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The rare kaon decays K → πlþl− and K → πνν̄ are flavor changing neutral current (FCNC) processes
and hence promising channels with which to probe the limits of the standard model and to look for signs of
new physics. In this paper we demonstrate the feasibility of lattice calculations of K → πlþl− decay
amplitudes for which long-distance contributions are very significant. We show that the dominant finite-
volume corrections (those decreasing as powers of the volume) are negligibly small and that, in the four-
flavor theory, no new ultraviolet divergences appear as the electromagnetic current J and the effective weak
Hamiltonian HW approach each other. In addition, we demonstrate that one can remove the unphysical
terms which grow exponentially with the range of the integration over the time separation between J and
HW . We will now proceed to exploratory numerical studies with the aim of motivating further experimental
measurements of these decays. Our work extends the earlier study by Isidori et al. [1] which focused largely
on the renormalization of ultraviolet divergences. In a companion paper [2] we discuss the evaluation of the
long-distance contributions to K → πνν̄ decays; these contributions are expected to be at the level of a few
percent for Kþ decays.
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I. INTRODUCTION

The rare kaon decays K → πlþl− and K → πνν̄ are
flavor changing neutral current (FCNC) processes which
arise in the standard model throughW-W and γ=Z-exchange
diagrams, containing up, charm and top quarks in the loop.
As a second-order electroweak interaction, the SM contri-
butions are highly suppressed in FCNC processes, leaving
the rare kaon decays as ideal probes for the observation of
new physics effects. Additionally, these decays can be used to
determine SM parameters such as Vtd and Vts, to search for
CP violating effects and to test the low-energy structure of
QCD as described within the framework of chiral perturba-
tion theory (ChPT). In this paper we discuss the feasibility of
computing K → πlþl− decay amplitudes in lattice simu-
lations; the corresponding study for K → πνν̄ decays will be
presented in a forthcoming companion paper [2].
The first observation of 41 Kþ → πþeþe− decays was

made at the CERN PS accelerator in 1975 [3]. After a long
series of experiments spanning 40 years, NA48=2 at the
CERN SPS accelerator has observed a sample of 7253
K� → π�eþe− decays [4] and a sample of 3120 K� →
π�μþμ− decays [5]. These precision measurements give
important information on the low-energy structure of the
weak interaction and provide important tests of ChPT.
Though expected to be difficult, the first observations of the
decays KS → π0eþe− (7 events) [6] and KS → π0μþμ−
(6 events) [7] are reported by the NA48=1 experiment at the
CERN SPS accelerator. These KS decays are important in

isolating the contribution of direct CP violation in the
decay KL → π0lþl−. For these interesting CP-violating
KL decays, upper bounds are set for BrðKL → π0eþe−Þ <
2.8 × 10−10 [8] and BrðKL → π0μþμ−Þ < 3.8 × 10−10 [9].
On the theoretical side, much work has been done to

understand and evaluate both the short- and long-distance
contributions to rare kaon decays. Some useful reviews can
be found in [10–15]. The CP-conserving decays Kþ →
πþlþl− and KS → π0lþl− are dominated by long-
distance hadronic effects induced through the one-photon
exchange amplitude. So far the relevant decay amplitudes
are studied and parametrized within the framework of
ChPT [16,17]. A challenge, but also an opportunity, for
the lattice QCD community is to compute the decay
amplitudes reliably, as well as determining the necessary
low-energy constants used in ChPT. We will explain in the
following section that the significant interference between
the direct and indirect CP violating components of the
decay KL → π0lþl− (see Refs. [18,19]) implies that
lattice QCD results for KS decays can be used to evaluate
the CP-violating contributions to KL decays. In Ref. [1] it
had already been proposed to calculate the long-distance
contributions to rare kaon decays using lattice QCD. Our
work builds on Ref. [1] and leads us to conclude that such
computations are feasible with present understanding and
recent theoretical and technical advances.
The remainder of this paper is organized as follows.

In the next section we review the phenomenological
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background for K → πlþl− decays with an emphasis on
the long-distance contributions. The procedure to obtain the
amplitudes from lattice simulations is presented in Sec. III.
Finite-volume effects and renormalization are briefly dis-
cussed in Sec. IVand V, respectively. Finally we present our
conclusions in Sec. VI.

II. PHENOMENOLOGICAL BACKGROUND

In K → πlþl− decays, the loop function associated with
the γ-exchange diagrams has a logarithmic dependence on
the masses of the quarks entering in the FCNC process [this
is known as logarithmic or soft Glashow, Iliopoulos, Maiani
(GIM) mechanism]. The unsuppressed sensitivity to the
light-quark mass is a signal of long-distance dominance in
the CP-conserving Kþ → πþlþl− and KS → π0lþl−

decays. The short-distance contribution to the amplitude
from Z-exchange and W-W diagrams also exists, but is
much smaller than the long-distance part induced by the
γ-exchange diagrams and does not play an important role in
the total branching ratio. This logarithmic GIM mechanism
does not apply to direct CP violation in KL → π0lþl−

decays since Imλu ¼ 0 where λq ¼ V�
qsVqd. As a result, the

directCP-violating contribution is short-distance dominated.
Considering only the dominant one-photon exchange

contribution, the amplitude Ai (i ¼ þ; S) for Kþ and KS
decays can be written in terms of an electromagnetic
transition form factor VðzÞ [17,20]

Ai ¼ −
GFα

4π
ViðzÞðkþ pÞμūlðp−ÞγμvlðpþÞ; ð1Þ

where z ¼ q2=M2
K and q ¼ k − p. Here we follow the

notation used in Ref. [15]; k, p and p� indicate the
momenta of the K, π and l�, respectively. For both Kþ
and KS decays, the form factor ViðzÞ has been analyzed in
ChPT [17] and has been parametrized in the form

ViðzÞ ¼ ai þ bizþ Vππ
i ðzÞ: ð2Þ

Here ViðzÞ is analytic in the complex z-plane, with a branch
cut starting from 4r2π , where rπ ¼ Mπ=MK . As shown in
Fig. 1, at low energies the ππ intermediate state is expected
to play the dominate role. Thus Vππ

i ðzÞ is introduced to take
account of the γ� → ππ effects. The contribution of excited
intermediate states is not given explicitly and may be
accounted for by the assumed polynomial correction
ai þ biz. A detailed expression for Vππ

i ðzÞ is given in
[17]. As a standard twice-subtracted dispersion relation,

Vππ
i ðzÞ satisfies Vππ

i ð0Þ ¼ 0. Therefore, the inclusion of
Vππ
i ðzÞ does not affect ai, which is the form factor ViðzÞ at

zero momentum transfer. The ai and bi, can be determined
using the experimental data using the dilepton invariant
mass spectra as inputs. The parametrization (2) provides a
successful description of the Kþ → πþlþl− data but
shows large corrections beyond leading order in ChPT
[17]. A lattice QCD calculation can help to understand the
origin of these large corrections.
For KS decays, only a few events have been observed in

experiments. The dilepton invariant mass spectra are there-
fore unavailable. Assuming vector meson dominance, the
authors of [17] used the branching ratios to determine the
parameter jaSj and obtain jaSj ¼ 1.06þ0.26

−0.21 for the electron
and jaSj ¼ 1.54þ0.40

−0.32 for the muon. There are two drawbacks
of using the branching ratios: they do not give information
about the explicit z-dependence and only the modulus of aS
can be determined. It would be very useful if lattice QCD
calculations could determine the sign of aS and also provide
a test for the vector meson dominance assumption.
KL → π0lþl− decays are interesting for precision stud-

ies of CP violation. The relevant decay amplitudes receive
three major contributions [18,19]:
(1) a short-distance dominated direct CP-violating term,

see Fig. 2(a1,a2),
(2) a long-distance dominated indirect CP-violating

contribution from the decay of the CP-even com-
ponent of KL (K1 ≃ KS), see Fig. 2(b),

(3) a CP-conserving component which proceeds
through two-photon exchanges, see Fig. 2(c).

These three contributions are of comparable size [18].
Here we mainly focus on the CP violating effects. The total
CP-violating contributions to the KL branching ratios are
summarized in [15] as

BrðKL → π0eþe−ÞCPV ¼ 10−12 ×
�
15.7jaSj2 � 6.2jaSj

�
Imλt
10−4

�
þ 2.4

�
Imλt
10−4

�
2
�

ð3Þ

BrðKL → π0μþμ−ÞCPV ¼ 10−12 ×
�
3.7jaSj2 � 1.6jaSj

�
Imλt
10−4

�
þ 1.0

�
Imλt
10−4

�
2
�
; ð4Þ

FIG. 1. One-loop contribution in ChPT to the decays KS →
π0lþl− and Kþ → πþlþl−. The dashed, circled and wiggly
lines represent the pions, kaon and photon, respectively. There is
a branch cut when q2 > 4M2

π .
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where the jaSj2-term comes from the indirect CP-violating
component of the amplitude, the ðImλtÞ2-term comes
from the direct CP-violating component and the
jaSjðImλtÞ-terms are the interference between the indirect
and direct components. The � symbol indicates that the
sign of aS is unknown. jaSj are quantities which are
expected to be of Oð1Þ and the CKM matrix element takes
the value Imλt=10−4 ≈ 1.34. A change in the sign of aS can
cause a large difference in the predicted branching ratios for
both KL → π0eþe− and KL → π0μþμ− decays. Once
lattice QCD has determined the sign of aS, this large
uncertainty will be clarified.
In this paper we do not address the evaluation of the

CP-conserving (CPC) component of the KL → π0lþl−

amplitude given by the two-photon exchange diagram in
Fig. 2(c). The helicity suppression of the angular momen-
tum J ¼ 0 channel leads to a negligible contribution [of
Oð10−14Þ to the branching ratio] for the electron mode, but
a comparable contribution to the CP-violating one for the
muon mode. For example, using a phenomenological study
based on ChPT, the authors of Ref. [18] estimate

BrðKL → π0μþμ−ÞCPC ¼ ð5.2� 1.6Þ10−12: ð5Þ

The J ¼ 2 contribution on the other hand is expected to be
negligible for the muon channel, but may be of Oð10−13Þ
for the electron channel so that the decay KL → π0eþe− is
predominantly CP-violating [15]. Nevertheless, in due
course after we manage to compute the KL → π0γ� →
π0lþl− contribution to the decay amplitude, it will be an

interesting challenge to compute the two-photon exchange
contribution.
Since the phenomenology of rare kaon decays has, up to

now, been based on ChPT much of the discussion of this
section has been in this context. We stress however, that the
goal of lattice computations reaches beyond the evaluation
of the low energy constants. The amplitudes will be
calculated from first principles at several values of q2

and the results themselves can then be used in future
phenomenological studies.

III. EVALUATION OF THE AMPLITUDES
IN EUCLIDEAN SPACE-TIME

In this section we discuss the evaluation of rare kaon
decay amplitudes using lattice computations of Euclidean
correlation functions. We start however, with the definition
and a discussion of the amplitudes in Minkowski space.

A. Definition of the amplitude

The long distance part of the Kþ → πþlþl− and K0 →
π0lþl− decay amplitudes is given by [17,20]:

Aj
μðq2Þ ¼

Z
d4xhπjðpÞjT½Jμð0ÞHWðxÞ�jKjðkÞi: ð6Þ

The external states are on their mass shells and we define
q≡ k − p. The index j ¼ þ; 0 labels the charge of the
mesons, and HW is the effective weak Hamiltonian density
defined by [1]:

FIG. 2. The three major contributions to KL → π0lþl− decays: (a1,a2) short-distance dominated penguin and box diagrams, (b) long-
distance dominated indirect CP violating contribution occurring through K0 − K̄0 mixing, (c) long-distance dominated CP conserving
component involving two-photon exchange.
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HWðxÞ ¼
GFffiffiffi
2

p V�
usVud½C1ðQu

1 −Qc
1Þ þ C2ðQu

2 −Qc
2Þ�;

ð7Þ

where the Ci are the Wilson coefficients in a chosen
renormalization scheme. Qq

1;2 are the following current-
current local operators:

Qq
1 ¼ ðs̄aγLμdaÞðq̄bγLμqbÞ and

Qq
2 ¼ ðs̄aγLμqaÞðq̄bγLμdbÞ; ð8Þ

where a and b are summed color indices and
γLμ ¼ γμð1 − γ5Þ. We envisage working in the four-flavor
theory and exploiting the GIM cancellation of ultraviolet
divergences as explained in Sec. V. The electromagnetic
current Jμ is the standard flavor-diagonal vector current:

Jμ ¼
1

3
ð2Vu

μ − Vd
μ þ 2Vc

μ − Vs
μÞ: ð9Þ

Electromagnetic gauge invariance implies that each
nonlocal matrix element can be written in terms of a single
invariant form factor:
Z

d4xhπjðpÞjT½Jμð0ÞðQu
i ðxÞ −Qc

i ðxÞÞ�jKjðkÞi

≡ wj
iðq2Þ
4π2

½q2ðkþ pÞμ − ðM2
K −M2

πÞqμ� ð10Þ

and the nonperturbative QCD effects are contained in the
form factors wj

iðq2Þ. In the phenomenological studies
described in Sec. II, the wj

iðq2Þ are written in terms of a
parametrization influenced by ChPT. Note that a conse-
quence of (10) is that the matrix elements vanish when
p ¼ k ¼ 0, i.e. when the invariant mass of the lepton pair is
the largest which is kinematically allowed, q2 ¼ q2max. Thus
to obtain nonzero matrix elements at least one of the
mesons must have a nonzero three-momentum.
Inserting a complete set of states in each of the two

possible time-orderings in (6), one obtains the following
spectral representation for the amplitude:

Aj
μðq2Þ ¼ i

Z þ∞

0

dE
ρðEÞ
2E

hπjðpÞjJμð0ÞjE;kihE;kjHWð0ÞjKjðkÞi
EKðkÞ − Eþ iε

− i
Z þ∞

0

dE
ρSðEÞ
2E

hπjðpÞjHWð0ÞjE;pihE;pjJμð0ÞjKjðkÞi
E − EπðpÞ þ iε

; ð11Þ

where ρ and ρS are the associated spectral densities. For
what follows it is important to notice that ρ (ρS) selects only
states with strangeness S ¼ 0 (S ¼ 1).

B. Euclidean correlators

For the remainder of the paper we assume that the vector
current is the conserved one as given by Noether’s theorem
and which depends on the chosen lattice discretization of
QCD. The rare kaon decay amplitudes will be determined
by computing Euclidean correlation functions and we now
turn to a discussion of these. Throughout this section we
consider the time dimension to be infinite or very large
compared to the time separations of the inserted operators.

1. 2-point functions

To obtain the energy of single-meson states we consider
the following 2-point function:

Γð2Þ
P ðt;pÞ ¼ hϕPðt;pÞϕ†

Pð0;pÞi; ð12Þ

where ϕPðt;pÞ is an annihilation operator for a pseudo-
scalar meson P with spatial momentum p at time t. For
t ≫ 0 (and t ≪ T=2, where T is the temporal extent of the

lattice), Γð2Þ
P ðt;pÞ has the following behavior:

Γð2Þ
P ðt;pÞ ¼ jZPj2

2EPðpÞ
e−EPðpÞt; ð13Þ

with ZP ¼ h0jϕPð0; 0ÞjPðEPðpÞ;pÞi and EPðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

P þ p2
p

. Depending on the choice of interpolating
operator ϕP, ZP may (and in general will) depend on the
momentum p but we do not exhibit this dependence
explicitly here and in the following.

2. 3-point functions

To obtain matrix elements of the effective weak
Hamiltonian, we define the following 3-point function:

Γð3Þ
H ðtH;pÞ ¼

Z
d3xhϕπðtπ;pÞHWðtH;xÞϕ†

Kð0;pÞi ð14Þ

with 0 < tH < tπ and on a discrete lattice the integral over
x is replaced by the corresponding sum. The 4 Wick

contractions necessary to compute Γð3Þ
H are illustrated in

Fig. 3. For 0 ≪ tH ≪ tπ, Γ
ð3Þ
H has the following behavior:
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Γð3Þ
H ðtH;pÞ ¼

ZπZ
†
KMHðpÞ

4EπðpÞEKðpÞ
e−EπðpÞtπe−½EKðpÞ−EπðpÞ�tH ;

ð15Þ

with MHðpÞ ¼ hπðpÞjHWð0ÞjKðpÞi. We also define the
3-point function of the electromagnetic current:

Γð3ÞPj

Jμ
ðt; tJ;p;kÞ

¼
Z

d3xe−iq·xhϕPjðt;pÞJμðtJ;xÞϕ†
Pjð0;kÞi; ð16Þ

where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ
ðt; tJ;p;kÞ ¼

jZPj2MPj

Jμ
ðp;kÞ

4EPjðpÞEPjðkÞ e
−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;

ð17Þ

where MPj

Jμ
ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi

[note that MP0

J0
ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH; yÞ�ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating

Γð4Þj
μ ðtH; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, mu ¼ md, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.

The decay amplitudes are obtained by integrating ~Γð4Þj
μ over tH and tJ as explained in the following subsection. We note

however, that if the times are sufficiently separated for ~Γð4Þj
μ to be dominated by single particle intermediate states, then

one has:

~Γð4Þj
μ ðtH; tJ;k;pÞ ¼

8>><
>>:

MHðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ e−EKðkÞtHe−EπðkÞðtJ−tHÞeEπðpÞtJ if 0 ≪ tH ≪ tJ
MHðpÞMKj

Jμ
ðp;kÞ

2EKðpÞ e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:
ð20Þ

FIG. 3. Diagrams contributing to the 3-point function

Γð3Þ
H ðtH;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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C. Extracting the rare kaon decay amplitude

In order to obtain the amplitude (6), we need to integrate the 4-point correlator ~Γð4Þj
μ ðtH; tJ;k;pÞ, defining the integrated

correlator by:

IjμðTa; Tb;k;pÞ ¼ e−½EπðpÞ−EKðkÞ�tJ
Z

tJþTb

tJ−Ta

dtH ~Γð4Þj
μ ðtH; tJ;k;pÞ; ð21Þ

where Ta; Tb > 0. For Ta; Tb such that 0 ≪ tJ − Ta < tJ þ Tb ≪ tπ , this integrated correlator has the following spectral
representation:

IjμðTa; Tb;k;pÞ ¼ −
Z þ∞

0

dE
ρðEÞ
2E

hπjðpÞjJμð0ÞjE;kihE;kjHWð0ÞjKjðkÞi
EKðkÞ − E

ð1 − e½EKðkÞ−E�TaÞ

þ
Z þ∞

0

dE
ρSðEÞ
2E

hπjðpÞjHWð0ÞjE;pihE;pjJμð0ÞjKjðkÞi
E − EπðpÞ

ð1 − e−½E−EπðpÞ�TbÞ; ð22Þ

where, as in Minkowski space in Eq. (11), ρ and ρS are the
spectral densities of nonstrange and strangeness S ¼ 1
states, respectively. In finite-volume, we write the spectral
densities as ρðEÞ ¼ P

nð2EnÞδðE − EnÞ (and similarly
for ρS) so that the integrals reduce to sums over the
finite-volume states n. The exponential factor in Eq. (21)
is introduced to cancel the tJ dependence in (22). To
recover the Minkowski amplitude (6), one needs to con-
sider the Ta; Tb → þ∞ limit of IjμðTa; Tb;k;pÞ. Since ρ
selects states with strangeness S ¼ 0, the contribution of
the states with E < EKðkÞ diverge exponentially as Ta →
þ∞ in the first integral of (22). This is a standard feature in
the evaluation of long-distance contributions (see e.g.
[21,22] for a detailed discussion in the context of the
KL-KS mass difference). These contributions must be
subtracted in order to extract the rare kaon matrix element
from Euclidean correlation functions. Note that there
are no exponentially growing terms with Tb, since all
the strange states with momentum p have energies larger
than EπðpÞ. We define the subtracted, integrated correlator
ĪjμðTa; Tb;k;pÞ by subtracting all the terms which grow
exponentially with Ta from the right-hand side of (22).
With this definition we can write the rare kaon decay
amplitude as follows:

Aj
μðq2Þ ¼ −i lim

Ta;b→∞
ĪjμðTa; Tb;k;pÞ: ð23Þ

How does one compute the subtracted quantity
ĪjμðTa; Tb;k;pÞ in practice? For physical values of the
quark masses, the only intermediate states that can
generate an exponentially growing term in (22) are ones
consisting of 1, 2 or 3 pions, the vacuum intermediate state
being forbidden by parity conservation. We will now
discuss each of these cases, providing two different
approaches for the treatment of the dominant single-pion
contribution.

1. Removal of the single-pion divergence, first method

The unphysical divergent term in (22) coming from the
single pion intermediate state is given by:

DπðTa;k;pÞ ¼
1

2EπðkÞ
Mπj

Jμ
ðqÞMHðkÞ

EKðkÞ − EπðkÞ
e½EKðkÞ−EπðkÞ�Ta ;

ð24Þ
where the notation of Sec. III B has been used. Because the
pion is a stable state in QCD, DπðTa;k;pÞ can be entirely
determined by fitting the asymptotic time behavior of the 2
and 3-point functions as described in Sec. III B.

2. Removal of the single-pion divergence, second method

We propose a second method to remove the single-pion
divergence which is more “automatic” than the previous
approach. This method is analogous to the procedure used
in the calculation of the KL-KS mass difference in [22]. It is
based on an additive shift of the weak Hamiltonian:

H0
Wðx;kÞ≡HWðxÞ þ csðkÞs̄ðxÞdðxÞ; ð25Þ

where csðkÞ is chosen such that:

hπjðkÞjH0
Wð0;kÞjKjðkÞi ¼ 0: ð26Þ

By replacing HW with H0
W the divergent contribution from

the single-pion state (24) is cancelled. We now show that
the transformation (25) does not affect the rare kaon decay
amplitude. The scalar density appearing in (25) can be
written as a total divergence using the following vector
Ward identity (which is satisfied exactly on the lattice):

iðms −mdÞs̄d ¼ ∂μVs̄d
μ ; ð27Þ

where Vs̄d
μ is the s̄d flavor nondiagonal vector Noether

(conserved) current. The relevant matrix elements of the
scalar density can now be written as:
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hπjðpÞjs̄ðxÞdðxÞjE;pi ¼ i
E − EπðpÞ
ms −md

hπjðpÞjVs̄d
0 ðxÞjE;pi

ð28Þ

hE;kjs̄ðxÞdðxÞjKjðkÞi¼ i
EKðkÞ−E
ms−md

hE;kjVs̄d
0 ðxÞjKjðkÞi:

ð29Þ
Using (22) and (23) we find that the total contribution of
csðkÞs̄d to the amplitude Aj

μðq2Þ is proportional to:
Z

d3xe−iq·xhπjðpÞj½JμðtJ;xÞ; Qs̄d�jKjðkÞi ¼ 0 ð30Þ

because of the vanishing commutator between the flavor-
diagonal current Jμ and the flavor nondiagonal vector
charge Qs̄d ¼ R

d3yVs̄d
0 ðtH; yÞ. Thus the physical ampli-

tude is invariant under the transformation in Eq. (25). This
property is independent of the value of csðkÞ [and thus
from the tuning condition (26)].

3. Removal of the two-pion divergence

In principle, a two pion intermediate state can contribute
to a rare kaon decay through the process illustrated in
Fig. 4. The matrix elements of vector and axial currents
between a single-pion and a two-pion state have the
following form factor decomposition:

hπðp1ÞjVμjπðp2Þπðp3Þi ¼ εμνρσpν
1p

ρ
2p

σ
3Fðs; t; uÞ ð31Þ

where s¼ ðp1þp2Þ2, t ¼ ðp1 − p3Þ2 and u¼ ðp2−p3Þ2.
We now show that the vector current does not contribute.

Indeed, in Fig. 4 the ππ → πγ� vertex gives the following
factor:

εμνρσpνkρ
Z

d4l
ð2πÞ4

lσFðs; t; uÞ
ðl2 þM2

πÞ½ðk − lÞ2 þM2
π�
: ð32Þ

Because of Oð4Þ invariance the integral in (32) can only be
a linear combination of pσ and kσ which gives a vanishing
contribution once contracted with the Levi-Civita symbol.

In the lattice theory, the cubic symmetry is sufficient for
the integral (or the corresponding sum in a finite volume) to
be a vector, but with corrections which vanish as the lattice
spacing a → 0. At finite lattice spacing however, there is a
nonzero two-pion contribution from lattice artifacts.
For example, since the four-component quantity
fðk1Þ3; ðk2Þ3; ðk3Þ3; ðk4Þ3g transforms as the same four-
dimensional irreducible representation of the cubic group
as k, one can imagine terms of the form a2εμνρσpνkρðkσÞ3 to
be present. These terms will be amplified by the growing
exponential factor in (22) and will need to be considered in
the analysis. By studying the behavior with a2 and Ta we
anticipate being able to confirm our expectation that these
effects are very small. For example, in our study of ΔMK ,
the KL-KS mass difference [21,22], with an inverse lattice
spacing of 1.73 GeVand a pion mass of 330 MeV, we find
that the on-shell two-pion contributions are just a few
percent and the artifacts are of Oð3%Þ of these. Assuming
similar factors here, the exponential factor e½EKðkÞ−E�Ta in
(22) would be insufficient for practical values of Ta to make
the two-pion contribution significant until the calculations
reach subpercent precision.

4. Removal of the three-pion divergence

Contributions containing three-pion intermediate states
are generated by diagrams such as those in Fig. 5. By
comparing the measured widths of KS → ππ decays to
those ofKS;þ → πππ decays we estimate the relative phase-
space suppression to be a factor of Oð1=500Þ or smaller.
Moreover, as explained above, we already expect the on-
shell two-pion contribution to be very small (of order a few
percent) and so we anticipate that the on-shell three-pion
contribution is negligibly small.
For the diagram in Fig. 5(a) the contribution to the

growing exponential in (22) can be avoided completely by
restricting the calculations to q2 ≤ 4M2

π , thus cutting out a
small region of phase-space. This still allows us to
determine the amplitudes in most of the q2 range and to
compare lattice results with ChPT-based phenomenological
models and data where this is available. Although it is the
diagram in Fig. 5(a) which is dominant in phenomeno-
logical analyses based on ChPT [17], the imaginary part,
corresponding to the three-pion intermediate state, is
neglected. The exponentially growing terms from diagrams

FIG. 4. Two-pion intermediate state contribution to the rare
kaon decay amplitude. The dotted and dashed lines represent,
respectively, the kaon and pion propagators.

FIG. 5. Examples of contributions from a three-pion inter-
mediate state to rare kaon decays.
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such as Fig. 5(b) cannot be avoided in this way and we
rely on the phase-space suppression described above.
(Moreover, much of the exploratory work necessary to
develop control of the different aspects of the procedure
described in this paper, will be performed at heavier u and d
quark masses, with the mass of the kaon below the three-
pion threshold.)
In the relatively distant future, if the precision required

by experimental measurements and achievable in lattice
computations is sufficiently high one can imagine, in
principle at least, reconstructing the contributions from
three-pion intermediate states explicitly as proposed in
Sec. III C 1 and removing the associated exponential
divergences in (22). Computing the relevant matrix ele-
ments is very challenging however, and the recently
developed theory of trihadron states on a torus [23] is,
so far at least, purely theoretical and has not been used in a
practical lattice calculation.K → πππ matrix elements have
also not been computed to date.

IV. FINITE VOLUME EFFECTS

In this section we briefly discuss issues concerning the
finite-volume corrections arising from the evaluation of rare
kaon decay amplitudes computed in a finite, periodic
hypercubic lattice. The creation of on-shell intermediate
multiparticle states will generate finite-volume corrections
which decrease only as powers of the volume and not only
exponentially. Thus in addition to generating exponentially
growing terms in (22) (see the discussion in Sec. III C),
power corrections are present if there are multihadron
intermediate states with a smaller energy than MK . We
therefore have to identify the potential on-shell intermedi-
ate multiparticle states which can be created in rare kaons
decays. This is similar to what was done in Sec. III C for the
subtraction of unphysical divergences in the Euclidean
amplitude. We have already shown in Sec. III C 3 that with
a vector current there are no two-pion intermediate states
and that for q2 < 4M2

π there is no power correction from
diagrams such Fig. 5(a). The arguments given in the
preceding section that the remaining contributions from
three-pion intermediate states are negligibly small applies
here as well. Thus, at the levels of precision likely to be
achievable in the near future, we do not have to correct for
powerlike finite-volume effects.
There has been considerable work recently devoted to

understanding the finite-volume corrections in three-
hadron intermediate states [23]. If and when the precision
of lattice computations of rare kaon decays amplitudes
reaches the precision requiring the control of these effects,
then it is to be hoped that the theoretical understanding
provided in [23] can be developed into a practical technique
generalizing the use of the Lellouch-Lüscher factor in
K → ππ decay amplitudes [24].

V. RENORMALIZATION

The ultraviolet divergences which appear in the
evaluation of the matrix elements of the formR
d4xhfjT½O1ð0ÞO2ðxÞ�jii, where O1;2 are local composite

operators and jii, jfi represent the initial and final states,
may come from two sources. FirstO1;2 themselves generally
require renormalization and second additional divergences
may appear as the two operators approach each other in the
integral, i.e. as x → 0. This is a general feature in the
evaluation of long-distance contributions to physical proc-
esses. In the evaluation of the rare kaon decay amplitude (6)
O1 is the vector current and O2 is the effective ΔS ¼ 1
Hamiltonian density and we start by briefly recalling the
normalization of these operators before considering the
contact terms arising as they approach each other.

A. Renormalization of HW and Jμ
We assumed in Sec. III B that the current Jμ is the

conserved one given by Noether’s theorem applied to
the chosen QCD action being used. It therefore satisfies
the following vector Ward identity:

∂μhVq
μðxÞOðx1;…; xnÞi ¼ 0 ð33Þ

where Oðx1;…; xnÞ is a multilocal operator with all the
points x1;…; xn distinct from x. On the lattice, this identity
is exactly satisfied and the derivative becomes a backward
finite difference operator. This exact conservation means
that the vector current does not require any renormalization
as the continuum limit is taken.
The Wilson coefficients C1;2 in the weak Hamiltonian

HW defined in (7) are currently known at NLO in the MS
scheme [10]. Since renormalization conditions based
directly on dimensional regularization, such as the M̄S
scheme, are purely perturbative we envisage following the
standard practice of renormalizing the bare lattice operators
Qu

1 −Qc
1 and Qu

2 −Qc
2 nonperturbatively into a scheme

such as RI-MOM or RI-SMOM [25–27] and then to use
continuum perturbation theory to match these renormalized
operators into the M̄S scheme.
The use of a lattice formulation with good chiral

symmetry, such as domain wall fermions, prevents
mixing with dimension-6 operators which transform
under different representations of the chiral flavor group
SUð4ÞL × SUð4ÞR. Within this formulation we can follow
the renormalization procedure described in detail in [21,22]
in the evaluation of the KL-KS mass difference. In
that case the effective weak Hamiltonian is a simple
extension of (7),

HΔMK
W ¼ GFffiffiffi

2
p

X
q;q0¼u;c

VqdV�
q0sðC1Q

qq0
1 þ C2Q

qq0
2 Þ ð34Þ
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where the operators are generalizations of those in Eq. (8)

Qqq0
1 ¼ ðs̄iγLμdiÞðq̄jγLμq0jÞ and

Qqq0
2 ¼ ðs̄iγLμdjÞðq̄jγLμq0iÞ: ð35Þ

Since the components with q ≠ q0 do not contribute to the
matrix elements for K → πlþl− decays, one is able to
rewrite HW in Eq. (34) in the form given in Eq. (7).

B. Additional divergences as HWðxÞ
approaches Jð0Þ

In diagrams of the “loop” class in topologies S and E (cf.,
Fig. 9 and 10), there are insertions of the form illustrated in
Fig. 6. This has been studied in some detail in [1] and we
briefly summarize the conclusions. The vector current Jν to
which the photon couples is the conserved one whereas the
vector current JLμ from the weak Hamiltonian is a local one;
the label L represents Local. By power counting the loop
integral appears to be quadratically divergent. This is
reminiscent of the evaluation of the one-loop contribution
to the vacuum polarization in QED and QCD and just as in
those cases, electromagnetic gauge invariance implies that
there is a transversality factor of qμqν − q2gμν and the order
of divergence is reduced by two to a logarithmic one. [In
momentum space with a lattice action the Ward identity
qνJν ¼ 0 becomes q̂νJν ¼ 0, with q̂ν ≡ ð2=aÞ sinðaqν=2Þ].
This structure was verified and the divergence explicitly
calculated in [1] in one-loop lattice perturbation theory for
Wilson, clover and twisted-mass fermions. The logarithmic
divergence is mass independent, and so cancels exactly in
the GIM subtraction between the diagrams with u and
c-quark loops.
The above argument can be extended straightforwardly

to higher-order diagrams in which the gluons are contained
within the u or c quark loop in Fig. 6. The emission of one
or more gluons from the u or c propagators in the loop to be
absorbed by a quark or gluon propagator which is external
to the loop reduces the order of divergence, again leading to
a convergent loop integration as JνðxÞ approachesHW . The
remaining divergences are those which are associated with
the renormalization of HW .

We have seen that as a result of gauge invariance and the
GIM mechanism in the four-flavor theory there are no
additional UV divergences in

R
d4xhπjT½Jð0ÞHWðxÞ�jKi

coming from the short distance region x≃ 0. In the three-
flavor theory, gauge invariance still protects the correlation
function from quadratic divergences, but then there remains
a logarithmic term which can be removed using non-
perturbative renormalization techniques [25].

VI. CONCLUSIONS

Precision flavor physics will continue to be a central tool
in searches for new physics and in guiding and constraining
the construction of theories beyond the standard model.
Lattice QCD simulations play an important role in quanti-
fying the nonperturbative hadronic effects in weak proc-
esses. We must therefore continue to both improve the
precision of the determination of standard quantities (such
as leptonic decay constants, semileptonic form factors,
neutral meson mixing amplitudes etc.) and to extend the
range of physical quantities which become amenable to
lattice simulations. In this paper we propose a procedure for
the evaluation of the long-distance effects in the rare kaon
decay amplitudes K → πlþl−. These effects represent a
significant (and unknown) fraction of the amplitudes. In a
companion paper [2] we discuss the prospects for the
evaluation of long distance contributions to the rare decays
K → πνν̄ which will soon be measured by the NA-62
experiment at CERN and the KOTO experiment at J-PARC.
These decays are dominated by short-distance contribu-
tions, but given that they will soon be measured, it is
interesting also to determine the long-distance effects
which are expected to be of the order of a few percent
for Kþ decays.
In the previous sections we have explained how the

technical issues needed to perform the lattice simulations
can be resolved. Unphysical terms which grow exponen-
tially with the range of the time integration, generally
present when evaluating long-distance effects containing
intermediate states with energies which are less than those
of the external states, were shown in Sec. III C to be absent
or small. They could potentially arise from the presence of
intermediate states consisting of one, two or three pions and
we considered each of these cases in turn. Similarly, the
corresponding finite-volume corrections are small provided
that the invariant mass of the lepton-pair is smaller than
2Mπ . Ultraviolet effects were discussed in Sec. V. We
envisage using the lattice conserved electromagnetic vector
current Jμ so no renormalization of this operator is
required. In addition to the now standard renormalization
of the weak Hamiltonian HW , we need to consider the
possible additional ultraviolet divergences which may arise
when Jμ and HW approach each other. Electromagnetic
gauge invariance implies that no quadratic divergence is
present [1] and in the four-flavor theory the remaining
logarithmic divergence is canceled by the GIMmechanism.

FIG. 6. A potentially quadratically divergent insertion into the
S and E classes of diagram. Jν represents the conserved
electromagnetic current and JLμ;ij is the local vector current
ūjγμui or c̄jγμci from Q1;2.
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We conclude that it is now feasible to begin studying rare
kaon decays K → πlþl− in lattice simulations and in
particular to computing the long-distance contributions.
The next step is to figure out how to practically implement
the numerical calculation of these amplitudes. The main
challenge resides in the calculation of the 4-point function
in Eq. (18). One important problem is the evaluation of
diagrams containing closed loops which require the knowl-
edge of quark propagators from a point to itself for every
lattice site. Actual numerical calculations have been under-
way for the past two years [28] and we are preparing papers
describing exploratory results. Within the next five years
we would hope that the hadronic effects in these decays
would be quantified with good precision, thus motivating

the extension of the experimental studies of K → πνν̄
decays to include also K → πlþl− decays.
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APPENDIX: FEYNMAN DIAGRAMS
CONTRIBUTING TO THE RARE KAON DECAY

CORRELATOR

See Figs. 7–11.

FIG. 7. “Wing” class of diagram contributing to the rare kaon decay correlator (18). The diagrammatic conventions are the same as
those in Fig. 3.
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FIG. 8. “Connected” class of diagram contributing to the rare kaon decay correlator (18). The diagrammatic conventions are the same
as those in Fig. 3.The l quark is an up or down quark depending on the charge of the initial and final states.

FIG. 9. “Saucer” class of diagram contributing to the rare kaon decay correlator (18). The diagrammatic conventions are the same as
those in Fig. 3.
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