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We present results for the isovector and flavor diagonal tensor charges gu−dT , guT , g
d
T , and g

s
T needed to probe

novel tensor interactions at the TeV scale in neutron and nuclear β-decays and the contribution of the quark
electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine
ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2þ
1þ 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06, 0.09 and 0.12 fm and three
quark masses corresponding to the pion masses Mπ ≈ 130, 220 and 310 MeV. Using estimates from these
ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice
spacing, volume and light quarkmasses for the connected contributions. The final estimates of the connected
nucleon (proton) tensor charge for the isovector combination is gu−dT ¼ 1.020ð76Þ in theMS scheme at 2GeV.
The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are
calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging
technique. We find that the size of the disconnected contribution is smaller than the statistical error in the
connected contribution. This allows us to bound the disconnected contribution and include it as an additional
uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find guT ¼ 0.774ð66Þ, gdT ¼
−0.233ð28Þ and guþd

T ¼ 0.541ð67Þ. The strangeness tensor charge, that canmake a significant contribution to
the neutron EDM due to the large ratio ms=mu;d, is gsT ¼ 0.008ð9Þ in the continuum limit.
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I. INTRODUCTION

Precise estimates of the matrix elements of the isoscalar
and isovector tensor bilinear quark operators are needed to
obtain bounds on new physics from precision measure-
ments of β-decays and limits on the neutron electric dipole
moment (nEDM). The isovector charge, gu−dT , is needed to
probe novel tensor interactions in the helicity-flip part of
the neutron decay distribution [1] while the isoscalar
charges are needed to quantify the contribution of the
quark EDM to the nEDM and set bounds on new sources of
CP violation. In this paper, we give details of the simu-
lations of lattice QCD using the clover-on-HISQ approach
to provide first principle estimates of these matrix elements
with control over all sources of systematic errors.
Lattice QCD analysis of isovector charges of nucleons is

well developed (See the recent reviews [2–4]). In this work

we present precise estimates of this dominant contribution,
given by the connected diagrams, to the tensor charges, i.e.,
the insertion of the zero-momentum tensor operator in one
of the three valence quarks in the nucleon. Calculation of
the isoscalar charges is similar except that it gets additional
contributions from contractions of the operator as a vacuum
quark loop. This is called the disconnected contribution as
the quark loop and nucleon propagator interact only
through the exchange of gluons. The statistical signal in
the disconnected term is weak, so it is computationally
much more expensive. We find, on the four ensembles
analyzed, that the disconnected contributions of light
quarks are small and in most cases are consistent with
zero within errors. We, therefore, use the largest of these
estimates to bound the disconnected contribution and
include it as a systematic uncertainty in the presentation
of the final results. Similarly, using five ensembles we show
that the disconnected contribution of the strange quark, also
needed for the nEDM analysis, is even smaller but we are
able to extract a continuum limit estimate [5].
Throughout the paper, we present results for the tensor

charges of the proton, which by convention are called
nucleon tensor charges in literature. Results for the neutron
are obtained by the u ↔ d interchange. This paper is
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organized as follows. In Sec. II, we describe the parameters
of the gauge ensembles analyzed, the lattice methodology,
fits used to extract matrix elements within the ground state
of the nucleon and the renormalization of the operators. We
discuss the calculation of the connected diagram in Sec. III,
and of the disconnected contribution in Sec. IV. Our final
results are presented in Sec. Vand we end with conclusions
in Sec. VI. In the Appendix we present a summary of the
control over systematics of existing lattice calculations
using the FLAG quality criteria [6].

II. LATTICE PARAMETERS AND
METHODOLOGY

In this section we provide an overview of the calcula-
tional details. These include a description of the gauge
ensembles analyzed, a short review of the operators used to
calculate the two-point and three-point correlation func-
tions using clover fermions, the fit ansatz used to extract the
desired matrix elements from the correlation functions and
estimates of renormalization constants using the RI-sMOM
scheme.

A. Lattice parameters

In order to obtain estimates with a desired precision, it is
important to quantify all sources of systematic errors. For
matrix elements between nucleon ground states, these
include excited state contamination, finite lattice volume,
operator renormalization, discretization effects at finite
lattice spacing and extrapolations from heavier u and d
quarks. Since lattice generation is very expensive, it was,
therefore, expedient to use a set of existing gauge ensem-
bles that cover a sufficiently large range in lattice spacing
and light quark mass to study the continuum and chiral
behavior. The only set available to us that meets our
requirements are the ensembles generated using Nf ¼
2þ 1þ 1 flavors of highly improved staggered quarks
(HISQ) [7] by the MILC collaboration [8]. The parameters
of the nine ensembles used in this study are given in Table I.
In this paper we show that these ensembles allow us to
address issues of statistics, excited state contamination,
lattice volume, lattice spacing and the chiral behavior in the
calculation of the tensor charges.
Staggered fermions have the advantage of being com-

putationally cheaper and preserve an important remnant of
the continuum chiral symmetry. Their disadvantage is that
the spectrum has a four-fold doubling in the continuum
limit. This doubling symmetry (called the taste symmetry)
is broken at finite lattice spacing and this breaking
introduces additional lattice artifacts. Due to taste mixing,
staggered baryon interpolating operators couple, in general,
to a combination of octet (the nucleon) and the decuplet
(Delta) states. Furthermore, these baryon operators couple
to both parity states in addition to all radial excitations
of these. Thus, baryon correlation functions are more

complicated to analyze compared to Wilson-type fermions,
as they have a weaker statistical signal, the consequences of
taste mixing has to be resolved and one has to take into
account the oscillating signal due to contributions from
both parity states. Since having a good statistical signal
is a prerequisite to quantifying the various sources of
systematic errors, we have chosen to construct correlation
functions using Wilson-clover fermions, as these preserve
the continuum spin structure. This mixed-action, clover-
on-HISQ, approach, however, leads to a nonunitary lattice
formulation and at small, but a priori unknown, quark
masses suffers from the problem of exceptional configu-
rations discussed next.
Exceptional configurations are ones in which the clover

Dirac operator evaluated on HISQ configurations has near
zero modes. As a result, on such configurations
the inversion of the clover Dirac operator, which gives
the Feynman propagator, can fail to converge and/or the
corresponding correlation functions have an exceptionally
large amplitude depending on the proximity to the zero
mode. The presence of exceptional configurations biases
the results or gives rise to unphysically large fluctuations
and invalidates the results. In any lattice analysis based on a
unitary formulation, such as HISQ-on-HISQ or clover-on-
clover, such configurations are suppressed in the lattice
generation. Given an appropriately generated ensemble of
HISQ configurations, there is no basis for excluding any
configuration from the ensemble average in a clover-on-
HISQ calculation. Thus, these calculations should be done
only on ensembles without any exceptional configurations.
The presence of such exceptional configurations in a

clover-on-HISQ analysis is expected to increase on
decreasing the quark mass at fixed lattice spacing and
increase with the lattice spacing at fixed quark mass, i.e.,
the coarser the configurations, the more likely they are.
Consequently, smearing techniques used to reduce short
distance lattice artifacts also reduce the probability of
encountering exceptional configurations. To reduce lattice

TABLE I. Parameters of the (2þ 1þ 1) flavor HISQ lattices
generated by the MILC collaboration and analyzed in this study
are quoted from Ref. [8]. Symbols used in plots are defined along
with the ensemble ID. Finite size effects are analyzed in terms of
MπL with the clover-on-HISQ Mπ defined in Table II.

Ensemble ID a (fm) Msea
π (MeV) L3 × T MπL

a12m310 0.1207(11) 305.3(4) 243 × 64 4.55
a12m220S 0.1202(12) 218.1(4) 243 × 64 3.29
a12m220 0.1184(10) 216.9(2) 323 × 64 4.38
a12m220L 0.1189(09) 217.0(2) 403 × 64 5.49

a09m310 0.0888(08) 312.7(6) 323 × 96 4.51
a09m220 0.0872(07) 220.3(2) 483 × 96 4.79
a09m130 0.0871(06) 128.2(1) 643 × 96 3.90

a06m310 0.0582(04) 319.3(5) 483 × 144 4.52
a06m220 0.0578(04) 229.2(4) 643 × 144 4.41
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artifacts, we applied hypercubic (HYP) smearing [9] to all
HISQ configurations. To check for exceptional configura-
tions on these HYP smeared lattices, we monitor the
convergence of the quark propagator and the size of
fluctuations in correlations functions on each configuration.
These tests provided evidence for exceptional configura-
tions on the a ¼ 0.15 fm ensembles and on the a ¼
0.12 fm ensemble with Mπ ≈ 130 MeV. Consequently,
these ensembles, also generated by the MILC collabora-
tion, were excluded from our analysis. An earlier discus-
sion regarding exceptional configurations on these
ensembles is given in Ref. [10]. To reiterate, the nine
ensembles used in this study and described in Table I did
not present evidence of an exceptional configuration.
The parameters used in the analysis with clover fermions

are given in Table II. The Sheikholeslami-Wohlert coef-
ficient used in the clover action is fixed to its tree-level
value with tadpole improvement, csw ¼ 1=u30 where u0 is
the tadpole factor of the HYP smeared HISQ lattices.
The masses of light clover quarks were tuned so that the

clover-on-HISQ pion masses Mπ (see Table II) match the
HISQ-on-HISQ Goldstone ones,Msea

π , given in Table I. The
strange quark mass ms is tuned so that the resulting clover-

on-HISQ Mss̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb

s=mb
l

q
Msea

π , where mb
s=mb

l is the ratio

of bare strange and light quark masses used in the HISQ
generation, and is 5 for m310 lattices, 10 for m220 lattices
and 27 for m130 lattices. The resulting estimates for ms are
consistent with those obtained by matching to the kaon
mass [11].
All fits inM2

π to study the chiral behavior are made using
the clover-on-HISQ M2

π as correlation functions and thus
the observables have a greater sensitivity to it. Performing
fits using the HISQ-on-HISQ values of Msea

π
2 did not

change the estimates significantly.

Estimates of nucleon charges and form-factors based on
lower statistics subset of data presented here for the two
ensembles a12m310 and a12m220 have been published in
[10]. Results for the tensor charges presented in this paper
supersede those earlier estimates.

B. Lattice methodology

The two-point and three-point nucleon correlation func-
tions at zero momentum are defined as

C2pt
αβ ðtÞ ¼

X
x

h0jχαðt;xÞχ̄βð0; 0Þj0i; ð1Þ

C3pt
Γ;αβðt; τÞ ¼

X
x;x0

h0jχαðt;xÞOΓðτ;x0Þχ̄βð0; 0Þj0i; ð2Þ

where α and β are the spinor indices. The source time slice
is translated to t0 ¼ 0, t is the sink time slice, and τ is the
time slice at which the bilinear operator Oq

ΓðxÞ ¼
q̄ðxÞΓqðxÞ is inserted. The Dirac matrix Γ is 1, γ4, γiγ5
and γiγj for scalar (S), vector (V), axial (A) and tensor (T)
operators, respectively. In this paper, subscripts i and j on
gamma matrices run over f1; 2; 3g, with i < j. The
interpolating operator used to create/annihilate the nucleon
state, χ, is

χðxÞ ¼ ϵabc
�
qa1

TðxÞCγ5
1

2
ð1� γ4Þqb2ðxÞ

�
qc1ðxÞ ð3Þ

with color indices fa; b; cg, charge conjugation matrix C,
and q1 and q2 denoting the two different flavors of light
quarks. The nonrelativistic projection ð1� γ4Þ=2 is
inserted to improve the signal, with the plus and minus
sign applied to the forward (t > 0) and backward (t < 0)
propagation, respectively.

TABLE II. The parameters used in the calculation of clover propagators. The hopping parameter κ in the clover
action is given by 2κl;s ¼ 1=ðml;s þ 4Þ. ms is needed for the calculation of the strange quark disconnected loop
diagram. The Gaussian smearing parameters are defined by fσ; NKGg where NKG is the number of applications of
the Klein-Gordon operator and the width is controlled by the coefficient σ, in Chroma convention. Smearing
parameters used in the study of disconnected diagrams are given within square-brackets. ml is tuned to achieve

Mπ ¼ Msea
π , andms is tuned so thatMss̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb

s=mb
l

q
Msea

π . The error in the pion massMπ is governed mainly by the

uncertainty in the lattice scale given in Table I.

ID ml ms cSW Mval
π ðMeVÞ Smearing

a12m310 −0.0695 −0.018718 1.05094 310.2(2.8) f5.5; 70g ½f5.5; 70g�
a12m220S −0.075 � � � 1.05091 225.0(2.3) f5.5; 70g
a12m220 −0.075 −0.02118 1.05091 227.9(1.9) f5.5; 70g ½f5.5; 70g�
a12m220L −0.075 � � � 1.05091 227.6(1.7) f5.5; 70g
a09m310 −0.05138 −0.016075 1.04243 313.0(2.8) f5.5; 70g ½f6.0; 80g�
a09m220 −0.0554 −0.01761 1.04239 225.9(1.8) f5.5; 70g ½f6.0; 80g�
a09m130 −0.058 � � � 1.04239 138.1(1.0) f5.5; 70g
a06m310 −0.0398 −0.01841 1.03493 319.6(2.2) f6.5; 70g ½f6.5; 80g�
a06m220 −0.04222 � � � 1.03493 235.2(1.7) f5.5; 70g
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The nucleon charges gqΓ are defined as

hNðp; sÞjOq
ΓjNðp; sÞi ¼ gqΓūsðpÞΓusðpÞ ð4Þ

with spinors satisfying

X
s

usðpÞūsðpÞ ¼ pþmN: ð5Þ

These charges, gqΓ, can be extracted from the ratio of the
projected three-point function to the two-point function for
t ≫ τ ≫ 0

RΓðt; τÞ≡ hTr½PΓC
3pt
Γ ðt; τÞ�i

hTr½P2ptC2ptðtÞ�i

⟶
1

8
Tr½PΓð1þ γ4ÞΓð1þ γ4Þ�gqΓ: ð6Þ

Here P2pt ¼ ð1þ γ4Þ=2 is used to project out the positive
parity contribution and PΓ is defined below. Note that the
ratio in Eq. (6) becomes zero if Γ anticommutes with γ4, so
only Γ ¼ 1, γ4, γiγ5 and γiγj can survive. In this paper, we
present results for only the tensor channel, for which we
can demonstrate control over all systematic errors.
On inserting a bilinear quark operator between the

nucleon states to construct the three-point function, one
gets two classes of diagrams: (i) the bilinear operator is
contracted with one of the three valence quarks in the
nucleon, as shown in the left diagram of Fig. 1, and (ii) the
bilinear operator is contracted into a quark loop that is
correlated with the nucleon two-point function through the
exchange of gluons, as shown in the right diagram of Fig. 1.
These are called the connected and disconnected diagrams,
respectively.

The disconnected part of Eq. (6) can be written as

Rdisc
Γ ðt; τÞ ¼

�X
x

Tr½M−1ðτ;x; τ;xÞΓ�
�

−
hTr½PΓC2ptðtÞ�PxTr½M−1ðτ;x; τ;xÞΓ�i

hTr½P2ptC2ptðtÞ�i ;

ð7Þ

whereM is the Dirac operator. Note that the first term of the
right-hand side is zero when Γ ≠ 1, so it does not contribute
to the tensor charges. High precision measurements of
Eq. (7) requires improving the signal in the second term,
i.e., the correlation between the nucleon two-point func-
tions C2pt and the quark loop Tr½M−1Γ� as discussed in
Secs. IVA and IV B.
The charges gqΓ are extracted from the ratio RΓ by

appropriate choice of the projection operator PΓ. For the
calculation of connected contribution we use a single
projection operator PΓ ¼ P2ptð1þ iγ5γ3Þ to extract all
four tensor structures at the same time as the projection
is done at the time of the calculation of the sequential
propagator. For the disconnected diagram, the projection
operator is part of the final trace with the two-point
function, so there is no additional cost to using tensor
specific projectors. We, therefore, use

P1 ¼ P2pt;

Pγiγ5 ¼ P2ptγ5γi ði ¼ 1; 2; 3Þ;
Pγ1γ2 ¼ P2ptγ5γ3;

Pγ2γ3 ¼ P2ptγ5γ1;

Pγ1γ3 ¼ P2ptγ2γ5; ð8Þ

which make RΓðt; τÞ → gΓ for t ≫ τ ≫ 0 as they satisfy

FIG. 1. The connected (left) and disconnected (right) three-point diagrams needed to calculate the matrix elements of bilinear quark
operators in the nucleon state.
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1

8
Tr½PΓð1þ γ4ÞΓð1þ γ4Þ� ¼ 1: ð9Þ

For the disconnected diagrams, the statistics in the two-
point function are improved by including the backward
propagating baryons (t < 0) from each source point. In this
case P2pt ¼ ð1 − γ4Þ=2 is used to project out the negative
parity state and we multiply the tensor projection operators
Pγiγj in Eq. (8) by (−1) to match the convention used for
forward propagation.
The calculation of the two-point and the connected three-

point functions is carried out using the method described in
our previous study, Ref. [10]. These calculations use the
Chroma software package [12]. Part of the calculations are
done on clusters with graphic processing units (GPUs)
using QUDA library [13]. The source and sink baryon
operators are constructed using smeared quark propagators
to reduce the contamination from the excited states. We use
gauge-invariant Gaussian smeared sources to improve the
overlap with the ground state. Smearing is done by
applying the three-dimensional Klein-Gordon operator
∇2 a fixed number of times ð1 − σ2∇2=ð4NKGÞÞNKG . The
smearing parameters fσ; NKGg for each ensemble are given
in Table II.
To calculate the connected three-point function, we

analyze configurations in sets of four measurements, i.e.,
we generate four independent propagators Sos on each
configuration using smeared sources on four maximally
separated time slices ti¼1;4

src . For each Sos , the same smearing
operation is applied at all time slices to create the smeared
sink, and the two-point correlation function is calculated
using these smeared-smeared propagators Sss. Each of
these four smeared propagators are used to construct
sources for u and d quark propagators with the insertion
of zero-momentum nucleon state at time slices displaced by
a fixed tsep from the four source time slices ti¼1;4

src . These u
and d sequential sources (generated separately) at ti¼1;4

src þ
tsep are smeared again. The final coherent sequential
propagator Sseqc is then calculated using the sum of these
four smeared sources, i.e., the sequential propagator from
the four time slices is calculated at one go. The connected
three-point functions, over the four regions ti¼1;4

src to
ti¼1;4
src þ tsep, are then constructed by inserting the bilinear
operator between each of the original individual propagator
Sos from ti¼1;4

src and the coherent sequential propagator Sseqc

from ti¼1;4
src þ tsep [14]. The assumption one makes by

adding the four sources to produce a single coherent
sequential propagator is that the entire contribution to
the three-point function in any one of the four intervals
between ti¼1;4

src and ti¼1;4
src þ tsep is from baryon insertion at

tisrc þ tsep and the contribution of baryon sources at the
other three time slices tj≠isrc þ tsep in Sseqc goes to zero on
averaging over the gauge configurations. The coherent
sequential source method has the advantage that the
insertion of operators with different tensor structures and

various momenta and for all four source positions can be
done at the same time with tiny computational overhead.
To study and quantify the excited state contamination,

we repeat the calculation for multiple source-sink separa-
tions, tsep. Separate sequential u and d propagators are
calculated for each tsep analyzed. Thus, the total number of
inversions of the Dirac operator are 4þ 2 × Ntsep for each
set of four measurements on each configuration. Our
choices of tsep and the number of measurements made
on each ensemble (number of configurations times the
number of sources on each configuration) are given in
Table III.
The calculation of disconnected quark loop diagrams

using stochastic methods have a poor signal and requires
very high statistics. Because of the computational cost, the
calculations with light quarks have been done on the three
heaviest, Mπ ≈ 310 MeV, and the a12m220 ensembles;
and on five ensembles for the strange quark as listed in
Table VIII. For the evaluation of the disconnected dia-
grams, we obtain a stochastic estimate using the truncated
solver method (TSM) [15,16] with the all-mode-averaging
(AMA) technique [17] as described in Sec. IV.

C. Fits to correlation functions

To extract the desired nucleon charges, the matrix
elements of the bilinear quark operators need to be
calculated between ground state nucleons. On the lattice,
however, any zero-momentum correlation function defined
in Eq. (2) using the nucleon interpolation operator defined
in (3), has a coupling to the ground state nucleon, all
radially excited states, and multiparticle states with the
same quantum numbers. Operators constructed using
appropriately tuned smeared sources reduce the coupling
to excited states but do not eliminate it. We discuss two
synergistic strategies for removing the remaining excited
state contamination based on the fact that in Euclidean
time, the contributions from the excited states are expo-
nentially suppressed as (i) the distance between the source/

TABLE III. The values of source-sink time separations (tsep=a)
used, the total number of configurations analyzed (Nconf ) and
measurements made (Nmeas) for the two-point and connected
three-point function calculations.

ID tsep=a Nconf Nmeas

a12m310 f8; 9; 10; 11; 12g 1013 8104
a12m220S f8; 10; 12g 1000 24000
a12m220 f8; 10; 12g 958 7664
a12m220L 10 1010 8080

a09m310 f10; 12; 14g 881 7048
a09m220 f10; 12; 14g 890 7120
a09m130 f10; 12; 14g 883 7064

a06m310 f16; 20; 22; 24g 1000 8000
a06m220 f16; 20; 22; 24g 650 2600
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sink and the inserted operator increases and (ii) as the mass
gap, Mexcited −M0, increases. First, one can increase tsep.
Unfortunately, the signal also decreases exponentially as
tsep is increased so one is forced to compromise. In fact, the
values of tsep we have used reflect this compromise based
on the anticipated statistics on each ensemble. Additionally,
one can include excited states in the analysis of Eq. (2) as
discussed below.
We include one excited state in the analysis of the two-

and three-point functions. For operator insertion at zero
momentum, the data are fit using the ansatzë

C2ptðtf; tiÞ
¼ jA0j2e−M0ðtf−tiÞ þ jA1j2e−M1ðtf−tiÞ; ð10Þ

C3pt
Γ ðtf; τ; tiÞ
¼ jA0j2h0jOΓj0ie−M0ðtf−tiÞ

þ jA1j2h1jOΓj1ie−M1ðtf−tiÞ

þA0A�
1h0jOΓj1ie−M0ðτ−tiÞe−M1ðtf−τÞ

þA�
0A1h1jOΓj0ie−M1ðτ−tiÞe−M0ðtf−τÞ; ð11Þ

where the source positions are shifted to ti ¼ 0 and
tf ¼ tsep. The states j0i and j1i represent the ground and
“first” excited nucleon states, respectively. The four param-
eters, M0, M1, A0 and A1 are estimated first from the two-
point function data. We find that the extraction of M0 and
A0 is stable under change of the fit range, while that ofM1

and A1 is not. We, therefore, choose the largest range,
requiring that the values of, and the errors in, all four
parameters do not jump by a large amount on changing the
fit range. In all these fits, we findM1 ≈ 2M0, so it should be
considered an effective excited state mass as it is much
larger than the Nð1440Þ excitation. The results of these best
fits are given in Table IV.
We performed two independent measurements of the

two-point functions, and the corresponding M0, M1, A0

and A1 are given in Table IV. The second set of measure-
ments were obtained during the calculation of the dis-
connected diagrams using the AMA error reduction method
discussed in Sec. IVA. We find that the two estimates are
consistent within errors indicating no remaining bias with
our choice of parameters for the AMA.
Fits using the ansatz for the three-point function given in

Eq. (11) are used to isolate the two unwanted matrix
elements h0jOΓj1i and h1jOΓj1i. We find that the magni-
tude of h0jOΓj1i is about 16% of h0jOΓj0i and is
determined with about 20% uncertainty on all the ensem-
bles, whereas jh1jOΓj1ij ∼ h0jOΓj0i, but has Oð100%Þ
errors. Ideally, equally precise data should be generated
at each value of tsep. In our analysis, however, the same
number of measurements have been made for all tsep on
each ensemble, so errors increase with tsep as shown
in Fig. 2.
We reduce the contamination from higher excited states

in these fits to the two- and three-point functions by
excluding data points overlapping with, and adjacent to,
the source and sink time slices at which the excited state
contamination is the largest. For uniformity, we exclude 2,
3, 4 time slices on either end of the interval tsrc to tsrc þ tsep
in the three-point function for the a ¼ 0.12, a ¼ 0.09 and
a ¼ 0.06 fm ensembles, respectively. In physical units,
these excluded regions correspond to roughly the same
distance. This range of excluded points is consistent with
the starting time slice of the fits to the two-point correlators
given in Table IV, i.e., the time beyond which a two-state fit
captures the two-point function data. Changing the exclu-
sion time slice values to 3, 4, and 6 in both the fits changed
the final estimates of the charges by less than 1σ.
Including a second exited state in the analysis would

increase the number of matrix elements to be estimated from
the three-point function by three.Given that their contribution
would be smaller still, much higher statistics than generated
for this study would be needed. This is confirmed in practice;
the data are well fit with just the one excited state ansatz and
there is no sensitivity left to resolve three additional small

TABLE IV. The nucleon ground and first excited state masses and the corresponding amplitudes obtained from a two-state fit to the
nucleon two-point correlation function on each ensemble. The second set of estimates on the right are from an independent calculation
performed to calculate the disconnected diagrams using the AMA with 64 LP measurements (96 LP for a06m310). All errors are
estimated using the single-elimination Jackknife method using uncorrelated fits.

ID Fit Range aM0 aM1 A0 × 1011 A1 × 1011 Fit Range aM0 aM1 A0 × 1011 A1 × 1011

a12m310 2–15 0.6669(53) 1.36(11) 6.57(27) 6.28(61) 2–15 0.6701(16) 1.471(45) 6.845(82) 6.88(35)
a12m220S 2–15 0.6233(55) 1.42(13) 6.58(26) 6.94(93)
a12m220 2–15 0.6232(49) 1.45 (15) 6.58(24) 6.8(1.1) 2–15 0.6124(17) 1.294(37) 6.070(91) 6.34(23)
a12m220L 2–15 0.6046(71) 1.16(12) 5.68(37) 5.63(51)

a09m310 3–20 0.4965(46) 0.938(57) 14.12(75) 17.4(1.1) 3–20 0.4973(12) 0.971(22) 2.215(31) 2.374(74)
a09m220 3–20 0.4554(45) 0.925(53) 12.13(61) 18.5(1.3) 3–20 0.4524(24) 0.877(34) 1.812(56) 2.29(10)
a09m130 3–20 0.4186(76) 0.834(61) 9.74(89) 17.2(1.0)

a06m310 4–30 0.3245(30) 0.617(18) 0.566(30) 1.439(42) 4–30 0.3283(15) 0.630(10) 0.609(15) 1.513(29)
a06m220 5–30 0.3166(66) 0.644(54) 13.0(1.5) 38.5(5.4)
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parameters. This analysis, using the ansatzë given in Eq. (11)
and fitting the data at all tsep simultaneously, was called the
two-simRR method in Ref. [10].
Our overall conclusion is that, using the values of tsep and

the statistics for each ensemble given in Table III, and
assuming that only one excited state gives a significant
contribution, we are able to isolate and remove this
contamination as illustrated in Fig. 2. It turns out that on
all nine ensembles, the excited state contamination for gT is
small. It is worth remarking that this is not the case for gA as
discussed in [18].

D. Renormalization of operators

The calculation of the renormalization constants ZΓ of
the quark bilinear operators in the RI-sMOM scheme
[19,20] has been done on five ensembles: a12m310,
a13m220, a09m310, a09m220 and a06m310. In order to
translate the lattice results to the continuumMS scheme at a
fixed scale, say μ ¼ 2 GeV, used by phenomenologists we

follow the procedure described in Ref. [10]. To summarize,
the RI-sMOM estimate obtained at a given lattice four-
momentum q2 is first converted to the MS scheme at the
same scale (horizontal matching) using the one-loop
perturbative matching. This value is then run in the
continuum in the MS scheme to the fixed scale, 2 GeV,
using the two-loop anomalous dimension.
Ideally, one would like to establish a window Λ ≪ q ≪

c=a in the RI-sMOM scheme in which the ZΓ scales
according to perturbation theory. HereΛ is an infrared scale
below which nonperturbative effects are large and c=a
represents the cutoff scale beyond which lattice discretiza-
tion effects are large. The value of c is a priori unknown
and the expectation is that it is Oð1Þ. Within this window,
the scaling of ZT with q2 gets contributions from both the
anomalous dimension of the operator and the running of the
strong coupling constant αs. If this scaling is consistent
with that predicted by perturbation theory, then estimates
within this window would converge to a constant value
independent of q2 after conversion to MS scheme and run
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FIG. 2 (color online). The data for gu−dT and the results of the simultaneous fit using multiple tsep using the ansatz given in Eq. (11) to
isolate the excited state contribution. The seven figures are arranged as follows: the Mπ ≈ 310 MeV ensembles (top), Mπ ≈ 220 MeV
ensembles (middle) and theMπ ≈ 130 MeV ensemble (bottom). The solid black line and the grey band are the ground state (tsep → ∞)
estimate and error. The fits evaluated for different tsep are also shown.
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to a fixed scale, 2 GeV. As discussed in [10], HYP smearing
the lattice to reduce the ultraviolet noise in the measure-
ments also reduces the upper cutoff c=a for the calculation
of the renormalization constants, and a priori, we again do
not know by how much smearing shrinks the desired
window or whether it totally eliminates it on the various
0.06–0.12 fm lattices we have analyzed. Below we sum-
marize the tests performed and state the results.

(i) We first test the data for the Z’s in the RI-sMOM
scheme to see if they exhibit the desired perturbative
behavior for HYP smeared lattices by calculating the
logarithmic derivative of Zðq2Þ and comparing it to
the anomalous dimension. The data show evidence
of such a window in the calculation of the vector,
axial and tensor renormalization constants, but not
for the scalar. In this paper, we only need ZT and
ZV , so we next describe how we obtained final
estimates for these and assigned a conservative
error that covers the various sources of systematic
uncertainties.

(ii) We find that the ratios of renormalization constants,
ZΓ=ZV , have less fluctuations and are flatter in
q2 as illustrated in Fig. 3. This improvement is
presumably due to the cancellation of some of the
systematic uncertainties in the ratio, including, for
example, those due to the breaking of the conti-
nuum Lorentz symmetry to the hypercubic rotation
group on the lattice that impacts the calculation
of the Z-factors. On each ensemble, the final
renormalized charges can be constructed from these
ratios as ðZΓ=ZVÞ × ðgΓ=gu−dV Þ using the identity
ZVgu−dV ¼ 1. Because of the better signal and result-
ing fits, we use the estimates from the ratios method
for our central values and include the difference
between these and estimates from the direct
calculation, ZΓgΓ, as an estimate of the system-
atic error.

(iii) To take into account the remaining dependence on
q2 of the estimates in the MS scheme at 2 GeV, we
carry out the two analysis strategies proposed in
Ref. [10]. In the first, we obtain the value and error
from the fit to the data using the ansatz
c=q2 þ Z þ αq. We find that these fits capture the
data and the extrapolations Z þ αq are shown as
dashed lines in Fig. 3.

(iv) A slightly modified version of the second method is
used: we now choose the q2 in the RI-sMOM
scheme by the condition qia − sinðqiaÞ ¼ 0.05
based on bounding the discretization error and the
error in Z is estimated from the spread in the data
over a range in q2 about this point. This choice
corresponds to q2 ¼ 5, 9 and 21 GeV2 for the
a ¼ 0.12, 0.09 and 0.06 fm ensembles, respectively.
The corresponding ranges for determining the error
were taken to be 4–6, 8–10 and 18–24 GeV2 over

which the data show a reasonably flat behavior as
shown in Fig. 3.

(v) For the final estimates we take the average of the two
methods. The error is taken to be half the difference,
and rounded up to be conservative.

(vi) On the ensembles at the two lattice spacings a ¼
0.12 and 0.09 fm, we found no significant difference
in the estimates of the renormalization constants for
the two different quark masses (Mπ ¼ 310 and
220 MeV ensembles). A common fit captured both
data sets, as shown in Fig. 3, and was used to extract
our “quark mass independent” estimates.

(vii) The entire calculation, matching to the MS scheme,
running to 2 GeV and the final fits for the two
strategies, was done using 200 bootstrap samples
because the number of configurations analyzed in
ensembles a12m310 and a12m220 (a09m310 and
a09m220) are different.
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FIG. 3 (color online). Data for ZT (upper) and ZT=ZV (lower)
after translation to the MS scheme at 2 GeV as a function of the
lattice momentum q. The lattice calculation was done on five
ensembles in the RI-sMOM scheme. The a ¼ 0.12 fm
(a ¼ 0.09 fm) fit are to the combination of a12m310 and
a12m220 (a12m310 and a12m220) data as there is no detectable
dependence on the quark mass. The a ¼ 0.06 fm fit is to the
a06m310 ensemble data. The data were fit using the ansatz
c=q2 þ Z þ αq and the dashed lines show the extrapolation
Z þ αq.
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The final mass-independent renormalization constants at
the three lattice spacings needed to construct the renor-
malized charges in the two ways: (i) ZΓgΓ and (ii) from the
product of the ratios ðZΓ=ZVÞ × ðgΓ=gu−dV Þwith the identity
ZVgu−dV ¼ 1 are given in Table V. The errors in the
renormalization factors, ZT and ZT=ZV , are added in
quadratures to those in the extraction of the bare nucleon
charges gbareT and gbareT =gbareV , respectively, to get the final
estimates of the renormalized charges given in Table VII.

E. Statistical analysis of two-point
and three-point functions

We carried out the following statistical analyses of the
data on each ensemble to look for anomalies. We divided
the data for a given ensemble into bins of about 1000
measurements (by source points and by configuration
generation order) to test whether the ensembles consist
of enough independent configurations. For bin sizes >5
configurations, the errors in the mean decreased as

ffiffiffiffi
N

p
,

i.e., consistent with our analysis of the autocorrelation
coefficient of about 5 configurations (about 25 molecular
dynamics steps). Also, the error computed with data
averaged over S source points on each configuration is
smaller by

ffiffiffi
S

p
compared to the error in the data from any

one of the source position.
Estimates from bins of about 1000 measurements,

however, fluctuated by up to 3σ in some cases. This
variation is much larger than expected based on the bin
sizes. To determine whether the data in the various bins
satisfy the condition of being drawn from the same
distribution, we performed the Kolmogorov-Smirnov
(K-S) test on quantities that have reasonable estimates
configuration by configuration, for example, the isovector
vector charge gu−dV and the value of the two-point function
at a given time separation. The K-S test showed acceptable
probability of the various bins being drawn from the same
distribution. Histograms of the data showed no long tails in
the distribution but exhibit variations in the sample dis-
tribution that becomes increasingly Gaussian as the bin size
was increased to the full sample size.
We find these 2–3σ fluctuations both when the data are

binned by the source position and when the configurations
are divided into two halves according to the molecular
dynamics generation order. Such fluctuations are apparent

in the a06m310 and the a06m220 ensemble data.
Comparing the data for different charges (axial, scalar
and tensor), we found that the effect is least significant (less
than 1σ) for the tensor charge and worst for the vector
charge gV ; it is, presumably, most evident in gV because it
has the smallest statistical errors. We offer two possible
explanations. One, the large variation observed in the bin
mean indicates that the ensembles of Oð1000Þ configura-
tions (spanning a total of 5000-6000 molecular dynamics
evolution steps in the generation of thermalized HISQ
lattices we have used) have not covered enough phase space
and bin errors are consequently underestimated. The other
explanation is that, since we used the same four or eight
source positions on all configurations in an ensemble, the
data for fixed source position is more correlated. Our
ongoing tests confirm that using random but well-separated
source positions on each configuration is a better strategy.
Finally, based on the convergence of the bin distributions to
a Gaussian on increasing the bin size to the full sample and
the lack of evidence of long tails, makes us confident that
the final error estimates are reliable.
Our overall conclusion about statistics is that while

Oð10; 000Þ measurements on these ensembles of
Oð1000Þ configurations are sufficient for extracting the
tensor charge with few percent uncertainty, one will need a
factor of ten or more in statistics for obtaining the scalar
charge with similar accuracy. This goal is currently being
pursued using the AMA method discussed in Sec. IV.
Lastly, we performed both correlated and uncorrelated

fits to the nucleon two-point function data. In all cases in
which the correlated fits were stable under changes in the fit
ranges and had reasonable χ2, the two fits gave overlapping
estimates. Since correlated fits did not work in all cases, all
statistical errors in the two- and three-point correlation
functions were, thereafter, calculated using a single elimi-
nation jackknife method with uncorrelated fits performed
on each jackknife sample.

III. CONTRIBUTION OF THE
CONNECTED DIAGRAM

Estimates of the bare and renormalized charges on the
nine ensembles at different lattice spacings, light quark
masses and lattice volumes are given in Tables VI and VII.

TABLE V. The mass independent renormalization constants ZT , ZV and the ratio ZT=ZV in the MS scheme at 2 GeVat the three values
of the lattice spacings used in our calculations. These estimates are obtained using the fit 1=q2 þ Z þ αq (left) and as an average over an
interval in q2 (middle) as described in the text. For the final estimates, shown in the last 3 columns, we take the average of the two
methods and half the difference (rounded up) for the errors.

ID ZT ZV ZT=ZV ZT ZV ZT=ZV ZT ZV ZT=ZV

a12 0.898(4) 0.890(4) 1.003(3) 0.995(10) 0.918(12) 1.073(2) 0.95(5) 0.90(2) 1.04(4)
a09 0.962(6) 0.911(9) 1.045(5) 1.026(6) 0.938(6) 1.089(2) 0.99(4) 0.925(15) 1.07(3)
a06 1.005(6) 0.931(4) 1.072(5) 1.071(5) 0.961(5) 1.1134(6) 1.04(4) 0.945(15) 1.09(3)
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To extrapolate these estimates to the physical point, i.e.,
the continuum limit (a → 0), the physical pion mass
(Mπ0 ¼ 135 MeV) and the infinite volume limit
(L → ∞), we explored the four parameter ansatz

giT ¼ ci1

�
1þ M2

π

ð4πFπÞ2
fi
�
Mπ

μ

��
þci2aþ ci3ðμÞM2

π þ ci4e
−MπL; ð12Þ

where we have included the leading chiral logarithms [21].
The loop functions fiðμ=MπÞ for the two isospin channels are

fuþd ¼ 3

4

�
ð2þ 4g2AÞ log

μ2

M2
π
þ 2þ g2A

�

¼ 2.72þ 6.38 log
μ2

M2
π
; ð13Þ

fu−d ¼ 1

4

�
ð2þ 8g2AÞ log

μ2

M2
π
þ 2þ 3g2A

�

¼ 1.72þ 3.75 log
μ2

M2
π
; ð14Þ

where we use μ ¼ Mρ ¼ 770 MeV for the renormalization
scale and gA ¼ 1.276. The extrapolation ansatz is taken to be
linear in a because the discretization errors in the clover-on-
HISQ formalism with unimproved operators start at OðaÞ.
Similarly, we have kept only the leading finite volume
correction term, e−MπL. In Fig. 4, we compare the fit obtained
usingEq. (12)with that using the simpler isospin independent
four parameter ansatz without the chiral logarithm:

gTða;Mπ; LÞ ¼ c1 þ c2aþ c3M2
π þ c4e−MπL: ð15Þ

Both fits have reasonable χ2=dof and the estimates at the
physical point are consistent. The fit including the chiral
logarithm would naively indicate that gT should decrease in
value with increasing M2

π for Mπ > 300 MeV. Such a
behavior is not seen in the global data shown in Fig. 12.
We conclude that the large curvature due to the chiral
logarithm seen in Fig. 4 is most likely due to the number
and accuracy of the data and of keeping just the leading chiral
correction. Also, the error estimate from the fit using the
simpler ansatz given in Eq. (15) is more conservative and
covers the full range of both fits. We, therefore, use Eq. (15)
for all further analyses in this paper.

TABLE VII. The renormalized connected (gT ) and disconnected (gdiscT ) contributions to the tensor charges of the proton on the nine
ensembles. The errors are obtained by adding in quadratures the statistical errors given in Table VI in the bare charges to the errors in the
renormalization constants given in Table V.

ID gcon;uT gcon;dT gcon;u−dT gcon;uþd
T gdisc;lT gdisc;sT

a12m310 0.852(37) −0.215ð12Þ 1.066(46) 0.637(31) −0.0121ð23Þ −0.0040ð19Þ
a12m220S 0.857(43) −0.209ð19Þ 1.066(50) 0.649(44) � � � � � �
a12m220 0.860(40) −0.215ð15Þ 1.075(48) 0.644(36) −0.0037ð40Þ −0.0010ð27Þ
a12m220L 0.840(37) −0.194ð12Þ 1.033(45) 0.647(33) � � � � � �
a09m310 0.840(28) −0.2051ð98Þ 1.045(34) 0.634(25) −0.0050ð22Þ −0.0005ð21Þ
a09m220 0.836(28) −0.216ð10Þ 1.053(34) 0.619(25) � � � −0.0021ð54Þ
a09m130 0.809(40) −0.222ð20Þ 1.032(44) 0.587(45) � � � � � �
a06m310 0.815(29) −0.199ð10Þ 1.015(34) 0.617(27) −0.0037ð65Þ −0.0005ð55Þ
a06m220 0.833(52) −0.264ð22Þ 1.099(59) 0.569(55) � � � � � �

TABLE VI. The bare connected (gconT ) and disconnected (gdiscT ) contributions to the tensor charges of the proton on the nine ensembles.
Dots indicate that those ensembles have not been simulated. The isovector vector charge gu−dV is used to construct ratios for noise
reduction as described in the text.

ID gcon;uT gcon;dT gcon;u−dT gcon;uþd
T gdisc;lT gdisc;sT gcon;u−dV

a12m310 0.875(18) −0.2208ð93Þ 1.096(21) 0.655(20) −0.0124ð23Þ −0.0041ð20Þ 1.069(9)
a12m220S 0.873(26) −0.212ð17Þ 1.086(26) 0.661(36) � � � � � � 1.059(12)
a12m220 0.888(22) −0.222ð12Þ 1.111(24) 0.665(26) −0.0038ð41Þ −0.0010ð28Þ 1.074(11)
a12m220L 0.859(18) −0.198ð10Þ 1.058(19) 0.662(21) � � � � � � 1.065(7)

a09m310 0.829(16) −0.2025ð80Þ 1.031(19) 0.626(18) −0.0050ð21Þ −0.0005ð21Þ 1.056(8)
a09m220 0.820(16) −0.2120ð79Þ 1.033(17) 0.608(18) � � � −0.0021ð53Þ 1.050(9)
a09m130 0.779(33) −0.214ð18Þ 0.993(33) 0.565(42) � � � � � � 1.029(16)

a06m310 0.778(18) −0.1898ð86Þ 0.969(20) 0.588(21) −.0035ð62Þ −0.0005ð52Þ 1.040(8)
a06m220 0.759(43) −0.241ð19Þ 1.002(46) 0.519(48) � � � � � � 0.993(18)
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The results of the fits using Eq. (15) and the
extrapolated value are shown in Fig. 5 separately for
operator insertion on the u and d quarks in the nucleon.
We find that the guT contribution is larger and essentially
flat in all three variables (lattice spacing, pion mass and
volume), while the gdT connected contribution is much
smaller and shows a slightly larger relative spread. The
spread in gdT on the a ¼ 0.06 fm lattices is an example of
the unexpectedly large statistical fluctuations we men-
tioned in Sec. II E that will require higher statistics to
resolve. The final renormalized extrapolated values for
the proton charges are

guTðconÞ ¼ 0.774ð65Þ;
gdTðconÞ ¼ −0.233ð25Þ: ð16Þ

The χ2=dof is 0.1 and 1.6 for guT and gdT , respectively,
with dof ¼ 5. In performing the fits, we assume that the
error in each data point has a Gaussian distribution even
though the quoted 1σ error is a combination of the
statistical error and the systematic error coming from the
calculation of the renormalization factor ZT. The fits to
the isovector guT − gdT and the connected part of the
isoscalar guT þ gdT data using Eq. (15), are shown in
Fig. 6. Our final estimates are

FIG. 5 (color online). Simultaneous extrapolation to the physical point (a → 0, Mπ → Mphys
π0

, and L → ∞) using Eq. (15), of the
connected contributions to the flavor diagonal nucleon (proton) tensor charges, guT (upper) and gdT (lower), renormalized in the MS
scheme at 2 GeV. The physical values given by the fit are marked by a red star. The rest is the same as in Fig. 4.

FIG. 4 (color online). Comparision of the simultaneous fits versus a, M2
π and MπL to the iso-vector charge, gu−dT , data using Eq. (12)

(top) with the simpler version without the chiral logarithms given in Eq. (15) (bottom). The data symbols are defined in Table I. The fit is
given by the red line and the physical value after extrapolation to the continuum limit (a → 0), physical pion mass (Mπ → Mphys

π0
) and

infinite volume (L → ∞) is marked by a red star. The error band is shown as a function of each variable holding the other two at their
physical value. The data are shown projected on to each of the three planes.
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gu−dT ðconÞ ¼ 1.020ð76Þ;
guþd
T ðconÞ ¼ 0.541ð62Þ: ð17Þ

with a χ2=dof ¼ 0.4 and 0.2, respectively.

IV. CONTRIBUTION OF THE
DISCONNECTED DIAGRAM

In Sec. II B we showed that to estimate the disconnected
contribution, we need to calculate two quantities at zero-
momentum—the nucleon two-point function and the
contraction of the bilinear fermion operator into a quark
loop—and measure their correlation. These two calcula-
tions are described below.

A. Two-point function

The high statistics calculation of the two-point function
with smeared sources was redone using the all-mode-
averaging (AMA) technique [17] because quark propaga-
tors from the earlier connected three-point function study
were too expensive to store. To implement AMA, we again
choose four different source time slices separated by LT=4
on each configuration. On each of these time slices we
calculate the two-point correlator by placing NLP ¼ 15 low
precision (LP) sources, for a total of 4 × 15 ¼ 60 sources
per configuration. This estimate is a priori biased due to the
LP calculation. In addition, on each of these four time slices
we place one high precision (HP) source, i.e., NHP ¼ 4
such sources per configuration, from which we calculate a
LP and a HP correlator. These four HP and LP correlators
are used to correct the bias in the 60 LP estimates, i.e., on
each configuration, the two-point function is given by

C2pt;impðt; t0Þ ¼
1

NLP

XNLP

i¼1

C2pt
LP ðt; t0;xLP

i Þ

þ 1

NHP

XNHP

i¼1

½C2pt
HPðt; t0;xHP

i Þ−C2pt
LP ðt; t0;xHP

i Þ�;

ð18Þ

where C2pt
LP and C2pt

HP are the two-point correlation function
calculated in LP and HP, respectively, and xLP

i and xHP
i are

the two kinds of source positions.
The basic idea of AMA is that, in the low-precision

evaluation, the LP average [first term in Eq. (18)] is biased,
and this bias depends predominately on low modes of the
Dirac operator that are independent of the source position
and can be corrected by the second term. Thus, we get an
unbiased estimate from 60 LP source points for the
computational cost of (60þ 4) LP and 4 HP calculations.
In our current implementation, 15 LP measurements cost
the same as one HP when using the multigrid algorithm for
inverting the Dirac matrix [22]. [On the a06m310 ensemble
we used (92þ 4) LP and 4 HP sources and the errors
decreased by a factor of ∼1.2 compared to (60þ 4) LP
sources.] Comparing the errors in the estimates for masses
given in Table IV, we find that the AMA errors are a factor
of 2–4 times smaller than those from the connected study
(all HP measurements). Since this improvement is based on
comparing 120 LP (we effectively doubled the LP statistics
by analyzing both the forward and backward propagation
of the nucleon) versus 8 HP measurements, we conclude
that the correlations between the 120 LP measurements on
each configuration are small.
If we assume that the variance of both the LP and HP

measurements is the same and given by σ and the

FIG. 6 (color online). Simultaneous extrapolation to the physical point (a → 0, Mπ → Mphys
π0

, and L → ∞) using Eq. (15) of the
connected contributions to the isovector gu−dT (upper) and isoscalar guþd

T (lower) nucleon (proton) tensor charges renormalized in the MS
scheme at 2 GeV. The overlay in the middle upper figure, with the dashed line within the thin gray band, is the fit to the data versusM2

π

assuming no dependence on the other two variables. Rest is the same as in Fig. 4.
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correlation between the HP and LP measurements from the
NHP points, C ¼ σ2NP;LP=σ

2, is small, then the statistical
error in Eq. (18) is given by [17]

σimp ≈ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NLP
þ 2

NHP
ð1 − CÞ

s
: ð19Þ

The second term in the square root becomes smaller as the
LP estimate approaches the HP estimate and the correlation
factor C → 1. By controlling NLP, NHP and C, we can
minimize the total error for a fixed computational cost.
To speed up the AMAmethod we exploit the fact that the

same Dirac matrix is inverted multiple times1 on each
configuration. It is, therefore, efficient to precondition the
matrix by deflating the low-eigenmodes. We implement
such improvement using the multigrid solver [22,23]
which has deflation built in. To obtain the LP estimate
of the two-point function, we truncate the multigrid solver
using a low-accuracy stopping criterion: the ratio
(rLP ≡ jresiduejLP=jsourcej) is chosen to be 10−3 for all
the ensembles. Our final analysis of the masses, amplitudes
and matrix elements, however, shows that this stopping
criteria was overly conservative as the bias correction term
is negligible compared to the statistical errors.

B. Disconnected quark loop

For the evaluation of the quark loop termP
xTr½M−1ðτ;x; τ;xÞΓ�, we adopt the stochastic method

accelerated with a combination of the truncated solver
method (TSM) [15,16], the hopping parameter expansion
(HPE) [24,25] and the dilution technique [26–28]. To
obtain a stochastic estimate of the quark loops, consider
a set of random complex noise vectors jηii for
i ¼ 1; 2; 3;…; N, having color, spin and spacetime com-
ponents with the following properties:

1

N

XN
i¼1

jηii ¼ O
�

1ffiffiffiffi
N

p
�
; ð20Þ

1

N

XN
i¼1

jηiihηij ¼ 1þO
�

1ffiffiffiffi
N

p
�
: ð21Þ

We choose complex Gaussian noise vectors, i.e., we fill all
the spin, color and spacetime components of the vector with
ðrr þ iriÞ=

ffiffiffi
2

p
, where rr and ri are Gaussian random

numbers, because they give marginally smaller statistical
error than ZN random noise when combined with the HPE.
These random vectors are used as sources for the

inversion of the Dirac matrix. Then, from the solutions
jsii of the Dirac equation,

Mjsii ¼ jηii; ð22Þ

the inverse of the Dirac matrix is given by

M−1 ¼ 1

N

XN
i¼1

jsiihηij þM−1
�
1 −

1

N

XN
i¼1

jηiihηij
�

ð23Þ

¼ 1

N

XN
i¼1

jsiihηij þO
�

1ffiffiffiffi
N

p
�
: ð24Þ

The stochastic estimate of the zero-momentum insertion of
the operator contracted into a quark loop is then given by

X
x

Tr½M−1ðτ;x; τ;xÞΓ� ≈ 1

N

XN
i¼1

hηijτΓjsiiτ; ð25Þ

where jηiτ is a vector whose t ¼ τ components are filled
with random numbers, and the entries on other time slices
are set to zero.
In the estimation of the inverse of the Dirac matrix by

using random sources, Eq. (24), one can use the mixed-
precision technique called the truncated solver method
(TSM) [15,16]. The idea of the TSM is the same as the
AMA used in the evaluation of the two-point function.
Consider two kinds of solution vectors of Eq. (22) for a
given random source jηii with different precision: jsiiLP
and jsiiHP, where jsiiLP is the low precision computation-
ally cheap estimate of the solution, while jsiiHP is the high
precision solution. The low precision estimate, jsiiLP, was
obtained by truncating the multigrid inverter at
rLP ¼ 5 × 10−3. The bias with this choice of rLP will be
discussed later in this section.
By using the LP and HP solutions, the unbiased

estimator of M−1 is again given by

M−1
E ¼ 1

NLP

XNLP

i¼1

jsiiLPhηij

þ 1

NHP

XNLPþNHP

i¼NLPþ1

ðjsiiHP − jsiiLPÞhηij: ð26Þ

The first term in the right-hand-side (r.h.s) is the LP
estimate of M−1 while the second term in the r.h.s corrects
the bias. As described in the case of the two-point function
estimation, the total statistical error of M−1

E scales as
Eq. (19). In other words, there are again two sources of
statistical error inM−1

E : one is the LP estimate that scales asffiffiffiffiffiffiffiffiffiffiffiffiffi
1=NLP

p
, and the other is the correction term that scales asffiffiffiffiffiffiffiffiffiffiffiffiffi

1=NHP

p
. The size of the statistical error in the correction

term is determined by the correlation between jsiiHP
and jsiiLP.
In the TSM, there are three parameters we can tune to

minimize the statistical error for a given computation cost:
1The number of inversions of the Dirac matrix per configu-

ration are 12 × ðNLP þ NHPÞ.
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NLP, NLP=NHP and the LP stopping criteria rLP. Note that
onceNLP=NHP and rLP are determined, the total error scales
as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=NLP

p
. Hence NLP determines the size of the error,

and NLP=NHP and rLP determine the efficiency of the
estimator in terms of the computational cost. To maximize
the efficiency, we tune the NLP=NHP and rLP so that the size
of the error from the correction term is much smaller as it
minimizes the computation time. In this study, we use
NLP=NHP ¼ 30 or 50 (See Table. VIII) and rLP ∼ 5 × 10−3.
With this accuracy, we find that the bias correction term is
∼10% of the final estimate of glTðdiscÞ and about half of the
statistical error.
We improve the TSM by using the hopping parameter

expansion (HPE) [24,25] as a preconditioner to reduce the
statistical noise. In the HPE one writes the clover Dirac
matrix as

M ¼ 1

2κ
ð1 − κDÞ; ð27Þ

where κ is the hopping parameter. The inverse can then be
written as

1

2κ
M−1 ¼ 1þ

Xn−1
i¼1

ðκDÞi þ ðκDÞn 1

2κ
M−1: ð28Þ

By taking n ¼ 2, the disconnected quark loop is given by

Tr½M−1Γ� ¼ Tr½ð2κ1þ 2κ2Dþ κ2D2M−1ÞΓ�: ð29Þ

Here, the first two terms of the r.h.s do not contribute to the
nucleon tensor charge because TrΓ ¼ TrðΓγμÞ ¼ 0. As a
result, the only nontrivial term that we need to calculate is
Tr½κ2D2M−1Γ�. Because the two leading terms, which
would otherwise contribute only to the noise, are removed
from the stochastic estimation, HPE works as an error
reduction technique. Tests using the a12m310 ensemble
show that the statistical error of the disconnected contri-
bution to the tensor charge is reduced by a factor of about
2.5 with HPE.

As shown in Eq. (23), the noise in the stochastic
estimation for M−1 is proportional to M−1, whose magni-
tude decreases exponentially as the spacetime distance
between source and sink increases. Hence it is possible to
reduce the statistical noise by placing noise sources only on
part of the whole time slice, choosing maximally separated
points, and fill the other points on the time slice with zero.
This procedure divides the time slice intom subspaces, and
the answer for the full time slice is obtained by combining
results of the m subspaces. The computational cost
increases by a factor of m because Dirac inversions are
needed for each noise source vector defining a subspace.
Hence this technique is useful when the reduction in noise
wins over the increase in computational cost. This is called
the time dilution method [26–28]. Unfortunately, we find
that the increase in computational cost is equal to or larger
than the gain from the reduction of statistical noise for the
nucleon charges. Hence we place random sources on all
points of a time slice and for each time slice that we want to
evaluate the operator on.
There is one more symmetry that can be used for noise

reduction: γ5-hermiticity of clover Dirac operator,
M† ¼ γ5Mγ5. Because of this symmetry, the quark loop
for tensor channel should be pure imaginary, and the nucleon
two-point function is real. Hence we set the real part of the
quark loop to zero when constructing the correlation
function and averaging over the configurations in Eq. (7).
To increase the statistics, we average over the three

possible combinations of γiγj and forward/backward
propagators. The final values of tsep investigated, the
displacement τ with respect to the source time slice of
the two-point correlator on which the operator was inserted,
the statistics and the number of random noise sources used
on each configuration are given in Table VIII.

C. Results for the disconnected contributions

The calculation of the disconnected diagram is computa-
tionally expensive so it has been done on only four
ensembles: a12m310, a12m220, a09m310 and a06m310.

TABLE VIII. The parameters used in the study of the disconnected diagrams. The source-sink time separations analyzed (tsep), the
time slices (τ) on which the operator is inserted as explained in the text, the number of configurations analyzed (Nconf ) and the number of
random noise sources (NLP) used on each configuration. Here fA ∼ Bg denotes the set of consecutive integers from A to B. The number
NLP=NHP gives the ratio of the number of low to high precision calculations done. The LP criteria for stopping the Dirac matric inversion
was set to rLP ¼ 0.005. For the associated two-point function calculation, we used AMAwith 64 LP and 4 HP measurements on each
configuration and the results for the masses and amplitudes are given in Table IV.

ID tsep=a τ=a Ndisc;l
conf Ndisc;s

conf Ndisc;l
LP Ndisc;s

LP NLP=NHP

a12m310 f8 ∼ 14g 3; 4;…; 11 1013 1013 5000 1500 30
a12m220 f8 ∼ 14g 3; 4;…; 11 958 958 11000 4000 30

a09m310 f10 ∼ 16g 6, 7, 8, 9 1081 1081 4000 2000 30
a09m220 f10 ∼ 16g 5, 6, 7, 8, 9 � � � 200 10000 8000 50

a06m310 f16 ∼ 24g 6; 8; 10;…; 18 100 200 10000 5000 50
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These four ensembles provide an understanding of the
discretization errors and of the behavior as a function of the
quark mass. To get the full contribution of the quark EDM
to the nucleon EDM, we also need to evaluate the
disconnected diagram with a strange quark loop. Since
the calculation with the strange quark are computationally
cheaper, we have also analyzed a fifth ensemble, a09m220,
for that estimate.
We use the fit ansatz given in Eq. (11), i.e., the same

two-state-fit method used to fit the data for the connected

three-point diagrams, to extract the ground state results for
the disconnected contribution. The data and the results of
the fit for the light and strange quark loop on the a12m310
ensemble are shown in Figs. 7 and 8, respectively. We find
significant contribution from excited states only on the
a12m310 ensemble for light quark disconnected diagram—
it is large for tsep ¼ 8, but by tsep ¼ 12 the data agree with
the final extrapolated value. The peculiar pattern seen in the
a06m310 ensemble is most likely due to the small number
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FIG. 7 (color online). Fits, using Eq. (11), to isolate the excited state contribution in the light quark disconnected diagram, gl;discT , are
shown for the four ensembles analyzed. The solid black line and the grey band are the ground state estimate and error. The data and
results of the fit for different tsep are also shown.
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FIG. 8 (color online). Fits, using Eq. (11), to isolate the excited state contribution in the strange quark disconnected diagram, gs;discT , are
shown for the five ensembles analyzed. The solid black line and the grey band are the ground state estimate and error. The data and
results of the fit for different tsep are also shown.

ISOVECTOR AND ISOSCALAR TENSOR CHARGES OF THE … PHYSICAL REVIEW D 92, 094511 (2015)

094511-15



(100 [200]) of configurations analyzed as given in
Table VIII.
Including the disconnected diagrams also requires calcu-

lating their contribution to the renormalization constants in
the RI-sMOM scheme. We have not done this due to the
poor signal in disconnected diagrams and use the same
renormalization factor as calculated for the connected
diagrams. In perturbation theory, the disconnected diagrams
come in at higher order, so their contributions are expected to
be small. Furthermore, the disconnected quark loop con-
tributions themselves are very small for the nucleon tensor
charges, so we expect the impact of the small difference in
the renormalization factor due to neglecting the disconnected
piece in ZT will change the final estimate by much less than
the statistical error quoted in Table VI. The final renormal-
ized results, with this caveat, are given in Table VII.
There are two ways in which we can study the quark

mass dependence of the disconnected contribution. First,
by comparing the strange with light quark loop contribu-
tions we note that the estimates on all four ensembles
increase as the quark mass is decreased. The second is to
compare the estimates on the a12m310 and a12m220
ensembles. Unfortunately, the statistical errors in the latter
are too large to draw a conclusion, even though we used the
largest number of random sources per configuration for this
study. Our conclusion is that a higher statistics study is
needed to quantify the quark mass dependence and reduce
the overall error in the disconnected contribution so that a
reliable continuum extrapolation can be made.
The authors in Ref. [29] found that the disconnected

contribution to the nucleon tensor charge is consistent with
zero on aNf ¼ 2þ 1þ 1 twisted mass fermion ensemble at
a ¼ 0.082ð4Þ fm and Mπ ¼ 370 MeV. While a direct
comparison with our results would be meaningful only after
both results have been extrapolated to the continuum and
physical pion mass limit, we note that our estimates are also
consistent with zero for all ensembles with the strange quark
loop, and in two of the four cases of light quark loops.
Given that the estimates of the disconnected contribution

with light quark loops are small compared to connected
part, have large errors, and have been obtained on only
four ensembles, we do not include them in estimates of

the isoscalar charges gðu;dÞT . Instead, we take the largest value
0.0121 on the a12m310 ensemble and use it as an estimate of
the systematic error associated with neglecting the discon-
nected piece. This error is added in quadrature to the overall
error in the connected estimate. The disconnected contribu-
tion with strange quark loops is even smaller but we keep it
since it does not have a connected piece and we can perform
a reasonable extrapolation in the lattice spacing and the
quark mass as shown in Fig. 9, and get

gs;discT ¼ 0.008ð9Þ; ð30Þ

with a χ2=dof ¼ 0.29 for dof ¼ 2. Bounding gsT is important
for the analysis of the neutron EDM, especially if the
chirality flip is controlled by the Higgs Yukawa coupling.
In those beyond the standard model (BSM) scenarios, the
contribution of gsT would be enhanced by the ratio of quark
masses ms=mu;d (i.e., proportional to the coupling of a
“Higgs” to quarks), relative to guT and gdT . Using these
estimates, the analysis of the contribution of the quark EDMs
to the neutron EDM is presented in Sec. V B.

V. NUCLEON TENSOR CHARGES AND QUARK
ELECTRIC DIPOLE MOMENT

In the previous Secs. III and IV C, we discussed the
calculation of the connected and disconnected diagrams to
the nucleon tensor charges. In this section we present our
final results for the nucleon tensor charges and the con-
straints they put on the quark EDM couplings using the
current bound on the neutron EDM.

A. Nucleon tensor charge

The isovector tensor charge gu−dT , needed to probe novel
tensor interactions at the TeV scale in the helicity-flip part
of neutron decays, does not get any contributions from the
disconnected diagram in the isospin symmetric limit that
we are working under. We consider the extraction of gu−dT
reliable because all systematics are under control. In
particular, we find (i) that the fit ansatz in Eq. (11)
converges, indicating that the excited state contamination
has been isolated. (ii) the data for the renormalization
constant in the RI-sMOM scheme shows a window in q2 for

FIG. 9 (color online). Fits using Eq. (15) to obtain the result in the continuum limit (a → 0) and at the physical pion mass
(Mπ → Mphys

π0
) of the strange quark disconnected contribution. A finite volume study was not carried out for the disconnected

contribution. Rest is the same as in Fig. 4.
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which the final estimates in the MS scheme at 2 GeV are
constant within errors as discussed in Sec. II D. Finally (iii),
the estimates on the nine ensembles show little dependence
on the lattice spacing, pion mass and lattice volume as
shown in Fig. 5 and discussed in Sec. III.
Our final estimate given in Eq. (17), gu−dT ¼ 1.020ð76Þ,

is in good agreement with other lattice calculations by the
LHPC (Nf ¼ 2þ 1 HEX smeared clover action, domain
wall action, and domain wall-on-asqtad actions) [30], RBC/
UKQCD (Nf ¼ 2þ 1 domain wall fermions [31], ETMC
(Nf ¼ 2þ 1þ 1 twisted mass fermions) [32–34] and the
RQCD (Nf ¼ 2 OðaÞ improved clover fermions) [35] as
shown in Fig. 12. A more detailed discussion of the
systematics in these calculations and control over them
using the FLAG quality criteria [6] is given in the
Appendix.
An analysis of the extrapolation to the physical quark

mass has also been carried out by the LHPC [30] and
RQCD [35] collaborations. They did not find significant
dependence on the lattice spacing and volume, so they
extrapolate only in the quark mass using linear/quadratic
(LHPC) and linear (RQCD) fits in M2

π . Their final
estimates, gu−dT ¼ 1.038ð11Þð12Þ (LHPC) and gu−dT ¼
1.005ð17Þð29Þ (RQCD) are consistent with ours, but the
size of our error is much larger. This is due to a combination
of three factors in our calculation: (i) our determination of
renormalization constants have larger uncertainty; (ii) errors
in individual points are larger because they are the
estimates in the tsep → ∞ limit obtained by extrapolating
the data with multiple tsep using a two state ansatz; and
(iii) we extrapolate in all three variables using Eq. (15),
whereas LHPC and RQCD extrapolate only inM2

π . A fit to
our data versus only M2

π, also shown in Fig 6, gives a
similarly accurate estimate gu−dT ¼ 1.059ð29Þ with
a χ2=dof ¼ 0.3.
A comparison between recent lattice QCD results for

gu−dT and estimates derived from model calculations and
experimental data are summarized in Fig. 10.2 The lattice
estimates show consistency and little sensitivity to the
number of flavors, i.e., Nf ¼ 2 or 2þ 1 or 2þ 1þ 1,
included in the generation of gauge configurations. The
errors in model and phenomenological estimates (integral
over the longitudinal momentum fraction of the experi-
mentally measured quark transversity distributions) are
large. Only the Dyson-Schwinger estimate (DSE’14) has
comparable errors and lies about 4σ below the lattice QCD
estimates.
To summarize, even with a very conservative error

estimate, our result gu−dT ¼ 1.020ð76Þ, meets the target
uncertainty of ∼10% required to bound novel tensor
interactions using measurements of the helicity flip part
of the neutron decay distribution in experiments planning to
reach 10−3 accuracy. Our goal for the future is to reduce the

error in gS, which currently is ∼30% for the data sets
presented in this work, to the same level.

B. Quark electric dipole moment

The quark EDM contributions to the neutron EDM, dn,
are given by

dn ¼ duguT þ ddgdT þ dsgsT ð31Þ
where the low-energy effective couplings du, dd and ds
encapsulate the new CP violating interactions at the TeV
scale. The goal of the analysis, knowing the charges gqT and
a bound on dn, is to constrain the couplings dq and, in turn,
BSM theories.

FIG. 10 (color online). A comparison between recent lattice
QCD results for gu−dT and estimates derived from model calcu-
lations and experimental data. The published lattice QCD results
are from LHPC’12 [30], RBC/UKQCD’10 [31], RQCD’14 [35]
and RBC’08 [37]. Lattice estimates with reasonable control over
excited state contamination and extrapolation to the physical pion
mass and the continuum limit are shown in green. Estimates from
models and phenomenology are from Bacchetta’13 [38], Ansel-
mino’13 [39], Kang’15 [40], Sum Rules’00 [41], DSE’14 [42].

TABLE IX. A comparison of our lattice estimates of gdT and guT
of the proton with those from different models and phenom-
enology. The “Transversity 1” estimate is given both at the
original scale at which it was evaluated (∼1 GeV) and after
running to 2 GeV to show the magnitude of the scaling effect. The
symbol “?” in the last column indicates that the scale at which the
calculation is done is undetermined.

gdT guT gsT μ
This study −0.23ð3Þ 0.77(7) 0.008(9) 2 GeV

Quark model −1=3 4=3 � � � � � �
QCD Sum Rules [41] −0.35ð17Þ 1.4(7) � � � ?
Dyson-Schwinger [42] −0.11ð2Þ 0.55(8) � � � 2 GeV
Transversity 1 [38] −0.18ð33Þ 0.57(21) � � � ∼1 GeV
Transversity 1 [38] −0.16ð30Þ 0.51(19) � � � 2 GeV
Transversity 2 [39] −0.25ð20Þ 0.39(15) � � � ∼1 GeV

Transversity 3 [40] −0.22þ0.14
−0.08 0.39þ0.07

−0.11 � � � 3.2 GeV2A similar comparison is presented in Ref. [36].
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The calculation of the connected contribution to the gqT
has been discussed in Sec. VA. Estimates of the discon-
nected contribution were discussed in Sec. IV C. Including
the largest value (0.0121 obtained on the a12m310 ensem-
ble) as a systematic error, our final results in the MS scheme
at 2 GeV for the nucleon charges that get contributions
from the disconnected diagrams are

guT ¼ 0.774ð66Þ;
gdT ¼ −0.233ð28Þ;

guþd
T ¼ 0.541ð67Þ: ð32Þ

Note that incorporating the disconnected contribution as a
systematic error increases the errors marginally as can be
seen by comparing estimates in Eq. (32) with those in
Eq. (16). Results for the neutron tensor charges are
obtained by using the isospin symmetry, i.e., by inter-
changing the labels u ↔ d.
These final estimates are significantly smaller in magni-

tude than the quark model values, guT ¼ 4=3 and
gdT ¼ −1=3, but consistent with estimates derived from
model calculations and experimental data summarized in
Table IX.3 The three phenomenological estimates
Bacchetta’13 [38], Anselmino’13 [39], and Kang’15 [40]
give consistent but lower estimates for guT and gdT with
gu−dT ∼ 0.65. Similarly, taking the errors at face value, the
Schwinger-Dyson estimate is ∼4σ below the lattice QCD
results. A recent reevaluation of the calculation of tensor
charges using QCD sum rules with input from lattice QCD
has been reported in [44,45]. Their estimates in the MS
scheme at 1 GeVare gdT ¼ 0.79 and guT ¼ −0.20, each with
≈50% uncertainty. Run to 2 GeV, these estimates would
decrease by ≈10% in magnitude. These results are con-
sistent with ours given in (32) but place less stringent

constraints on the neutron EDM and BSM theories due to
the larger uncertainty.
Assuming that only the EDMs of the u, d, and s quarks

contribute to the neutron EDM via Eq. (31) and the values of
gu;d;sT are given by Eqs. (32) and (30), one can put bounds on
the du;d;s. Using the current estimate jdN j< 2.9×10−26 ecm
(90% C.L.) [46], 1-sigma slab priors for guT and gdT given in
Eq. (32), and assuming gsT ¼ 0, we obtain the 90% con-
fidence interval bounds for du and dd shown in Fig. 11. Note
that ds is not constrained since gsT is consistent with zero.
Using these estimates of gu;d;sT , we have analyzed the

consequences on split SUSY models, in which the quark
EDM is the leading contribution in [5]. Our goal for the
future is to improve the estimates presented here and
develop the lattice methodology to include the contribu-
tions of the quark chromoelectric dipole moment operator.

VI. CONCLUSIONS

We have presented a high statistics study of the isovector
and isoscalar tensor charges of the nucleon using clover-on-
HISQ lattice QCD. We calculate both the connected and
disconnected diagrams contributing to these charges. The
analysis of nine ensembles covering the range 0.12–
0.06 fm in lattice spacing, Mπ ¼ 130–320 MeV in pion
mass, and MπL ¼ 3.2–5.4 in lattice volume allowed us to
control the various sources of systematic errors. We show
that keeping one excited state in the analysis allows us to
isolate and mitigate excited state contamination. The
renormalized estimates of the various tensor charges show
small dependence on the lattice volume, lattice spacing and
the light quark mass. These results can, therefore, be
extrapolated reliably to the physical point.
Our final estimate for the tensor charge gu−dT ¼ 1.020ð76Þ

is in good agreement with previously reported estimates.
The signal in the calculation of the disconnected diagrams is
weak in spite of using state-of-the-art error reduction
techniques. The value is small andwe bound its contribution
to light quark charges guT and gdT . The signal for strange
disconnected loop is even smaller, however in this case we
are able to extrapolate the results to the continuum limit and
find gsT ¼ 0.008ð9Þ. Using these estimates and the current
bound on the neutron electric dipole moment, we carry out a
first lattice QCD analysis of the constraints on the strengths
of the up, down and strange quark electric dipole moments.
The impact of these constraints on the viability of split
SUSY models, in which the quark EDM is the leading
contribution to the neutron EDM, is carried out in [5].
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APPENDIX: SYSTEMATICS IN THE
CALCULATION OF THE ISOVECTOR NUCLEON

TENSOR CHARGE

In Table X, we give a summary, in the FLAG format [47],
of the level of control over various systematics in the
calculation of the isovector tensor charge of the nucleon
using simulations of lattice QCD with Nf ¼ 2, 2þ 1 and
2þ 1þ 1 flavors. Note that a community wide consensus
on applying the FLAG criteria to matrix elements within
nucleon states does not yet exist. By performing this
analysis, we wish to emphasize that the agreement between
various calculations of gu−dT has reached a level of precision
that calls for a FLAG like analysis.
The systematics covered by the FLAG criteria are also

encountered in the calculation of matrix elements within

TABLE X. A summary of the control over various sources of systematic errors in lattice QCD calculations of the isovector tensor
charge gu−dT using the FLAG quality criteria [6] reproduced in this Appendix. Results from all collaborations quoted in this table have
used nonperturbative methods for calculating the renormalization constants.

Collaboration Ref.
publication

status Nf

chiral
extrapolation

continuum
extrapolation

finite
volume

excited
state renormalization gT

PNDME’15 This
work

P 2þ 1þ 1 ★ ★ ★ ★ ★ 1.020(76)a

ETMC’15 [34] P 2þ 1þ 1 ■ ■ ★ ★ ★ 1.053(21)b

LHPC’12 [30] A 2þ 1 ★ ○ ★ ○ ★ 1.038(11)
(12)c

RBC/
UKQCD’10

[31] A 2þ 1 ○ ■ ★ ■ ★ 0.9(2)d

RQCD’14 [35] A 2 ★ ★ ★ ○ ★ 1.005(17)
(29)e

ETMC’15 [34] P 2 ★ ■ ■ ★ ★ 1.027(62)f

RBC’08 [37] A 2 ■ ■ ★ ■ ★ 0.93(6)g

aThis estimate is obtained from a simultaneous fit versus a, M2
π , and e−MπL defined in Eq. (15) using data on nine clover-on-HISQ

ensembles given in Table VII.
bThe quoted estimate [34] is from a single Mπ ¼ 373 MeV, a ¼ 0.082 fm and Nf ¼ 2þ 1þ 1 maximally twisted mass ensemble.

Three values of tsep ≈ 1, 1.15, and 1.3 fm are analyzed for handling excited state contamination. We quote their result from the two-state
fit. A second low statistics study on an ensemble with Mπ ¼ 213 MeV and a ¼ 0.064 fm gave a consistent estimate.

cThe central value is from a two parameter chiral fit to just the coarse Wilson ensembles data. This agrees with a three parameter chiral
fit to data from three different lattice actions simulated at different lattice spacings and with different volumes. Uncertainty due to
extrapolation in the lattice spacing a and the finite volume controlled by MπL is expected to be small.

dResult is based on simulations at one lattice spacing 1=a ¼ 1.73 GeV using domain wall fermions. The statistics for the ensembles
corresponding to the four pion masses simulated, Mπ ¼ 329, 416, 550, 668 MeV, were 3728, 1424, 392, 424 measurements,
respectively. A single tsep ¼ 1.39 fm was used.

eThe result of this clover-on-clover study is obtained using a fit linear in M2
π keeping data with M2

π < 0.1 GeV2 only. Data do not
show significant dependence on lattice spacing or lattice volume. Excited state study is done on three of the eleven ensembles. Most of
the data are with tsep ∼ 1 fm. The second error is an estimate of the discretization errors assuming they are Oða2Þ since OðaÞ improved
operators with 1-loop estimates for the improvement coefficients are used in calculations done on a ¼ 0.081, 0.071 and 0.06 fm lattices.
Preliminary estimates presented by the QCDSF collaboration [48] are superseded by this publication [49].

fResult from a single ensemble of maximally twisted mass fermions with a clover term at a ¼ 0.093ð1Þ fm, Mπ ¼ 131 MeV and
MπL ≈ 3. To control excited state contamination, three values of tsep ≈ 0.94, 1.1 and 1.3 fm are analyzed. We quote their value from the
tsep ≈ 1.3 fm analysis.

gResults based on one lattice spacing 1=a ¼ 1.7 GeV with the DBW2 domain wall action, three values of quark masses with
Mπ ¼ 493, 607, 695 MeV, and Oð500Þ measurements. Only one tsep ¼ 10 (1.14 fm) was simulated except at the lightest mass where
tsep ¼ 12 data was generated but used only as a consistency check as it has large errors.
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baryon states. We, therefore, follow the same quality criteria
for the publication status, chiral extrapolation, finite volume
effects, and renormalization as defined by FLAG [6] and
define an additional criterion, excited state contamination, that
is relevant to the calculations of matrix elements within
nucleon states. For the criterion “continuum extrapolation”
we relax the requirement of an extrapolation provided the data
meet the rest of the requirements: do not warrant an extrapo-
lation, and a reasonable estimate of the uncertainty is provided.
We also do not require that the action and the operators are
OðaÞ improved.

(i) Publication status:
A published or plain update of published results
P preprint
C conference contribution

(ii) Chiral extrapolation:
★ Mπ;min < 200 MeV
○ 200 MeV ≤ Mπ;min ≤ 400 MeV
■ 400 MeV < Mπ;min

(iii) Continuum extrapolation:
★ 3 or more lattice spacings, at least 2 points

below 0.1 fm
○ 2 or more lattice spacings, at least 1 point

below 0.1 fm
■ otherwise

(iv) Finite-volume effects:
★ Mπ;minL > 4 or at least 3 volumes
○ Mπ;minL > 3 and at least 2 volumes
■ otherwise

(v) Renormalization:
★ nonperturbative
○ 1-loop perturbation theory or higher with a

reasonable estimate of truncation errors
■ otherwise

(vi) Excited State:
★ tsep;max > 1.5 fm or at least 3 source-sink

separations, tsep, investigated at each lattice spacing
and at each Mπ .
○At least 2 source-sink separationswith 1.2 fm ≤

tsep;max ≤ 1.5 fm at least one Mπ at each lattice
spacing.
■ otherwise

Plots of the data summarized inTableX, as a function ofa,M2
π

and MπL are shown in Fig. 12. One observes very little
sensitivity to these three variables and on the number of
fermion flavors or the lattice action used.

FIG. 12 (color online). Estimates of gu−dT from lattice QCD for
Nf ¼ 2, 2þ 1 and 2þ 1þ 1 flavors from the PNDME’15 (this
work), ETMC’15 [32–34] LHPC’12 [30], RBC/UKQCD’10
[31], and RQCD’14 [35] collaborations. These data show little
sensitivity to a (top),M2

π (middle),MπL (bottom) and on whether
the strange and charm quarks are included in the generation of the
lattice ensembles or on the lattice action used. The vertical dashed
line in the middle panel marks the physical pion mass
Mπ ¼ 135 MeV.
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