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We use the gradient flow for the renormalization of the Polyakov loop in various representations. Using
2þ 1 flavor QCD with highly improved staggered quarks and lattices with temporal extents of Nτ ¼ 6, 8,
10 and 12 we calculate the renormalized Polyakov loop in many representations including fundamental,
sextet, adjoint, decuplet, 15-plet, 24-plet and 27-plet. This approach allows for the calculations of the
renormalized Polyakov loops over a large temperature range from T ¼ 116 MeV up to T ¼ 815 MeV,
with small errors not only for the Polyakov loop in fundamental representation, but also for the Polyakov
loops in higher representations. We compare our results with standard renormalization schemes and discuss
the Casimir scaling of the Polyakov loops.
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I. INTRODUCTORY REMARKS

The Polyakov loop in fundamental representation is an
order parameter of deconfinement in SU(N) gauge theories.
For the SU(3) gauge group it is defined as

L3ðxÞ ¼
1

3
TrP exp

�Z
1=T

0

Aa
4ðx; τÞtadτ

�
; ð1Þ

where x is the spatial coordinate, P is the path ordering
operator, and the Euclidean time τ is integrated up to the
inverse temperature. The nonzero expectation value of
L3ðxÞ above the transition temperature Tc signals decon-
finement and screening of static quarks. After proper
renormalization the logarithm of the Polyakov loop gives
the free energy of a static quark in temperature units [1,2].
In the confining phase below Tc the corresponding free
energy is infinite. Above that temperature it becomes finite
due to color screening.
In QCD the Polyakov loop is not an order parameter, its

expectation value is nonzero at any temperature as static
quarks can be screened by dynamical quarks already in the
vacuum, i.e. the free energy of the static quark is always
finite. Nonetheless, the temperature dependence of the
Polyakov loop reflects the change of the screening proper-
ties in the medium and thus is linked to deconfinement.
So far, we discussed the Polyakov loop in the funda-

mental representation. One can define the Polyakov loop
LnðxÞ in any representation n by replacing the generators ta

of the fundamental representation by the generators of the
corresponding representation tan, as well as the correspond-
ing normalization of the trace in Eq. (1), and consider the
free energy of the color charge in representation n. The
color charges in higher representations may be screened at
any temperature already in pure gauge theory. However,
also in this case the temperature dependence of hLnðxÞi, or
equivalently of the corresponding free energy Fn, is

sensitive to the screening properties of the medium and
thus to deconfinement.
As stated above, the expectation value of the Polyakov

loop PnðTÞ ¼ hLnðxÞi requires renormalization in order to
be interpreted as the free energy of static charges. The
renormalization of the Polyakov loop is multiplicative [3],

PnðTÞ≡ Pren
n ðTÞ ¼ e−enðg0ÞNτPbare

n ðTÞ ¼ ZNτ
n Pbare

n ðTÞ;
ð2Þ

where g0 is the bare gauge coupling corresponding to a
given lattice spacing [2]. In the fundamental representation
the renormalization is usually achieved by requiring that
the free energy of a static quark antiquark pair is equal
to the corresponding zero temperature potential at very
short distances and assuming a certain normalization of the
zero temperature potential. The constant e3ðg0Þ in Eq. (2)
corresponds to the additive shift of the zero temperature
potential ensuring that it has the prescribed value in
physical units. Thus the calculation of the renormalized
Polyakov loop requires the calculation of the zero temper-
ature potential for each value of the bare gauge coupling g0
used in finite temperature calculations. For higher repre-
sentations one can proceed in a similar manner to obtain the
renormalization constant Zn but usually, as we discuss later,
the assumption of Casimir scaling is used to estimate them.
The renormalized Polyakov loop in the fundamental

representation has been calculated in SU(N) gauge theories
[2,4–6] as well as in QCD with two and three quark flavors
with relatively large quark masses [7,8]. Results for the
renormalized Polyakov loop also exist for the physically
relevant case of 2þ 1 flavor QCD with physical or nearly
physical quark masses [9–15]. The Polyakov loop in higher
representations has also been studied in pure gauge theory
[5,6] and in two-flavor QCD with relatively large quark
masses [5].
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In this paper we calculate the renormalized Polyakov
loop in 2þ 1 flavor QCD with physical quark masses in
various representations. Calculations will be performed at
several lattice spacings in order to control the discretization
effects. A new method for calculating the renormalized
Polyakov loops based on the gradient flow [16] is intro-
duced. The rest of the paper is organized as follows: In the
next section we discuss the lattice setup. In Sec. III we
discuss the renormalization of the Polyakov loop in the
fundamental representation using the gradient flow. The
Polyakov loop in higher representations and Casimir
scaling is studied in Sec. IV. Finally, Sec. V contains
our conclusions and some technical aspects of the calcu-
lations are presented in the Appendices.

II. LATTICE SETUP

We perform lattice calculations in 2þ 1 flavor QCD
using highly improved staggered quarks (HISQ) [17] with
lattice sizes of N3

s × Nτ ¼ 243 × 6, 323 × 8, 403 × 10 and
483 × 12 and gauge configurations generated by the
HotQCD collaboration using a physical strange quark mass
ms and degenerate up and down quarks with masses mu ¼
md ≡ml ¼ ms=20 [14,18]. This setup corresponds to a
pion mass of 161 MeV in the continuum limit [14]. The
temperature T ¼ 1=ðaNτÞ is varied using the lattice spac-
ing a and the lattice spacing itself has been determined
using the r1 scale defined in terms of the static quark
potential,

r2
dV
dr

����
r¼r1

¼ 1: ð3Þ

We use the parametrization of a=r1 from Ref. [18] and
r1 ¼ 0.3106 fm to convert to physical units. We will cover
a temperature range of T ¼ 116 MeV up to T ¼ 815 MeV.
In the low temperature region and in the transition region
we also perform calculation using ml ¼ ms=40 and the
HotQCD gauge configurations from Ref. [14].
On the lattice the local Polyakov loop LðxÞ is given by

the traced product of all temporal links U4ðx; τÞ at the
spatial point x,

Lbare
3 ðxÞ ¼ 1

3
Tr

YNτ

τ¼1

U4ðx; τÞ; ð4Þ

with U4ðx; τÞ ∈ SUð3Þ and Nτ the temporal extent of the
lattice. Here Lbare

3 ðxÞ denotes the unrenormalized (bare)
Polyakov loop in fundamental (“3”) representation. One
usually considers the spatial average when calculating the
expectation value of the Polyakov loop,

Pbare
3 ¼

�
1

N3
s

X
x

Lbare
3 ðxÞ

�
: ð5Þ

We consider Polyakov loops Ln in higher representations,
n ¼ 6, 8, 10, 15, 150, 24 and 27. These can be constructed
from the Polyakov loop in the fundamental representation
using group theory as follows [5]:

L6 ¼
1

6
ðl23 − l�3Þ; ð6Þ

L8 ¼
1

8
ðjl3j2 − 1Þ; ð7Þ

L10 ¼
1

10
ðl3 · l6 − l8Þ; ð8Þ

L15 ¼
1

15
ðl�3 · l6 − l3Þ; ð9Þ

L150 ¼
1

15
ðl3 · l10 − l15Þ; ð10Þ

L24 ¼
1

24
ðl�3 · l10 − l6Þ; ð11Þ

L27 ¼
1

27
ðjl6j2 − l8 − 1Þ; ð12Þ

where l3 ¼ 3Lbare
3 and l�3 is its complex conjugate. From the

above equation it is clear that the Polyakov loops in all
representations are normalized by the dimension of the
representation and thus will approach one at very high
temperatures.

III. GRADIENT FLOW RENORMALIZATION

As discussed above, the Polyakov loop needs multipli-
cative renormalization. We use the gradient flow to renorm-
alize the expectation values of Polyakov loops. The
gradient flow is defined by the differential equation
(equation of motion) [16],

_Vtðx; μÞ ¼ −g20ð∂x;μS½Vt�ÞVtðx; μÞ; ð13Þ

where g0 is the bare gauge coupling and S½Vt� is the
Yang-Mills action. The field variables Vtðx ¼ ðx; τÞ; μÞ
are defined on the four-dimensional lattice and satisfy the
initial condition

Vtðx; μÞjt¼0 ¼ UμðxÞ; ð14Þ

with Uμðx ¼ ðx; τÞÞ being the usual SU(3) link variable
and t is a new index for the evolution in flow time and has
dimension ½a2�. So far we have not specified the discre-
tization scheme for the Yang-Mills action. We could use the
simple Wilson gauge action [16] or the tree-level improved
Symanzik action [19] for S½Vt�. One usually refers to these
schemes as Wilson or Symanzik flow. In our study we use
the Symanzik flow, i.e. S½Vt� is the tree-level improved
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Symanzik gauge action. We also performed some calcu-
lations using Wilson flow, which are discussed in
Appendix A. The differential equation is solved using a
Runge-Kutta–like scheme up to the desired value of t. For
the flow evolution of the gauge configurations and for the
calculation of the observable we use the MILC code [20].
Since Eq. (13) has the form of a diffusion equation, the

gradient flow smears the original field UμðxÞ at the length
scale

f ¼
ffiffiffiffi
8t

p
: ð15Þ

For this reason operators evaluated at nonzero flow time,
i.e. operators that are constructed from Vtðx; μÞjt>0 instead
of Uðx; μÞ do not require renormalization [21], the short
distance singularities are removed by the gradient flow.
Furthermore, it can be shown that renormalized operators at
t ¼ 0 are equal to operators at nonzero flow time up to
multiplicative constant [21,22] if the flow time is suffi-
ciently small, a ≪ f ≪ ΛQCD. Therefore, the renormaliza-
tion of the Polyakov loop can be achieved by replacing the
original link variables in Eq. (4) with Vtðx; μÞjt>0. The
choice of flow time f ¼ ffiffiffiffi

8t
p

corresponds to a particular
renormalization scheme as long as

a ≪ f ≪ 1=T: ð16Þ

To demonstrate the above point in Fig. 1 we show the bare
and the renormalized Polyakov loop constructed from
Vtðx; μÞjt>0 corresponding to the choice f ¼ f0 ¼
0.2129 fm.1 In what follows we will give the flow time
in units of f0. One can see that the strongNτ dependence of

the bare loop is gone in the renormalized Polyakov loop as
expected.
For the calculation of the renormalized Polyakov loop in

an extended temperature region we need to change f such
that the constraint given by Eq. (16) is always satisfied. To
do so we proceed as follows: We define regions where the
flow time f is constant in physical units, which means that
changing the temperature T via the lattice spacing means
changing the flow time t in the actual calculation such that
f ¼ const in fm. Different choices of f correspond to
different renormalization schemes. For this reason the free
energy should be independent of the flow time up to a
constant shift, i.e. FnðfÞ − Fnðf0Þ is approximately
T-independent. We are limited in the range of Nτ and
therefore, as we want to cover a very broad temperature
range, we have to define different flow regions to fulfill this
condition:

f ¼

8>>><
>>>:

3f0 for T < 200 MeV;

2f0 for 200 MeV ≤ T ≤ 300 MeV;

0.50f0 for 300 MeV ≤ T < 600 MeV;

0.25f0 for T ≥ 600 MeV;

ð17Þ

where f0 ¼ 0.2129 fm. The different regions can then be
matched by a constant shift of the free energy and we do
this by determining the shift via an overlapping temperature
point between the flow regions for the different ensembles.
We would like to compare the renormalized Polyakov loop
obtained with gradient flow to the conventional renormal-
ization of the Polyakov loop based on the static potential at
zero temperature. We use the continuum extrapolated
results for the renormalized Polyakov loop obtained using
the normalization condition of the potential r1Vðr ¼ r1Þ ¼
0.2605 [23]. So we need to match the gradient flow scheme
with the potential based conventional renormalization
scheme. This is done by matching the values of the free
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FIG. 1 (color online). The unrenormalized fundamental Polyakov loop (left) and the renormalized Polyakov loop corresponding to
flow time f ¼ f0 (right) as a function of the temperature T for all lattice ensembles.

1The value of f0 corresponds to the lattice spacing of the
323 × 8 lattices at the lowest temperature used in our analysis,
and thus it provides a natural unit for the flow time f.
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energy at a single temperature point for Nτ ¼ 12
(T ≈ 200 MeV). The other ensembles will be shifted by
the same amount, which guarantees that the cutoff effects
from the different Nτ are not obscured.
After performing this shift we show in Fig. 2 the free

energy of the static charge F3 ¼ −T lnP3 in the funda-
mental representation for differentNτ. At low temperatures,
T < 200 MeV, we see some Nτ dependence and the free
energy obtained from the gradient flow is larger, but
approaches the continuum result with increasing Nτ. The
largest deviations from the continuum results are about
10% for Nτ ¼ 6 and are few percent for Nτ ¼ 12. For T >
200 MeV the cutoff effects are much smaller and we see
agreement with free energy obtained using conventional
renormalization and the results for the free energy obtained
using gradient flow. Clearly any difference between the two
approaches should vanish in the continuum limit. We
performed the continuum extrapolation of the free energy
for different values of the flow time and verified that this is
indeed the case. In particular, the deviations between the
results obtained in the two renormalization schemes that
can be seen in Fig. 2 disappear after taking the continuum
limit. The details of this analysis are presented in
Appendix B, where we also show explicitly that different
choices of the flow time amount to a constant shift in F3.
We close this section by noting that we also calculated

the Polyakov loop in fundamental representation for the
smaller light quark masses, namely ml ¼ ms=40.
Compared to the ml ¼ ms=20 results we see a downward
shift of F3. This shift in the free energy is consistent with
the shift in the deconfining temperature of about 3 MeV, i.e.
by shifting thems=40 data by 3 MeV to larger temperatures
we make them agree with the ms=20 data. The mass
dependence of F3 is discussed in detail in Appendix C.
Next we want to use the gradient flow approach to calculate
the renormalized Polyakov loop in higher representations.

IV. POLYAKOV LOOP IN HIGHER
REPRESENTATIONS

We calculated the expectation value of the Polyakov loop
in higher representations, namely sextet, octet, decuplet,
15, 150, 24 and 27 using Eqs. (6)–(12) and the gradient flow
in the same manner as described in the previous section. In
particular, we used the flow times defined by Eq. (17) also
here. The numerical results for the Polyakov loops in higher
representations for Nτ ¼ 6 are shown in terms of the
corresponding free energies Fn ¼ −T lnPn in Fig. 3.
The vertical scale in the figure has been shifted by
100 MeV so that the value of F3 is the same as in the
previous section. For representation 150 the data for flow
time 2f0 are very noisy around T ¼ 300 MeV and are
therefore not shown in the figure. The free energy of the
static charge is larger for the higher representations at low
temperatures. This can be understood as follows: At very
low temperatures the free energy of the static charge is
determined by the binding energy of the lightest static-light
hadron that can screen that charge. For the free energy in
the fundamental representation it is given by the mass of the
lightest static-light meson, for the free energy in the sextet
representation it is given by the binding of baryon with two
static and one light quarks, for the free energy in the octet
representation it is determined by the gluelump mass, while
for higher representation it is determined by binding
energies of more exotic states. The free energies follow
the hierarchy that one expects for the hierarchy of the
binding energies of the corresponding hadrons, e.g. the
binding energy of static-light meson can be estimated to be
around 600 MeV, the binding energy of static-light baryon
to be around 1 GeV [24], while the gluelump binding
energy is about 2 GeV [25]. The larger values of the free
energies at low temperature lead to smaller signals and thus
more noisy data. In fact, without the gradient flow it is
impossible to extract signals for the Polyakov loops in
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FIG. 2 (color online). The free energy F3 obtained from the
gradient flow compared to the continuum results for F3 in
conventional renormalization scheme from Ref. [23].
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FIG. 3 (color online). The free energy of the static charge in
different representations as function of the temperature for
Nτ ¼ 6.
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higher representations. The gradient flow increases the
signal by removing the ultraviolet noise if the flow time is
sufficiently large. Large flow times result in better signal.
Unlike for the fundamental Polyakov loops extracting
signals at low temperatures with flow time smaller than
defined by Eq. (17) is challenging.
The temperature dependence of the free energy of static

charges is larger for higher representations as can be seen in
Fig. 3. At highest temperatures the free energies in the
higher representations are negative and are larger in
absolute value than the free energy in the fundamental
representation. This also means that Polyakov loops in
higher representations are significantly larger than one.
These features can be understood in term of the weak
coupling calculations. In leading order perturbation theory
the free energy of static charges is

FnðTÞ ¼ −CnαsmD; ð18Þ

where Cn is the quadratic Casimir operator of represen-
tation n, αs is the coupling constant, and mD ∼

ffiffiffiffiffiffiffiffiffiffi
4παs

p
T is

the leading order Debye mass. The values of the quadratic
Casimir operators are given in Table I. According to the
above equation the free energy of static charges satisfies
Casimir scaling, i.e. the free energies in various repre-
sentations only differ by the value of Cn. This Casimir
scaling holds in perturbation theory up to order α3s [26].2

In terms of the Polyakov loops the Casimir scaling
implies

P3 ¼ P1=R6

6 ¼ P1=R8

8 ¼ P1=R10

10 ¼ � � � ; ð19Þ

where Rn ¼ Cn=C3. The values of Rn are also given in
Table I.
Nonperturbatively Casimir scaling of the Polyakov

loop was studied on the lattice in SU(N) gauge theories
as well as in two-flavor QCD with heavy quarks. In these

studies the renormalized Polyakov loop in higher repre-
sentations was calculated assuming the Casimir scaling
for the renormalization constants of the Polyakov loop,
i.e. by rescaling the renormalization constants of the
fundamental representation Zn ¼ ZRn

3 . This assumption is
closely related to the Casimir scaling of the zero temper-
ature potentials since the renormalization constants are
related to the potentials. In SU(3) gauge theory the zero
temperature potentials between static charges in various
representations have been calculated [27]. It has also been
shown that Casimir scaling holds for the potentials after
subtracting the UV divergent part from the potentials to
an accuracy better that 5% for distances r < 1 fm [27].
Furthermore, Casimir scaling of the zero temperature
potentials holds up to order α4s in perturbation theory and
its breaking is numerically small [28]. The Casimir
scaling of the potential in SU(3) gauge theory is of
course only approximate. For large enough distances it is
clearly violated since the potential in the adjoint and
higher representations will saturate at some finite value of
r due to string breaking, while the potential in the
fundamental representation is linearly rising with r. In
general, Casimir scaling does not hold for the phenome-
non of string breaking; string breaking in various repre-
sentations will happen at different distances determined
by the masses of various static hadrons (see the discussion
above). Strictly speaking the renormalization of the
Polyakov loop in higher representations would require
calculating and fixing the normalization enðg0Þ of the
potentials in different representations at zero temperature,
i.e. one needs to define separate renormalization constants
for each representation independently. The choice Zn ¼
ZRn
3 is just one economical scheme for defining the

renormalization constants in higher representations.
Using the gradient flow we can calculate the renormal-

ized Polyakov loop in higher representations without any
assumptions. Furthermore, as already discussed the gra-
dient flow is instrumental for obtaining signals for the
Polyakov loops in higher representations at low temper-
atures. In fact, we are not aware of any other methods that
can achieve this in full QCD.
In Fig. 4 we show the renormalized Polyakov loops in

various representations for Nτ ¼ 8, 10 and 12 scaled by the
ratio of the corresponding Casimirs [cf. Eq. (19)]. Here we
also impose the additional normalization that connects the
free energy in the conventional renormalization scheme and
the gradient flow renormalization scheme. At high temper-
atures we observe Casimir scaling. This is expected based
on the previous lattice studies. At low temperatures, on the
other hand, we see deviations from the Casimir scaling.
From the above figure one can also see that the Nτ

dependence of the Polyakov loop is small. In fact, no
Nτ dependence is seen within errors in Fig. 4. Thus cutoff
effects in the Polyakov loop in higher representations are
under control.

TABLE I. Values of the quadratic Casimir Cn in representation
n and its ratio to the value of the fundamental quadratic Casimir
Rn ¼ Cn=C3. See, e.g., [5] for details.

n Cn Rn

3 4=3 1
6 10=3 5=2
8 3 9=4
10 6 9=2
15 16=3 4
150 28=3 7
24 25=3 25=4
27 8 6

2To see this it is important to reexponentiate the perturbative
expansion of Pn in terms of Fn.
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The deviations from Casimir scaling at low temperatures
cannot be seen well in Fig. 4 since the Polyakov loops are
small there. To clearly see deviations from the Casimir
scaling at low temperatures we introduce the dimensionless
combination

δn ¼ 1 −
P1=Rn
n

P3

: ð20Þ

Our numerical results for δn for various representations
and various Nτ are shown in Fig. 5 as a function of the
temperature. We see that breaking of Casimir scaling
for T > 250 MeV is of the order of a few percent,
but becomes significant for lower temperatures. This
is the first time that breaking of Casimir scaling for
the Polyakov loop is seen in lattice calculations. In
previous studies no conclusive statements could be made
due to large statistical errors or large volume effects. The
above results imply that for T > 250 MeV color screen-
ing follows the perturbative pattern, while at lower

temperatures it is strongly nonperturbative. Figure 5
also shows that the breaking of Casimir scaling is
independent of the value of Nτ. We demonstrate this
in the case of the octet representation. This is another
way to see that cutoff effects in the higher representa-
tions are small.
One may ask to what extent the observed Casimir scaling

or its breaking depends on the value of the flow time.
Different flow time corresponds to different renormaliza-
tion schemes, i.e. to different choices of Zn. We calculated
δn for flow times f ¼ f0, 2f0 and 3f0 and we do not see
significant flow time dependence of this quantity. The
corresponding numerical results are presented in
Appendix D. Therefore, the above statements about the
breaking of the Casimir scaling at low temperatures are
independent on the choice of f.
We also examined the volume dependence of the

Polyakov loop in higher representations and did not find
significant volume dependence. Thus, the observed break-
ing of the Casimir scaling is not a finite volume effect. The
details of this analysis are given in Appendix C.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100 200 300 400 500 T [MeV]

P1/ Rn
n

323 × 8

P3
P6
P8

P10

P15
P15′

P24
P27

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250 300 350 400 T [MeV]

P1/ Rn
n

403 × 10

P3
P6
P8

P10

P15
P15′

P24
P27

0.0

0.2

0.4

0.6

0.8

150 200 250 300 T [MeV]

P1/ Rn
n

483 × 12

P3
P6
P8

P10

P15
P15′

P24
P27

FIG. 4 (color online). Polyakov loops in various representations scaled by the ratio of the appropriate Casimir operators (see text) for
Nτ ¼ 8 (left), Nτ ¼ 10 (middle) and Nτ ¼ 12 (right). The Polyakov loops have been rescaled by expð−Δ3=TÞ, Δ3 ¼ 100 MeV, to
match to the conventional scheme for the fundamental Polyakov loop.
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FIG. 5 (color online). The ratios δn characterizing the breaking of Casimir scaling for Nτ ¼ 6 (left) and various representations n, and
for the octet representation and various Nτ (right).
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V. SUMMARY AND DISCUSSION

We discussed the renormalization of the Polyakov loop
with the gradient flow. We applied the gradient flow with
the Symanzik gauge action, i.e. the Symanzik flow, and
calculated the Polyakov loop after the evolution of the
gauge fields in flow time up to a fixed value f ¼ ffiffiffiffi

8t
p

in
physical units, which fixes the renormalization scheme for
the free energy. With this approach it was possible to cover
a wide temperature range from temperatures as low as T ¼
116 MeV and up to T ¼ 815 MeV. We compared our
results for the fundamental Polyakov loop P3 with results
for the renormalized Polyakov loop obtained in the conven-
tional scheme based on the static potential, and found very
good agreement at all temperatures.
In addition we calculated the renormalized Polyakov

loop in higher representations. We found that Casimir
scaling is approximately fulfilled for full QCD for temper-
atures above T ¼ 250 MeV in agreement with previous
studies, possibly indicating the weakly coupled nature of
quark gluon plasma at high temperatures. At lower temper-
atures, however, we found for the first time large deviations
from Casimir scaling.
The renormalization of the Polyakov loop with gradient

flow is very useful for studying its behavior at high
temperatures, where performing zero temperature calcula-
tions is very costly. We will discuss this in a forthcoming
publication [23].
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APPENDIX A: COMPARISON OF SYMANZIK
AND WILSON FLOW

In this Appendix we compare the renormalized funda-
mental Polyakov loop obtained with the Symanzik flow,
as described in Sec. III, with the renormalized funda-
mental Polyakov loop obtained with the same procedure
but using the Wilson gauge action in Eq. (13), i.e. using
the Wilson flow. In Fig. 6 we show F3 obtained using
Symanzik flow and Wilson flow, and compare these with
the conventionally renormalized free energy. We use the
same flow times and same matching procedure for the
Wilson flow that we used for the Symanzik flow
(cf. Sec. III). From Fig. 6 one finds that at low temper-
atures the cutoff effects are small and both results agree.
At higher temperatures this changes as for temperatures

above 350 MeV the Wilson flow produces smaller values
for the free energies and at some point it is below the
results obtained using the conventional renormalization
procedure. This is most likely due to larger cutoff effects
in the case of the Wilson flow.

APPENDIX B: FLOW TIME DEPENDENCE
AND THE CONTINUUM LIMIT OF THE

FREE ENERGY

In this Appendix we discuss the flow time dependence
and the continuum limit of the free energy of fundamental
charge. As discussed in the main text in the continuum
limit the free energy of a static charge should be
independent of the flow time up to an additive temper-
ature independent constant, i.e. FnðfÞ − Fnðf0Þ should be
temperature independent. Here we show that this is
indeed the case using the fundamental free energy as
an example. To perform the continuum extrapolations we
split the temperature region used in our study into the low
temperature region, corresponding to T < 280 MeV, and
the high temperature region, corresponding to
T ≥ 280 MeV. In these intervals we use the values of
f that satisfy the condition given by Eq. (16). We perform
interpolations of the free energy separately in these
intervals using smoothing splines and the R package
[29]. The errors of the interpolations are estimated by the
bootstrap method and in some cases adjusted such
that they are comparable to the statistical errors of the
lattice data. We perform continuum extrapolations at
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100 200 300 400 500 T [MeV]

F3 [MeV]

323 × 8

Conv. ren. F
Wilson flow

Symanzik flow

FIG. 6 (color online). We compare the renormalized funda-
mental Polyakov loop free energy F3 obtained with Wilson
and Symanzik flow as described in Sec. III. In addition we
show the continuum extrapolated, renormalized free energy from
[23] (black triangles). While for lower temperatures the cutoff
effects are small, at higher temperatures the Wilson flow shows
larger deviations from the conventional result than the
Symanzik flow.
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temperatures separated by 5 MeV using the form
aþ b=N2

τ þ c=N4
τ and the results of these extrapolations

are shown in Fig. 7. As one can see from the figure,
after continuum extrapolations F3ðfÞ − F3ðf0Þ is temper-
ature independent as expected. In the figure we also
compare our results for F3 with the continuum extrapo-
lated results obtained in the conventional way. The
continuum extrapolated results obtained for different flow
times have been shifted by a constant to match the
free energy in the conventional scheme. After this
shift our results agree with the results obtained in the
conventional scheme, in particular there is no discrepancy
at low temperature previously observed at fixed Nτ

(cf. Fig. 2).

APPENDIX C: QUARK MASS DEPENDENCE
AND VOLUME DEPENDENCE OF THE
RENORMALIZED POLYAKOV LOOPS

In this Appendix we discuss the quark mass and volume
dependence of the free energies Fn. In addition to the
calculations of the Polyakov loop for ml=ms ¼ 1=20 we
also performed calculations for the smaller light quark mass
ml=ms ¼ 1=40 on 323 × 6 and 323 × 8 lattices. Since for

Nτ ¼ 6 we have two different volumes we can make some
statements about finite volume effects as well. In Fig. 8 we
show the temperature dependence of the fundamental and
adjoint free energies as a function of the temperature for two
different quark masses and flow time 3f0. We see that the
free energies show some quark mass dependence, namely
they are smaller for the smaller quark mass. The relative
difference of the free energies calculated for the two quark
masses is about the same for triplet and octet charges and for
Nτ ¼ 6 and Nτ ¼ 8. This difference may be understood in
terms of change in the transition temperature. Shifting the
ms=20 data by 3 MeV to lower temperatures almost
eliminates this difference.
For Nτ ¼ 8 the spatial volume is the same for both quark

masses, but for Nτ ¼ 6 the spatial volumes are different,
namely we use 243 × 6 and 323 × 6 volumes. Since the
shift in the free energies is the same for Nτ ¼ 8 and Nτ ¼ 6
and can be understood as a quark mass effect we conclude
that volume effects in the free energies in the fundamental
and adjoint representations are smaller than the estimated
errors and thus can be neglected. Similar conclusions can
be made for the free energies in other representations.
Therefore the observed breaking of Casimir scaling is not
affected by finite volume effects.
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FIG. 7 (color online). The difference F3ðfÞ − F3ðf0Þ for different flow time (upper panels) and the comparison of F3ðfÞ with the
continuum results in the conventional scheme (lower panels). The results in the low and high temperature regions are shown separately
in the left and right panels, respectively.
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APPENDIX D: FLOW TIME DEPENDENCE OF CASIMIR SCALING

In this Appendix we discuss the Casimir scaling in terms of δn at different flow times. In Fig. 9 we show δn in
various representations for Nτ ¼ 6, 8, 10 and 12. We use the values of flow time f ¼ f0, 2f0 and 3f0. For smaller values
of flow time the data are too noisy to allow conclusive statements. From the figures we see that the flow time dependence
of δn is very small for all Nτ. Therefore, we conclude that the Casimir scaling or its breaking is independent of the flow
time.
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FIG. 8 (color online). The free energy in the fundamental (triplet) and adjoint (octet) representations calculated for two different quark
massesml=ms ¼ 1=20 andml=ms ¼ 1=40. The value 3f0 is used for the flow time. The upper panels show the fundamental free energy
and lower panels show the adjoint free energy.
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FIG. 9 (color online). The measure of the Casimir scaling δn shown for Nτ ¼ 6, 8, 10 and 12 (from top to bottom) and flow times
f ¼ f0, 2f0 and 3f0 (from left to right).
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