f2
. The mixing matrix U ~f

relates the electroweak eigenstates ~fL;R to the mass eigen-
states ~f1;2, via

ð ~fL; ~fRÞTα ¼ U
~f
αið ~f1; ~f2ÞTi :

Interactions between the Higgs bosons and the charged
Higgs boson can be found in Ref. [40].

III. DATA, FITS, AND RESULTS

A. Data

Our previous works [3,40,54] were performed with the
data of Summer 2013. Very recently, we have also updated

the model-independent fits using the data of Summer 2014
[4]. The whole set of Higgs strength data on H → γγ,
ZZ� → 4l,WW� → lνlν, ττ, and bb̄ are listed in Ref. [4].
The most significant changes since Summer 2013 are the
H → γγ data from both ATLAS and CMS. The ATLAS
Collaboration updated their best-measured value from
μggHþttH ¼ 1.6� 0.4 to μinclusive ¼ 1.17� 0.27 [58], while
the CMS H → γγ data entertained a very dramatic
change from μuntagged ¼ 0.78þ0.28

−0.26 to μggH ¼ 1.12þ0.37
−0.32 [59].

Other notable differences can be found in Ref. [4]. The
χ2SM=d:o:f: for the SM is now at 16.76=29, which corre-
sponds to a p value of 0.966.

B. CP-Conserving fits

We consider the CP-conserving (CPC) MSSM and use
the most updated Higgs boson signal strengths to constrain
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a minimal set of parameters under various conditions.
Regarding the ith Higgs boson Hi as the candidate for
the 125 GeV Higgs boson, the varying parameters are:

(i) the up-type Yukawa coupling CS
u ≡ gSHiūu

¼ Oϕ2i=sβ
[see Eq. (1)],

(ii) the ratio of the VEVs of the two Higgs doublets
tan β≡ v2=v1,

(iii) the parameter κd (assumed real) quantifying the
modification between the down-type quark mass
and Yukawa coupling due to radiative corrections, as
shown in Eq. (2),

(iv) ΔSγ ≡ ΔSγi as in Eq. (8)
(v) ΔSg ≡ ΔSgi as in Eq. (12), and
(vi) the deviation in the total decay width of the observed

Higgs boson: ΔΓtot.
The down-type and lepton-type Yukawa and the gauge-
Higgs couplings are derived as

CS
d ≡ gS

Hid̄d
¼
�
Oϕ1i þ κdOϕ2i

1þ κd tan β

�
1

cos β
;

CS
l ≡ gS

Hil̄l
¼ Oϕ1i

cos β
;

Cv ≡ gHiVV ¼ cβOϕ1i þ sβOϕ2i ð19Þ
with

Oϕ1i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2βðCS

uÞ2
q

; Oϕ2i ¼ CS
usβ: ð20Þ

In place of tan β, we can use Cv as a varying parameter, and
then tan βðtβÞ would be determined by

t2β ¼
ð1 − C2

vÞ
ðCS

u − CvÞ2
¼ ð1 − C2

vÞ
½ðCS

u − 1Þ þ ð1 − CvÞ�2
: ð21Þ

We note that tβ ¼ ∞ when ðCS
u − 1Þ ¼ −ð1 − CvÞ < 0,2

while tβ ¼ 1 when ðCS
u − 1Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

v

p
− ð1 − CvÞ.

Therefore, tβ changes from ∞ to 1 when ðCS
u − 1Þ deviates

from −ð1 − CvÞ by the amount of �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

v

p
. This implies

that the value of tβ becomes more and more sensitive to the
deviation of CS

u from 1 as Cv approaches to its SM value 1.
We are going to perform the following three categories of

CPC fits varying the stated parameters while keeping the
others at their SM values.
(1) CPC.II

(a) CPC.II.2: CS
u, tanβ (κd ¼ ΔΓtot ¼ ΔSγ ¼

ΔSg ¼ 0)
(b) CPC.II.3: CS

u, tan β, κd (ΔΓtot ¼ ΔSγ ¼
ΔSg ¼ 0)

(c) CPC.II.4: CS
u, tan β, κd, ΔΓtot (ΔSγ ¼ ΔSg ¼ 0)

(2) CPC.III
(a) CPC.III.3: CS

u, tan β, ΔSγ (κd ¼ ΔΓtot ¼
ΔSg ¼ 0)

(b) CPC.III.4: CS
u, tan β, ΔSγ , κd (ΔΓtot ¼ ΔSg ¼ 0)

(c) CPC.III.5: CS
u, tan β, ΔSγ , κd, ΔΓtot (ΔSg ¼ 0)

(3) CPC.IV
(a) CPC.IV.4: CS

u, tan β, ΔSγ , ΔSg (κd ¼ ΔΓtot ¼ 0)
(b) CPC.IV.5: CS

u, tan β, ΔSγ, ΔSg, κd (ΔΓtot ¼ 0)
(c) CPC.IV.6: CS

u, tan β, ΔSγ, ΔSg, κd, ΔΓtot
The basic varying parameters of the CPC.II fits are CS

u and
tan β; those of the CPC.III fits are CS

u, tan β, and ΔSγ; and
those of the CPC.IV fits CS

u, tan β, ΔSγ , and ΔSg. Each
category of CPC fits includes three fits; the second fit adds
κd to the set of varying parameters, and ΔΓtot is further
varied in the third one. The Arabic number at the end of
each label denotes the total number of varying parameters.
The ΔSγ is the deviation in the Hγγ vertex factor other

than the effects of changing the Yukawa and gauge-Higgs
couplings, and it receives contributions from any exotic
particles running in the triangular loop, for example, the
charginos, charged Higgs bosons, sleptons, and squarks in
the MSSM. Here we are content with a varyingΔSγ without
specifying the particle spectrum of the MSSM. Later in the
next section, we shall specifically investigate the effects
of charginos, staus, stops, and sbottoms.
In the MSSM, ΔSg receives contributions only from

colored SUSY particles or squarks running in the Hgg
vertex. The current limits on squark masses are in general
above TeV such that ΔSg is expected to be small.
Nevertheless, we do not restrict the size of ΔSg in this
fit in order to see the full effect of ΔSg.
The parameter κd arises from the loop corrections to

the down-type Yukawa couplings. It changes the relation
between the mass and the Yukawa coupling of the down-
type quarks. We limit the range of jκdj < 0.1 as it is much
smaller than 0.1 in most of the MSSM parameter space.
Although the charginos are constrained to be heavier

than 103.5 GeVand sleptons constrained to be heavier than
81.9 GeV [55], there are still possibilities that the decays of
the 125.5 GeV Higgs boson into neutralinos and another
neutral Higgs boson are kinematically allowed. These
channels have not been explicitly searched for, but we
can take them into account by the deviation ΔΓtot in the
total decay width of the observed Higgs boson.
The best-fit points for the fits are summarized in Table I.

We see that the p values of the CPC.II.2, CPC.III.3, and
CPC.IV.4 fits are the highest in each category. Also, the p
value of the CPC.III.3 fit is slightly higher than that of the
CPC.IV.4 fit, followed by the CPC.II.2 fit.

C. Results

Before we present descriptions of the confidence regions
and the correlations among the fitting parameters CS

u, tan β,
ΔSγ, ΔSg, κd, and ΔΓtot, we look into the behavior of Δχ2
vs CS

u in each category of fits. In the CPC.II fits, the
minimum χ2 values are 16.74 (CPC.II.2, CPC.II.3) and
16.72 (CPC.II.4) (see Table I), and Δχ2 vs CS

u are shown
in the upper row of Fig. 1. The minima are located at2Note Cv ≤ 1 and is positive definite in our convention.
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CS
u ¼ 1.011 (CPC.II.2, CPC.II.3) and CS

u ¼ 1.023
(CPC.II.4), and the second local minima are developed
around CS

u ¼ −1 but with Δχ2 ≳ 5. It is clear that CS
u ≈ 1 is

preferred much more than the negative values. The Δχ2
dependence on CS

u hardly changes by varying κd as shown
in the upper-middle frame. With ΔΓtot varying further, we
observe the dependence of Δχ2 on CS

u becomes broader by
extending to the regions of jCS

uj > 1 as shown in the upper-
right frame. We also observe that the second local mini-
mum around CS

u ¼ −1 disappears when tan β ≳ 0.6.
In the CPC.III fits, the minimum χ2 values are 15.50

(CPC.III.3), 15.48 (CPC.III.4), and 15.43 (CPC.III.5), see
Table I, and Δχ2 vs CS

u are shown in the middle row of
Fig. 1. The minima are located atCS

u ¼ −0.930 (CPC.III.3),
CS
u ¼ −0.948 (CPC.III.4), and CS

u ¼ 1.061 (CPC.III.5),
and the second local minima are developed around CS

u ¼ 1

(CPC.III.3 and CPC.III.4) and CS
u ¼ −1 (CPC.III.5),

respectively. In contrast to the CPC.II fits, the Δχ2
difference between the true and local minima is tiny,
Δχ2jlocal − Δχ2jtrue ≲ 0.2; see Table II. The Δχ2 depend-
ence on CS

u hardly changes by varying κd additionally
(shown in the middle-middle frame), but when ΔΓtot is
varied further, the dependence of Δχ2 on CS

u becomes
broader, the same as the CPC.II fits (see the middle-right
frame). We observe the true/local minima around CS

u ¼ −1
disappear when tan β ≳ 0.6.
In the CPC.IV fits, the minimum χ2 values are 14.85

(CPC.IV.4), 14.83 (CPC.IV.5 and CPC.IV.6), see Table I,
and Δχ2 vs CS

u are shown in the lower row of Fig. 1. The
minima are located at CS

u ¼ −1.219 (CPC.IV.4), CS
u ¼

−1.225 (CPC.IV.5), and CS
u ¼ −1.213, 1.022 (CPC.IV.6).

The second local minima are developed for CPC.IV.4 and
CPC.IV.5 at CS

u ¼ 1; see Table II. Similar to the CPC.III
fits, theΔχ2 difference between the true and local minima is

tiny for CPC.IV.4 and CPC.IV.5, Δχ2jlocal − Δχ2jtrue ∼ 0.4;
see Table II. On the other hand, in contrast to the CPC.III
fits, any values of CS

u between −2 and 2 are allowed at 2-σ
level and higher. The behavior of Δχ2 by additionally
varying κd and ΔΓtot is the same as in the previous cases.
We again observe the true minima around CS

u ¼ −1
disappear when tan β ≳ 0.6.
We show the confidence-level regions on the ðCS

u; tan βÞ
plane for three categories of CPC fits: CPC.II (upper row),
CPC.III (middle row), and CPC.IV (lower row) in Fig. 2.
The confidence level (C.L.) regions shown are for Δχ2 ≤
2.3 (red), 5.99 (green), and 11.83 (blue) above the mini-
mum, which correspond to C.L.s of 68.3%, 95%, and
99.7%, respectively. The best-fit point is denoted by the
triangle. We observe that the plots are very close to those of
Type II of the 2HDM [40], though the regions in general
shrink by small amounts. First of all, the vertical 68.3% con-
fidence (red) regions around CS

u ¼ 1 can be understood
from Eq. (21) by observing that the value of tβ changes
from∞ to 1 when (CS

u − 1) deviates from −ð1 − CvÞ by the
amount of �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

v

p
and there are generally many points

around Cv ¼ 1 as shown in Fig. 3.
In each category of fits, Fig. 1 is helpful to understand

the basic behavior of the C.L. regions as CS
u is varied.

In the CPC.II fits, the region around CS
u ¼ 1 is much more

preferred. The negative CS
u values are not allowed at

68% C.L. In the CPC.III fits, the region around CS
u¼−1

falls into the stronger 68.3% C.L., but CS
u ¼ 0 is not

allowed even at 99.7% C.L. On the other hand, the whole
range of −2 < CS

u < 2 is allowed at 95% C.L. for the
CPC.IV fits though not at 68.3% C.L. In all the fits, the
negative values of CS

u are not allowed at 95% C.L. when
tan β ≳ 0.5 is imposed, which is in general required by the
perturbativity of the top-quark Yukawa coupling. The C.L.
regions hardly change by varying κd additionally, but the

TABLE I. The best-fit values for various CPC fits. The SM chi-square per degree of freedom is χ2SM=d:o:f: ¼ 16.76=29, and the
p value ¼ 0.966.

Best-fit values

Fits χ2 χ2=dof p-value CS
u tan β ΔSγ ΔSg κd ΔΓtot Cv CS

d CS
l

CPC.II.2 16.74 0.620 0.937 1.011 0.111 � � � � � � � � � � � � 1.000 1.000 1.000
CPC.II.3 16.74 0.644 0.917 1.011 0.194 � � � � � � 0.099 � � � 1.000 1.000 1.000
CPC.II.4 16.72 0.669 0.892 1.023 0.312 � � � � � � −0.079 0.103 1.000 0.997 0.998
CPC.III.3 15.50 0.596 0.947 −0.930 0.194 2.326 � � � � � � � � � 0.932 1.003 1.003
CPC.III.4 15.48 0.619 0.929 −0.948 0.180 2.402 � � � −0.097 � � � 0.940 1.036 1.002
CPC.III.5 15.43 0.643 0.907 1.061 0.100 −0.938 � � � 0.100 0.557 1.000 1.000 1.000
CPC.IV.4 14.85 0.594 0.945 −1.219 0.154 2.893 1.547 � � � � � � 0.943 0.994 0.994

14.85 0.594 0.945 −1.219 0.154 2.893 0.204 � � � � � � 0.943 0.994 0.994
CPC.IV.5 14.83 0.618 0.926 −1.224 0.164 2.902 1.540 0.088 � � � 0.935 0.962 0.993

14.83 0.618 0.926 −1.225 0.164 2.902 0.217 0.088 � � � 0.935 0.962 0.993
CPC.IV.6 14.83 0.645 0.901 −1.213 0.173 2.868 1.528 0.082 −0.071 0.929 0.962 0.993

14.83 0.645 0.901 −1.213 0.173 2.870 0.213 0.079 −0.075 0.929 0.963 0.993
14.83 0.645 0.901 1.022 2.600 −1.228 −0.180 0.005 −0.839 0.782 −0.811 −0.837
14.83 0.645 0.901 1.022 2.600 −1.228 −1.288 0.005 −0.840 0.782 −0.811 −0.837
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C.L. regions can extend to the regions of jCS
uj > 1 by

further varying ΔΓtot.
The C.L. regions on the (CS

u, Cv) plane are shown in
Fig. 3 for the three categories of CPC fits: CPC.II (upper

row), CPC.III (middle row), and CPC.IV (lower row).
The C.L. regions are labeled in the same way as in
Fig. 2. We observe Cv ≳ 0.75 at 68.3% C.L. except in
the CPC.IV.6 fit. Otherwise, one may make similar

TABLE II. The other local minima for various CPC fits.

Best-fit values

Fits χ2 χ2/dof p-value CS
u tan β ΔSγ ΔSg κd ΔΓtot Cv CS

d CS
l

CPC.III.3 15.68 0.603 0.944 1.000 34.58 −0.853 � � � � � � � � � 1.000 1.039 1.039
CPC.III.4 15.59 0.624 0.926 0.999 9.332 −1.026 � � � −0.006 � � � 0.976 −1.170 −1.051
CPC.IV.4 15.23 0.609 0.936 1.000 5.681 −1.127 −0.057 � � � � � � 0.940 −1.002 −1.002

15.23 0.609 0.936 1.000 5.695 −1.126 −1.395 � � � � � � 0.940 −1.002 −1.002
CPC.IV.5 15.22 0.634 0.914 1.000 5.423 −1.128 −0.062 0.002 � � � 0.934 −0.980 −0.999

15.22 0.634 0.914 1.000 5.429 −1.127 −1.387 0.002 � � � 0.934 −0.980 0.999

FIG. 1 (color online). Plots of Δχ2 vs CS
u for three categories of CPC fits: CPC.II (upper row), CPC.III (middle row), and CPC.IV

(lower row). The left frames show the cases of CPC.II.2 (varying CS
u, tan β), CPC.III.3 (varying CS

u, tan β, ΔSγ), and CPC.IV.4 (varying
CS
u, tan β, ΔSγ , ΔSg). In the middle frames, the cases CPC.II.3, CPC.III.4, and CPC.IV.5 are shown by adding κd to the corresponding

set of varying parameters. The right frames are for the cases of CPC.II.4, CPC.III.5, and CPC.IV.6 in which ΔΓtot is further varied.
In each frame, each different color corresponds to a different range of tan β: 0.1 < tan β < 0.4 (red), 0.4 < tan β < 0.6 (magenta),
0.6 < tan β < 1 (yellow), and 1 < tan β (gray).
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observations as in Fig. 2 for the behavior of the C.L.
regions as CS

u is varied.
Figure 4 shows the C.L. regions on the (CS

u, CS
d) plane in

the same format as Fig. 2. CS
d ≈ 1 is preferred except for the

CPC.IV.6 fit, in which the best-fit values of CS
d are about

0.96 and −0.81 when CS
u ∼ −1.2 and 1.0, respectively;

see Table I. Nevertheless, the difference in Δχ2 between
the true minima and the local minimum around the SM
limit ðCS

u; CS
dÞ ¼ ð1; 1Þ is small. The C.L. regions, centered

around the best-fit values, significantly expand as the fit
progresses from CPC.II to CPC.III and from CPC.III to
CPC.IV, as well as by adding ΔΓtot to the set of varying
parameters.
We show the C.L. regions on the (CS

d, C
S
l) plane in Fig. 5.

The format is the same as in Fig. 2. At tree level without

including κd, CS
l ¼ CS

d ¼ Oϕ1i= cos β as clearly seen in the
left frames, and the true and local minima are located at
ðCS

d; C
S
lÞ ¼ ð1; 1Þ and (−1, −1). The tree-level relation is

modified by introducing κd, and the local minima around
ðCS

d; C
S
lÞ ¼ ð−1; 1Þ are developed as shown in the middle

frames. Further varying ΔΓtot, we observe that CS
d ¼ 0 is

allowed at the 99.7% C.L. but jCS
lj > 0 always; see the

right frames.
The C.L. regions involved with κd are shown in the left

and middle frames of Fig. 6 for the CPC.II (upper), CPC.III
(middle), and CPC.IV (lower) fits. We see any value of κd
between −0.1 and 0.1 is allowed.
Note that in the most recent update [4] when ΔΓtot

is the only parameter allowed to vary, the fitted value
of ΔΓtot is consistent with zero and is constrained by

FIG. 2 (color online). The confidence-level regions on the (CS
u, tan β) plane for three categories of CPC fits: CPC.II (upper row),

CPC.III (middle row), and CPC.IV (lower row) fits. The left frames show the cases of CPC.II.2 (varying CS
u, tan β), CPC.III.3 (varying

CS
u, tan β, ΔSγ), and CPC.IV.4 (varying CS

u, tan β, ΔSγ , ΔSg). In the middle frames, the cases CPC.II.3, CPC.III.4, and CPC.IV.5 are
shown by adding κd to the corresponding set of varying parameters. The right frames are for the cases of CPC.II.4, CPC.III.5, and
CPC.IV.6 in which ΔΓtot is further varied. The confidence regions shown are for Δχ2 ≤ 2.3 (red), 5.99 (green), and 11.83 (blue) above
the minimum, which correspond to confidence levels of 68.3%, 95%, and 99.7%, respectively. The best-fit point is denoted by the
triangle.
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ΔΓtot < 0.97 MeV at 95% C.L. From the right frames of
Fig. 6, we observe that the range of ΔΓtot at 95% C.L.
(green region) varies from −2.4 MeV to 3.3 MeV
(CPC.II.4) and −2.9 MeV to 5.6 MeV (CPC.III.5 and
CPC.IV.6). Such a large range is not very useful in
constraining the exotic decay branching ratio of the
Higgs boson. Usually we have to limit the number of
varying parameters to be small enough to draw a useful
constraint on ΔΓtot.
We show the C.L. regions on the (CS

u, ΔSγ) plane in
Fig. 7 for the CPC.III (upper) and CPC.IV (lower) fits.
In the CPC.III fits, the range of ΔSγ is from −2.5ð1Þ to
0.3(3.7) at 68.3% C.L. for the positive (negative) CS

u. In the
CPC.IV fits, the range is a bit widened.
In Fig. 8, we show the C.L. regions of the CPC.IV fits

on the (CS
u, ΔSg) (upper) and (ΔSγ , ΔSg) (lower) planes.

We found that there are two bands of ΔSg allowed by
data, which are consistent with the results in the model-
independent fits [3]. In the plots of ΔSγ vs ΔSg, there are
four almost degenerate solutions to the local minimum
of χ2, which only differ from one another by a very small

amount. It happens because ΔSγ and ΔSg satisfy a set of
elliptical-type equations, which imply two solutions for
each of ΔSγ and ΔSg [3].
A quick summary of the CPC fits is in order here. The

confidence regions in various fits are similar to Type II of the
2HDM. When κd and ΔΓtot (not investigated in the previous
2HDM fits) are allowed to vary, the confidence regions are
slightly and progressively enlarged due to more varying
parameters. Especially the linear relation betweenCS

d andC
S
l

are “diffused” when κd varies between �0.1 as shown in
Eq. (19). The two possible solutions for ΔSγ in the CPC.III
and CPC.IV cases are consistent with what we have found in
previous works [3,40]. The best-fit point of each fit is shown
in Table I with the corresponding p value. It is clear that the
SM fit provides the best p value in consistence with our
previous works [3,4,40]. Among the fits other than the SM
one, the CPC.III.3 fit gives the smallest χ2 per degree of
freedom and thus the largest p value. It demonstrates that the
set of parameters consisting of the top-Yukawa coupling CS

u,
tan β or equivalently the gauge-Higgs coupling Cv, and ΔSγ
is theminimal set of parameters that gives the best description

FIG. 3 (color online). The same as in Fig. 2 but on the (CS
u, Cv) plane.
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of the data, other than the SM. In this fit, the best-fit value of
Cv is0.93,which is very close to theSMvalue,whileCS

u takes
on a negative value −0.93. The effects of the negative CS

u
coupling are compensated by those of a relatively large
ΔSγ ¼ 2.3. The derived CS

d and C
S
l are very close to the SM

values. On the other hand, we show in Table II the other local
minima for various CPC fits. We can see that the CPC.III.3
fit indeed has another local minimum, which has a χ2 very
close to the true minimum, at which CS

u, Cv, CS
d, and C

S
l are

extremely close to their SM values while ΔSγ ¼ −0.85.

IV. IMPLICATIONS ON THE MSSM SPECTRUM

In this section, we shall try to find the implications of
the current Higgs signal strength data on the masses of
charginos, sleptons, sbottoms, and stops, as well as the A
parameters—SUSY spectrum—through the virtual effects.
Supersymmetric particles can enter into the picture of the
observed Higgs boson via (i) exotic decays, e.g., into
neutralinos; (ii) contributions to ΔSγ by charginos, slep-
tons, and squarks; and (iii) contributions toΔSg by squarks.
Note that virtual effects are also present in κd.

Being different from the fits considered in the previous
section, we restrict tan β to be larger than 1=2 so that the
top-quark Yukawa coupling is supposed to be perturbative
and the one-loop contributions of the SUSY particles to the
Hγγ and Hgg vertices remain reliable. Furthermore, as we
shall see, the best-fit values of the couplings are close to the
SM ones, and, accordingly, we take the lightest Higgs state
(H1) for the observed Higgs boson withMH1

∼ 125.5 GeV.
A comprehensive survey over the full parameter space

of the MSSM is a demanding task requiring a large amount
of computing time. Since we are in pursuit of the impli-
cations of the current Higgs data on the SUSY spectrum,
we consider the following three representative fits instead
of carrying out the comprehensive study:

(i) MSSM-1: Only with chargino contributions.
(ii) MSSM-2: Only with scalar-tau contributions.
(iii) MSSM-3: With all chargino, scalar-tau, sbottom,

and stop contributions.
In the MSSM-1 fit, we assume all the scalar fermions

are too heavy to affect the Higgs signal strengths, and the
heavy scalar fermions can easily generate the lightest Higgs

FIG. 4 (color online). The same as in Fig. 2 but on the (CS
u, CS

d) plane.
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boson weighing 125.5 GeV through the large renormaliza-
tion group running effects, such as in split SUSY [60]. In
this case, the lightest supersymmetric stable particle (LSP)
is in general a mixed state of bino, wino, and Higgsinos.
In the MSSM-2 fit, except for the neutral LSP, we assu-

me only the scalar taus are light enough to affect the Higgs
signal strengths. Similar to the MSSM-1 case, the heavy
stop and sbottoms can easily give MH1

∼ 125.5 GeV. In
this fit, we are assuming the charginos are heavy and,
therefore, the LSP is binolike and its mass is fixed by the
bino mass parameter M1.
In the MSSM-3 fit, we consider all the chargino, scalar-

tau, sbottom, and stop contributions. Being different from
the previous two fits, the mass spectrum of the Higgs sector
is closely correlated with the SUSY contributions to Higgs
signal strengths. To calculate the lightest Higgs mass,
we adopt the the approximated two-loop level analytical
expression [61,62] which is precise enough for the purpose
of the current study. For the heavier Higgses, we assume
that they are decoupled or heavier than ∼300 GeV. To be
more specific, we are taking MA ¼ 300 GeV and require

jMH1
− 125.5 GeVj ≤ 6 GeV, taking account of the

∼3 GeV theoretical error of the lightest Higgs mass.
Note that the charginos and sleptons have negligible

effects on the Higgs boson mass and thus we do not
impose Higgs boson mass constraints in the MSSM-1 and
MSSM-2 fits.

A. MSSM-1: Charginos only

We first investigate the effects of charginos. The lower
mass limit of the chargino is 103.5 GeV, so that the only
place that it can affect the Higgs boson is in the loop factor
ΔSγ. The MSSM parameters that affect the chargino mass
and the interactions with the Higgs boson are M2, μ,
and tan β, shown in Eqs. (13) and (14). We show in Fig. 9
the confidence regions when we vary CS

u, tan β, M2, and μ
with the additional constraint on the chargino mass:

M ~χ� > 103.5 GeV:

The results are analogous to those of the CPC.III.3 case if
we do not impose the chargino mass constraint and the

FIG. 5 (color online). The same as in Fig. 2 but on the (CS
d, C

S
l) plane.
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restriction of tan β > 1=2. In the CPC.III.3 fit, ΔSγ is free
to vary both negatively and positively, while here the sign
of the chargino contribution correlates with CS

u in the
parameter space of M2 and μ. From the upper frames, we
note that CS

u is always positive under the requirement of
tan β > 1=2 and ΔSγ tends to be positive taking its value
in the range between −0.75 and 1.7 at 99.7% C.L. In
the lower-left frame, we show the M ~χ�

1
dependence of the

C.L. regions of ΔSγ . We observe that all the points fall
into the 68.3% C.L. region of −0.25≲ ΔSγ ≲ 0.43 when
M ~χ�

1
≳ 200 GeV. We also observe that the μ parameter

can be as low as 70 GeV when M2 < 0 from the lower-
right frame.
We show the best-fit point for the chargino contribution

in Table III. The best-fit point gives M2 ¼ 184 GeV
and μ ¼ 179 GeV, which give the lightest chargino mass
M ~χ�

1
¼ 103.7 GeV, just above the current limit. The

corresponding ΔSγ ≈ −0.68. The p value is slightly worse
than the CPC.III.3 case.

B. MSSM-2: Scalar taus

The staus contribute toΔSγ in a way similar to charginos.
The SUSY soft parameters that affect the stau contributions
are the left- and right-handed slepton massesML3

andME3
,

the A parameter Aτ, and the μ parameter. We are taking
μ > 1 TeV to avoid possibly large chargino contributions
to ΔSγ . The 2 × 2 stau mass matrix is diagonalized to give
two mass eigenstates ~τ1 and ~τ2, shown in (16) and (18). The
current mass limit on the stau is M~τ1 > 81.9 GeV [55].
We show in Fig. 10 the confidence regions when we vary

CS
u, tan β, ML3

¼ ME3
, μ, and Aτ. Requiring tan β > 1=2,

CS
u > 0 and most allowed regions are concentrated at

CS
u ≈ 1 and ΔSγ < 0. Similar to the chargino case, CS

u and
ΔSγ correlate with each other in the parameter space. The
“T” shape of the C.L. regions of ΔSγ (upper right) can be
understood by observing that Cv is constrained to be very
close to 1 unless CS

u ≈ 1 when CS
u > 0; see the CPC.III

(middle) frames of Fig. 3. We observe that all the points

FIG. 6 (color online). The confidence-level regions on the (CS
u, κd) (left and middle) and the (CS

u, ΔΓtot) (right) planes. The left frames
show the cases of CPC.II.3, CPC.III.4, and CPC.IV.5, and the middle and right frames are for the cases of CPC.II.4, CPC.III.5, and
CPC.IV.6. The labeling of confidence regions is the same as in Fig. 2.
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fall into the 68.3% C.L. region of −1.8≲ ΔSγ ≲ 0 when
M~τ1 ≳ 180 GeV.
The best-fit values are shown in Table IV. The χ2 is

just slightly worse than that of the CPC.III.3 case, and

the p value is lowered because of more varying param-
eters. The values for CS

u, Cv, CS
l, and CS

d are very close
to their SM values. The lightest stau has a mass of
132.3 GeV.

FIG. 7 (color online). The upper frames show the confidence-level regions on the (CS
u, ΔSγ) plane for the CPC.III.3 (left), CPC.III.4

(middle), and CPC.III.5 (right) fits. The lower frames are for the CPC.IV.4 (left), CPC.IV.5 (middle), and CPC.IV.6 (right) fits. The
labeling of confidence regions is the same as in Fig. 2.

FIG. 8 (color online). The confidence-level regions on the (CS
u, ΔSg) (upper) and the (ΔSγ , ΔSg) (lower) planes for the CPC.IV.4 (left),

CPC.IV.5 (middle), and CPC.IV.6 (right) fits. The labeling of confidence regions is the same as in Fig. 2.
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C. MSSM-3: With all chargino, scalar tau,
sbottom, and stop contributions

Here we include all contributions from charginos, scalar
taus, sbottoms, and stops. The relevant SUSYsoft parameters
areMQ3

,MU3
,MD3

,ML3
,ME3

,At,Ab,Aτ,M3,M2, andMA.
In addition to CS

u and tan β, we are varying MQ3
, ML3

, At,
and μ while taking MQ3

¼ MU3
¼ MD3

, ML3
¼ ME3

,
At ¼ Ab ¼ Aτ, and M2 ¼ �μ. We fix the other parameters
as M3 ¼ 1 TeV and MA ¼ 300 GeV. Furthermore, we
impose the following constraints on the masses:

M ~χ�
1
> 103.5 GeV; M~τ1 > 81.9 GeV;

M~t1 > 95.7 GeV; M ~b1
> 89 GeV;

jMH1
− 125.5 GeVj ≤ 6 GeV:

Note that we adopt rather loose mass limits quoted in PDG
[55] and impose the Higgs-boson mass constraint.
The best-fit values are shown in Table V. Note that the

lighter stau mass (94.5 GeV) is near to its low mass limit,
while all other SUSY particles are heavy, so that the major
contribution to ΔSγ is from the lighter stau as shown in
the middle-right frame of Fig. 11. We observe that the
stau contribution becomes comparable to that of the
chargino around M~τ1 ¼ 270 GeV. For the larger values
ofM ~τ1 , ΔS

γ is saturated to have the values between ∼ − 0.6
and ∼0.4 at 68% C.L. where it is dominated by the
chargino loops.
The confidence regions in the relevant parameter space

are shown in Fig. 11. From the upper-left frame of
Fig. 11, we observe the requirement of MH1

∼125.5GeV

FIG. 9 (color online). MSSM-1 (charginos): The confidence-level regions of the fit by varying CS
u, tan β, M2, and μ with tan β > 1=2

and M ~χ�
1
> 103.5 GeV. The description of the confidence regions is the same as in Fig. 2.

TABLE III. The best-fit values for chargino contributions to ΔSγð~χ�1 ; ~χ�2 Þ. We imposed M ~χ�
1
> 103.5 GeV and

tan β > 1=2. The parameters CS
u, tan β, M2 ⊂ ½−1 TeV; 1 TeV�, and μ ⊂ ½0; 1 TeV� are scanned.

Best-fit values

Fits χ2 χ2=dof p value CS
u tan β κd ΔSγ ΔSg ΔΓtot

Charginos 15.78 0.631 0.921 0.992 1.513 � � � −0.683 � � � � � �

Best-fit values

Cv CS
d CS

l M2 (GeV) μ (GeV) M ~χ�
1
(GeV) M ~χ�

2
(GeV)

1.000 1.019 1.019 184 179 103.7 261.3

KINGMAN CHEUNG, JAE SIK LEE, AND PO-YAN TSENG PHYSICAL REVIEW D 92, 095004 (2015)

095004-14



completely removes the negative CS
u region with jCS

u−1j≲
0.02 and tan β ≳ 3 at 95% C.L.
The majority of allowed parameter space is concentrated

at around CS
u ≈ 1, −2≲ ΔSγ ≲ 0, and ΔSg ≈ 0. Yet, there

is a small island allowed at 99.7% C.L. around ΔSγ ∼ −3.5
andΔSg ∼ −1.5. To identify the origin of the island, we note
the following linear relationships between ΔSγ and ΔSg:

ΔSγ ¼ 2NCQ2
bΔSg ¼

2

3
ΔSg for sbottom;

ΔSγ ¼ 2NCQ2
tΔSg ¼

8

3
ΔSg for stop:

In the chargino and stau cases, ΔSg ¼ 0. These four
correlations are represented by the straight lines in the

upper-right frame of Fig. 11. It is clear that the island is
due to the stop loops, and it disappears completely when
we require either M~t1 ≳ 150 GeV or M ~b1

≳ 450 GeV, as
shown in the lower frames.
To examine how large the squark contributions are or to

suppress the relatively dominant stau and chargino con-
tributions, we take M ~χ�

1
> 300 GeV and M~τ1 > 300 GeV

and show the results in Fig. 12. We observe that jΔSγj≲ 0.6
at 68.3% C.L. independently of the squark masses. This
means that jΔSγ=SγSMj≲ 0.1 with SγSM ≃ −6.6. Therefore,
unless the Hγγ coupling is determined with a precision
better than 10%, this may imply that the Higgs data are
not sensitive to the MSSM spectrum at 68.3% C.L. when

FIG. 10 (color online). MSSM-2 (staus): The confidence-level regions of the fit by varying CS
u, tan β, ML3

¼ ME3
, μ, and Aτ with the

restrictions tan β > 1=2, μ > 1 TeV, and M ~τ1 > 81.9 GeV. The description of the confidence regions is the same as in Fig. 2.

TABLE IV. The best-fit values for stau contributions toΔSγð~τ1; ~τ2Þ. We setME3
¼ ML3

and imposed tan β > 1=2,
μ > 1 TeV, and M ~τ1 > 81.9 GeV. The scanning parameters are CS

u, tan β, ML3
⊂ ½0; 1 TeV�, μ ⊂ ½1; 2 TeV�, and

Aτ ⊂ ½−1 TeV; 1 TeV�.
Best-fit values

Fits χ2 χ2/dof p value CS
u tan β κd ΔSγ ΔSg ΔΓtot

Scalar taus 15.68 0.653 0.899 1.000 47.14 � � � −0.854 � � � � � �

Best-fit values

Cv CS
d CS

l ML3
(GeV) μ (GeV) Aτ (GeV) M ~τ1 (GeV) M ~τ2 (GeV)

1.000 1.040 1.040 323 1075 −43.2 132.3 442.4
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TABLE V. The chargino, scalar tau, sbottom, and stop contributions to ΔSγð~χ�1 ; ~χ�2 ; ~τ1; ~τ2; ~b1; ~b2; ~t1; ~t2Þ,
ΔSgð ~b1; ~b2; ~t1; ~t2Þ, κd. We are taking ML3

¼ ME3
, MQ3

¼ MU3
¼ MD3

, At ¼ Ab ¼ Aτ, M3 ¼ 1 TeV,
MA ¼ 300 GeV, M2 ¼ �μ, and imposing mass limits jMH1

− 125.5 GeVj ≤ 6 GeV, M ~χ�
1
> 103.5 GeV,

M ~τ1 > 81.9GeV,M~t1 > 95.7GeV, andM ~b1
> 89GeV. Scanning parameters: CS

u, tanβ⊂ ½1;100�,ML3
⊂ ½0; 2 TeV�,

MQ3
⊂ ½0; 2 TeV�, μ ⊂ ½0; 2 TeV�, At ⊂ ½−6 TeV; 6 TeV�.

Best-fit values

Fits χ2 χ2=dof p value CS
u tan β κd ΔSγ ΔSg ΔΓtot

All SUSY 15.68 0.682 0.869 1.000 16.85 0.002 −0.846 0.001 −

Best-fit values

Cv CS
d CS

l ML3
MQ3

M2 At M ~χ�
1

M ~χ�
2

M ~τ1 M ~τ2 M~t1 M~t2 M ~b1
M ~b2

1.000 1.040 1.041 220 1732 −1255 −2218 1203 1310 94.5 303 1640 1829 1717 1748

FIG. 11 (color online). MSSM-3 (all-SUSY particles): The confidence-level regions of the fit by varying CS
u, tan β,

MQ3
¼ MU3

¼ MD3
, ML3

¼ ME3
, At ¼ Ab ¼ Aτ, μ with M3 ¼ 1 TeV, MA ¼ 300 GeV, M2 ¼ �μ, and imposing mass limits

jMH1
− 125.5 GeVj ≤ 6 GeV, M ~χ�

1
> 103.5 GeV, M~τ1 > 81.9 GeV, M~t1 > 95.7 GeV, and M ~b1

> 89 GeV. The description of the
confidence regions is the same as in Fig. 2.
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M ~χ�
1
> 300 GeV and M~τ1 > 300 GeV independently of

the stop and sbottom masses. Incidentally, in the middle
frames, we observe that the C.L. regions of ΔSγ are almost
independent of M ~χ�

1
;~τ1 since they are dominated by the

squark loops when M ~χ�
1
;~τ1 > 300 GeV.

Furthermore, we observe that the stau and chargino
contributions decrease quickly as their masses increase, as
shown in the previous MSSM-1 and MSSM-2 fits. Also, it
is worth noting that jΔSγj ≲ 0.2 when M ~χ�

1
;~τ1 > 500 GeV;

see Figs. 9 and 10 when squarks are very heavy.
Finally, we also find that jΔSγj≲ 0.2 if we take the

current 95% C.L. LHC limits on the stop and sbottom
masses with M ~χ0

1
¼ 0 GeV [55]; M~t1 > 650 GeV and

M ~b1
> 600 GeV, assuming that charginos and staus are

heavy enough and do not contribute to jΔSγj more signi-
ficantly than squarks.
Before concluding, we would like to briefly discuss the

SUSY impact on future measurements of the Higgs proper-
ties through the Higgs decay into Zγ and the Higgs cubic
coupling. In the MSSM-1 case, thanks to light charginos,
we have found that the branching ratio of the 125 GeV
Higgs boson to Zγ can be enhanced by about 15%
compared to the SM prediction. On the other hand, in
the MSSM-2 and MSSM-3 cases, the SUSY contribution
to the branching ratio is less than 1%. Meanwhile, in the
MSSM-3 case in which all the masses of relevant SUSY
particles are specified and an unambiguous estimation
of the Higgs cubic coupling is possible, the deviation of
the Higgs cubic coupling from the SM value M2

H1
=2v

FIG. 12 (color online). MSSM-3 (all-SUSY particles): The same as Fig. 11 but requiring M ~χ�
1
> 300 GeV and M ~τ1 > 300 GeV.
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(v ≈ 246 GeV) is negligible upon its variation accor-
ding to the Higgs mass constraint taken in this work:
jMH1

− 125.5 GeVj < 6 GeV.

V. SYNOPSIS AND CONCLUSIONS

We have analyzed the relevant parameter space in the
MSSM with respect to the most updated data on the Higgs
boson signal strength. The analysis is different from the
model-independent one [4] mainly because ΔSγ and ΔSg
are related by a simple relation, and up-type, down-type,
and leptonic Yukawa couplings are also related to one
another, such that they are no longer independent. We have
shown in Figs. 1 to 8 the confidence-level regions in the
parameter space for the cases of CPC.II to CPC.IV fits by
varying a subset or all of the following parameters: CS

u,
tan β (or equivalently Cv), κd, ΔSγ, ΔSg, and ΔΓtot. This set
of parameters is inspired by the parameters of the general
MSSM. Since the Higgs sector of the MSSM is the same as
the 2HDM Type II, the down-type and the leptonic Yukawa
couplings are determined once the up-type Yukawa cou-
plings are fixed. It implies thatCS

u and tan β (or equivalently
Cv) can determine all the tree-level Yukawa and gauge-
Higgs couplings. The effects of the SUSY spectrum then
enter into the parameters κd, ΔSγ, and ΔSg through loops
of colored and charged particles.
There are improvements in all the CPC fits since our ana-

lysis of 2HDM [40] a year ago. The most significant changes
in theHiggs-boson data from2013 to 2014were the diphoton
signal strengthsmeasured by bothATLAS andCMS [58,59],
while all other channels were moderately improved. Overall,
all fitted couplings are improved by about 10%, and the SM
Higgs boson enjoys a large p value close to 1 [4].
The SUSY particles enter the analysis mainly through

the loop effects of the colored and charged particles into the
parameters such as ΔSγ , ΔSg, and κd, while light neutra-
linos with mass less than MH1

=2 can enter into ΔΓtot. We
have analyzed the effects of the SUSY spectrum with the
direct search limits quoted in PDG [55]. We offer the
following comments concerning the MSSM spectrum:
(1) The effect of κd on the C.L. regions is insignificant,

which can be seen easily when we go across from
the first column to the second column in Figs. 2 to 4.

On the other hand, the effect of ΔΓtot is relatively
large, which can be seen by going across from the
second column to the last column in Figs. 2 to 4.

(2) Since the mass of the lightest Higgs boson is
sensitive to the stop mass, we especially impose
the current Higgs-boson mass limit MH1

∼ 125.5�
6 GeV (taking on a roughly 3-σ level) on the
parameter space in the MSSM-3 fits with all-SUSY
particles. There are always some underlying as-
sumptions on deriving the mass limits of stops
and sbottoms (also true for other SUSY particles).
We have imposed mild but robust mass limits.

(3) The MSSM-1 (chargino) and MSSM-2 (stau) fits are
special cases of CPC.III.3 in which tan β (or equiv-
alently Cv), CS

u, and ΔSγ are varied. Nevertheless,
the ΔSγ is restricted by the SUSY parameters μ,
tan β, andM2 orML3;E3

in such a way that ΔSγ is not
entirely free to vary. The resulting fits are not as
good as the CPC.III.3 case.

(4) In the MSSM-3 case in which we consider the
chargino, stau, stop, and sbottom contributions, the
preferred CS

u is very close to 1. The major contri-
bution comes from the lightest stau, which stands
very close to the low mass limit of 81.9 GeV.

(5) The direct search limits on charginos and staus
prevent the ΔSγ from becoming too large, while
those on stops and sbottoms prevent both ΔSγ and
ΔSg from becoming too large.

(6) We find that jΔSγ=SγSMj≲0.1 whenM ~χ�
1
> 300GeV

and M~τ1 > 300 GeV, irrespective of the squarks
masses. Note that SγSM ≃ −6.6.

(7) Further we observe that jΔSγ=SγSMj≲ 0.03 when
M ~χ�

1
;~τ1 > 500 GeV and M~t1; ~b1

≳ 600 GeV.
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