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We investigate the Anderson transition found in the spectrum of the Dirac operator of quantum
chromodynamics at high temperature, studying the properties of the critical quark eigenfunctions.
Applying multifractal finite-size scaling we determine the critical point and the critical exponent of
the transition, finding agreement with previous results, and with available results for the unitary Anderson
model. We estimate several multifractal exponents, finding also in this case agreement with a recent
determination for the unitary Anderson model. Our results confirm the presence of a true Anderson
localization-delocalization transition in the spectrum of the quark Dirac operator at high temperature, and
further support that it belongs to the 3D unitary Anderson model class.
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I. INTRODUCTION

The Anderson metal-insulator transition is a genuine
quantum phase transition, which has been widely inves-
tigated in condensed matter physics since the seminal paper
of Anderson [1]. In the past years Anderson transitions
were found in a wide range of physical systems, such as
ultrasound in disordered elastic networks [2,3], light in
disordered photonic lattices in the transverse direction [4],
or in an ultracold atomic system in a disordered laser
trap [5].
A characteristic feature of Anderson transitions is the

rich multifractal structure of critical eigenstates, which has
been the subject of intense research activity in recent years
(see Ref. [6] for a review). Direct signs of multifractals
at the metal-insulator transition point have been observed
experimentally in dilute magnetic semiconductors [7].
Multifractality can moreover influence the behavior of
various systems near criticality in different ways. For
example, the large overlap of multifractal wave functions
can increase the superconducting critical temperature [8].
The multifractality of the local density of states may induce
a new phase because of the presence of local Kondo effects
induced by local pseudogaps at the Fermi energy [9].
The simplest model displaying a metal-insulator tran-

sition is the Anderson model, which describes noninteract-
ing fermions in a disordered crystal. Disorder is usually
introduced through a random on-site potential, while
hopping elements are fixed [up to a random phase or
SUð2Þ rotation]. In this case the system belongs to one of

the Wigner-Dyson symmetry classes depending on the
global symmetries of the system. On the other hand,
systems with vanishing on-site terms and random hopping
terms, if the lattice is bipartite, possess an additional chiral
symmetry and belong to one of the chiral Wigner-Dyson
classes [6].
Quite surprisingly, an Anderson transition has been

shown to take place also in the spectrum of the Dirac
operator in quantum chromodynamics (QCD) at high
temperature [10–14] (see Ref. [15] for a review). QCD
is the quantum field theory governing strong interactions at
the microscopic level, and operates on length and energy
scales vastly different from the ones usually encountered in
condensed matter physics. QCD is a non-Abelian gauge
theory, describing the interactions of quarks, which are
fermions, and gluons, which are the vector bosons of the
SUð3Þ gauge symmetry. Although these are the fundamen-
tal degrees of freedom, they do not appear in the spectrum
of the theory at low temperatures, which contains only
hadrons, i.e., bound states of quarks and gluons, due to the
phenomenon of confinement. However, at a (pseudo-)
critical temperature, Tc, strongly interacting matter under-
goes a crossover to the so-called quark-gluon-plasma
phase, and at high temperatures quarks and gluons are
deconfined. This transition is accompanied by the restora-
tion of the approximate chiral symmetry that is sponta-
neously broken at low temperatures [16]. The apparently
very close relation between the two transitions is not fully
understood yet.
Contributions of quarks to observables, as well as all

quark correlation functions, are encoded in the eigenvalues
and the eigenvectors of the Dirac operator in the back-
ground of a non-Abelian gauge field. Physical quantities
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are then obtained after averaging over the gauge field
configurations with the appropriate path-integral measure.
In this respect, the eigenmodes of the Dirac operator
can be formally treated as the eigenstates of a random
“Hamiltonian,” with disorder provided by the gauge field
fluctuations. Among the eigenmodes, a prominent role is
played by the low-lying ones: for example, they give the
most important contributions to the quark correlation
functions, and determine the fate of chiral symmetry
through the Banks-Casher relation [17]. The low end of
the spectrum looks completely different in the hadronic and
in the quark-gluon-plasma phase. At low temperatures, the
density of states is finite near the origin, and both low-lying
and bulk eigenmodes are extended throughout the system.
In contrast, at high temperatures, above Tc, the density of
states vanishes at the origin, and the low-lying eigenmodes
are localized on the scale of the inverse temperature, while
higher up in the spectrum, beyond a temperature-dependent
critical “energy,” EcðTÞ, the eigenmodes are again extended
[12,13]. The temperature dependence of the “mobility
edge” was investigated in Ref. [13], in which it was found
that EcðTÞ extrapolates to zero at a temperature compatible
with Tc. Typical Dirac eigenmodes in the localized, critical,
and delocalized regimes are shown in Fig. 1. The transition
in the spectrum from localized to delocalized eigenmodes
has been shown to be a second-order phase transition, with
the critical exponent compatible with the one found in the
three-dimensional unitary Anderson model [14]. In the
unitary Anderson model the hopping terms are multiplied
by random phases, mimicking the effect of a magnetic field
on the fermions, so that the time-reversal symmetry is
broken (see, e.g., Ref. [18]).
It is rather surprising at first that the Anderson transition

in the high-temperature QCD Dirac spectrum seems to
belong to the same universality class as that of the

three-dimensional unitary Anderson model. From the point
of view of statistical systems, QCD at a finite temperature T
is in fact a four-dimensional Euclidean model, with the
“temporal” dimension compactified on a circle of length
1=T. However, it has been argued that high-temperature
QCD is an effectively three-dimensional disordered system
with on-site disorder, the strength of which is set by the
temperature [19,20]. While this makes it more plausible
that the two models actually belong to the same universality
class, it does not make it less important to look for further
evidence. In this respect, finding the same multifractal
structure in the critical eigenstates would give strong
support to the claim of Ref. [14], and so to the broader
universality of the critical properties of Anderson transi-
tions. The study of this multifractal structure is precisely
the aim of this work.
It is worth mentioning at this point that the concepts

of localization, critical statistics, and multifractality have
already been exploited in the study of QCD, see, e.g.,
Refs. [21–24]. However, these works apply these concepts
in contexts very different from the one considered here.
More precisely, Refs. [21,22] are concerned with the
microscopic spectral statistics near the Thouless energy
at zero temperature. In Ref. [23] the localization of Dirac
eigenmodes is studied in connection with the so-called
Aoki phase of Wilson fermions [25]. Finally, Ref. [24]
deals with the localization properties of eigenmodes of the
lattice Laplacian. In the present work we are concerned
with the Anderson transition in the spectrum of the Dirac
operator in lattice QCD at high temperature.
The plan of the paper is the following. In Sec. II we give

a brief discussion of multifractality, and of the method of
multifractal finite-size scaling (MFSS). In Sec. III we
describe in some detail the Dirac operator and the numeri-
cal simulations of QCD employed in this paper. In Sec. IV

FIG. 1 (color online). Eigenvectors of the Dirac operator in lattice QCD at T ≈ 2.6Tc (a) in the insulating regime (with energy
E ¼ 0.15 in lattice units), (b) at criticality (E ¼ 0.3355), and (c) in the metallic regime (E ¼ 0.365). Dot sizes are proportional to

ffiffiffiffiffiffiffiffi
jψ j2

p
,

with proportionality factors tuned independently for each subfigure to improve visualization. The spatial system size is L ¼ 56 (in lattice
units) for all subfigures. Summation over the temporal direction and over color components has been performed, see the discussion at the
end of Sec. III. Coloring is determined by the value of the x coordinate.
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we study the correlations between eigenvectors of the Dirac
operator around the critical energy, both for comparison to
the 3D unitary Anderson model, and for their appropriate
treatment in the statistical analysis. In Sec. V we discuss the
results of MFSS for the eigenvectors of the Dirac operator.
Finally, in Sec. VI we state our conclusions.

II. FINITE-SIZE SCALING LAWS FOR
GENERALIZED MULTIFRACTAL EXPONENTS

In this section we briefly review wave-function multi-
fractality and the technique of multifractal finite-size
scaling. The wave function ψð~xÞ of a particle in Rd is
naturally associated with a local probability distribution,
namely jψð~xÞj2, giving the probability of finding the
particle in an infinitesimal neighborhood of ~x. For smooth
wave functions, the probability of finding the particle in a
small but finite neighborhood of ~x of size r scales as ∼rd.
For fractal wave functions, this probability scales as ∼rα,
where α < d is called the fractal dimension. For strongly
fluctuating wave functions, however, this probability scales
in general as ∼rαð~xÞ, with an ~x-dependent power αð~xÞ called
the local dimension. In turn, points with the same local
dimension, αð~xÞ ¼ α, constitute a subset of Rd character-
ized by its own fractal dimension, which generally depends
on α. The wave function therefore defines not one but many
different fractals, and is therefore said to be multifractal.
Multifractal wave functions are strongly fluctuating on
every length scale, and their characterization requires an
infinite number of fractal dimensions, called multifractal
exponents (MFEs). An example of a multifractal wave
function is shown in Fig. 1(b).
Multifractality is a known feature of critical eigenfunc-

tions at the Anderson metal-insulator transition [6] that can
be studied by means of MFSS [26]. In recent high-precision
calculations [27–29], MFSS has been successfully
employed to determine the MFEs of critical eigenfunctions,
as well as to obtain a more precise estimate of the critical
disorder and of the critical exponents, for Anderson models
in different symmetry classes. In this work we want to
perform a similar MFSS analysis to study the Anderson
localization-delocalization transition in the spectrum of the
Dirac operator in QCD.
In the remainder of this section we describe MFSS in

some detail. Our methods and notations are essentially the
same as in Ref. [28], to which we refer the reader for a more
detailed discussion. There is however one important differ-
ence concerning the way in which the transition is
approached. In Ref. [28] the transition was studied by
looking at wave functions at the band center and varying
the amount of disorder, W. In QCD the amount of disorder
is effectively set by the temperature, and it is more
convenient to keep it fixed and study the transition as a
function of energy, E, by looking at wave functions near the
mobility edge, Ec. Therefore, W has been replaced by E in
the expressions of Ref. [28].

Let us consider a d-dimensional cubic lattice of linear
size L, and a critical eigenfunction of a random
Hamiltonian, ψð~xÞ, defined on the lattice sites ~x and
normalized to 1. We can divide the lattice into smaller
boxes of linear size l, and compute the probability
corresponding to the kth box as

μk ¼
X
~x∈boxk

jψð~xÞj2; ð1Þ

where the sum runs over the lattice sites contained in the kth
box. The generalized inverse participation ratios (GIPRs)
are the moments of the box probability. The GIPRs and
their derivatives read

Rq ¼
Xλ−d
k¼1

μqk Sq ¼
dRq

dq
¼

Xλ−d
k¼1

μqk ln μk; ð2Þ

where λ ¼ l
L, and the sum runs over all the λ−d boxes of size

l. For small λ, the averages of Rq and Sq over disorder
realizations follow a power-law behavior as a function of λ,
which leads one to define the following exponents:

Dq ¼ lim
λ→0

1

q − 1

lnhRqi
ln λ

αq ¼ lim
λ→0

hSqi
hRqi ln λ

: ð3Þ

Dq and αq are generalized fractal dimensions, usually
referred to as multifractal exponents (MFEs). One can
similarly define MFEs for localized and delocalized states
by substituting critical eigenfunctions with localized or
delocalized eigenfunctions in Eq. (1). In the delocalized/
metallic part of the spectrum, states extend over the whole
lattice, so their effective size grows proportionally to the
volume, thus leading toDmet

q ≡ d. On the other hand, in the
localized/insulating regime, states are exponentially local-
ized, so that their effective size does not change with the
system size, resulting in Dins

q ≡ 0 for q > 0, and Dins
q ≡∞

for q < 0. At criticality, E ¼ Ec, the eigenstates are instead
expected to be multifractal, with nontrivial, q-dependent
Dq and αq.
This jump of the MFEs at the critical point happens only

in an infinite system. The main idea of MFSS is to use the
MFEs as order parameters for finite-size scaling. In order to
do that we have to define the finite-size version of the
MFEs at a given energy,

~αensq ðE; L;lÞ ¼ hSqi
hRqi ln λ

; ð4Þ

~Dens
q ðE;L;lÞ ¼ 1

q − 1

lnhRqi
ln λ

; ð5Þ

where it is understood that wave functions of energy around
E are used on the right-hand side, and where the superscript
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ens is to remind the reader that one has to perform ensemble
averaging over the different disorder realizations. ~αq and
~Dq are called generalized multifractal exponents (GMFEs).
Every GMFE approaches the value of the corresponding
MFE at the critical point, E ¼ Ec, only in the limit λ → 0.
One can also define typical MFEs,

~αtypq ðE;L;lÞ ¼
�
Sq
Rq

�
1

ln λ
; ð6Þ

~Dtyp
q ðE;L;lÞ ¼ 1

q − 1

hlnRqi
ln λ

; ð7Þ

which can be used as well in a finite-size scaling analysis.
However, as we said above, MFEs are defined through
ensemble averaging in principle [see Eq. (3)], and when
computing MFEs in Sec. V we use ensemble averaged
quantities only.
In the renormalization group language, the Anderson

transition is characterized by a single relevant operator [30],
and so in the vicinity of the critical point one can derive
scaling laws for the GMFEs, which can be summarized in a
single equation, using a common letter, G, for the GMFEs:

~GqðE;L;lÞ ¼ Gq þ
1

ln λ
Gq

�
L
ξ
;
l
ξ

�
: ð8Þ

At the critical point, the localization length diverges as
ξ ∼ ½ϱðE − EcÞ�−ν, where ϱðE − EcÞ is the scaling variable
corresponding to the relevant operator, which behaves like
ϱðE − EcÞ ≈ E − Ec for ðE − EcÞ=Ec ≪ 1. The system
sizes employed in this paper, however, are not big enough
to justify the use of one-parameter scaling, and so we
included the contribution of an irrelevant operator,
η ¼ ηðE − EcÞ, which leads us to write

~GqðE;L;lÞ¼Gqþ
1

lnλ
½Gr

qðϱL1
ν;ϱl

1
νÞþηl−yGir

q ðϱL1
ν;ϱl

1
νÞ�:
ð9Þ

A second irrelevant term, proportional to L−y0 , is expected
to be less important and will be neglected in the analy-
sis [27,28].
Fits to the numerical data are performed by expanding Gr

and Gir in the variables ϱL
1
ν and ϱl

1
ν up to order nr and nir,

respectively. The number of parameters therefore grows as
∼n2r þ n2ir. Moreover, ϱ and η must also be expanded in
powers of E − Ec up to order nϱ and nη, which further
increases the number of fitting parameters. The fit provides
all the physically interesting quantities, namely the critical
point, Ec, the critical exponent, ν, the irrelevant exponent y,
and the MFE, Gq.
A simpler fit can be performed by setting λ ¼ l=L to a

fixed value. In this case, dropping λ from the notation, we
can write

~GqðE;LÞ ¼ Gq

�
L
ξ

�
¼ Gr

qðϱL1
νÞ þ ηL−yGir

q ðϱL1
νÞ; ð10Þ

having absorbed Gq and the factor λ−y= ln λ into new

functions Gr=ir
q . The main advantage is that since Gr=ir

q

are now single-variable functions, the number of expansion
parameters grows only as ∼nr þ nir. On the other hand,
with this method one can determine only Ec, ν, and y, while
the value of the MFE, Gq, cannot be obtained.

III. PROPERTIES OF THE DIRAC OPERATOR
AND DETAILS OF THE SIMULATIONS

In this section we give the relevant details about the
Dirac operator and QCD, and about how the QCD Dirac
spectrum can be studied by means of numerical simula-
tions. The continuum Euclidean Dirac operator is

DðAÞ ¼
X4
μ¼1

γμð∂μ þ igAμÞ; ð11Þ

where γμ are the Euclidean Dirac matrices, g is the coupling
constant, and Aμ is the non-Abelian gauge field. More
precisely, Aμ ¼

P
aA

a
μta is a Hermitian 3 × 3matrix, where

Aa
μ ¼ Aa

μðxÞ ¼ Aa
μð~x; tÞ is real and the sum runs over the

generators ta of SUð3Þ. The Dirac operator is thus anti-
Hermitian, so admitting a straightforward interpretation as
(i times) the Hamiltonian of a quantum system. The Dirac
operator is a chiral operator with the following structure in
spinor space:

D ¼ i

�
0 W

W† 0

�
; ð12Þ

with W a complex matrix with no further symmetry [31].
As a random matrix model, the Dirac operator in a random
gauge field belongs therefore to the chiral unitary class.
Chiral symmetry is expressed by the anticommutation
relation fγ5; Dg ¼ 0, which implies that the nonzero
eigenvalues come in pairs �iEn. It is thus sufficient to
consider the positive part of the spectrum only.
The partition function of QCD at temperature T can be

expressed as a functional integral,

ZQCD ¼
Z

½dA�e−Sg½A�
Y
f

det½DðAÞ þmf�; ð13Þ

with the constraint Aμð~x; 1=TÞ ¼ Aμð~x; 0Þ. The product is
over the six different types of quarks (“flavors”), with mf

the mass of quark f. Here Sg½A� is a positive functional of
the gauge field, which together with the determinants
provides the probability distribution of the disorder, i.e.,
of the gauge field configurations. Numerical simulations of
QCD require the discretization of Eq. (13) on a finite
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lattice. For a review of lattice QCD see, e.g., Ref. [32].
While the discretization of the gauge fields poses no
particular problem, and can be performed preserving exact
gauge invariance [33], fermion fields are known to be more
problematic, and the discretization of the Dirac operator
spoils some of the properties of its continuum counterpart.
Nevertheless, the discretization that we employed, namely
staggered fermions [34], preserves the anti-Hermiticity and
the symmetry of the spectrum with respect to the origin,
and moreover preserves the chiral unitary symmetry
class [31].
It must be noted at this point that in the case of the

Anderson model, chiral and nonchiral symmetry classes
differ only in their properties near the band center [35], i.e.,
E ¼ 0, while the properties of the bulk of the spectrum
are similar. For example, the authors of Ref. [35] found
Wigner-Dyson statistics in the bulk spectrum of a three-
dimensional chiral orthogonal disordered model.
Moreover, even the critical exponent of the orthogonal
and of the chiral orthogonal class turn out to be the same,
up to very high numerical precision [36]. We expect the
same to be true for the multifractal exponents.
Let us now describe the numerical setting in some detail.

QCD is discretized on a periodic hypercubic lattice xμ ∈ Z,
of spatial extent L in each direction and temporal extent Lt.
The gauge fields Aμ are replaced by corresponding gauge
links, i.e., parallel transporters along each link of the lattice,
which are elements of the gauge group, SUð3Þ. The
functional Sg is discretized and expressed in terms of the
gauge links, and the integration over gauge fields is
replaced by the integration with the Haar measure over
gauge links, i.e., over the gauge-group valued variables on
the links. Finally, the continuum Dirac operator is replaced
by the staggered Dirac operator, which reads

Dstag
xy ¼ 1

2

X4
μ¼1

ημðxÞ½δxþμ̂;yUμðxÞ − δx−μ̂;yU†
μðx − μ̂Þ�; ð14Þ

with ημðxÞ ¼ ð−1Þ
P

ν<μ
xν , and UμðxÞ ∈ SUð3Þ the gauge

link connecting the lattice site x to the neighboring site
along direction μ̂. The staggered Dirac operator carries only
spacetime and color indices, i.e., it has no spinorial
structure. The eigenvalue equation Dstagχ ¼ iEχ must be
supplemented with the antiperiodic boundary condition
χð~x; LtÞ ¼ −χð~x; 0Þ for the quark eigenfunction.
As we have already remarked, the Dirac operator can be

viewed as a random Hamiltonian, with disorder provided
by the fluctuations of the gauge fields, and distributed
according to the Boltzmann weight appearing in the
partition function. In its discretized version, the Dirac
operator is a large sparse matrix, with nonzero random
elements only in the off-diagonal, nearest-neighbor hop-
ping terms, which depend on the parallel transporter on
the corresponding link of the lattice. This resembles an

Anderson model with off-diagonal disorder, although here
the fluctuations of the gauge links are correlated, rather
than independent. However, since the theory has a mass
gap, correlations decrease exponentially with the distance.
Moreover, the strong correlation between the different time
slices makes the model effectively three dimensional, with
the fluctuations of the temporal links acting effectively as a
three-dimensional diagonal disorder [19,20]. The size of
the gauge field fluctuations are determined by the temper-
ature, which therefore is expected to play the same role as
the amount of disorder in the Anderson model. This is
confirmed by the fact that the temperature governs the
position of the mobility edge.
In the present work we have studied the spectrum of the

Dirac operator by generating gauge link configurations,
i.e., realizations of disorder, by means of Monte Carlo
methods. Numerical calculations were done on a graphics
processing unit cluster. In our simulations we have included
only the three lightest flavors of dynamical quarks (up,
down, and strange), with equal masses for the up and down
quark. For many purposes, this is a good approximation of
the real world. The lattice spacing in physical units was set
to a ¼ 0.125 fm and the temporal size was fixed to Lt ¼ 4,
resulting in the temperature T ≈ 2.6Tc, well above the
crossover temperature (see Refs. [11–14] for more
details). Bare quark masses were set to mud ≃ 0.0018
and ms ≃ 0.0506, in order to obtain the physical values
for the pion and kaon masses, mπ ≈ 140 MeV and
mK ≈ 500 MeV. Technical details about the numerical
implementation and the scale-setting procedure can be
found in Refs. [37,38]. We have computed the eigenpairs
of the Dirac operator from the smallest eigenvalue up to the
upper end of the critical region, on lattices of spatial sizes in
the range L ¼ 24 − 56 (in lattice units). A detailed list is
reported in Table I along with the corresponding number of
samples.
The three-dimensional box probability, Eq. (1), required

for the multifractal analysis, was constructed as follows.
To have a gauge-invariant description we summed over
the color components, labeled by c. Moreover, due to
the strong correlation between the lattice time slices, the
eigenvectors of the Dirac operator look qualitatively the

TABLE I. System sizes and the corresponding
number of gauge configurations used in this work.

System size ðLÞ Number of samples

24 41517
28 20548
32 19250
36 14869
40 8812
44 5242
48 7008
56 3107
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same on each of them (see Fig. 2), so we can also sum over
the time slices, t. The squared amplitude jψð~xÞj2 is then
defined as jψð~xÞj2 ≡P

t;cjχcð~x; tÞj2, and provides the basic
three-dimensional spatial probability distribution, from
which the box probability distribution is then obtained
in the usual way.

IV. CORRELATIONS BETWEEN EIGENVECTORS

In this section we investigate the correlations between
different eigenvectors of the Dirac operator in a given
gauge configuration. Our motivation is twofold. On the one

hand, we want to compare the eigenvector correlations in
QCD with the ones found in the unitary Anderson model.
On the other hand, these correlations have to be properly
taken into account when fitting the numerical data to
determine the various critical quantities, as we do in Sec. V.
Cuevas and Kravtsov [39] showed that in the Anderson

model there are non-negligible correlations between eigen-
vectors. Similar correlations are therefore expected also in
other disordered systems, like the one under consideration.
The relevant quantities are the density-density correlations,
which are defined in terms of the overlap integral, which for
the ith and jth eigenfunctions reads

Kij
2 ¼

Z
d3xjψ ij2jψ jj2: ð15Þ

In the case of QCD, jψ ij2 has the meaning discussed above
at the end of Sec. III. One then defines the joint probability
distribution of Kij

2 and of the energy difference between
eigenstates,

Pðω; kÞ ¼
�X

i;j

δðEi − Ej − ωÞδðKij
2 − kÞ

�
: ð16Þ

To characterize the average behavior of the overlap integral
as a function of energy, its conditional expectation value is
the natural choice,

CðωÞ ¼
R
dkkPðω; kÞR
dkPðω; kÞ : ð17Þ

The quantity CðωÞ is expected to scale with the volume
N ¼ L3 of the system as 1=N along the whole spectrum.
Indeed, for two delocalized states Kij

2 ≈ 1=N, while for two
localized states Kij

2 is nonzero only if they happen to be in
the same region, in which case it is of order 1, and the

FIG. 2 (color online). Eigenvectors of the Dirac operator in the
critical regime (E ¼ 0.3355) on different time slices. Dot sizes
are proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cjχcð~x; tÞj2

p
, while coloring is determined

by the value of the x coordinate.

(a) (b)

FIG. 3 (color online). Correlations, Eq. (17), between (a) critical eigenfunctions of the unitary Anderson model for W ¼ 18.37 and
system size L ¼ 10, and (b) eigenfunctions of the QCD Dirac operator at T ≈ 2.6Tc in the critical regime, 0.32 ≤ E ≤ 0.35, for different
system sizes.
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probability that this happens is of order 1=N. The same
scaling with N was found also at criticality [39–41].
Figure 3(a) shows the eigenvector correlation CðωÞ in

the unitary Anderson model at criticality. One can see a
large enhancement of the correlation at small ω, and
decreasing behavior with growing energy separations,
which is similar to the results of Ref. [39] for the orthogonal
Anderson model. Examining the same correlation for
critical eigenfunctions in QCD, we also find an enhance-
ment at small energy separations, see Fig. 3(b). In the
critical regime the behavior of the two systems is very
similar, and even the approximate exponent μ of the power-
law decay is close to 0.5 in both cases. This exponent is
related to the MFE D2 through the relation μ ¼ 1 −D2=d,
conjectured by Chalker in Ref. [40] and supported by
numerical results [41]. This result therefore indicates that
D2 is the same in QCD and in the unitary Anderson model.
This is a nice example of the similarity of the two models,
and in Sec. V we present further similarities in more detail.

V. MFSS FOR THE EIGENVECTORS
OF THE DIRAC OPERATOR

In this section we would like to characterize the
Anderson phase transition in the spectrum of the Dirac
operator of QCD in the frame of the MFSS, described in
Sec. II. As discussed at the end of Sec. III, a three-
dimensional spatial probability distribution was calculated
from the eigenvectors. From that, the GMFEs ~αq and ~Dq
were then computed according to Eqs. (4)–(7). More
precisely, we chose 26 values of energy, Ei, in the range
E ∈ ½0.32; 0.35�, and for the ith energy value and the kth
gauge configuration we computed Rk

qi and Skqi according
to Eq. (2). In order to decrease the numerical noise we
averaged over all the eigenvectors in an energy range of
width ΔE ¼ 0.0012 around Ei. The GMFEs ~αqðEi; L;lÞ
and ~DqðEi; L;lÞ are then obtained by averaging Rk

qi and S
k
qi

over the index k, i.e., over configurations, or in other words,
over different realizations of disorder.
An example of the resulting GMFEs at fixed λ ¼ 0.125

is depicted in Fig. 4. As the system size grows, the curves
shift to opposite directions on the two sides of the
transition. At low energy they shift down, indicating a
localized phase, while at high energy they shift up,
suggesting a metallic phase, as expected. In between, the
curves should cross at a common point, corresponding to
the critical energy, but due to finite-size effects originating
from the irrelevant terms this is true only approximately.
Data were then fitted with the scaling law equations (9)

and (10), minimizing the quantity χ2=ðNdf − 1Þ, using the
MINUIT library [42]. Here Ndf is the number of degrees of
freedom and χ2 is the distance between the numerical data, yi,
and the fitting function, fi, in the appropriate metric, i.e.,

χ2 ¼
X
i;j

ðyi − fiÞðC−1Þijðyj − fjÞ; ð18Þ

whereC is the covariancematrix of the data points. In light of
the results of Sec. IV, which show that there are strong
correlations between eigenvectors in a given gauge configu-
ration, strong correlations are also expected amongGMFEs at
different energies, and so the inclusion of correlations in the
fitting procedure is necessary to obtain accurate results. The
error bars of the best fit parameters were estimated by
Monte Carlo simulation, generating NMC ¼ 100 sets of
synthetic data, distributed according to a Gaussian distribu-
tion with means equal to the raw data points and covariance
matrix equal to the covariance matrix of the sample. We then
determined the error bars from the distributions of the
resulting fit parameters, choosing the 95% confidence level.
In order to perform best fits, the scaling law equations (9)

and (10) need to be expanded in powers of E − Ec, and
this requires us to set the expansion orders nr=ir of

the relevant/irrelevant scaling term Gr=ir
q , as well as the

(a) (b)

FIG. 4 (color online). GMFEs, (a) ~Dens
0.1 and (b) ~αtyp1.0, at fixed λ ¼ 0.125. Dots are the raw data, and the solid red line is the best fit

obtained by MFSS. Insets show the scaling functions on a log-log scale, after subtracting the irrelevant term. Error bars are not shown in
the insets for visual clarity.
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expansion orders nϱ and nη of ϱ and η. Since the relevant
operator is more important than the irrelevant one we
always used nr ≥ nir and nϱ ≥ nη. We then repeated the fit
for several choices of the expansion orders.
The quality of the best fits was judged according to two

criteria. The first criterion was how close the ratio
χ2=ðNdf − 1Þ approached unity, and only fits with
χ2=ðNdf − 1Þ ≈ 1 were considered acceptable. The second
criterion was stability against changing the expansion
orders, in order to keep under control the systematic effects
due to the truncation of the scaling function. We estimated
the systematic error due to truncation as twice the standard
deviation of the critical parameters, in the sample compris-
ing the stable fits and the essentially equivalent ones
obtained by increasing or lowering the expansion orders.
The factor of 2 is required by consistency with the
95% confidence level chosen for the statistical error.
We first performed the MFSS at fixed λ, as described in

Sec. II, both for ensemble and typical averaging. We used
λ ¼ 0.125, as this value is compatible with several of the

system sizes listed in Table I. The fixed λ method is more
stable, since the number of parameters to fit grows only
linearly with the expansion orders. Stability was a serious
issue, because the largest system size available, L ¼ 56,
was only about half of the one used in Refs. [27–29]. Due
to this limitation, fits were stable for adding or removing an
expansion parameter only in the range 0 ≤ q ≤ 1. The
reason for this is that, for large jqj, the qth power in Eq. (2)
strongly enhances the contribution of the few spatial points
with very large (if q > 0) or very small (if q < 0) wave-
function amplitude squared, which therefore dominate the
sum. This results in an effectively reduced statistics, and so
in a noisy data set, which leads to a regime 0 ≤ q ≤ 1,
where GMFEs behave numerically the best. Notice that,
by construction, D0 ¼ d ¼ 3 and D1 ¼ α1, and moreover
α0.5 ¼ d due to a symmetry relation derived in Ref. [43].
The resulting critical parameters are listed in Table II and

shown in Fig. 5. The results are essentially independent of q
and the type of averaging, as expected. We also checked to
see that the critical parameters do not depend on the width
of the energy window, ΔE, used in the computation of the

FIG. 5. Critical parameters obtained via MFFS at fixed λ ¼ 0.125 on the eigenvectors of the QCD Dirac operator. Error bars
correspond to the 95% confidence band. Systematic errors are not included. Points corresponding to the same value of q are slightly
shifted horizontally for clarity.

TABLE II. Result of the MFSS at fixed λ ¼ 0.125 for the eigenvectors of the Dirac operator of QCD.

q exp Ec εsystEc
ν εsystν y εsysty Ndf χ2 nrnirnϱnη

0 αens=typ 0.3353 (0.3340..0.3363) 0.0004 1.443 (1.421..1.478) 0.056 3.069 (2.382..4.010) 0.278 118 120 4 2 2 0

0.1
Dens 0.3355 (0.3345..0.3364) 0.0003 1.449 (1.429..1.481) 0.048 3.130 (2.509..4.094) 0.240 118 119 4 2 2 0
Dtyp 0.3354 (0.3344..0.3365) 0.0007 1.456 (1.425..1.478) 0.048 3.322 (2.564..4.301) 0.412 118 120 4 2 2 0

0.25

αens 0.3359 (0.3342..0.3368) 0.0001 1.470 (1.437..1.521) 0.026 3.380 (2.217..4.683) 0.056 118 118 4 2 2 0
αtyp 0.3358 (0.3341..0.3365) 0.0001 1.485 (1.457..1.539) 0.026 3.736 (2.443..4.896) 0.148 117 121 4 2 2 1
Dens 0.3355 (0.3340..0.3366) 0.0002 1.457 (1.426..1.494) 0.048 3.190 (2.258..4.134) 0.188 118 117 4 2 2 0
Dtyp 0.3354 (0.3333..0.3362) 0.0004 1.488 (1.448..1.567) 0.054 3.228 (1.971..4.058) 0.334 117 116 4 3 2 0

0.5
Dens 0.3357 (0.3346..0.3369) 0.0001 1.466 (1.433..1.510) 0.040 3.220 (2.416..4.504) 0.118 118 117 4 2 2 0
Dtyp 0.3356 (0.3324..0.3368) 0.0001 1.450 (1.416..1.496) 0.036 3.356 (1.666..4.845) 0.148 116 117 4 3 2 1

0.75

αens 0.3356 (0.3339..0.3366) 0.0002 1.462 (1.424..1.517) 0.044 3.221 (2.154..4.364) 0.184 118 119 4 2 2 0
αtyp 0.3355 (0.3330..0.3366) 0.0001 1.465 (1.443..1.543) 0.032 3.453 (1.955..4.937) 0.194 117 122 4 2 2 1
Dens 0.3361 (0.3348..0.3371) 0.0001 1.468 (1.428..1.507) 0.038 3.264 (2.392..4.563) 0.118 118 117 4 2 2 0
Dtyp 0.3360 (0.3340..0.3371) 0.0001 1.449 (1.425..1.529) 0.034 3.394 (2.127..5.271) 0.130 117 119 4 2 2 1

0.9
Dens 0.3363 (0.3342..0.3374) 0.0002 1.465 (1.422..1.573) 0.036 3.313 (1.984..4.770) 0.128 118 118 4 2 2 0
Dtyp 0.3361 (0.3344..0.3372) 0.0002 1.437 (1.412..1.538) 0.036 3.298 (2.145..4.711) 0.256 117 118 4 2 2 1

1 αens=typ 0.3364 (0.3346..0.3376) 0.0001 1.464 (1.425..1.535) 0.034 3.334 (2.175..5.018) 0.108 118 118 4 2 2 0
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GMFEs. As we show in Fig. 6, the results for Ec and ν are
independent of ΔE within errors. Moreover, the choice
ΔE ¼ 0.0012 is optimal, as it leads to the best accuracy.
To quote a final result for the critical parameters, we have

averaged the values of Ec, ν, and y, and of the correspond-
ing errors, obtained with the various GMFEs. (A weighted
average, using the inverse of the error band as weight,
yields similar numbers.) Our result for the critical point,
Ec ¼ 0.3357 (0.3340..0.3368), is compatible with the value
reported in Ref. [14] at the 2σ level. On average, the
systematic error on Ec is εsystEc

¼ 0.0002, so negligible
compared to the statistical error. Our result for the critical
exponent, ν ¼ 1.461 (1.429..1.519), agrees at the 1σ level
with the result of Ref. [14], and with previous results for the
critical exponent of the unitary Anderson model [28,44].
For this quantity, one has also to take into account
that on average the systematic error due to truncation,
εsystν ¼ 0.040, is of the same size as the statistical error. On
the other hand, our value for the irrelevant exponent,
y ¼ 3.307 (2.210..4.572), is significantly different from
the value of Ref. [28], yUV ¼ 1.651 (1.601..1.707). It is
well known that it is very difficult to determine irrelevant
exponents accurately, and to explain this discrepancy
further work and higher-quality data are needed. It is
possible that for the system sizes presently available, more
than one irrelevant term gives important contributions, so

that our result for y would be a sort of “effective” irrelevant
exponent. In any case this point requires further analysis.
As a final remark, we note that since results for different

q are strongly correlated, there is no significance in the fact
that our values for the critical point are systematically
lower, and the ones for the critical exponent are system-
atically higher than the reference values.
The convergence of the fixed-λ MFSS confirms the

presence of a critical point in the QCD Dirac spe-
ctrum where the system undergoes a true localization-
delocalization transition, employing completely different
observables than the ones used in Ref. [14]. The results of
our analysis also provide further evidence that the transition
in the QCDDirac spectrum belongs to the universality class
of the 3D unitary Anderson model. Moreover, despite
the fact that it does not provide the values of the MFEs,
the convergence of this method also strongly indicates the
presence of multifractality at the critical point.
We next proceeded to apply the variable-λ method, in

order to try to determine the multifractal exponents, and
compare them to the ones obtained for the unitary
Anderson model. However, this method requires small
values of λ to work properly, and is also more demanding as
it is a two-variable fit. In practice, the χ2=Ndf ratio reached
a value close to unity only if we left out the smallest system
sizes, below Lmin ¼ 36, and if we used data corresponding
to l ¼ 1 and 2 only. Although using Lmin ¼ 36 and l ¼ 1,
2 improved the convergence, the fits were still unstable
against changing the expansion orders. This can be under-
stood, as a similar amount of independent data is available
as in the fixed-λ method, but there are many more
parameters to fit, as discussed in Sec. II. In order to be
able to estimate the MFEs, we then fixed the critical energy
and the critical exponent to the values obtained with the
fixed-λ method, Ec ¼ 0.3357 and ν ¼ 1.461, in this way
stabilizing the fits. The systematic uncertainty correspond-
ing to this procedure was estimated by repeating the fits
with Ec and ν fixed to one of the four possible combina-
tions of the values El;u

c and νl;u, which are the lower and

(a) (b)

FIG. 6. Dependence of the fitted (a) critical point and (b) critical
exponent, as obtained from Dens

0.1 at fixed λ ¼ 0.125, for various
energy windows ΔE. Error bars correspond to the 95% con-
fidence band. Only statistical errors are shown.

(a) (b)

FIG. 7. Estimated values of the MFEs, (a) αq and (b) Dq, in high-temperature QCD, and MFEs of the 3D unitary Anderson model
taken from Ref. [28] (slightly shifted horizontally for clarity).
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upper boundaries of the confidence interval of Ec and ν,
respectively. The largest and smallest values obtained in
this way were then used as upper and lower error bars on
the MFEs. We experienced that the main source of
uncertainty comes from the choice of Ec, while fits are
much less sensitive to the choice of ν. Moreover, statistical
errors (estimated by Monte Carlo) and systematic errors
due to truncation were comparatively negligible.
The results of this procedure are depicted in Fig. 7. A set

of nontrivial MFEs was obtained, thus providing direct
evidence of the multifractality of the critical eigenfunctions
of the QCD Dirac operator. Moreover, our results for the
MFEs in QCD are compatible with the ones obtained in
the unitary Anderson model, which further confirms that
the transition belongs to the unitary Anderson class.

VI. SUMMARY

We investigated the Anderson transition in the spectrum
of the Dirac operator of QCD at high temperature, found by
the authors of Ref. [14]. While that work made use of
spectral statistics, our aim in this paper was to examine the
transition by studying the eigenvectors, and their multi-
fractal properties at the critical energy. The results of
Ref. [14] for the correlation length critical exponent
suggested that the Anderson transition in QCD belongs
to the same universality class as the three-dimensional
unitary Anderson model. We therefore looked for more
similarities between these models.
First we examined the correlations between eigenvectors

of a given gauge configuration. We found strong correla-
tions between eigenmodes of the QCD Dirac operator,
decreasing with energy separation in a similar way as in the
unitary Anderson model. We then performed two MFSS
analyses, one with fixed ratio λ of the coarse-graining box
size to the system size, and one with variable λ. MFSS with

the fixed-λ method allowed an alternative determination of
the critical point and of the critical exponent, which is in
agreement with the findings of Ref. [14], and, for the
critical exponent, with those of Refs. [28,44] for the unitary
Anderson model. To perform MFSS with the variable-λ
method and determine the MFEs, we performed fits fixing
the critical energy and the critical exponent to the values
obtained with the fixed-λ method. The resulting MFEs
are compatible with the MFEs found in the unitary
Anderson model.
In conclusion, our work confirms the presence of an

Anderson metal-insulator phase transition in the spectrum
of the Dirac operator in high-temperature QCD, and
provides further evidence that this transition belongs to
the three-dimensional unitary Anderson model class.
Moreover, we have shown that the critical wave functions
of the Dirac operator are multifractals. The physical
consequences of the QCD Anderson transition and of
multifractality still largely need to be explored, and may
lead in particular to a better understanding of the QCD
chiral transition. Further work along these lines might
prove beneficial for condensed matter physics as well, as it
approaches the subject of localization/delocalization
transitions from a broader perspective.
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