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We show that Ma’s scotogenic model, which is arguably one of the simplest settings containing a dark
matter candidate and generating a naturally suppressed active neutrino mass at one-loop level, suffers from a
potentially severe hierarchy-type problem. In case the right-handed neutrinos involved have sufficiently large
masses, they can via loop effects drive the mass parameter of the inert scalar contained in the model toward
negative values. This behavior leads to a breaking of the Z2 parity symmetry built into the model which is
paramount to keeping the setting consistent at low energies—without it the model would lose its dark matter
candidate, and the neutrino mass would not be naturally suppressed. Thus, if the breaking occurs at a
sufficiently low scale, it could potentially spoil the success of the whole model. Trying to avoid this
consistency problem leads to a new constraint on themodel parameter spacewhich has not yet been described
in the literature.
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I. INTRODUCTION

The smallness of neutrino masses and the identity of the
dark matter (DM) are among the greatest puzzles of modern
particle physics, as is the question of how to extend our
Standard Model (SM) and how to probe the extensions.
The most attractive theories beyond the SM are those which
can address several of the known open problems. This is
often the case for models generating a light neutrino mass
only at loop level (i.e., radiatively)—cf., e.g., Ref. [1] to see
how such settings are constrained at both low and high
energies. Depending on the particle content, there exist
models which generate an active neutrino mass at the
one-loop [2], two-loop [3,4], or three-loop [5,6] level, but
probably the simplest extension compatible with all data is
Ma’s scotogenic model [7].
The scotogenic model just adds three right-handed (RH)

neutrinos NR and a scalar doublet η to the SM, all of which
are charged under an additional Z2 parity symmetry.1 This
symmetry is crucial for the model to work; without it,
neutrino masses would already be generated at tree level,
and none of the possible DM candidates of the model could
be stable. However, if the Z2 is intact, the scotogenic model
can not only account for phenomenologically valid neutrino
masses [8–10] and potentially for DM [8,9,11–13], but it
can also lead to a variety of phenomena in low-energy
experiments such as lepton flavor and/or number violation
[8,9,14–17] or in high-energy collider searches [18–21], as
well as to new aspects for neutrino model building
[10,22,23].

A few years ago, the first study of the renormalization
group running of the scotogenic model has appeared in
Ref. [24]. It has been shown that several parameters exhibit
strong running effects. This is known in similar settings:
Ref. [25] showed that an inert scalar can trigger electro-
weak symmetry breaking (EWSB) at the one-loop level
even if not present at tree level—a fact that remains true if
the setting is extended [26] or discretized [27]. More
generally it is well known that scalar mass parameters
are sensitive to large scales [28], which is also true for
models with two Higgs doublets [29].
In this paper we apply a similar logic; i.e., we investigate

corrections to the mass parameter of the inert scalar. The
heavy RH neutrinos can drive the squared mass parameter
of the inert scalar toward negative values, thereby giving a
nonzero vacuum expectation value (VEV) hηi and by that
breaking the crucial Z2 parity symmetry, which is why we
call this observation the parity problem of the scotogenic
model. This could be disastrous given that, if the parity was
not a conserved global quantum number, not only would
the model lose the stability of its DM candidates, but also a
neutrino mass would be generated at tree level at phenom-
enologically unacceptably large values.
On the other hand, given that the breaking happens at a

high scale, the question is justified why we should bother for
low-energy phenomenology. The answer is twofold. First,
broken discrete symmetries could potentially lead to prob-
lems in cosmology. If the Z2 symmetry was, e.g., intact at a
high scale but then at some point broken by the large RH
neutrino masses, we would potentially be in danger of
creating unwanted domain walls [30], which could modify
the history of theUniverse in an undesirableway.At the same
time, a VEVof the inert scalar would lead to large tree-level
masses for active neutrinos. This would cause them to
immediately freeze out and possibly lead to an intermediate
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matter-dominated phase of the Universe, which would again
alter the expansionhistory.However, one could argue that the
domain wall problem can be cured [31–35] and that active
neutrinos may simply rethermalize as soon as theZ2 is intact
again. In addition, the symmetry will be restored at suffi-
ciently high temperatures [36]. Thus, given that all these
processes happen before big bang nucleosynthesis, there
may not even be an observable remnant. This is a perfectly
justified viewpoint, but even if one disregards the points
above, it turns out that the breaking scale of theZ2 can be as
low as a few TeV, as we will show in Sec. IVA. If that is the
case, DM production can be significantly modified in the
scotogenic model, and points in the parameter space which
are thought to be consistent and to lead to successful DM
production could in fact be in trouble due to the parity
problem.Ultimately, themessage is that one has to be careful
and check for any given parameter point whether a potential
Z2 breaking leads to a problem or not.
As a side note, it is interesting to mention that obviously

any issues associated with a too-large RH neutrino mass
scale could be avoided if all RH neutrino masses were
sufficiently small. From this point of view, one could even
argue that to some extent the scotogenic model would have
a preference for light sterile neutrino masses. Since they
would then also be lighter than all neutral scalar compo-
nents, they would automatically be the actual DM candi-
dates of the model. Such settings are known to work very
well (see, e.g., Refs. [37–50] for suitable production
mechanisms), and they have also been discussed from a
phenomenological point of view in the context of the
scotogenic model [8,13]. While it is not easy to find a
suitable mechanism to motivate light sterile neutrino
masses in the scotogenic model [51], the above arguments
could be interpreted as such a scenario with light sterile
neutrinos being in fact quite natural.
This paper is organized as follows. After a brief overview

of the model in Sec. II, we discuss in Sec. III the general
possibilities for its possible vacuum configurations and
illustrate the approximate constraints arising from avoiding
a violation of the Z2 parity in the scotogenic model, which
yields a simple but accurate formula. A more advanced
numerical analysis of a few detailed examples is presented
in Sec. IV. We discuss some of the aforementioned
implications for cosmology in Sec. V, before we conclude
in Sec. VI. Technical details can be found in the Appendix.

II. MODEL OVERVIEW AND CONSTRAINTS

The scotogenic model [7] is one of the most minimal
frameworks combining a naturally small neutrino mass at
one-loop level with several DM candidate particles. The
particle content is that of the SM, supplemented by
(typically) three RH neutrinosNi

R (i ¼ 1; 2; 3) and a second
scalar doublet η with SM quantum numbers identical to
those of the Higgs. The crucial addendum is an additional
Z2 (parity) symmetry, under which all SM particles are

neutral, whereas the new fields are odd. It is this symmetry
which simultaneously leads to the light neutrino mass being
generated at one-loop level only and to the stability of the
potential DM candidates.
Compared to the SM, several qualitatively new terms

appear in the Lagrangian:
(i) The RH neutrinos get a direct Majorana mass term

1
2
Ni

RMijN
j
R
c þ H:c:, which leads to masses M1;2;3

upon diagonalization.
(ii) A neutrino Yukawa coupling LYukawa ⊃

−hijNi
R ~η

†lj
L þ H:c:ð~η ¼ iσ2η�Þ involving the new

scalar and the RH neutrinos in addition to the SM
lepton doublets lj

L. It is crucial to observe that this
term does not lead to a tree-level neutrino mass, as
long as the Z2 is unbroken and thus prevents the
field η from obtaining a VEV.

(iii) The scalar potential involving the SM Higgs ϕ and
the η field is given by

V ¼ m2
1ϕ

†ϕþm2
2η

†ηþ λ1
2
ðϕ†ϕÞ2 þ λ2

2
ðη†ηÞ2

þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðη†ϕÞðϕ†ηÞ

þ λ5
2
½ðη†ϕÞ2 þ H:c:�: ð1Þ

In this expression both mass parameters m2
1;2 must

be real, as need to be the couplings λ1;2;3;4; λ5 can be
chosen real and positive by absorbing its phase
into η.

Note that it is the combination of the Majorana mass term,
the new Yukawa coupling, and the λ5 term in Eq. (1) which
violates the lepton number. If any of those coefficients was
zero, a global Uð1Þ lepton number could be consistently
defined, and the symmetry of the Lagrangian would
be increased. Thus, by virtue of ’t Hooft naturalness
[52], the renormalization group equations (RGEs) for those
quantities will only allow for changes proportional to the
couplings themselves, so that they remain small every-
where if they are small at any energy scale, cf. the
Appendix.
The scalar potential (1) needs to yield EWSB without

compromising the Z2 parity. This suggests the parametri-
zation ϕ ¼ ð0; vþ hffiffi

2
p ÞT and η ¼ ðηþ; η0ÞT , where only the

physical fields are written down explicitly. Splitting η0 into
real and imaginary parts, η0 ¼ 1ffiffi

2
p ðηR þ iηIÞ, gives rise to

the following physical scalar masses [53]:

m2
h ¼ 2λ1v2; ð2aÞ

m2
� ¼ m2

2 þ v2λ3; ð2bÞ

m2
R ¼ m2

2 þ v2ðλ3 þ λ4 þ λ5Þ; ð2cÞ

m2
I ¼ m2

2 þ v2ðλ3 þ λ4 − λ5Þ: ð2dÞ
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Note that the parameters in the scalar potential are subject
to a number of theoretical constraints originating from the
requirement that the scalar potential be bounded from
below [54–56],

λ1 > 0; λ2 > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð3Þ

which also affects the valid mass spectra resulting from
Eqs. (2a) to (2d). In addition, we can impose the condition
that we remain in a perturbative regime, that is
λ1;2;3;4;5 ≲Oð1Þ.2 In our numerical analysis, we demand
that the above conditions remain valid for the one-loop
corrected running couplings up to a given high energy scale.
The one-loop renormalization group equations can be found
in the Appendix.

III. VACUUM STRUCTURE AND NEW
CONSTRAINTS

The scalar sector of the scotogenic model is a particular
realization of a two Higgs doublet model (THDM) with a
Z2 symmetry imposed on some fields. In a general THDM,
both scalar doublets (called ϕ1 and ϕ2 here to ease the
comparison) may acquire a VEV, and we find the tree-level
vacuum of the theory by minimizing Eq. (1). Replacing the
fields by their VEVs v1;2, which can be chosen real if both
the electric charge and CP are conserved [54,59], leads to
two equations,

v1ðm2
1 þ λ1v21 þ λv22Þ ¼ 0 and

v2ðm2
2 þ λ2v22 þ λv21Þ ¼ 0; ð4Þ

where we have abbreviated λ≡ λ3 þ λ4 þ λ5.
These equations allow four qualitatively different sets

of VEVs3:
① v21 ¼ v22 ¼ 0,

② v21 ¼ − m2
1

λ1
, v22 ¼ 0,

③ v21 ¼ 0, v22 ¼ − m2
2

λ2
,

④ v21 ¼ λ2m2
1
−λm2

2

λ2−λ1λ2
, v22 ¼ λ1m2

2
−λm2

1

λ2−λ1λ2
.

While ① and ② respect the Z2, ③ and ④ break it
spontaneously. In our numerical analysis, we have inves-
tigated whether ① or ② are stable minima of the potential.
Otherwise the Z2 would be broken in any case since the
potential must have a minimum and only Z2-breaking
vacua are left.
Computing the Hessians we find that we have a stable,

Z2 symmetric vacuum if

m2
2 ≥

�
0 if m2

1 ≥ 0 ⇔ ①
λ
λ1
m2

1 if m2
1 < 0 ⇔ ②: ð5Þ

The latter equation is equivalent to the conditionm2
R ≥ 0; i.e.,

the field ηR develops aVEVif itsmass square—an eigenvalue
of the Hessian—becomes negative. Had we allowed for a
relative phase between v1 and v2, we would have found that
Imϕ2 (i.e., ηI) may develop a VEV. The condition to exclude
this is m2

I ≥ 0. Similarly, to avoid breaking the electric
charge, we need m2

� ≥ 0. If we ignore a possible instability
of theZ2 symmetric vacua,wemay expand the theory around
the wrong vacuum. Expanding around the correct vacuum,
however, would alter the phenomenological predictions of
the model and compromise the Z2 symmetry.
Avoiding vacuum instability, of course, does not exclude

that the Z2 symmetric minima are not the global minimum
of the potential. We can investigate this by plugging the
solutions ①–④ back into the scalar potential, Eq. (1), which
yields [61]

V① ≡ Vðv21 ¼ 0; v22 ¼ 0Þ ¼ 0; ð6aÞ

V② ≡ V

�
v21 ¼ −

m2
1

λ1
; v22 ¼ 0

�
¼ −

m4
1

2λ1
; ð6bÞ

V③ ≡ V

�
v21 ¼ 0; v22 ¼ −

m2
2

λ2

�
¼ −

m4
2

2λ2
; ð6cÞ

V④ ≡ V

�
v21 ¼

λ2m2
1 − λm2

2

λ2 − λ1λ2
; v22 ¼

λ1m2
2 − λm2

1

λ2 − λ1λ2

�

¼ λ2m4
1 − 2λm2

1m
2
2 þ λ1m4

2

2ðλ2 − λ1λ2Þ
: ð6dÞ

Any of the above solutions ①–④ is the global minimum if
v21;2 ≥ 0 and if it has the lowest vacuum energy, Vⓘ < Vⓚ

for all k ≠ i. Note that, however, there is some freedom in
choosing a minimum which is not the global one if the
decay time is larger than the age of the Universe; see, e.g.,
Ref. [60]. Nevertheless, we can use the above equations to
check whether the breaking of Z2 is the only constraint, or
if there could be further constraints, which originate from
the minima ① and ② not being the global one.
For illustrative purposes, we now show analytically that

the Z2 symmetry can be broken spontaneously due to
radiative corrections. We do so by directly calculating the
breaking scale. To simplify the equations, we only consider
one generation of fermions and assume m2

1ðμÞ > 0 for all
scales μ; i.e., we study under which conditions only m2

2ðμÞ
becomes negative. For sufficiently small quartic scalar
couplings, we can ignore their contributions to the RGEs
altogether and consider two simple but illustrative limiting
cases, where all quantities under consideration are assumed
to be real. In addition, we shall assume that the Majorana
mass M does not run at all, which is justified numerically,
cf. Ref. [24].

2Note that there are some ambiguities in the definition of
perturbativity [57,58]. For definiteness, we have chosen the
criterion λ1;2;3;4;5 < 4π in our numerical computations.

3
② and ③ each have two real solutions, which are physically

equivalent due to global symmetries, while ④ gives rise to
four solutions, which reduce to two physically inequivalent
solutions [60].
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A. Case 1: Large neutrino Yukawa
coupling—hðμÞ ≫ giðμÞ

In this limiting case, neglecting any gauge and non-
neutrino Yukawa couplings, we can approximate the
coupled RGEs (A2b) and (A5b) for h and m2

2, respectively,
as follows:

Dh≃ 5

2
h3; Dm2

2 ≃ 2h2m2
2 − 4h2M2; ð7Þ

where D≡ 16π2μ d
dμ ≡ 16π2 d

dt and we have suppressed
explicit scale dependence for brevity. These differential
equations can be solved exactly and yield a condition for
the mass square to become negative, i.e., for symmetry
breaking to occur at some point t ¼ t�,

m2
2ðt�Þ ¼! 0 ⇔

�
5

16π2
h2ð0Þ

�
t� ¼ 1 −

�
1 −

m2
2ð0Þ
2M2

�
5=2

:

ð8Þ

This yields in the linear approximation [where
m2

2ð0Þ ≪ 2M2]

t� ≃ 4π2m2
2ð0Þ

M2h2ð0Þ : ð9Þ

B. Case 2: Small neutrino Yukawa
coupling—hðμÞ ≪ giðμÞ

In this case the RGEs involve the gauge couplings
Eq. (A1):

Dh≃ −
3

4
ðg21 þ 3g22Þh;

Dm2
2 ≃ −

3

2
ðg21 þ 3g22Þm2

2 − 4h2M2: ð10Þ

The solutions are simple to find, and we get

t� ¼
4π2m2

2ð0Þ
M2h2ð0Þ : ð11Þ

Note that the conditions for both cases agree if
m2

2ð0Þ ≪ 2M2, which is just the case we are interested in.
One might object that a Z2 broken above some large

scale t� is irrelevant as long as the low-energy phenom-
enology is unaffected, in which case we should only be
concerned with whether t� is large enough for this to be
true. On the other hand, one may argue that a broken
symmetry in the UV is undesirable from an aesthetical
point of view, and we can impose that the crossing to
negative values ofm2

2 shall not occur up to some high scale.
In fact, both requirements are not so different, because if we
require the Z2 symmetry to be intact at least to the TeV
scale MTeV ¼ 103 GeV (in order not to disturb DM

productions) or to, say, the “grand unification scale”
MGUT ¼ 1016 GeV (where new physics may modify the
situation), the corresponding bounds for μ0 ¼ MZ are

m2ð0Þ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð103 GeV=MZ; 1016 GeV=MZÞ

4π2

s
hð0ÞM

≈ ð0.246; 0.905ÞMhð0Þ: ð12Þ

In both cases, as long as the tree-level scalar mass
parameter m2ð0Þ is not at least of the size of the heaviest
Majorana mass, radiative Z2 breaking could potentially
occur. However, since we at the same time do not want
m2ð0Þ to be too large in order not to pull the Higgs mass
parameter to too-large values and in the worst case even
spoil EWSB, cf. Eq. (A5a), some tension between both
requirements is generated.
In the upcoming section, we will discuss both the

appearance and the impact of radiative Z2 breaking.

IV. NUMERICAL ANALYSIS

In this section, we will show by a numerical example
how nontrivial constraints on the model parameter space
can be obtained if the requirement of keeping the Z2 intact
is imposed on some range of energies. We thereby use the
full system of RGEs for all three generations. The goal of
this section is to illustrate that keeping the Z2 intact up to a
certain energy scale leads to nontrivial bounds.
Depending on the setting, the Z2 breaking may be

problematic if it, e.g., occurs at scales where DM produc-
tion could be modified. However, we would like to stress
that, due to the size of the parameter space, it is not possible
to make any global statements. Rather, whenever a param-
eter point is studied, one would need to check on a case-
by-case basis how/if phenomenology is affected by the
resulting constraint.
In general, the model parameters “beyond the SM” are

fhij;Mk;m2; λ2; λ3; λ4; λ5g, some of which are constrained
by low- or high-energy data. Nevertheless, we treat these
numbers as free parameters, to keep the computational time
limited and since, e.g., a particular leptonic mixing does not
affect our considerations. We fix λ5 ¼ 10−9 at the input
scale μ ¼ MZ, the value of which is kept small by the
corresponding RGE (A4e). The conditions (3) require that
we use large enough values for λ2, such that it is positive for
all energy scales. We find that, at μ ¼ MZ, λ2 ¼ 0.1 gives
good results while the numerics are under control. For the
neutrino Yukawa couplings hij, we input a bimaximally
mixed setup [62] of Oð0.1Þ at the grand unified theory
(GUT) scale, which is known to potentially yield phenom-
enologically valid leptonic mixing at low energies [24].
Moreover, the heavy fields are integrated out for

renormalization scales below their mass thresholds [63],
and the SM input values have been chosen according
to Ref. [64].

ALEXANDER MERLE AND MORITZ PLATSCHER PHYSICAL REVIEW D 92, 095002 (2015)

095002-4



The connection between the different parameters is
intricate: at the input scale, we must choose m2

2 large
enough for it not to be driven to negative values by the
corrections from the Majorana masses, cf. Eq. (A5b). At the
same time, a large m2

2 will generate large positive correc-
tions to m2

1 [provided that 2λ3 þ λ4 > 0; see Eq. (A5a)],
which could spoil EWSB. This is where the actual tension
resides: the running mass parameter m2

2 must lie within the
range of the electroweak scale, and at the same time, it must
not be too small to avoid Z2 symmetry breaking. There is
one more player in the game: the RH neutrino masses drive
the tension by their appearance in the RGE for m2

2,
Eq. (A5b). If chosen too large (say, around 10 TeV, for
hij ∼ 0.1), demanding an unbroken Z2 symmetry at all
scales requires m2

2ðMZÞ to be larger than allowed by the
obligation to achieve EWSB.
As mentioned in Sec. III, the inert doublet VEV may not

only lead to breaking of the Z2, but it could also cause
electric charge and/or CP violation. Note, however, that,
since λ5 is small for all renormalization scales, we will have
nearly degenerate CP-even and -odd neutral scalar masses,
mR ≃mI, such that CP violation is inseparable from the
breaking of Z2. To unambiguously identify such scenarios,
we have made use of the equivalence of a squared mass
becoming negative to symmetry breaking (see Sec. III).
This has been investigated by replacing the Lagrangian
parameters in the mass relations (2b) to (2d) by the running
couplings and the tree-level VEV by a running VEV
(cf., e.g., Ref. [65]):

v2 ¼ −
m2

1

λ1
→ v2ðμÞ ¼ −

m2
1ðμÞ

λ1ðμÞ
: ð13Þ

This can be done because, in the broken phase, we only
need counterterms that are invariant under the broken
symmetry group [66]. Thus, we can obtain the counter-
terms in the broken phase from those in the symmetric
phase. We can use this fact to construct running quantities
in one phase from running quantities in the other [67].

A. Breaking scale

Let us first try to get a feeling for the numbers involved,
i.e., for the scale where theZ2 breaking occurs as a function
of the physical scalar masses.4

The natural question is at which scale the breaking could
occur for realistic particle masses. The crucial observation is
that even RH neutrino masses in the TeV range could
be perfectly sufficient to break the Z2 parity at a relatively
low scale, as Eqs. (9) and (11) suggest. To illustrate this
statement, we present in the left panel of Fig. 1 the breaking
scale as a function of the scalar massesm� andmR. We have

neglected all SM fermions but the top quark to be able to
determine the breaking scale with higher precision. The RH
neutrino masses are ðM1;M2;M3Þ¼ð900;1500;5000ÞGeV,
input atMGUT, with Yukawa couplings ofOð0.1Þ, which are
all not overly large andmore or less in the rangeswheremany
particle physicists would “naturally” expect them. However,
glancing at the figure, it is visible that, even for these values,
the breaking scale can be as low as a few TeV. The breaking
scale grows with both m� and mR, as to be expected from
Eqs. (2b) and (2c), since both of them grow with m2 but are
related as m2

R −m2
� ¼ ðλ4 þ λ5Þv2. Ultimately, the value of

the breaking scale is determined by a tug of war between the
scalar mass parameter m2 and the maximum of all fMihijg,
cf. Eq. (12).
To see the exact influence of the combination of Yukawa

coupling and mass, we can look at the right panel of Fig. 1,
where the explicit evolution ofmR is shown as a function of
the renormalization scale, for three different exemplary
masses M3. Indeed, as soon as M3 becomes dynamic, it
pullsmR toward smaller values, until it is zero. Beyond this
scale m2

R is negative; i.e., the “physical” mass mR becomes
imaginary. However, given that this occurs in a setting with
m2

1 < 0 and mR < m�, the scale at which mR ¼ 0 is to be
identified with the Z2-breaking scale, so that in fact the
assumed field configuration is no longer expanded around a
minimum of the potential for larger renormalization scales.
Expanding around an actual minimum would of course
yield real and positive masses.
An important point to make at the end of this section is to

understand that it is not immediately visible whether or not
the breaking emerges at sufficiently low scales and destroys
the validity of the model. Instead, one has to look at the
details of the parameters under consideration and if in
doubt apply further analyses that allow one to clarify the
situation, as we shall outline in Sec. V. However, as can be
seen from the right panel of Fig. 1, it is quite possible that,
e.g., for an inert scalar with a mass of 262 GeV, which is the
DM candidate of that setting if it is the lightest electrically
neutral and stable particle involved, the symmetry breaking
can already occur at about 1 TeV, which is very close to the
phase decisive for DM production in the early Universe. In
such a case, the running of the parameters involved cannot
simply be neglected when computing the DM production.
This observation is also true if the effect of Z2 breaking is
related to thermal effects, which may significantly alter the
situation [68–72], as we will explicitly discuss in Sec. V.

B. Humble way out

For some studies it may not be easy to show whether or
not a too-low breaking scale has a negative impact, e.g., if
no suitable tools to compute DM production are available.5

4We could have used the scalar mass parameters in the
Lagrangian, but we consider physical masses to be more
illustrative. On top of that, one can use Eqs. (2b) to (2d) to
convert one into the other.

5While DM production can be handled easily in simple cases,
in particular settings with co-annihilations or nonthermal pro-
duction are more involved.
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In other contexts one may only be interested in a rough
picture of the situation, where the decisive point is to avoid
a potential symmetry breaking altogether. In such cases, a
convenient way out would be to require the breaking scale
to be at such high energies that it does not affect low-energy
physics. For example, one could ask for which parameter
values the Z2 breaking happens only beyond MGUT, where
new physics would potentially modify the situation. In the
following, we give an example for how this would affect the
parameter space available.
To illustrate the parity problem, we generated a random

set of 105 input values within,

0 TeV ≤ m2ðMZÞ ≤ 3 TeV;

−1 ≤ λf3;4gðMZÞ ≤ 1; ð14Þ

for masses ðM1;M2;M3Þ ¼ ð900; 1500; 2000Þ GeV as
input at MGUT. We then computed the running effects for
each point chosen, this time taking into account all SM
fermions. First, we solve theRGEs for the running couplings
of the scalar sector (λ1;2;3;4;5) and check the scalar consis-
tency criteria, Eq. (3), for all energy scales betweenMZ and
MGUT.

6 If these are not violated for any scale below MGUT,
we solve the scalar mass parameter RGEs (A5a) and (A5b).
If we do not find EWSB below 1 TeV, i.e., ifm2

1ðμÞ ≥ 0, we
reject the input values. Otherwise we distinguish two
subcases depending on the sign of m2

1ðμÞ; see Eq. (5). In
case we find that all vacua that respect the Z2 parity are
unstable, we also reject the input values. By adhering to this
approach, we can avoid rejecting input values because of a
broken Z2 symmetry although some other criterion fails as
well; i.e., we determine exactly those points which would

not be rejected if one disregarded the bound arising from
radiative symmetry breaking.
The results of our parameter scan are shown in Fig. 2,

where the allowed and rejected input values at the electro-
weak scale are marked.7 All data points violating vacuum
stability or perturbativity have been excluded from the plot.
The color code is as follows. Black dots mark the points
which fulfil all the constraints. All other points are
excluded for various reasons. Yellow dots are excluded
due to failing to produce EWSB below 1 TeV, while red/
green dots are excluded only because they lead to radiative
Z2 breaking, where m2

2=R < 0 is signified by red dots and
m2

� < 0 by green ones.
For a large range of input values for λ3 and λ4, the

criterion that we must encounter EWSB below 1 TeV
translates into an upper bound on m2ðMZÞ, which is a
function of λ3 and λ4. Only if 2λ3 þ λ4 < 0, EWSB can be
maintained below 1 TeV while allowing for a largem2. This
manifests itself in the columns of valid (black) data points
ranging up to very high input values of m2, which are
visible in both panels of Fig. 2.
On the other hand, one can see that including the

criterion of an unbroken Z2 symmetry is essentially
equivalent to a lower bound on m2ðMZÞ—in our example
about 550 GeV, indicated by the gray area in the plots. As
can be seen in the left of Fig. 2, we have found red and
green points below this bound, which are only excluded by
the requirement of the Z2 symmetry to be unbroken at all
scales. Even above this bound, it is visible that, for certain
choices of λ3;4, there are some red and green dots which
would be considered unproblematic if parity breaking was
disregarded.

FIG. 1 (color online). Left: Z2-breaking scale Λ as a function of the masses m�;R for RH masses ðM1;M2;M3Þjμ¼MGUT
¼

ð900; 1500; 5000Þ GeV. Right: Explicit running of mRð< m�Þ for one example set of parameters with ðM1;M2Þjμ¼MGUT
¼

ð900; 1500Þ GeV (dashed gray lines). In both plots, Yukawa couplings < 1 are chosen (the crucial ones are given).

6This ensures that we do not have to consider further particle
thresholds and all SM fermions can be safely neglected. This even
holds for the top quark given that its mass is so close to the lower
input scale.

7This time, we have chosen to display the Lagrangian
parameters as opposed to Fig. 1, since the resulting bound is
illustrated in a better way.
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For the physical scalar masses in the minimal subtraction
scheme, we obtain values in the ranges

554.2 GeV ≤ m�ðμ ¼ m�Þ ≤ 2780.6 GeV;

558.5 GeV ≤ mR=Iðμ ¼ mR=IÞ ≤ 2781.6 GeV; ð15Þ

confirming our expectation of a lower bound on the masses.
Generalizing our estimate from Eq. (12) to the case of three
generations, we find agreement with the exact result,

0.905
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

i
jMiðMZÞ2½hðMZÞh†ðMZÞ�iij

q
≈ 625 GeV;

ð16Þ

to be compared to the estimated value of 550 GeV. At first
sight it may be surprising that the simple estimate outlined
in Sec. III leads to such a good agreement. However, given
that there is quite a range possible for both Yukawa
couplings and RH neutrino masses, it is in fact to be
expected that, rather generically, one of the products of the
form (neutrino Yukawa coupling) × (RH neutrino mass)
will in most cases dominate over the others, thereby
mimicking the situation of only one RH neutrino being
present.
Glancing at Eq. (A5b), one might be led to the

assumption that, by raising the Majorana masses, the
transition to negative values of m2

2 can be pushed beyond
MGUT, since below their mass thresholds the RH neutrino
fields are integrated out. However, such an attempt must
fail since it is always overcompensated by the quadratic
term in the RGE form2

2, Eq. (A5b), which is also illustrated
by Fig. 1, right panel. Only if we chose all Mi ≥ MGUT
could it be achieved, but at the latest at that point some
other new physics would probably appear which may
completely change the situation.
Having seen the examples in this section, it is evident

that potentially nontrivial constraints can arise from avoid-
ing the Z2 breaking. However, depending on the context,
they may be stronger or weaker, so that the ultimate
conclusion is that, for any given parameter point leading
toZ2 breaking, one must check whether or not the breaking

may have a bad influence, in particular on the production
of DM.

V. DISCUSSION AND OUTLOOK

In this section, we will briefly discuss some further
phenomenological implications and/or subtleties related to
the parity problem. As we will see, none of the points
changes the principal situation; however, the points dis-
cussed may lead to further constraints, or they may be
worth considering in a separate work.

A. Unstable vacuum

As we stated in Sec. III, one can in principle obtain
stronger constraints on the scalar sector if demanding that
one of the Z2 symmetric minima is also the global one. If
this were not the case, the local minima would simply
decay into the global vacuum.
In repeating the analysis presented in Fig. 1 (left panel)

and checking for this additional feature, we obtain Fig. 3.
Here, the red points indicate that Z2 breaking is the only
constraint, while the blue points indicate that there is a
deeper minimum emerging at a scale below the breaking
scale Λ, thus giving even stronger constraints. As we can

FIG. 2 (color online). Parameter scan for the scotogenic model. Black dots are valid input parameter values, yellow dots violate
EWSB, and red (m2

2=R < 0) and green (m2
� < 0) dots are excluded due to the breaking of Z2. The shaded gray area represents the “lower

bound” on m2.

FIG. 3 (color online). Rerun of the scan shown in Fig. 1 (left
panel), where blue points indicate that the Z2 symmetric vacua
are not the global ones.
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see, this is only relevant for light scalar masses. For large
mass scales, Z2 breaking evidently occurs before deeper
minima can form.
Unfortunately, it is rather difficult to infer any global

qualitative statements from Eqs. (6a) to (6d) since they
depend on the concrete values of the scalar couplings
λ1;2;3;4;5 at a given scale. Intuitively, one would expect new
minima to occur if m2

2 is either negative or at least small.
For large physical scalar masses, m2

2 will be positive and
large. Thus, given that the scalar couplings have a tendency
to run to smaller values for high scales, the scale of Z2

breaking for growing m2
2 approaches the scale where new

minima emerge.8 Note that by a small mass parameter in
this context we refer to the different combinations of mass
parameters and quartic couplings, e.g., m4

1

λ1
in Eq. (6b).

B. DM decay

We have already mentioned that DM production may be
affected by the parity problem. It is worth noting that the
issue is, however, not so much about the mere abundance of
the DM. While indeed a broken Z2 symmetry would
change the Feynman rules in the scotogenic model, and
hence the amount of DM produced in the early Universe,
this could typically be compensated by choosing slightly
different parameter values which, given that neither the
inert scalar mass nor the RH neutrino masses are known
accurately, is not expected to be a major issue.
The actual problem lies somewhere else: given that the

radiatively induced VEV vη of η is not tiny (i.e., it can be
expected to be at least in theGeV to TeV ballpark for generic
parameter choices) and that the coupling strengths are not
extremely small, the resultingDMcandidatewill generically
decay very quickly. While decaying DM is not excluded by
observations, its interactions typically need to be strongly
suppressed, e.g., by very heavy mediators or by tiny
(∼ gravitational) interaction strengths—see Ref. [73] for a
discussion of some example models. If this is not the case,
the DM is in great danger of simply “decaying away,” i.e., to
have a lifetime smaller than the age of the Universe, so that it
could not have survived until today when produced early in
history. Potentially fast decays would furthermore tend to
increase the freeze-out temperature, since decaying DM
drops out of thermal equilibrium earlier than stable DM, so
that on top of that (at least for nonrelativistic DM particles) a
strong modification of the abundance can be expected, too.
One can easily see that the constraint arising from the

lifetime is rather strong. For example, taking vηλ as the
Feynman rule for the vertex which allows an inert scalar to
decay into two SM-like Higgses, the resulting decay width
could be approximately computed to be Γ ∼ v2ηλ2=ð16πmηÞ.
If we conservatively estimate the DM lifetime to be at least

larger than the age of the Universe (13.81 Gyr [64]),
corresponding to about 4.3 × 1017 sec, we get an upper
limit of about 1.5 × 10−27 GeV on the decay rate. Even
for a mass of mη ¼ 500 GeV and a “small” VEV of
vη ¼ 1 GeV, the upper limit on the interactions strength
would then be λ≲ 6 × 10−12. For a scalar potential like the
one in Eq. (1), this bound would extend to all three
couplings λ3;4;5, at least in the absence of very fine-tuned
cancellations. Taking into account some information on the
decay products, this limit would become even stronger
[74]. Similar estimates could be done in case one of the RH
neutrinos was the DM particle.
Hence, unless we resort to extremely small couplings or

very strong fine-tuning, a VEV of the inert scalar would
quite generally destroy the ability of the scotogenic model
to explain DM, simply because the interactions involved
cannot be sufficiently suppressed.

C. Thermal effects

Thermal effects can be important for our analysis since
broken symmetries will generally be restored at sufficiently
high temperatures [36]. One might be led to the conclusion
that this makes the entire discussion of Z2 breaking
superfluous, given that the breaking occurs at high scales
only. This is, of course, too simple an argument since the
real situation is much more complex. To understand this, let
us reconsider the situation shown in Fig. 1 (right panel)
with a 5 TeV heaviest RH neutrino and ηR the lightest inert
particle. We can capture the leading thermal effects by
including the thermal corrections to the quadratic terms in
the scalar potential [61]. This is achieved by a shift in the
mass parameter m2

2 → m2
2 þ cT2, where T is the temper-

ature and c is given by [69,72]

c ¼ 1

16
ðg21 þ 3g22Þ þ

λ2
4
þ 1

12
ð2λ3 þ λ4Þ þ

1

12
trðh†hÞ;

ð17Þ

FIG. 4 (color online). Effective thermal mass parameter mR;eff
for different temperatures T.

8For example, the Higgs quartic coupling λ1 is dominated by
the top Yukawa coupling yt which gives a negative contribution,
cf. Eq. (A4a).
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as can be calculated from the IR limit of the thermal scalar
two-point function [75–77]. In this way, we obtain the
effective thermal mass parameter mR;eff, which is shown in
Fig. 4 for different temperatures.Clearly, at high temperatures
theZ2 symmetry will be restored for a fixed renormalization
scale μ, as one would expect. However, since our DM
candidate in this scenario is ηR, which is a weakly interacting
massive particle with a physical mass around 250 GeV, the
temperatures relevant for the thermal decoupling will be
much belowM3, such that the thermal corrections have only
little impact (cf. violet curves). The remaining question of
how to choose the renormalization scale can only be
answered if one looks at the details of the DM production.
We leave such details to be worked out in future studies.
In combination with the discussion on DM decay, this

shows that thermal effects will alter the details but not the
overall picture: Z2 breaking can occur and may have a
significant impact on the phenomenology of the scotogenic
model. Any phenomenological study should include this
fact in its considerations.

VI. CONCLUSIONS

We have illustrated that the scotogenic neutrino mass
model suffers from a parity problem; i.e., it is in danger that
its intrinsic built-in Z2 parity symmetry is broken by
quantum effects driven by the heavy right-handed neutri-
nos. This could generate unwanted effects such as mod-
ifications of DM production. This issue imposes visible
constraints on the parameter space available, in particular
because the most generic solution, i.e., simply pushing the
corresponding mass parameter in the Lagrangian to large
enough values to avoid the breaking, does not work due to
electroweak symmetry breaking being threatened. Thus,
the scotogenic model suffers from tension from two
different sides which considerably shrinks the allowed
parameter ranges.
After introducing the scotogenic model and its vacuum

structure, we presented an analytical approximation to
compute the breaking scale, before exemplifying the
resulting constraints numerically. Our considerations are
based on the one-loop renormalization group equations of
the scotogenic model which we have rederived and, in
passing, updated compared to previous versions in the
literature. Summing up, we have revealed a somewhat
subtle but nontrivial constraint on the scotogenic model
which is able to strongly reduce the allowed parameter
space. This makes it necessary for future considerations to
check whether the parity problem exists for a certain choice
of parameters, or not, to avoid the trap of studying
physically irrelevant regions of the model.
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APPENDIX: RENORMALIZATION
GROUP EQUATIONS

The one-loop RGEs for the scotogenic model were first
computed in Ref. [24]. We have rederived those equations
needed for the purpose of this paper and have in passing
taken the opportunity to update part of the earlier results.
For convenience, we define the differential operator

D≡ 16π2μ d
dμ. The one-loop RGEs for the gauge couplings

are those of a generic THDM [78],

Dgi ¼ big3i ðno sumÞ; ðA1Þ

with b ¼ ð7;−3;−7Þ.
The quark sector of the scotogenic model is the same as

that of the SM, such that the corresponding RGEs do not
change.9 The RGEs for the leptonic Yukawa couplings are

DYe ¼ Ye

�
3

2
Y†
eYe þ

1

2
h†hþ T −

15

4
g21 −

9

4
g22

�
; ðA2aÞ

Dh ¼ h

�
3

2
h†hþ 1

2
Y†
eYe þ Tν −

3

4
g21 −

9

4
g22

�
; ðA2bÞ

where Tν≡Trðh†hÞ and T ≡ TrðY†
eYe þ 3Y†

uYu þ 3Y†
dYdÞ.

For the Majorana mass matrix, one finds [24,79]

DM ¼ fðhh†ÞM þMðhh†Þ�g: ðA3Þ

For the quartic scalar couplings, we find the RGEs for a Z2

symmetric THDM [80],

Dλ1 ¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24

þ 2λ25 þ
3

4
ðg41 þ 2g21g

2
2 þ 3g42Þ

− 3λ1ðg21 þ 3g22Þ þ 4λ1T − 4T4; ðA4aÞ

Dλ2 ¼ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25

þ 3

4
ðg41 þ 2g21g

2
2 þ 3g42Þ

− 3λ2ðg21 þ 3g22Þ þ 4λ2Tν − 4T4ν; ðA4bÞ

9Note the implicit changes in g1;2, though, by virtue of
Eq. (A1).
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Dλ3 ¼ 2ðλ1 þ λ2Þð3λ3 þ λ4Þ þ 4λ23

þ 2λ24 þ 2λ25 þ
3

4
ðg41 − 2g21g

2
2 þ 3g42Þ

− 3λ3ðg21 þ 3g22Þ þ 2λ3ðT þ TνÞ − 4Tνe; ðA4cÞ

Dλ4 ¼ 2ðλ1 þ λ2Þλ4 þ 8λ3λ4 þ 4λ24 þ 8λ25 þ 3g21g
2
2

− 3λ4ðg21 þ 3g22Þ þ 2λ4ðT þ TνÞ þ 4Tνe; ðA4dÞ

Dλ5 ¼ λ5½2ðλ1 þ λ2Þ þ 8λ3 þ 12λ4

− 3ðg21 þ 3g22Þ þ 2ðT þ TνÞ�; ðA4eÞ

where we have used the abbreviations T4≡TrðY†
eYeY

†
eYeþ

3Y†
uYuY

†
uYuþ3Y†

dYdY
†
dYdÞ, T4ν ≡ Trðh†hh†hÞ, and Tνe≡

Trðh†hY†
eYeÞ.

The scalar mass parameters obey the following RGEs:

Dm2
1 ¼ 6λ1m2

1 þ 2ð2λ3 þ λ4Þm2
2 þm2

1

�
2T −

3

2
ðg21 þ 3g22Þ

�
;

ðA5aÞ

Dm2
2 ¼ 6λ2m2

2 þ 2ð2λ3 þ λ4Þm2
1 þm2

2

�
2Tν −

3

2
ðg21 þ 3g22Þ

�

− 4
X3
i¼1

M2
i ðhh†Þii; ðA5bÞ

where the last term in Eq. (A5b) is characteristic for a
scalar field coupled to Majorana fermions (see, e.g.,
Refs. [81,82]). This term is the crucial point of our study.
Conveniently, since it is nothing but a trace, it is invariant
under the transformation that diagonalizes M, such that we
do not have to perform this diagonalization explicitly.
Furthermore, the decoupling of the heavy Majorana fields
must be carried out by hand, since we are working in a
mass-independent renormalization scheme. To this end, we
match the neutrino Yukawa couplings and Majorana mass
matrices in the basis where M is diagonal [79]. Apart from
these two quantities, the only appearance of the Majorana
masses is Eq. (A5b), where it suffices to remove the
corresponding contribution.
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