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The role of instanton-like objects in the QCD vacuum on the mass spectrum of low-lying light hadrons is
explored in lattice QCD. Using overimproved stout-link smearing, tuned to preserve instanton-like objects
in the QCD vacuum, the evolution of the mass spectrum under smearing is examined. The calculation is
performed using a 203 × 40 dynamical fat-link-irrelevant-clover (FLIC) fermion action ensemble with
lattice spacing 0.126 fm. Through the consideration of a range of pion masses, the effect of the vacuum
instanton content is compared at a common pion mass. While the qualitative features of ground-state
hadrons are preserved on instanton-dominated configurations, the excitation spectrum experiences
significant changes. The underlying physics revealed shows little similarity to the direct-instanton-
interaction predictions of the instanton liquid model.
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I. INTRODUCTION

The instanton [1] is well known as a classical solution
to the pure-gauge Yang-Mills equations. It has topological
change �1, action 8π2=g2, and is associated with a
localized zero eigenmode of the Dirac operator. Various
models exist for the QCD vacuum as composed purely of
superpositions of these objects, and here we consider the
random instanton liquid model (RILM) [2–7] as a point
of comparison. Phenomenology constrains the RILM
model parameters, including ρinst ≈ 0.33 fm for the aver-
age instanton size and n ≈ 1 fm−4 for the pseudoparticle
density.
Such a model vacuum generates approximate Dirac zero

modes with definite chirality. A quark propagating via a zero
mode changes its chirality. Thus, the masses of the pseu-
doscalar channels (the pion, and the diquark in the nucleon)
have direct-instanton-induced contributions which are attrac-
tive and reduce their mass. By comparison, the rho as a
vector meson has instanton contributions only at a higher
level (analogous to a 2π intermediate state). Similarly, the
Delta has interactions only at the six-pseudoparticle level
and higher [8–12].
We wish to determine what role the instantons present

in the QCD vacuum of lattice QCD simulations play in the
determination of hadron phenomenology. Starting from a
Monte Carlo–generated calculation of QCD on the lattice,
we filter out the short-distance gluonic interactions such
that the underlying instanton degrees of freedom are
revealed. We use overimproved stout-link smearing [13]
to do this, and the merits of this approach are discussed
in Sec. II.
Section III provides an overview of the lattice QCD

simulation methods and associated parameters. It also
describes our correlation matrix approach which enables

us to accurately determine both the ground-state hadron
spectrum and the first radial excitations.
We will then examine the low-lying hadron spectrum as a

function of smearing in Sec. IV, monitoring its evolution as
the QCD vacuum progresses from having significant topo-
logical structure, most of it not instanton-like, through to
being both instanton dominated and eventually sparse as
nearby instanton–anti-instanton pairs annihilate. Conclusions
are drawn in Sec. V.

II. REVEALING INSTANTONS

Early methods of smoothing short-distance fluctuations
to reveal the underlying instanton degrees of freedom used
cooling. This proceeds by replacing each link UμðxÞ on
the lattice with a new link such that the gluonic action is
minimized. Unfortunately, this approach also tends to
remove the topological configurations of interest from the
lattice. This occurs due to the discretization error involved in
minimizing the local action. Expanding the gluonic Wilson
action in terms of a single-instanton solution, one finds [14]

Sinst ¼
8π2

g2

�
1 −

1

5

�
a
ρ

�
2

þOða4Þ
�
: ð1Þ

Thus, the discretization error enables one to reduce the action
by reducing the instanton size parameter ρ. Uponminimizing
the action, instantons shrink. At sufficient cooling, they will
become small enough that significant discretization errors
will allow them to “fall through” the lattice.
It is possible, however, to include larger combinations of

loops having different discretization errors. Coefficients
can be chosen such that the Oða2Þ error is canceled [15],
giving the “improved” action. Unfortunately, this method
still leads to a negative leading Oða4Þ discretization error,
and the same unwanted corrosion of topological objects.
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Higher-order terms composed from combinations of larger
loops can also be included in the action, but this requires
increasing accuracy on the perturbative corrections to the
improvement coefficients, typically estimated via the mean
link of tadpole improvement.
Instead, one can adopt the approach of overimprovement

[13,14] and express the action in terms of an improvement
parameter ϵ,

SðϵÞ ¼ β
X
x

X
μ>ν

�
5 − 2ϵ

3
ð1 − PμνðxÞÞ

−
1 − ϵ

12
½ð1 − RμνðxÞÞ þ ð1 − RνμðxÞÞ�

�
; ð2Þ

where PμνðxÞ denotes 1=3 of the real trace of the clover
average of the four plaquettes touching the point x, and
similarly RμνðxÞ denotes 1=3 of the real trace of the clover
average of four 2 × 1 Wilson loops. The choice of 2 × 1
rectangles over the 2 × 2 squares in Ref. [13] is in the
interest of preserving locality and minimizing the number
of links. The coefficients are chosen such that ϵ ¼ 1 gives
the unimproved Wilson action and ϵ ¼ 0 provides an
Oða2Þ-improved action. We can also compare the behavior
of the smearing algorithm to that provided by the Wilson or
gradient flow, as in Ref. [16]. For ϵ ¼ 0, N sweeps of stout-
link smearing is equivalent to t ¼ αN for the Wilson flow
time as long as the smearing parameter α is sufficiently
small. We use α ¼ 0.06, which is even smaller than the
standard α ¼ 0.1 for stout-link smearing.
A negative value for the ϵ parameter will lead to a

positive leading-order discretization error which inhibits
the shrinking of instanton-like structures under smearing.
However, a large negative value would cause instantons to
grow under smearing. We use an ϵ value of −0.25, as
recommended in Ref. [13], providing the required stability
with marginal discretization error. The effect of ϵ is also
studied in Sec. IV.
This scheme preserves instanton-like objects with a size

parameter ρ greater than the dislocation threshold of 1.97a
[13]. Herein, a ¼ 0.126 fm, such that instantons of size
ρ < 0.25 fm will be removed under overimproved stout-link
smearing [13]. However, this effect may be regarded as
small. The scale dependence of the instanton action S0 ¼
8π2=g2 on the coupling constant g in the context of
asymptotic freedom suppresses the presence of small
instantons. A study of the instanton distribution within
dynamical gauge fields with light dynamical quarks provides
[17] ρinst ¼ 0.415 fm with the standard deviation of the
distribution of instanton sizes of only 0.075 fm indicating a
sharply peaked distribution with few small-size instantons.
An additional effect of smearing is that any smearing

algorithm designed to suppress short-distance perturbative
interactions from the gauge field will also tend to annihilate
closely spaced instanton–anti-instanton pairs. As the effect

of this is mainly to reduce the pseudoparticle density, we
expect a corresponding change in the quark condensate [4].
We will use this behavior of the smearing algorithm to
examine the lattice QCD vacuum as it progresses from
having significant topological structure, most of it not
instanton-like, through to being both instanton dominated
and sparse.

III. SIMULATION METHODS

A. Correlation functions and the
variational approach

The low-lying hadronic masses can be extracted from the
lattice by analysis of their corresponding two-point corre-
lation functions. This correlation function is defined as
G2ðxÞ ¼ h0jχðxÞχ̄ð0Þj0i, where χ is the interpolating field
corresponding to the hadron of interest. The correlation
function, in momentum space, is then of the form

G2ð~p; tÞ ¼
X
~x

expð−i~p · ~xÞh0jχðxÞχ̄ð0Þj0i: ð3Þ

Inserting a complete set of states, jBi, and utilizing the
translation operator, one obtains the Euclidean time corre-
lator

G2ð~p; tÞ ¼
X
B

e−EBð~pÞtλBð~pÞλ̄Bð~pÞ; ð4Þ

with λBð~pÞ ¼ h0jχjB; ~pi describing the coupling of the
state B with momentum ~p to the operator χ and EBð~pÞ the
on-shell energy of the state.
The determination of the mass of the lowest-lying state is

hampered by the tower of exponentials from excited-state
contributions. Although these are suppressed by the factor
e−EBt, it is often difficult to wait until a sufficiently large
Euclidean time where all excited-state contaminations have
vanished. Moreover, with broad fermion source smearings
and narrow fermion sink smearings, excited states can enter
with a negative weight and create false plateaus.
This problem is particularly challenging on smeared

configurations. As we will see, hadronic excited states do
not maintain a significant mass splitting from the ground-
state hadrons, making the extraction of even the ground-
state mass difficult.
The solution to the state isolation problem is now well

established. One considers a matrix of correlation functions
in a variational analysis [18–20]. The operators used to
create the correlation functions can be chosen to have any
form (as long as they have the correct quantum numbers).
Different operators have different couplings λB to each state
B, and one seeks linear combinations of the operators
constructed to isolate each state of the spectrum.
The best approach for isolating a state within a tower of

states excited by a particular interpolating field is to
introduce differently sized covariantly smeared sources
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and sinks [21–23]. Physical hadrons are extended objects,
and a linear combination of Gaussian sources allows one to
approximate the hadronic wave function [24]. This allows
for a precise determination of ground-state properties. The
suppression of excited states provides ground-state iso-
lation early in Euclidean time. The approach also provides
access to the excited states having the same spin and parity.
We solve the generalized eigenvalue problem for the

matrix Gij whose elements are the correlation functions
generated from the operators χi and χ̄j, normalized at the
fermionic source time. If ϕ̄α ¼ uαj χ̄j is an operator con-
structed to isolate state α, then the recurrence relation
relating times t0 and t0 þ dt,

Gijðt0 þ dtÞuαj ¼ e−EαdtGijðt0Þuαj ; ð5Þ

can be used to construct a generalized eigenvalue equation
for the right eigenvector uα and eigenvalue e−Eαdt:

G−1ðt0ÞGðt0 þ dtÞuα ¼ e−Eαdtuα: ð6Þ

The reference times t0 and interval dtmust be selected to lie
within a region where the excited-state contributions are
strong and not yet exponentially suppressed. However,
some amount of Euclidean time evolution is helpful in
reducing the number of states contributing significantly in
the correlators to the dimension of the correlation matrix
such that state isolation is achieved.
While the eigenvalues of the generalized eigenvalue

equations depend strongly on the values of these variational
parameters, t0 and dt, the associated eigenvectors are robust
against this variation. A similar analysis can be done to
obtain the left eigenvector vα, from which a state-projected
correlator vαi GijðtÞuαj can be constructed.
This correlator is insensitive to the variational parame-

ters. In practice, a t0 value 1 or 2 time steps from the source
accompanied by a dt value of 2 or 3 lattice time steps
provides good eigenstate isolation in the projected corre-
lator. One can then apply standard analysis techniques
using the covariance matrix-based χ2 per degree of freedom
to carefully identify the Euclidean time regime dominated
by a single eigenstate.

B. Simulation methods and parameters

Previous works in this vein [25–28] were considered in
the mid to late 1990s. While they often considered the
quenched approximation, a greater concern is the use of
standard cooling algorithms based on the Wilson gauge
action.
As discussed in Sec. II, this algorithm rapidly destroys

the instanton-like topoological structures that one is
attempting to study. In this case, the final smeared
configuration is much closer to a dilute instanton gas than
to an instanton liquid.

The calculations presented herein are performed on an
ensemble of 76 two-flavor 203 × 40 gauge field configu-
rations generated using dynamical fat-link-irrelevant-clover
(FLIC) fermions [29–33], with lattice coupling β ¼ 3.94
and an SUð3Þ-flavor symmetric hopping parameter
κ ¼ 0.1324, providingmπ ¼ 540 MeV. The lattice spacing
associated with the string tension is a ¼ 0.126 fm, provid-
ing a spatial extent of 2.52 fm. As a smearing sweep is a
local short-distance effect that does not affect the string
tension, we consider the lattice spacing to be unaltered
under a smearing sweep. Cumulative smearing sweeps do
affect long-distance physics, and we will examine this
effect in the following section.
The smearing of the gauge field is performed using

overimproved stout-link smearing [13] with ϵ ¼ −0.25 and
an isotropic smearing parameter αsm ¼ 0.06, smaller than
the typical value [34] of 0.10.
Valence quark propagators are calculated via the FLIC

fermion action at multiple κ values. The boundary con-
ditions are periodic in the spatial dimensions, and fixed in
the Euclidean time dimension. The fermionic source is
inserted away from the boundary at t ¼ 10, sufficient to
avoid artifacts associated with the boundary. In constructing
a basis for our variational approach to isolating states, we
use gauge-invariant Gaussian smeared [35] fermion sources.
The smearing procedure is

ψ iðx; tÞ ¼
X
x0
Fðx; x0Þψ i−1ðx0; tÞ; ð7Þ

where

Fðx; x0Þ ¼ ð1 − αÞδx;x0

þ α

6

X3
μ¼1

½UμðxÞδx0;xþμ̂ þ U†
μðx − μ̂Þδx0;x−μ̂�; ð8Þ

and the parameter α ¼ 0.7 is used in our calculation. After
repeating the procedure Nsm times on a point source, the
resulting smeared fermion field is

ψNsm
ðx; tÞ ¼

X
x0
FNsmðx; x0Þψ0ðx0; tÞ: ð9Þ

We consider Nsm ¼ 10, 25, 50, 100, and 150 sweeps in
constructing effective correlation-matrix bases.

IV. RESULTS

A. Gluonic observables

We begin by examining the effect of stout-link smearing
on the action of our gauge-field ensemble. Figure 1 displays
the evolution of the action as a function of the number of
smearing sweeps. For our choice of ϵ ¼ −0.25, after only
10 sweeps of smearing, the action has dropped to one
tenth of its initial value. The majority of the short-distance
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interactions are removed within the first few iterations of
smearing. It takes another 50 sweeps of smearing for the
action to reduce by another order of magnitude. TheWilson
flow is also shown for comparison of smearing extent.
We will focus on ensembles following 10, 20, 40, and 60
sweeps of smearing; these correspond to Wilson flow times
of 0.6, 1.2, 2.4, and 3.6, respectively.
In Fig. 2, the static quark potential, determined from the

Wilson loop, is shown for configurations at various levels
of smearing. The attractive Coulomb-potential behavior at
small r is lost rapidly under smearing as the algorithm
removes short-distance interactions. The fit is a third-order
Padé approximant constrained by the short-distance behav-
ior V → Vfree ¼ 0 and the long-distance behavior of a
linearly rising potential. It has the form

VðrÞ ¼ a1rþ a2r2 þ a3r3

b0 þ b1rþ r2
: ð10Þ

The large r slope of the potential reflects the approximate
invariance of the string tension and associated lattice
spacing. Best-fit parameters are summarized in Table I.
For sufficiently large r, the parameter a3 is equivalent to

the string tension σ, and we note it remains almost constant
under moderate levels of smearing. This differs signifi-
cantly from the behavior reported in Ref. [25], where the
string tension was reduced to only 27% of its original
value after 25 sweeps of the unimproved cooling algorithm.

This also differs from the theoretical prediction of the
instanton liquid model, which was shown to generate a
string tension [36], but with a value much smaller than the
physical value. The overimproved stout-link smearing
algorithm tuned specifically to preserve instanton-like
structure in the gauge field configurations retains the
long-distance string tension remarkably well.
The process of stout-link smearing is expected to remove

the short-distance physics up to an effective radius [37]
which may be parametrized as

R ¼ aðcρsmNswÞ1=2 ð11Þ

under the random-walk hypothesis. The coefficient c is a
proportionality constant determined [37] to be c ¼ 6.15ð3Þ.
The smearing radii for our selected values of Nsw ¼ 0, 10,
20, 40, 60 are R=a ¼ 0, 1.9, 2.7, 3.8, and 4.7 respectively.
While this explains the preservation of the string tension
observed in Fig. 2 and Table I, one needs to examine the
extent to which an ensemble of instantons has been isolated
in the QCD vacuum.
The instanton content of the vacuum under the same

overimproved stout-link smearing algorithm selected
herein was also studied in Ref. [38]. To examine the extent

FIG. 1 (color online). The evolution of the action for a typical
configuration under various methods of smearing. ϵ ¼ 1 is the
Wilson action, and ϵ ¼ 0 corresponds to the Oða2Þ-improved
action. The action under overimproved smearing (ϵ ¼ −0.25)
lies above either of these as required. With the identification
t ¼ αsmnsm using our value of αsm ¼ 0.06, numerical integration
of the Wilson flow agrees with smearing using the Wilson action.
The highest level of smearing considered in the following
sections (60 sweeps) is equivalent to a Wilson flow time of
t ¼ 3.6. An approximation to the instanton density can be
retrieved by dividing by the lattice volume V ≈ 81 fm4.

FIG. 2 (color online). The evolution of the static quark potential
under various levels of overimproved stout-link smearing.

TABLE I. The best-fit parameters for the Padé of Eq. (10) fit to
the lattice QCD results for the static quark potential illustrated in
Fig. 2. Uncertainties in the parameters are determined from a
single-elimination jackknife analysis.

Sweep a1 a2 a3 b0 b1

10 0.093(2) 0.01(1) 0.082(1) 4.7(2) −1.22ð5Þ
20 0.062(1) 0.020(4) 0.084(1) 6.4(2) 0.22(3)
40 0.035(1) 0.212(4) 0.081(1) 21.4(3) 3.28(5)
60 0.02(5) 0.384(1) 0.073(1) 42(1) 5(1)
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to which the nontrivial topology identified on the lattice
is consistent with instantons, two measures of the local
maxima of the action density found on representative
configurations were taken and compared to the classical
instanton solution. The instanton size is measured by fitting
the profile of the action density in a ð2aÞ4 hypercube
surrounding the position of the local maximum to the
classical instanton action density

S0ðxÞ ¼ ξ
6

π2
ρ4

ððx − x0Þ2 þ ρ2Þ4 : ð12Þ

Here ξ, ρ and x0 are fit parameters, noting that x0 is not
restricted to a lattice site. The parameter ξ is introduced, as
lattice topological objects often have a higher action than
classical instantons. We wish to determine the size, ρ, by
using the shape of the action density around the local
maximum, rather than the height. Considering the relative
rms deviation over the 34 hypercube of points surrounding

the local maximum,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V−1
P

x∈VðS0ðxÞ − SðxÞÞ2
q

=S0, we

find Eq. (12) fits the data with a typical percentage
deviation of 10%. This deviation decreases as the gauge
fields are smeared.
We can then compare the size of instanton candidates to

the value of the topological charge at the center of an (anti-)
instanton in the context of the classical instanton relationship

qðx0Þ ¼ Q
6

π2ρ4
; ð13Þ

where Q ¼ ∓1 for an (anti-)instanton. qðx0Þ at the fitted
values of x0 are found using linear interpolation from
neighboring hypercubes to find an extremum inside the
hypercube containing x0.
Fig. 3, reproduced from Ref. [38], displays the values

found on a smoothed lattice at various smearing levels and
compares the distribution with the classical relationship of
Eq. (13), illustrated by the curves. The degree to which
fitted results concur with Eq. (13) provides insight into the
extent to which the topology of the gluon fields resembles
an ensemble of instantons.
At low levels of smearing we expect to fit a large number

of local maxima which are not associated with the non-
trivial topology of instantons—local maxima of the action
corresponding to noise. At 10 sweeps, the number of
instanton candidates is large and distributed with sizes
greater than the dislocation threshold of ∼2 through 8
lattice units. There is little correlation to the predicted
charge lines of Eq. (13). However, this quickly changes as
the number of smearing sweeps increases, eventually
leading to a very close approximation to Eq. (13). In this
case the distribution reflects an ensemble of topological
objects approximating classical instanton solutions. In
principle, there are also exactly (anti-)self-dual classical
solutions with nontrivial holonomy (i.e. calorons) which

wrap around the temporal extent of the lattice [39–42]. When
the spatial extent (the separation of the monopole constitu-
ents) of these objects is much less than the time extent of the
lattice, the action and charge density near their peak
approaches the single-instanton solution while still differing
in the low-field region. Such objects are thus a possible
alternative interpretation to BPST instantons for the local
maxima found. This possibility has not been checked, and
goes beyond the scope of the current investigation.
The number of instanton candidates steadily decreases

with smearing through the process of neighboring instan-
ton–anti-instanton annihilation. By 100 sweeps the number
of instanton candidates has been thinned to the point that
they are usually well separated, and thus the annihilation of
instanton pairs is very slow. We examine the region of
interest where one has an ensemble of overlapping instan-
tons and bracket this regime with configuration ensembles
having 20, 40 and 60 sweeps of smearing. Using the
number of local maxima found in the action density, we
find pseudoparticle densities of 7.9, 3.6, and 2.4 fm−4 for
20-, 40-, and 60-sweep ensembles, respectively.

B. Gell-Mann-Oakes-Renner relation

We commence with an investigation of the pion mass
and consider the standard pseudoscalar interpolating field
χ ¼ ūaðxÞγ5daðxÞ. Our first consideration is the extent
to which the Gell-Mann-Oakes-Renner [43] relationship
between the squared pion mass and the quark mass
(mu ¼ md ¼ mq),

m2
π ¼ −

2hqq̄i
f2π

mq; ð14Þ

is maintained on the smeared ensembles. We consider a wide
range of hopping parameter values, κ, and examine the
relationship between the squared pion mass and 1=κ ∝ mq.
Unlike the case of center-vortex removal [44], we find a

linear relationship at all levels of smearing. This enables the
standard approach of dealing with the additive renormal-
ization of the quark mass in Wilson-like fermion formu-
lations such as the FLIC fermion action considered herein.
The critical value of the hopping parameter, κcr, where the
pion mass vanishes, is determined by linearly extrapolating
m2

π as a function of 1=κ to zero. The additively renormal-
ized quark mass is then provided by the standard relation

mq ¼
1

2a

�
1

κ
−

1

κcr

�
: ð15Þ

The value of κcr observed depends significantly on the first
few sweeps of smearing. Its deviation from the tree-level
value of 1=8 is an indication of the additive renormalization
of the quark mass induced by the explicitly broken chiral
symmetry of the Wilson action. As smearing removes the
perturbative physics which acts to renormalize κcr away
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from its tree-level value, one observes a return of κcr to
0.125. Similarly, the mean link, provided by the fourth root
of the average plaquette, approaches 1. For example, after
10 sweeps of smearing, the original value of κcr ¼ 0.135
becomes 0.126, and u0 ¼ 0.86 subsequently exceeds
0.995. The latter result indicates that the multiplicative
renormalization of the quark mass in the smeared ensem-
bles is negligible.
Our results are illustrated in Fig. 4. The Goldstone nature

of the pion is indeed retained. However, there is a
significant variation in the slope of the linear relation that
reflects an important change in the manner in which the
quark mass manifests itself in the interacting field theory.
The slope,−2hqq̄i=f2π , can be regarded as an indicator of

the level of instanton preservation under smearing. Figure 5
illustrates its evolution under smearing. In an instanton

model, the quark condensate is proportional to
ffiffiffi
n

p
, where n

is the instanton density. Thus, it is understandable that the
slope reduces under smearing as instanton–anti-instanton
pairs are annihilated.
In comparing results from different levels of smearing,

one can choose to keep the bare mass mq fixed, or to keep
mπ fixed as a measure of the renormalized quark mass. We
choose the latter as providing the more physical relation-
ship between ensembles with differing levels of smearing.
It also enables a connection to the original unsmeared
ensemble results.

C. Ground-state hadrons

We now consider the remaining lowest-lying light
hadrons with nonvanishing masses in the chiral limit: the
rho meson, the nucleon, and the Delta baryon. We use the

FIG. 3. Instanton content of a single representative gauge field configuration under the overimproved stout-link smearing algorithm at
10, 30, 50 and 100 sweeps of smearing, reproduced using data from Ref. [38]. At each smearing level, the gauge action S=S0 ¼ 2099,
445, 252, 130; topological chargeQ ¼ −9.45, −7.36,−6.38,−6.02, and approximate instanton number (determined only by the number
of candidates) n ¼ 1222, 400, 214, 116. The values of the instanton size, ρ, found by fitting lattice maxima of the action to the classical
instanton action density, are plotted as crosses, against the topological charge at the center, qðx0Þ. The results are compared to the
theoretical relationship between the instanton radius and topological charge at the center (solid lines), and the dislocation threshold of
the algorithm, 1.97a (dash-dotted line). The pseudoparticle densities underlying the gauge fields considered remain higher than the
phenomenologically assumed value of ≈1 fm−4, which would correspond to an instanton number of ≈80.
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standard interpolating fields for the ρ [ūaγμda], the nucleon
[ϵabcðuTaCγ5dbÞuc], and the Δ [ϵabcðuTaCγμubÞuc], and
construct a 4 × 4 correlation matrix. A combination of
Gaussians with Nsm ¼ 25, 50, 100, 150 was chosen to
isolate states on the less smeared configurations (Ns < 40).
For the more heavily smeared configurations, the smoother
background causes the process of source smearing to be
more efficient—the same number of smearing sweeps gives
a larger source. Thus, the Nsm ¼ 100 and Nsm ¼ 150
sources became too similar in shape for any linear
combination of them to resolve different states. Thus, for
these configurations (Ns ¼ 40, Ns ¼ 60), the basis Nsm ¼
10, 25, 50, 100 was chosen.

As illustrated in Figs. 6–8, the hadron masses display a
common trend of reduction as the underlying instanton
content of the vacuum is eroded through pair annihilation
under smearing. Only subtle changes in the pion-mass
dependence of the hadron masses are observed.
However, an important difference between these had-

ronic observables and gluonic observables is apparent.
While gluonic observables such as the action and the
short-distance potential undergo rapid transitions during
the first few sweeps of smearing, these hadronic observ-
ables display very little change over the first 10 sweeps.
One can conclude that the rapid loss of action density in the
first few sweeps of cooling is not connected to the low-
lying hadron masses in a significant manner. Rather, it is
the loss of closely spaced instanton–anti-instanton pairs
over more extensive smearing extents that gives rise to a

FIG. 4 (color online). The squared pion mass is plotted as a
function of the Wilson quark mass of Eq. (15). Results are
provided for the original configurations (Sweep 00) and for the
ensembles following various levels of overimproved stout-link
smearing as indicated.

FIG. 5 (color online). The slope of the Gell-Mann-Oakes-
Renner relation as a function of smearing.

FIG. 6 (color online). Quark-mass dependence of the rho-meson
mass for various levels of smearing.

FIG. 7 (color online). Quark-mass dependence of the nucleon
mass for various levels of smearing.
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loss of dynamical mass generation and lower-lying hadron
masses.
However, we emphasize, the pion is different. At larger

values of the quark mass, the pion mass displays a more
rapid transition over the first few sweeps as reported in
Fig. 4. This behavior contrasts that of the ρ,N andΔ, where
the change in the hadron mass is relatively insensitive to the
quark mass.
To perform a more quantitative examination of these

hadron masses, we interpolate the results to a common pion
mass of 300 MeVand increase the statistical sample size by
calculating eight fermionic sources (shifting by a quarter of
the temporal extent, and by half the spatial extent in each
direction) per configuration for a total of 608. We also
consider an interpolation to mπ ¼ 400 MeV to expose any
sensitivity to our selection of a comparison point. We note
that for mπ ¼ 300 MeV, mπL ∼ 4 such that finite-size
effects are unlikely to affect the results in a significant
manner.
Figures 9 and 10 report the results. While the hadron

masses show a decline under smearing, we note that this
decline is uniform for the N and Δ. The mass splitting
MΔ–MN is invariant under smearing.
This invariance is interesting in the context of an

instanton model where a strong attractive contribution to
the nucleon mass originates from the interaction of the
scalar diquark component with a single instanton or with a
pair of an instanton and an anti-instanton (in the sum-rule
context, the single-instanton contribution is necessary to
stabilize the correlator) [10,45,46]. This contribution is
necessarily large in typical models in order to replicate
the observed nucleon-Delta mass splitting. In contrast, the
lowest-order contribution to the Delta requires twice as
many zero-mode contributions, and the instanton contri-
bution to the mass is therefore higher order in n=V. In the
current investigation, once the ultraviolet interactions have

been suppressed under smearing, the main change to the
gauge fields under further smearing is the annihilation of
adjacent instanton–anti-instanton pairs. As the instanton-
based model experiences a reduction in the scalar diquark
attraction in the nucleon, it predicts a narrowing of the
nucleon-Delta mass splitting under smearing. However,
this is not observed. Figures 9 and 10 display a nucleon-
Delta mass splitting that is invariant under smearing. Thus,
the simple direct-instanton effect cannot be responsible for
the lightness of the nucleon compared to the Delta.

FIG. 8 (color online). Quark-mass dependence of the Δ mass
for various levels of smearing.

FIG. 9 (color online). Hadron masses, interpolated to a
common pion mass of 300 MeV, are illustrated as a function
of the number of smearing sweeps, Ns. The nucleon-Delta mass
splitting, MΔ–MN , is also illustrated. A fit of this splitting to a
constant illustrates the invariance of the nucleon-Delta mass
splitting to a thinning of the (anti-)instanton density.

FIG. 10 (color online). Hadron masses, interpolated to a
common pion mass of 400 MeV, are illustrated as a function
of the number of smearing sweeps, Ns. A fit of the nucleon-Delta
mass splitting, MΔ–MN , to a constant illustrates the invariance
of the nucleon-Delta mass splitting to a thinning of the (anti-)
instanton density.
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In summary, the nucleon and Delta masses decrease
under overimproved stout-link smearing. The reduction is
of the order of 10% of their original masses after 60 sweeps
of smearing. However, the mass splitting between them is
insensitive to the loss of instanton pairs under smearing.
Their mass splitting remains constant within error. The loss
of instanton-induced scalar-diquark attraction in the nucleon
predicted by the simple direct-instanton effect is not appar-
ent. Although the majority of the hadron mass can be
considered as generated by instanton interactions, this
hadron-instanton interaction is not described using the ’t
Hooft interaction from a single instanton pair.
It is important to place this modern analysis in the

context of an early analysis [25] that reported results
consistent with the instanton model prediction. This early
study considered smaller 163 × 24 lattices with an
uncooled lattice spacing of 0.168 fm. The ensemble
consisted of only 19 gauge configurations, and the hadron
masses on the cooled ensembles were fitted using their
dispersion relation, because the statistical variation was too
large on the cooled configurations to use the asymptotic
behavior of e−mt. The associated large discretization errors
combined with unimproved cooling led to the rapid
reduction of both ultraviolet physics and instanton content.
Individual instantons are destroyed under unimproved
cooling, leading to a rapid loss of gauge field dynamics.
Using the nucleon mass to reset the lattice spacing after
cooling, the Delta was found to be “too light.” The present
analysis suggests that this loss of mass splitting reflects a
loss of gauge field dynamics such that the nucleon and
Delta simply become degenerate. In other words, the
dynamics responsible for splitting them has been destroyed
under unimproved cooling.
In contrast, the invariant mass splitting observed in the

present analysis occurs in the context of declining nucleon
and Delta masses. As a result, the Delta-nucleon mass ratio
actually increases under smearing as illustrated in Fig. 11.
While good agreement with the physical ratio of 1.31 is
observed at small numbers of smearing sweeps, the Delta is
“too heavy” at 60 sweeps of smearing when measured
relative to the nucleon mass.

D. Excited states

Our use of the correlation matrix method to cleanly
isolate the lowest-lying states presented thus far has the
additional advantage that we are able to examine the
behavior of excited states under smearing. To the best of
our knowledge, this is the first examination of the role of
instanton degrees of freedom in describing the radial
excitations of hadrons.
Figures 12–14 illustrate the very different behavior of

hadronic excitations under smearing. The variation in mass
is not at the level of the 10% observed for ground states, but
is of the order of 30%. Moreover, a significant mass drop is

observed for as few as 10 sweeps of smearing, signaling an
important role for ultraviolet physics.
We note that the excited states at 40 sweeps of smearing

do not follow the monotonic trend set by the other smearing
levels. We believe these energies are affected by nearby
states that are not adequately accommodated in the 4 × 4
correlation matrix considered, giving rise to a superposition
of excited states in the reported results. While we include
them here for completeness, we will set them aside for the
remainder of the discussion.
As for the ground states, we interpolate the hadron

masses to common pion masses of 300 and 400 MeV. Their
dependence on the number of smearing sweeps is illus-
trated in Figs. 15 and 16. While the ground-state hadrons

FIG. 11 (color online). The dependence of the Δ=N mass ratio
evaluated at mπ ¼ 300 MeV on the number of smearing sweeps.
The ratio increases with smearing, reflecting a constant mass
splitting in the context of decreasing baryon masses due to a
thinning of the (anti-)instanton density.

FIG. 12 (color online). Quark-mass dependence of the first-
excited-state energy of the rho meson observed in our correlation-
matrix analysis for various levels of smearing.
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remain qualitatively unchanged under smearing, the excited
states decrease in mass significantly. Continued smearing
leads to a significant decline in the excitation energy, again
emphasizing an important role for instanton degrees of
freedom in generating the excitation spectrum.
An analysis of the associated eigenvectors for the excited

states indicates that these states have the expected single-
node structure of a radial excitation in their wave function.
The node is generated through a superposition of broad and
narrow Gaussian smeared sources with opposite signs.

E. Nonrelativistic quark model consideration

An interesting question is the extent to which our results
reported in Figs. 15 and 16 can be described by a simple
constituent quark model, drawing on the change of the
static quark potential examined in Fig. 2.

Here we consider the ρ meson. Using our fits to the
static quark potential illustrated in Fig. 2, we solve the
Schrödinger equation using a fixed constituent quark mass
of 400 MeV and boundary conditions emulating the
periodic lattice condition of the spatial volume.
As displayed in Fig. 17, this naive model predicts a much

faster decrease in the ground-state mass than we observe in
the lattice calculation. Moreover, the excited-state mass is
maintained better than the ground-state mass under smear-
ing. This qualitative difference allows us to conclude that a

FIG. 15 (color online). The observed energies of the first
excited states of our correlation matrix analysis are interpolated
to a common pion mass of 300 MeV and plotted as a function of
the number of smearing sweeps,Ns, to reveal the role of instanton
degrees of freedom in generating the spectrum of excited states.
The ground-state masses are also replotted for comparison.

FIG. 13 (color online). Quark-mass dependence of the first-
excited-state energy of the nucleon observed in our correlation-
matrix analysis for various levels of smearing.

FIG. 14 (color online). Quark-mass dependence of the first-
excited-state energy of the Delta observed in our correlation-
matrix analysis for various levels of smearing.

FIG. 16 (color online). The observed energies of the first
excited states of our correlation matrix analysis are interpolated
to a common pion mass of 400 MeV and plotted as a function of
the number of smearing sweeps,Ns, to reveal the role of instanton
degrees of freedom in generating the spectrum of excited states.
Again, the ground-state masses are shown for comparison.

THOMAS, KAMLEH, AND LEINWEBER PHYSICAL REVIEW D 92, 094515 (2015)

094515-10



simple modification of the potential energy between
constituent quarks is insufficient to capture the essence
of the modification of the QCD vacuum under smearing.

V. CONCLUDING REMARKS

The light hadron spectrum has been examined in lattice
QCD where the vacuum is altered using the overimproved
stout-link smearing algorithm designed to retain separated
instantons. The change in the ground-state hadron masses
of the ρ, N and Δ is of the order of 10%, indicating that

almost all of the mass is generated by topological structures
similar to instantons.
However, the difference between the Delta and nucleon

masses is insensitive to smearing and the associated
thinning of (anti-)instantons on the lattice. Even though
the smearing process destroys topology by pairwise
annihilation, the anticipated attractive contribution to the
nucleon mass from the scalar-diquark direct-instanton
interaction does not weaken during this process. This
indicates that direct-instanton-induced effects are not the
dominant contribution to the hadronic masses.
Similarly, simple quark model phenomenology dif-

fers from the results observed on the lattice. A deeper
understanding of the underlying mechanisms of QCD
could be obtained through the operator product
expansion of two-point hadron correlation functions.
The evolution of vacuum condensates under smearing
could be examined, and the impact of this evolution
on the spectral properties of the correlators could
be studied. We will leave this study for a future
investigation.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge James Zanotti, Jon-Ivar
Skullerud and Daniel Trewartha for interesting discussions.
This researchwasundertakenon theNationalComputational
Infrastructure National Facility in Canberra, Australia,
which is supported by the Australian Commonwealth
Government. We also acknowledge eResearch SA for gen-
erous grants of supercomputing time. This research is
supported by the Australian Research Council under
Grants No. DP1201104627 and No. DP15013164.

[1] A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin,
Phys. Lett. 59B, 85 (1975).

[2] E. V. Shuryak, Nucl. Phys. B203, 93 (1982); B203, 116
(1982); B203, 140 (1982).

[3] E. V. Shuryak, Nucl. Phys. B214, 237 (1983).
[4] E. V. Shuryak, Nucl. Phys. B302, 559 (1988); B302, 574

(1988); B302, 599 (1988); B302, 621 (1988).
[5] E. V. Shuryak, Nucl. Phys. B319, 521 (1989); B319, 541

(1989).
[6] E. V. Shuryak, Nucl. Phys. B328, 85 (1989); B328, 102

(1989).
[7] I. Horváth, S. J. Dong, T. Draper, N. Isgur, F. X. Lee, K. F.

Liu, J. McCune, H. B. Thacker, and J. B. Zhang, Phys. Rev.
D 66, 034501 (2002).

[8] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. B410,
37 (1993).

[9] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. B410,
55 (1993).

[10] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. B412,
143 (1994).

[11] T. Schäfer and E. V. Shuryak, Rev. Mod. Phys. 70, 323
(1998).

[12] E. Shuryak, Nucl. Phys. A928, 138 (2014).
[13] P. J. Moran and D. B. Leinweber, Phys. Rev. D 77, 094501

(2008).
[14] M. G. Perez, A. Gonzalez-Arroyo, J. Snippe, and P. van

Baal, Nucl. Phys. B413, 535 (1994).
[15] K. Symanzik, Nucl. Phys. B226, 187 (1983).
[16] C. Bonati and M. D’Elia, Phys. Rev. D 89, 105005 (2014).
[17] P. J. Moran and D. B. Leinweber, Phys. Rev. D 78, 054506

(2008).
[18] C. Michael, Nucl. Phys. B259, 58 (1985).

FIG. 17 (color online). Ground-state, first-excited-state, and
second-excited-state masses of the ρmeson from a nonrelativistic
quark model calculation based on the static quark potential fits
illustrated in Fig. 2. Masses may be shifted vertically by
introducing a constant into the potential.

INSTANTON CONTRIBUTIONS TO THE LOW-LYING … PHYSICAL REVIEW D 92, 094515 (2015)

094515-11

http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1016/0550-3213(82)90478-3
http://dx.doi.org/10.1016/0550-3213(82)90479-5
http://dx.doi.org/10.1016/0550-3213(82)90479-5
http://dx.doi.org/10.1016/0550-3213(82)90480-1
http://dx.doi.org/10.1016/0550-3213(83)90660-0
http://dx.doi.org/10.1016/0550-3213(88)90188-5
http://dx.doi.org/10.1016/0550-3213(88)90189-7
http://dx.doi.org/10.1016/0550-3213(88)90189-7
http://dx.doi.org/10.1016/0550-3213(88)90190-3
http://dx.doi.org/10.1016/0550-3213(88)90191-5
http://dx.doi.org/10.1016/0550-3213(89)90618-4
http://dx.doi.org/10.1016/0550-3213(89)90619-6
http://dx.doi.org/10.1016/0550-3213(89)90619-6
http://dx.doi.org/10.1016/0550-3213(89)90093-X
http://dx.doi.org/10.1016/0550-3213(89)90094-1
http://dx.doi.org/10.1016/0550-3213(89)90094-1
http://dx.doi.org/10.1103/PhysRevD.66.034501
http://dx.doi.org/10.1103/PhysRevD.66.034501
http://dx.doi.org/10.1016/0550-3213(93)90572-7
http://dx.doi.org/10.1016/0550-3213(93)90572-7
http://dx.doi.org/10.1016/0550-3213(93)90573-8
http://dx.doi.org/10.1016/0550-3213(93)90573-8
http://dx.doi.org/10.1016/0550-3213(94)90497-9
http://dx.doi.org/10.1016/0550-3213(94)90497-9
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1016/j.nuclphysa.2014.03.006
http://dx.doi.org/10.1103/PhysRevD.77.094501
http://dx.doi.org/10.1103/PhysRevD.77.094501
http://dx.doi.org/10.1016/0550-3213(94)90631-9
http://dx.doi.org/10.1016/0550-3213(83)90468-6
http://dx.doi.org/10.1103/PhysRevD.89.105005
http://dx.doi.org/10.1103/PhysRevD.78.054506
http://dx.doi.org/10.1103/PhysRevD.78.054506
http://dx.doi.org/10.1016/0550-3213(85)90297-4


[19] M. Luscher and U. Wolff, Nucl. Phys. B339, 222
(1990).

[20] C. McNeile and C. Michael (UKQCD Collaboration), Phys.
Rev. D 63, 114503 (2001).

[21] M. S. Mahbub, W. Kamleh, D. B. Leinweber, P. J. Moran,
and A. G. Williams, Phys. Lett. B 707, 389 (2012).

[22] M. S. Mahbub, W. Kamleh, D. B. Leinweber, P. J. Moran,
and A. G. Williams, Phys. Rev. D 87, 094506 (2013).

[23] B. J. Owen, J. Dragos, W. Kamleh, D. B. Leinweber,
M. Selim Mahbub, B. J. Menadue, and J. M. Zanotti, Phys.
Lett. B 723, 217 (2013).

[24] D. S. Roberts, W. Kamleh, and D. B. Leinweber, Phys. Rev.
D 89, 074501 (2014).

[25] M. Chu, J. Grandy, S. Huang, and J. W. Negele, Phys. Rev.
D 49, 6039 (1994).

[26] T. Schäfer and E. V. Shuryak, Phys. Rev. D 50, 478 (1994).
[27] J. W. Negele, arXiv:hep-lat/9709129.
[28] T. DeGrand, A. Hasenfratz, and T. G. Kovcs, Phys. Lett. B

420, 97 (1998).
[29] J. M. Zanotti, S. Bilson-Thompson, F. D. R. Bonnet, P. D.

Coddington, D. B. Leinweber, A. G. Williams, J. B. Zhang,
W. Melnitchouk, and F. X. Lee, Phys. Rev. D 65, 074507
(2002).

[30] J. Zanotti, B. Lasscock, D. Leinweber, and A. Williams,
Phys. Rev. D 71, 034510 (2005).

[31] S. Boinepalli, W. Kamleh, D. B. Leinweber, A. G. Williams,
and J. M. Zanotti, Phys. Lett. B 616, 196 (2005).

[32] W. Kamleh, D. B. Leinweber, and A. G. Williams, Phys.
Rev. D 70, 014502 (2004).

[33] J. Zanotti, D. Leinweber, W. Melnitchouk, A. Williams, and
J. Zhang, Lect. Notes Phys. 663, 199 (2005).

[34] C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501
(2004).

[35] S. Gusken, Nucl. Phys. B, Proc. Suppl. 17, 361 (1990).
[36] R. Brower, D. Chen, J. Negele, and E. Shuryak, Nucl. Phys.

B, Proc. Suppl. 73, 512 (1999).
[37] A. S. Bakry, D. B. Leinweber, and A. G. Williams, Phys.

Rev. D 91, 094512 (2015).
[38] D. Trewartha, W. Kamleh, D. Leinweber, and D. S. Roberts,

Phys. Rev. D 88, 034501 (2013).
[39] K. Lee and C. Lu, Phys. Rev. D 58, 025011 (1998).
[40] T. C. Kraan and P. van Baal, Phys. Lett. B 435, 389

(1998).
[41] T. C. Kraan and P. van Baal, Nucl. Phys. B533, 627

(1998).
[42] T. C. Kraan and P. van Baal, Nucl. Phys. B, Proc. Suppl. 73,

554 (1999).
[43] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968).
[44] E.-A. O’Malley, W. Kamleh, D. Leinweber, and P. Moran,

Phys. Rev. D 86, 054503 (2012).
[45] A. Dorokhov and N. Kochelev, Z. Phys. C 46, 281 (1990).
[46] H. Forkel and M. K. Banerjee, Phys. Rev. Lett. 71, 484

(1993).

THOMAS, KAMLEH, AND LEINWEBER PHYSICAL REVIEW D 92, 094515 (2015)

094515-12

http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1103/PhysRevD.63.114503
http://dx.doi.org/10.1103/PhysRevD.63.114503
http://dx.doi.org/10.1016/j.physletb.2011.12.048
http://dx.doi.org/10.1103/PhysRevD.87.094506
http://dx.doi.org/10.1016/j.physletb.2013.04.063
http://dx.doi.org/10.1016/j.physletb.2013.04.063
http://dx.doi.org/10.1103/PhysRevD.89.074501
http://dx.doi.org/10.1103/PhysRevD.89.074501
http://dx.doi.org/10.1103/PhysRevD.49.6039
http://dx.doi.org/10.1103/PhysRevD.49.6039
http://dx.doi.org/10.1103/PhysRevD.50.478
http://arXiv.org/abs/hep-lat/9709129
http://dx.doi.org/10.1016/S0370-2693(97)01497-4
http://dx.doi.org/10.1016/S0370-2693(97)01497-4
http://dx.doi.org/10.1103/PhysRevD.65.074507
http://dx.doi.org/10.1103/PhysRevD.65.074507
http://dx.doi.org/10.1103/PhysRevD.71.034510
http://dx.doi.org/10.1016/j.physletb.2005.04.050
http://dx.doi.org/10.1103/PhysRevD.70.014502
http://dx.doi.org/10.1103/PhysRevD.70.014502
http://dx.doi.org/10.1007/b103529
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1016/0920-5632(90)90273-W
http://dx.doi.org/10.1016/S0920-5632(99)85121-4
http://dx.doi.org/10.1016/S0920-5632(99)85121-4
http://dx.doi.org/10.1103/PhysRevD.91.094512
http://dx.doi.org/10.1103/PhysRevD.91.094512
http://dx.doi.org/10.1103/PhysRevD.88.034501
http://dx.doi.org/10.1103/PhysRevD.58.025011
http://dx.doi.org/10.1016/S0370-2693(98)00799-0
http://dx.doi.org/10.1016/S0370-2693(98)00799-0
http://dx.doi.org/10.1016/S0550-3213(98)00590-2
http://dx.doi.org/10.1016/S0550-3213(98)00590-2
http://dx.doi.org/10.1016/S0920-5632(99)85135-4
http://dx.doi.org/10.1016/S0920-5632(99)85135-4
http://dx.doi.org/10.1103/PhysRev.175.2195
http://dx.doi.org/10.1103/PhysRev.175.2195
http://dx.doi.org/10.1103/PhysRevD.86.054503
http://dx.doi.org/10.1007/BF01556005
http://dx.doi.org/10.1103/PhysRevLett.71.484
http://dx.doi.org/10.1103/PhysRevLett.71.484

