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We study lattice QCD at nonvanishing chemical potential using the complex Langevin equation.
We compare the results with multiparameter reweighting both from μ ¼ 0 and phase-quenched ensembles.
We find a good agreement for lattice spacings below ≈0.15 fm. On coarser lattices the complex Langevin
approach breaks down. Four flavors of staggered fermions are used on Nt ¼ 4, 6 and 8 lattices. For one
ensemble we also use two flavors to investigate the effects of rooting.
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I. INTRODUCTION AND OVERVIEW

Dense and/or high-temperature phases of strongly inter-
acting matter are becoming experimentally accessible
nowadays due to heavy ion collision experiments at the
Relativistic Heavy Ion Collider, the Large Hadron Collider,
and especially the FAIR facility at GSI, as well as
astrophysical observations of neutron starts. Theoretical
understanding of the dense, strongly interacting phases and
the first-principles determination of the phase diagram of
QCD as a function of the temperature and chemical
potential are still lacking. This is a consequence of the
sign problem, which makes lattice calculations at nonzero
baryon density challenging.
The standard nonperturbative tool for QCD, lattice QCD,

is defined by the path integral

Z ¼
Z

DUe−SYM detMðμÞ ð1Þ

with theYang-Mills actionSYM of thegluons and the fermion
determinantMðμÞ on a cubic space-time lattice. At nonzero
chemical potential the determinant is nonreal; therefore,
importance sampling methods are not applicable. For a
review of ideas to circumvent the sign problem see [1–3].
One of the ways to avoid the sign problem is using the

analyticity of the action and complexifing the field mani-
folds of the theory with the complex Langevin equation
(CLE) [4,5]. (See also the related but distinct approach of
the Lefschetz thimbles, where the integration contours are
pushed into the complex plane [6].)
After promising initial results, it was noticed that the

complex Langevin equation can also deliver convergent but
wrong results in some cases [7,8]. Also technical problems
could arise which are avoided using adaptive step sizes for
the Langevin equation [7,9]. In the last decade the method
has enjoyed increasing attention related to real-time systems

[10–14], as well as finite-density problems [15–27]. The
method showed remarkable success in the case of finite
density Bose gas [16] or the SU(3) spin model [18,19], but
the breakdown of the method was also observed a few times
[17,22]. The theoretical understanding of the successes and
the failures of the method has improved: it has been proved
that provided a few requirements (some “offline” such as the
holomorphicity of the action and the observables, and some
“online” such as the quick decay of the field distributions at
infinity) the method will provide correct results [28,29].
It has been recently demonstrated that complex Langevin

simulations of gauge theories are made feasible using the
procedure of gauge cooling [30,31] (see also [32]), which
helps to reduce the fluctuations corresponding to the
complexified gauge freedom of the theory. This method
was first used to solve heavy dense QCD (HDQCD) where
the quarks are kept static (their spatial hopping terms are
dropped) [30,31], and it has been also extended to full QCD
using light quarks in the staggered [33] as well as the
Wilson formulation [34]. Gauge cooling makes the inves-
tigation of QCD with a theta term also possible [35].
In this paper we compare results of the reweighting

approach and the complex Langevin approach for NF ¼ 4
and NF ¼ 2 QCD using staggered fermions.
In Sec. II we give a brief overview of the complex

Langevin method. In Sec. III we summarize the reweight-
ing method. In Sec. IV we present our numerical results
comparing the reweighting and complex Langevin simu-
lations. Finally, we conclude in Sec. V.

II. THE COMPLEX LANGEVIN EQUATION

The complex Langevin equation [4,5] is a straightfor-
ward generalization of the real Langevin equation [36]. For
the link variables Ux;ν of lattice QCD an update with
Langevin time step ϵ reads [37]
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Ux;νðτþ ϵÞ¼ exp

�
i
X
a

λaðϵKaxνþ
ffiffiffi
ϵ

p
ηaxνÞ

�
Ux;νðτÞ; ð2Þ

with λa the generators of the gauge group, i.e. the Gell-
Mann matrices, and the Gaussian noise ηaxν. The drift force
Kaxν is determined from the action S½U� by

Kaxν ¼ −DaxνS½U� ð3Þ

with the left derivative

DaxνfðUÞ ¼ ∂αfðeiαλaUx;νÞjα¼0: ð4Þ

In case the drift term is nonreal the manifold of the link
variables is complexified to SLð3; CÞ. The original theory is
recovered by taking averages of the observables analyti-
cally continued to the complexified manifold.
For the case of QCD the action of the theory involves

the fermionic determinant through the complex logarithm
function

Seff ¼ SYM − ln detMðμÞ: ð5Þ

The drift term in turn is given by

Kaxν ¼ −DaxνSYM½U� þ NF

4
Tr½M−1ðμ; UÞDaxνMðμ; UÞ�;

ð6Þ

where the second term is calculated using one conjugate
gradient inversion per update using noise vectors [33]. The
action we are interested in is thus nonholomorphic, and in
turn this results in a drift term which has singularities where
the fermionic measure detMðμ; UÞ is vanishing.
The theoretical understanding of the behavior of the

theory with a meromorphic drift term is still lacking, but we
have some observations as detailed below. Such a drift term
seems to lead to incorrect results in toy models if the
trajectories encircle the origin frequently [24,38]. In other
cases the simulations yield a correct result in spite of a
logarithm in the action [19,20]. In [27] an explicit example
is presented where the simulations give correct results in
spite of the frequent rotations of the phase of the measure.
The condition for correctness is that the distribution of
configurations vanishes sufficiently fast (faster than lin-
early) near the pole.
For QCD itself we have a few indications that the poles

do not affect the simulations at high temperatures: observ-
ing the spectrum of the Dirac operator [39], comparisons
with expansions which use a holomorphic action [34], and
the results presented in this paper. It remains to be seen
whether simulations in the confined phase are affected.
The “distance” of a configuration from the original

SU(3) manifold can be monitored with the unitarity norm

1

4Ω

X
x;μ

TrððUx;μUþ
x;μ − 1Þ2Þ; ð7Þ

where Ω ¼ N3
sNt is the volume of the lattice. In naive

complex Langevin simulations, this distance grows expo-
nentially, and the simulation breaks down because of
numerical problems if it gets too large. This behavior
can be countered with gauge cooling, which means that
several gauge transformations of the enlarged manifold are
performed in the direction of the steepest descent of the
unitarity norm (7) [30,31]. With gauge cooling, the
unitarity norm remains bounded at a safe level as long
as the β parameter of the action is not too small. The value
βmin corresponds to a maximal lattice spacing, which seems
to depend weakly on the lattice size, as can be checked
easily for the cheaper HDQCD theory [40].

III. REWEIGHTING

In the multiparameter reweighting approach one rewrites
the partition function as [41]

Z¼
Z

DUe−SYMðβÞdetMðμÞ

¼
Z

DUe−SYMðβ0ÞdetMðμ0Þ
�
e−SYMðβÞþSYMðβ0Þ detMðμÞ

detMðμ0Þ
�
;

ð8Þ

where μ0 is chosen such that the second line contains a
positive definite measure which can be used to generate the
configurations and the terms in the curly bracket in the last
line are taken into account as an observable. The expect-
ation value of any observable can be then written in the
form

hOiβ;μ ¼
P

Oðβ; μÞwðβ; β0; μ; μ0ÞP
wðβ; β0; μ; μ0Þ

ð9Þ

with wðβ; β0; μ; μ0Þ being the weights of the configurations
defined by the curly bracket of Eq. (8). Note that gauge
observables do not explicitly depend on μ; therefore, their μ
dependence comes entirely from the weight factors.
Fermionic observables, on the other hand, also explicitly
depend on the chemical potential.
In this paper we use two choices for the original, positive

measure ensemble. The first choice is to use μ0 ¼ 0, i.e.
reweighting from zero chemical potential. For any choice
of the target β; μ parameters one can find the optimal β0 for
which the fluctuation of the weights wðβ; μÞ is minimal.
This corresponds to the best reweighting line as discussed
in [42–44]. We generated configurations at μ ¼ 0 for β in
the range 4.9–5.5. These were then used to reach the entire
μ; β plane via multiparameter reweighting. Our second
choice is to use the phase-quenched ensemble, i.e. replac-
ing detMðμ0Þ by j detMðμÞj in Eqs. (8) and (10). In this
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case the reweighting factor contains only the phase of the
determinant.
For staggered fermions an additional rooting is required;

for NF flavors the weights become

wðβ; β0; μ; μ0Þ ¼ e−SYMðβÞþSYMðβ0Þ
�
detMðμÞ
detMðμ0Þ

�
NF=4

: ð10Þ

Since forNF < 4 a fractional power is taken which has cuts
on the complex plane it is important to choose these cuts
such that the weights are analytic for real μ values. This can
be achieved by expressing detMðμÞ analytically as a
function of μ as discussed in [45,46].

IV. RESULTS

We use the Wilson plaquette action for the gauge sector
of the theory and unimproved staggered fermions with
NF ¼ 4 flavors if not otherwise noted. We have used three
different lattice sizes for this study: 83 × 4, 123 × 6 and
163 × 8, all having the aspect ratio Ls=Lt ¼ 2.
Our main observables are the plaquette averages, the

spatial average of the trace of the Polyakov loop

X
x

TrPðxÞ=N3
s ; PðxÞ ¼

Y
i¼1…Nt

U4ðx; iÞ ð11Þ

and its inverse
P

xTrP
−1ðxÞ=N3

s , the chiral condensate
hψ̄ψi and the fermionic density n defined as

hψ̄ψi ¼ 1

Ω

�∂ lnZ
∂m

�
; n ¼ 1

Ω

�∂ lnZ
∂μ

�
; ð12Þ

with Ω the volume of the space-time lattice. We are also
interested in the average phase of the fermion determinant,
which measures the severity of the sign problem

he2iφi ¼
�

detMðμÞ
detMð−μÞ

�
: ð13Þ

We perform the complex Langevin simulations using
adaptive step size, with a control parameter which puts the
typical step sizes in the range ϵ ≈ 10−5 − 5 × 10−5. Using
such small step sizes allows us to avoid having to take the
ϵ → 0 limit as the results are in the zero Langevin step limit
within errors. We use initial conditions on the SU(3)
manifold and allow τ ¼ 10–30 Langevin time for thermal-
ization, after which we perform the measurements for
another τ ¼ 10–30 Langevin time. We checked that proper
thermalization is reached by observing that halving the
thermalization time leads to consistent results.
We have determined the pion masses as well as the lattice

spacing using the w0 scale as proposed in [47] for several
quark masses; see Table I. One sees that choosing the quark
masses ma ¼ 0.05 for the Nt ¼ 4 lattice, ma ¼ 0.02 for
the Nt ¼ 6 lattice and ma ¼ 0.01 for the Nt ¼ 8 lattice, in

the vicinity of the critical temperature we have mπ=Tc ≈
2.2–2.4. We have additionally investigated the Nt ¼ 8
lattice with am ¼ 0.05, which corresponds to the rather
heavy pion mass of mπ=Tc ≈ 4.8.

A. Reweighting from μ ¼ 0

First we have tested the theory at a fixed β¼5.4 at Nt¼4
as a function of μ, which is well above the deconfinement
transition which at μ ¼ 0 and m ¼ 0.05 is at βc ≈ 5.04.
In Fig. 1 we show the comparison of the gauge

observables: plaquette averages and Polyakov loops. We
generated Oð104Þ independent configurations in the μ ¼ 0
ensemble with the usual hybrid Monte carlo algorithm
(using every 50th configuration of the Markov chain), and
we calculated the reweighting as detailed in Sec. III. One

TABLE I. Pion masses and lattice spacings for different β
values and bare quark masses, measured on 123 × 24, 163 × 32

and 243 × 48 lattices with Nf ¼ 4. Statistical errors are indicated.

β amq amπ a (fm)

4.80 0.01 0.2458� 0.0007 0.3355� 0.0001
4.85 0.01 0.2480� 0.0007 0.3315� 0.0001
4.90 0.01 0.2506� 0.0009 0.3258� 0.0003
4.95 0.01 0.2533� 0.0009 0.3174� 0.0003
5.00 0.01 0.2596� 0.0005 0.2892� 0.0001
5.05 0.01 0.2679� 0.0008 0.2773� 0.0006
5.10 0.01 0.2870� 0.0010 0.1890� 0.0006
5.15 0.01 0.3014� 0.0012 0.1410� 0.001
5.20 0.01 0.2957� 0.0018 0.1123� 0.0006
5.25 0.01 0.2918� 0.0021 0.0957� 0.0006
5.40 0.01 0.2456� 0.0012 0.0652� 0.0006

4.80 0.02 0.3455� 0.0006 0.3362� 0.0001
4.85 0.02 0.3491� 0.0005 0.3323� 0.0001
4.90 0.02 0.3520� 0.0007 0.3270� 0.0001
4.95 0.02 0.3568� 0.0006 0.3197� 0.0001
5.00 0.02 0.3629� 0.0007 0.3084� 0.0002
5.05 0.02 0.3726� 0.0005 0.2878� 0.0004
5.10 0.02 0.3898� 0.0008 0.2420� 0.0009
5.15 0.02 0.4073� 0.0006 0.1751� 0.0008
5.20 0.02 0.4125� 0.0011 0.1341� 0.0012

5.00 0.03 0.4392� 0.0002 0.2986� 0.0001
5.10 0.03 0.4635� 0.0004 0.2419� 0.0002
5.20 0.03 0.4905� 0.0008 0.1467� 0.0004
5.25 0.03 0.4862� 0.0007 0.1237� 0.0003
5.40 0.03 0.4407� 0.0009 0.0849� 0.0004

4.80 0.05 0.5413� 0.0003 0.3379� 0.0001
4.85 0.05 0.5442� 0.0005 0.3345� 0.0001
4.90 0.05 0.5480� 0.0004 0.3301� 0.0001
4.95 0.05 0.5530� 0.0005 0.3241� 0.0001
5.00 0.05 0.5588� 0.0002 0.3045� 0.0001
5.05 0.05 0.5678� 0.0004 0.3042� 0.0002
5.10 0.05 0.5784� 0.0003 0.2664� 0.0002
5.15 0.05 0.5961� 0.0006 0.2426� 0.0008
5.20 0.05 0.6100� 0.0005 0.1783� 0.0003
5.25 0.05 0.6144� 0.0006 0.1465� 0.0004
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notes that the reweighting performs well for small chemical
potentials μ=T < 1–1.5, where there is a nice agreement
between reweighting and CLE. The errors of the reweight-
ing approach start to grow large as one increases μ above
1.5T, where the average of the reweighting is dominated by
a few configurations. This is the manifestation of the
overlap problem: the ensemble we have sampled has typical
configurations which are not the typical configurations of
the ensemble we wish to study.
Next we turn to the fermionic observables: chiral

condensate, fermionic density in Fig. 2. One notes that
the reweighting of these quantities is possible to much
higher values of μ=T. This is the consequence of their
explicit dependence on μ, which dominates their change as
the chemical potential is changed. This is in contrast to the
gauge observables in Fig. 1, where the change is given
entirely by the change in the measure of the path integral.
The downward turn of the Polyakov loop and its inverse
around μ=T ¼ 3 is the result of the phenomenon of
saturation: at this chemical potential half of all of the

available fermionic states on the lattice are filled, as visible
in Fig. 2. This lattice artifact can also be observed with
static quarks [30] and even in the strong coupling expan-
sion [48].
Finally, the average phase factor in Fig. 2 is a good

indicator of the severeness of the sign problem in the
theory. One sees that the average phase in the region μ=T >
1.5–2 indeed gets very small. Note that to see agreement
between CLE and reweighting one has to be careful to
choose the observable to be the analytic continuation of an
observable on the SU(3) manifold. In this case we define
the phase factor from the analytic continuation of the
determinants, as written in (13).
In Fig. 3 we show the histogram of the absolute value of

the weights of the configurations normalized by the
biggest weight in the ensemble. This illustrates the overlap
problem: the “further” one tries to reweight from the
original ensemble, the less and less will be the contribution
of an average configuration to the average, which becomes
dominated by very few configurations. Thus the
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FIG. 1 (color online). Comparison of plaquette averages and Polyakov loops and inverse Polyakov loops [defined in and below
Eq. (11)] calculated with CLE and reweighting from the μ ¼ 0 ensemble.
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fluctuations of the result become larger, and even the error
bars are not reliable as the distribution of the observables
becomes non-Gaussian. As we show below, this situation
improves if one chooses an ensemble “closer” to the target

ensemble: in this case taking the phase-quenched ensemble
[j detMðμÞj] instead of the zero μ ensemble.
In Fig. 4we use a theorywithNF ¼ 2 flavors of fermions,

by taking the square root of the staggered fermion deter-
minant. We perform reweighting from the μ ¼ 0 ensemble
using ≈1700 configurations. To maintain analyticity, in the
reweighting procedure onemust make sure that no cut of the
complex square root function is crossed while the chemical
potential is changed. In the complex Langevin simulations
the rooting is implemented simply by multiplying the
fermion drift terms with an appropriate factor [33]. We
observe good agreement for small values μ=T, similarly to
the case of the NF ¼ 4 theory, indicating that the effect of
rooting is the same in these different approaches.

B. Reweighting from the phase-quenched ensemble

We have investigated the efficiency of reweighting from
the “phase-quenched” ensemble. In Fig. 5 we show the
comparison of the plaquette averages as well as the
Polyakov loop averages. We have used about 4000–5000
independent configurations at Nt ¼ 4 for each μ value. One
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FIG. 3 (color online). The histogram of the relative weight of
the configurations for different chemical potentials.
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CLE and reweighting from the phase-quenched ensemble.

COMPLEX LANGEVIN DYNAMICS FOR DYNAMICAL QCD … PHYSICAL REVIEW D 92, 094516 (2015)

094516-5



notes that the agreement is much better when compared to
the reweighting from the μ ¼ 0 ensemble and also for
higher μ=T values (compare with Fig. 1). Note that this
comparison is in the deconfined phase; therefore, no phase
transition corresponding to the pion condensation is
expected in the phase-quenched ensemble, making
reweighting easier. For the β ¼ 5.4 value used for these
plots, the complex Langevin simulation breaks down in the
saturation region μ=T > 5 (not shown in the plots), also
signaled by a large “skirt” of the distributions (meaning a
slow, typically power law decay) and the disagreement of
the reweighting and CLE simulations, most detectable in
the plaquette averages.

C. Comparisons as a function of β

Next we have investigated the appearance of a discrep-
ancy of the CLE and reweighting results at smaller β values

arising from a skirt of the complexified distributions [30,31].
In Fig. 6 we compare reweighting and CLE as a function of
the β parameter at fixed μ=T ¼ 1 on an 83 × 4 lattice. One
observes that the reweighting is nicely reproduced by the
complex Langevin simulations as long as β > 5.10–5.15.
Below this limit the distributions develop a long skirt andCL
simulations become instable, also signaled by large unitarity
norm and the conjugate gradient algorithm (needed for the
calculation of the drift terms in the CLE) failing to converge.
Similar behavior is detected on the fermionic observables in
Fig. 7. This behavior has been observed also in HDQCD
simulations [30,40], where a limit value βmin ¼ 5.6–5.7was
seen independent of the value of Nt ≥ 6, and βmin was
slightly smaller for Nt ¼ 4. This minimal β parameter
corresponds to a maximal lattice spacing amax ≈ 0.2 fm in
HDQCD. Apparently the limiting β value is different in full
QCD, but it turns out that the corresponding lattice spacing is
roughly equal for NF ¼ 4 with am ¼ 0.05: amax ≈
0.2–0.25 fm. This breakdown is also visible on histograms
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of various observables. In Fig. 8 we show the histograms of
the spatial plaquettes at various β values.One notices that the
skirt of the distribution is indeed large at β ¼ 5.1, where the
CLE breaks down. Although a small skirt is also present at
β ¼ 5.2, it is not visited frequently enough to change the
averages noticeably.
A similar behavior is observed on the finer 123 × 6

lattice, as depicted in Fig. 9. We used 200–300 configu-
rations for the reweighting procedure on Nt ¼ 6 lattices at
every β value. We observe a limiting βmin ≈ 5.15 corre-
sponding to amax ≈ 0.15 fm which at Nt ¼ 6 allows sim-
ulations right down to the transition temperature, but
not below.
Finally we investigated Nt ¼ 8 lattices. In Fig. 10 we

show the behavior of the gauge observables, in Fig. 11 the
fermionic density. We used 200–300 independent configu-
rations at each β value to perform the reweighting. At small
betas the complex Langevin simulations become instable
also on these lattices, which can be observed in Figs. 10
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calculated with CLE and reweighting from the μ ¼ 0 ensemble on 123 × 6 lattices.

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 5  5.05  5.1  5.15  5.2  5.25  5.3  5.35  5.4

pl
aq

ue
tte

 a
ve

ra
ge

s

β

163*8 lattice
μ/T=0.96
NF=4
reweighted from μ=0

spatial plaquettes CLE m=0.01
spatial plaquette reweighting m=0.01

splatial plaquettes CLE m=0.05
spatial plaquette reweighting m=0.05

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 5  5.05  5.1  5.15  5.2  5.25  5.3  5.35  5.4  5.45

P
ol

ya
ko

v 
lo

op
 a

ve
ra

ge
s

β

163*8 lattice
μ/T=0.96
NF=4
reweighted from μ=0

CLE m=0.01
reweighting m=0.01

CLE m=0.05
reweighting m=0.05

FIG. 10 (color online). Comparison of the plaquette averages and Polyakov loops as a function of the β parameter at a fixed
μ=T ¼ 0.96, using m ¼ 0.01 and m ¼ 0.05 as indicated, calculated with CLE and reweighting from the μ ¼ 0 ensemble on 163 × 8
lattices.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 5  5.05  5.1  5.15  5.2  5.25  5.3  5.35  5.4  5.45

n/
n s

at

β

163*8 lattice
μ/T=0.96
NF=4
reweighted from μ=0

CLE m=0.01
reweighting m=0.01

CLE m=0.05
reweighting m=0.05

FIG. 11 (color online). Comparison of the fermionic density as
a function of the β parameter at a fixed μ=T ¼ 0.96, using
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and 11 by the absence of results. One observes that the CLE
breaks down above the lattice spacing a ≈ 0.15 fm.

V. CONCLUSIONS

In this paper we have compared complex Langevin
simulations of finite density QCD with reweighting from
the positive ensembles of the phase-quenched theory
and μ ¼ 0.
Both methods have a limited region of parameter space

where they are applicable. The complex Langevin method
fails for too small β parameters, as noted earlier, but this still
allows the exploration of the whole phase diagram in
HDQCD [49]. Reweighting from zero μ breaks down
because of the overlap and sign problems around μ

T ≈
1–1.5. In contrast, the reweighting from the phase-quenched
ensemble in the deconfined phase performs better also for
large μ, suggesting that the sign problem is not that severe.
We observe good agreement of these two methods in the

region where they are both applicable. The failure of both
methods can be assessed independently of the comparison:
the complex Langevin simulations develop skirted distri-
butions as the gauge cooling loses its effectiveness, and the

errors of the reweighting start to grow large signaling sign
and overlap problems.
An important question for the applicability of the

complex Langevin method to explore the phase diagram
of QCD is the behavior of βmin, the lattice parameter below
which gauge cooling is not effective. In this study we have
determined that using Nt ¼ 4, Nt ¼ 6 and Nt ¼ 8 lattices
(with pion massmπ=Tc ≈ 2.2–2.4) this breakdown prevents
the exploration of the deconfinement transition and the
location of a possible critical point.
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