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We investigate the properties of the pion quasiparticle in the low-temperature phase of two-flavor QCD
on the lattice with support from chiral effective theory. We find that the pion quasiparticle mass is
significantly reduced compared to its value in the vacuum, in contrast with the static screening mass, which
increases with temperature. By a simple argument, near the chiral limit the two masses are expected to
determine the quasiparticle dispersion relation. Analyzing two-point functions of the axial charge density
at nonvanishing spatial momentum, we find that the predicted dispersion relation and the residue of the
pion pole are consistent with the lattice data at low momentum. This test, based on fits to the correlation
functions, is confirmed by a second analysis using the Backus-Gilbert method.
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I. INTRODUCTION

Identifying the spectrum of excitations of strongly inter-
actingmatter at finite temperature is of central importance to
understanding the nature of the medium. These excitations
are encoded as poles in thermal correlation functions.
Weakly interacting probes coupling to local operators make
it possible to measure the properties of these excitations
experimentally, at least in principle. The prime example of
such a probe is the photon. In practice, amedium is created in
heavy-ion collisions which appears to reach thermal equi-
librium locally, the temperature decreasing with time.
Therefore a weighted average of thermal photon or dilepton
spectra over the spacetime history of the “fireball” is
obtained (see e.g. Refs. [1,2] and references therein).
In the low-temperature phase, it is natural to ask how close

the properties of the excitations are to those of the known
hadrons at zero temperature. Viewed globally, the spectrum
does not appear to change much until temperatures close
to the transition temperature are reached, where the rapid
crossover to adeconfinedandchirally symmetric phase takes
place. This conclusion is based on the success of the hadron
resonance gas model (HRG) in describing equilibrium
properties of the medium (particularly the equation of state
and quark number susceptibilities) computed in lattice QCD
[3–5], and on its success in describing particle yields in
heavy-ion collisions [6,7]. However, reliable information
about individual excitations is sparse.
Here we extend our study [8] of the pion at finite temper-

ature in two-flavor lattice QCD with support from a thermal
chiral effective theory [9–11]. In Ref. [8] we performed a

temperature scan on 16 × 323 ensembles; here we focus on
one temperature (T ¼ 170 MeV) on a fine lattice (24 × 643)
with high statistics, for which we also have a reference zero-
temperature ensemble at the same bare parameters.
At finite temperature it is important to distinguishbetween

the pion static screening mass and the quasiparticle mass.
The former is the inverse length scale over which a localized
pseudoscalar perturbation turned on adiabatically is
screened. It is thus a property of the static response of the
system. The pion quasiparticle mass is a property of the
dynamic response and can be given the following interpre-
tation. Suppose that the expectationvalue of the axial charge
is driven out of equilibrium adiabatically by an external
perturbation until the instant t ¼ 0, where the perturbation is
switched off. Consider then how the system relaxes back to
equilibrium at large positive times. The pion quasiparticle
mass (times c2=ℏ) is the frequency at which the axial charge
present in the system would oscillate as a function of time.1

Technically, while the quasiparticle mass is the real part of a
pole of the retarded correlator GRðω; jpj ¼ 0Þ of the pseu-
doscalar density in the frequency variable, the static screen-
ing mass is a pole ofGRðω ¼ 0;pÞ in the spatial momentum
jpj. At zero temperature, Lorentz symmetry implies that the
two masses are equal.
Our study shows that the zero-temperature pion mass

“splits” at finite temperature into a lower pion quasiparticle
mass and a higher pion screening mass,
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1The amplitude of the oscillations would be damped slowly in
comparison with the oscillation frequency. The interpretation
given is valid in the linear response approximation. By contrast,
perturbing a conserved quark number (vector charge) with a wave
vector k leads to a purely damped late-time response e−Dk2t,
where D is the diffusion coefficient.
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T ¼ 0∶ pion mass ¼ 267ð2Þ MeV

↙ ↘

T ¼ 169 MeV∶ quasiparticle mass ¼ 223ð4Þ MeV screening mass ¼ 303ð4Þ MeV

:

The pion quasiparticle mass can be extracted model
independently near the chiral limit due to the dominance
of its contribution to the two-point function of the axial-
charge density and of the pseudoscalar density. In contrast
to the mass, we find that the decay constant associated
with the pion quasiparticle practically retains its zero-
temperature value.
It may seem surprising that the thermal quasiparticle

mass differs substantially from the zero-temperature mass,
given that the hadron resonance gas model works well for
equilibrium properties, and that the model assumes an
unmodified spectrum of excitations corresponding to the
well-known T ¼ 0 hadrons. Some comments on this
apparent contradiction are made in the conclusion.
By a simple argument, the dispersion relation of the pion

at low momenta is given by a single parameter u [see
Eq. (11) below], which in the chiral limit corresponds to the
group velocity of the excitation. As in Ref. [8], we
determine this parameter as the ratio of the quasiparticle
mass to the screening mass, u ≈ 0.74. As a new aspect, we
then test whether the so-determined parameter u correctly
predicts the momentum dependence of the pion energy by
looking at the two-point function of the axial-charge
density at nonvanishing spatial momentum. An important
observation is that the chiral Ward identities also predict the
residue of the pion pole in the axial-current two-point
functions. Due to the difficulty of extracting real-time
information from Euclidean correlation functions, testing
simultaneously the predictions for the pole and the residue
proves to be essential to improve the discriminative power
of the analysis. Since the chiral predictions are only
expected to be valid at sufficiently small momenta, we
also provide an estimate of the range of validity of the
effective theory.
Our analysis method of lattice correlation functions is

based on fits, where the ansatz is motivated by the chiral
effective theory at small frequencies and on perturbation
theory at high frequency. We also present an alternative
analysis, which starts by generating model independently a
locally averaged spectral function by following the Backus-
Gilbert inversion method [12–17]. In a second step, a pion
pole contribution with the predicted dispersion relation is
assumed, allowing us to obtain an estimate for the residue.
The advantage of this alternative analysis is that we do not
have to formulate an explicit ansatz for the spectral density
of the non-pion contributions. This point is particularly
relevant since at finite spatial momentum, axial-vector
excitations do contribute to the two-point function of the
axial-charge density.

The paper is organized as follows. Section II contains an
overview of the theory expectations concerning the two-
point functions of the axial current at finite temperature.
Sections III and IV present the lattice QCD calculation, and
our conclusions are given in Sec. V. In Appendix A, the
tensor structure of the axial-current two-point functions at
finite temperature is given; in Appendix B, we derive the
contribution of the pion to the four independent tensor
structures, thus determining all the relevant residues; in
Appendix C we perform a mock-data study of the Backus-
Gilbert method. Finally, Appendix D contains Table VII
with the lattice correlator data.

II. THEORY BACKGROUND

We work in the Euclidean path-integral formalism, and
our notation and conventions follow those used in Ref. [8].
The vector and axial-vector currents and the pseudoscalar
density are given by

Va
μðxÞ ¼ ψ̄ðxÞγμ

τa

2
ψðxÞ; Aa

μðxÞ ¼ ψ̄ðxÞγμγ5
τa

2
ψðxÞ;

PaðxÞ ¼ ψ̄ðxÞγ5
τa

2
ψðxÞ; ð1Þ

where ψ is the isospin-doublet quark field. In Appendix A,
we provide a decomposition in momentum space of the
Lorentz structure of the two-point functions of the axial
current. For a general momentum p, they are entirely
described by four “form factors,” which in the rest frame of
the thermal medium are functions of p0 and p2. At zero
temperature, the four functions reduce to two functions
of p2, one longitudinal and one transverse. The partially
conserved axial-current (PCAC) relation relates the two-
point function hPaðxÞPbð0Þi of the pseudoscalar density,
as well as the hAa

μðxÞPbð0Þi correlation functions to the
aforementioned form factors.
In this work, we investigate the following static screen-

ing correlators:

δabGs
Aðx3; TÞ ¼

Z
dx0d2x⊥hAa

3ðxÞAb
3ð0Þi; ð2Þ

δabGs
Pðx3; TÞ ¼

Z
dx0d2x⊥hPaðxÞPbð0Þi; ð3Þ

where x⊥ ¼ ðx1; x2Þ. Time-dependent correlators with a
general spatial momentum p will also play a crucial role,
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δabGAðx0; T;pÞ ¼
Z

d3xeip·xhAa
0ðxÞAb

0ð0Þi; ð4Þ

δabGPðx0; T;pÞ ¼
Z

d3xeip·xhPaðxÞPbð0Þi: ð5Þ

They are related by Fourier transformations to the form
factors defined in Appendix A, for instance

Gs
Aðx3; TÞ ¼

Z
dp3

2π
e−ip3x3ΠL;lð0; p2

3Þ: ð6Þ

The correlators GAðx0; T; 0Þ and Gs
Aðx3; TÞ are only sensi-

tive to the longitudinal form factor ΠL;l; these were the
cases considered in Ref. [8]. At nonvanishing momentum
however, the correlator GAðx0; T;pÞ is sensitive to three
independent form factors ΠT;l, ΠM and ΠL;l.
At long distances, the screening correlator Gs

Aðx3; TÞ is
given by

Gs
Aðx3; TÞ ¼jx3j→∞ 1

2
f2πmπe−mπ jx3j; ð7Þ

which defines the screening pion mass mπ and the
associated decay constant2 fπ . The Gell-Mann–Oakes–
Renner relation

f2πm2
π ¼ −mhψ̄ψi ð8Þ

holds to leading order in the chiral expansion. From
Eqs. (6) and (7), the low-momentum analytic structure
of the longitudinal form factor ΠL;l reads

ΠL;lð0;p2Þ ¼ f2πm2
π

p2 þm2
π
; p → 0: ð9Þ

More generally, expanding the denominator in the
frequency,

p2 þm2
π → p2 þm2

π þ
1

u2
ω2
n þ � � � ; ð10Þ

it follows that a quasiparticle (pole in the retarded correlator
as a function of frequency) with the dispersion relation
[10,11]

ωp ¼ uðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2

q
ð11Þ

exists at low momenta.3 The remarkable aspect is that the
parameter u determines both the (real part of the) dispersion

relation of the quasiparticle and the ratio of the quasipar-
ticle mass to the screening mass. A graphical interpretation
of the dual role of the parameter u is given in Fig. 1. Here
the trajectory in the frequency-momentum plane of a pole
in the retarded correlator of the pseudoscalar density4

corresponds to a static screening state at p2 ¼ −m2
π , and

to a real-time quasiparticle at small positive p2. In Ref. [8],
the parameter u was determined using lattice correlation
functions at vanishing spatial momentum via the two
estimators

um ¼
�
−
4m2

q

m2
π

GPðx0; T; 0Þ
GAðx0; T; 0Þ

����
x0¼β=2

�
1=2

; ð12Þ

uf ¼
f2πmπ

2GAðβ=2; T; 0Þ sinhðufmπβ=2Þ
: ð13Þ

In doing so, the parametric dominance of the pion in the
time-dependent Euclidean correlator at small quark masses
is exploited. Good agreement was found between uf and
um at T ≃ 150 MeV for a zero-temperature pion mass of
305 MeV. Any departure of u from unity clearly represents
a breaking of Lorentz invariance due to thermal effects. In
this work, one of our goals is to test whether the parameter
u determined from the ratio of the quasiparticle to the
screening mass, as in Ref. [18], really does predict the
dispersion relation of the quasiparticle, as in Eq. (11). In
order to reach this goal, we perform an analysis of the time-
dependent Euclidean correlator GAðx0; T;pÞ in terms of the
spectral function ρA. They are related as follows:

FIG. 1 (color online). Trajectory in the ðω;pÞ plane of the pion
pole in the pseudoscalar retarded correlator. At negative p2 the
pole corresponds to the pion screening mass, while at positive p2

it corresponds to the pion quasiparticle. The slope is the value
of u2ðTÞ.

2The normalization convention is such that at zero temperature
fπ ≈ 92 MeV.

3In this argument, the imaginary part of the frequency pole is
neglected. A more sophisticated argument is required to show
that the damping rate of the pion quasiparticle is indeed para-
metrically subleading [11].

4Recall that the momentum-space Euclidean correlator
GEðωn;pÞ is related to the retarded correlator via GRðiωn;pÞ ¼
GEðωn;pÞ for ωn ≥ 0 [18].
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GAðx0; T;pÞ ¼
Z

∞

0

dωρAðω;pÞ coshðωðβ=2 − x0ÞÞ
sinhðωβ=2Þ :

ð14Þ

First we recall that at zero temperature, the Lorentz
structure of the axial-current two-point function implies the
following momentum dependence of the pion pole con-
tribution:

GAðx0; T ¼ 0;pÞ ∼jx0j→∞
Resðω0

pÞ
e−ω

0
pjx0j

2ω0
p

ð15Þ

where the residue is here given by

Resðω0
pÞ ¼ ðf0πω0

pÞ2; ω0
p ¼ ðp2 þ ðω0

0Þ2Þ1=2: ð16Þ

In terms of the spectral functions, this correlator corre-
sponds to

ρAðω; T ¼ 0;pÞ ¼ Resðω0
pÞδðω2 − ðω0

pÞ2Þ þ � � � : ð17Þ

At the other end of the spectrum, in the high-frequency
region, a leading-order perturbative calculation (see for
instance Ref. [19]) yields

ρAðω;T;pÞ¼ θðω2−4m2−p2Þ Nc

24π2
ðp2þ6m2Þ; ω→∞:

ð18Þ

We note that at nonzero momentum, the correlator
GAðx0; T ¼ 0;pÞ receives contributions from axial-vector
mesons via the transverse form factor (see Appendix A),

GAðx0; T ¼ 0;pÞ ¼
Z

dp0

2π
e−ip0x0

�
p2

p2
0 þ p2

ΠTðp2
0 þ p2Þ

þ p0
2

p2
0 þ p2

ΠLðp2
0 þ p2Þ

�
: ð19Þ

The spectral functions associated with the form factors ΠT

and ΠL are measured experimentally in τ decays [20]. The
most prominent excitation in the transverse spectral func-
tion is the a1ð1260Þ meson, while the longitudinal spectral
function is dominated by the pion. Since ΠT describes by
itself the two-point function of spatial components of the
axial current at vanishing spatial momentum, it cannot
contain the pion pole. The latter is entirely contained in the
form factor ΠL.
At finite temperature, the pion pole appears in all three

form factors contributing to GAðx0; T;pÞ; they are given
explicitly in Appendix A. In the limit T → 0, one of the
three form factors turns into ΠT, one turns into ΠL and the
third one vanishes (Appendix A 2). Therefore the pion

contribution to the first form factor must vanish in the limit
T → 0, in view of the remarks above, and indeed, we find it
to be proportional to ð1 − u2Þ [recall that limT→0uðTÞ ¼ 1
by Lorentz symmetry]. Altogether, the pion contribution
to the spectral function ρA is predicted to have the form
ρAðω; T;pÞ ¼ ResðωpÞδðω2 − ω2

pÞ, with the dispersion
relation given by Eq. (11) and the residue by (see
Appendix B)

ResðωpÞ ¼ f2πðm2
π þ p2Þ: ð20Þ

For later use we also define the pion quasiparticle decay
constant ftπ via

Resðω0Þ ¼ ðftπω0Þ2: ð21Þ
The contribution to the Euclidean correlator then reads

GAðx0; T;pÞ ¼
ResðωpÞ
2ωp

coshðωpðβ=2 − x0ÞÞ
sinhðωpβ=2Þ

þ � � � : ð22Þ

Whether the residue determined through fits to lattice
correlation functions agrees with Eq. (20) provides a
cross-check that the low-energy effective description is
working.

III. LATTICE SETUP

In this section we describe the analysis performed on a
finite-temperature ensemble of size 24 × 643 with two
degenerate dynamical light flavors. The short direction is
interpreted as time and therefore the temperature is T ¼
1=24a ¼ 169ð3Þ MeV while the spatial extent amounts to
L ¼ 64a ¼ 3.1 fm. The fields admit thermal boundary
conditions in time and periodic boundary conditions in
space. We use the Wilson plaquette action [21] and the
O(a)-improved Wilson fermion action with a nonperturba-
tively determined csw coefficient [22]. The configurations
were generated using the MP-HMC algorithm [23] follow-
ing the implementation described in Ref. [24] based on
Lüsher’s DD-HMC package [25]. In addition, we use a
128 × 643, effectively zero-temperature ensemble that was
made available to us through the Coordinated Lattice
Simulations (CLS) effort (labelled as O7 in Ref. [26]) with
all bare parameters identical to our finite-temperature
ensemble. The pion mass takes a value of mπ ¼
270 MeV [26] such that mπL ¼ 4.2. This additional
zero-temperature test ensemble allows us to compare
thermal observables in a straightforward manner with
their corresponding “effective zero-temperature” value
calculated in the O7 ensemble.

A. PCAC mass

In order to check that our thermal ensemble indeed yields
the same physical quark mass as its corresponding zero-
temperature counterpart (O7), we use the definition of the
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quark mass based on the PCAC (partially conserved axial
current) relation [27,28]

mPCACðx3Þ ¼
1

2

R
dx0d2x⊥h∂ imp

3 Aimp
3 ðxÞPð0ÞiR

dx0d2x⊥hPðxÞPð0Þi
;

x⊥ ¼ ðx1; x2Þ ð23Þ

where in the improvement process

Aa
μ → Aimp;a

μ ¼ Aa
μ þ acA∂ imp

μ Pa: ð24Þ

The derivative ∂ imp
μ is the improved lattice discretized

version of the derivative following Ref. [29]. The non-
perturbatively calculated coefficient cA was taken from
Ref. [30]. Note that since Eq. (23) stems from an operator
identity, we are free to choose the direction of measure-
ment. On the thermal ensemble, the spatial directions are
longer; therefore, by measuring along these directions we
obtain a longer plateau and thus more accurate determi-
nations of the PCAC mass. The extraction can be carried
out by performing a fit to a constant in the range where a
plateau is observed (see Fig. 2). Its central value and error,
given in Table I, are in very good agreement with the ones
quoted in Ref. [31].

B. Pseudoscalar and axial-vector correlators

Our goal is to calculate the temperature-dependent
coefficient uðTÞ that parametrizes the pion dispersion
relation (11). In Ref. [8], we defined two estimators uf
and um that yielded consistent results up to T ≃ 170 MeV
for the case of two degenerate light flavors with

m̄MSðμ ¼ 2 GeVÞ ∼ 15 MeV; at that quark mass, the cross-
over region is located around TC ≃ 211 MeV [32]. In
the thermal ensemble we are analyzing here, we have

m̄MSðμ ¼ 2 GeVÞ ¼ 12.8ð1Þ MeV (see Table I), and
therefore expect a slightly lower value of the transition
temperature. Nevertheless, this should not affect the appli-
cability of the chiral expansion around ðT;m ¼ 0Þ with
T < TC, as discussed in Ref. [8].
We use the correlators defined in Eqs. (2)–(5) with the

spatial momenta given by

p ¼ pn ≡ ð0; 0; 2πn=LÞ: ð25Þ

The improvement of the axial current was already intro-
duced in Eq. (24). Note that since all two-point functions
belong to the adjoint (or isovector) representation of
SUðNfÞ (Nf ¼ 2), the contributions of quark disconnected
diagrams cancel out. The renormalization program is
carried out such that

GAðx0; T;pÞ ¼ ðZAðg20ÞÞ2GAðx0; g20; T;pÞ; ð26Þ

GPðx0; T;pÞ ¼ ðZPðg20ÞÞ2GPðx0; g20; T;pÞ ð27Þ

and similarly for the screening correlators; the value of the
coefficients ZA and ZP can be found in Table I.

IV. ANALYSIS OF LATTICE
TWO-POINT FUNCTIONS

After the preliminary work presented in the previous
section, we turn to the analysis of correlation functions in
order to extract the pion properties.

TABLE I. Summary of the main parameters for the 24 × 643

finite-temperature ensemble as well as for the 128 × 643 zero-
temperature ensemble labeled as O7 in Ref. [26]. The quark mass
is computed at and normalized with the T ¼ 1=24a temperature.
The statistics collected for two-point functions are respectively
360 and 149 configurations at Nτ ¼ 24 and Nτ ¼ 128, with
respectively 64 and 16 point sources per configuration, exploiting
the translational invariance of the system.

6=g20 5.50
κ 0.13671
csw 1.751496

TNτ¼24 [MeV] 169(3)
TNτ¼128 [MeV] 32(1)
a [fm] [26] 0.0486(4)(5)
ZA [26] 0.793(4)
ZP [26] 0.5184(53)
m̄M̄S=Tðμ ¼ 2 GeVÞ 0.0757(7)

FIG. 2 (color online). The PCAC masses. The renormalization
factors ZA and ZP are included, as well as the conversion factor
from the Schrödinger Functional (SF) to the Minimal Subtraction
(MS) scheme at a scale of μ ¼ 2 GeV, which amounts to 0.968
(20) [26]. We also plot the result along the x0 direction to show
that indeed both are compatible. This can be interpreted as a
check that cutoff effects are indeed small for this value of the
lattice spacing.
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A. The zero-temperature case

As a benchmark we analyze zero-temperature data on the
O7 ensemble. Here we are able to obtain the pion energy ω0

p
by fitting a constant to the effective mass. The pion
energy corresponding to p ¼ 0 and p ¼ ð0; 0; 2π=LÞ can
be read off from the plot in Fig. 3. The dominance
of the pion contribution, particularly in the zero-momentum
case, is clearly very strong. Performing a linear fit to ðω0

pÞ2 as
a function of p2, we obtain for the slope u2ðT ≃ 0Þ ¼
1.01ð6Þ, consistently with Lorentz invariance. The decay
constant f0π , defined by Eq. (16), indeed turns out to be
independent of the momentum.
Once the ground state dominates the correlator

GAðx0; T ≃ 0;pÞ, one-state cosh fits of the form
A1 coshðω0

pðT=2 − x0ÞÞ with T ¼ 128a are applied and
the results are summarized in Table II. The values for ω0

0
and f0π are in very good agreement with the ones quoted
in Ref. [31].

B. The screening quantities f π and mπ
at finite temperature

A detailed description of how the extraction is carried out
can be found in Ref. [8]. Here, we highlight the basic
relations that lead to the extraction of the screening
quantities fπ and mπ and therefore to the values of the
estimators uf and um.

(i) The screening mass mπ is calculated by fitting the
correlation function Gs

Pðx3; TÞ with a two-state
ansatz of the form

P
2
i¼1 Ai cosh½miðL=2 − x3Þ� with

massesmi and amplitudes Ai. The value obtained for
the ground-state mass is compatible with the value
obtained from the “cosh” mass which is defined as
the positive root of the following equation (see
Fig. 4):

Gs
Pðx3;TÞ

Gs
Pðx3þa;TÞ¼

cosh½mcoshðx3þa=2Þðx3−L=2Þ�
cosh½mcoshðx3þa=2Þðx3þa−L=2Þ�:

ð28Þ

(ii) We determine the screening pion decay constant
from the correlator Gs

Aðx3; TÞ via Eq. (7) by apply-
ing again a two-state “cosh” ansatz. The screening
pion mass mπ also appears in Gs

A. We use this fact as
a consistency check, but due to the better signal-to-
noise ratio of the pseudoscalar channel, we quote the
value extracted from Gs

P as our final result for mπ.

C. Thermal time-dependent correlators
at zero momentum

The estimators uf and um for the pion velocity u are
defined in Eqs. (12)–(13). Apart from the PCAC mass,
fπ and mπ , they involve the time-dependent correlators
GAðx0; T; 0Þ and GPðx0; T; 0Þ. The difference between uf

FIG. 3 (color online). Effective “cosh” masses for the O7 zero-
temperature ensemble in the hA0A0i channel for n ¼ 0, 1.
The values of ω0

n ≡ ω0
pn

are given in units of the temperature
T ¼ 1=24a corresponding to our thermal ensemble.

TABLE II. Properties of the pion at zero temperature. The index
n denotes the momentum pn induced and ω0

pn
corresponds to the

energy of the state (in particular, ω0
0 is the pion mass). All errors

are purely statistical, and all renormalization factors are included.
The fit interval begins at x0=a ¼ 6 for the zero-momentum case
and at x0=a ¼ 15 for one unit of momentum in view of the
effective mass plot of Fig. 3. Dimensionful quantities are
normalized with T ¼ 1=24a.

n A1=T3 ω0
pn
=T χ2=d:o:f f0π=T ResðωpÞ

0 8.4ð3Þ × 10−3 1.579(12) 0.05 0.599(8) 0.89(3)
1 5.3ð4Þ × 10−4 2.88(3) 0.4 0.629(12) 3.27(15)

FIG. 4 (color online). Effective “cosh” mass plot for the
screening mass mπ . The plateau has been chosen to begin at
x3=a ¼ 19.
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and um can be explained as follows. The estimator um is
based on the dominance of the pion contribution in the
correlators GA and GP at x0 ¼ β=2; the estimator uf is
based on assuming that the residue is given by the
screening quantities (as predicted by the chiral effective
theory), Resðω0Þ ¼ f2πm2

π, and the dominance of the pion
contribution inGA only. The dominance inGA is less strong
an assumption than the assumption that the pion dominates
GP, since their spectral functions are related by ρPðωÞ ¼
− ω2

4m2 ρAðωÞ at zero spatial momentum. We summarize
results for uf and um in Table III.
The chiral expansion around ðT;m ¼ 0Þ proposed in

Ref. [11] assumes that one is sufficiently close to the chiral
limit. In this limit, the screening pion massmπ vanishes and
the coefficient uðTÞ is indeed the velocity of a massless
pion quasiparticle in the presence of a thermal bath. A
deviation from unity corresponds to a violation of boost
invariance. At finite but small quark mass, we showed in
Ref. [8] that the consistency of uf and um serves as an
indicator for the applicability of the chiral expansion. Based
on the results of Table III, we conclude that they are indeed
consistent. The results, in particular for uf, are in good
agreement with the results obtained in Ref. [8] on ensem-
bles with a coarser lattice spacing and a slightly heavier
quark mass. Note that to leading order, u is expected to be
independent of the quark mass.
The “reconstructed” correlator Grec

A is defined as the
thermal Euclidean correlator that would be realized if the
spectral function remained the zero-temperature one. We
compute it following the method first proposed in Ref. [33].
Figure 5 shows the difference between the thermal corre-
lator and the reconstructed correlator. There is a statistically
significant difference between the two correlators, which
shows that a change must take place in the spectral
function. Because the difference is very weakly dependent
on time, the change must take place in the low-frequency
part of the spectral function. We expect from the thermal
chiral effective theory that the change is due to a modi-
fication of the mass and/or the residue of the pion

quasiparticle. Using the numbers of Table III, the changes
amount respectively to

ω0

ω0
0

¼ 0.836ð14Þ; ftπ
f0π

¼ 1.03ð2Þ: ð29Þ

We thus observe that while the pion decay constant remains
unchanged at the precision level of a few percent, the pion
mass decreases by 16%. Qualitatively, these results are
consistent with the two-loop results in zero-temperature
chiral perturbation theory given in Refs. [34,35]. Future
lattice calculations approaching the chiral limit would
allow for a quantitative comparison.

D. The spectral function ρAðω;pÞ at nonzero momentum

As the next step, we test the functional form of Eq. (11)
at nonzero momentum. The relevant real-time pion states
with energy ωp have a nonzero overlap with the operatorR
d3xeipxA0ðxÞ; furthermore, the spectral function ρA

becomes independent of ω in the ultraviolet, rather than
growing like ω2. We therefore expect to have the best
sensitivity to the pion contribution in the correlator
GAðx0; T;pÞ.
At finite temperature, the analysis of the correlator

GAðx0; T;pÞ is more involved than at zero temperature:
only at sufficiently small quark masses and momenta, and
not too small x0 is the correlator parametrically dominated
by the pion pole. Therefore we proceed by formulating a fit
ansatz to take into account the non-pion contributions. The
combination of Eqs. (17) and (18) motivates an ansatz for
the spectral function reading

ρAðω;pÞ ¼ A1ðpÞ sinhðωβ=2Þδðω − ωpÞ
þ A2ðpÞ

Nc

24π2
ð1 − e−ωβÞθðω − cÞ: ð30Þ

TABLE III. Summary of the results for the Nτ ¼ 24 thermal
ensemble. All renormalization factors are included and the
errors are purely statistical. The value of ω0 is calculated using
ω0 ¼ ummπ . In the same way ftπ ¼ fπ=um. The value of the
residue is obtained according to Eq. (20), Resðω0Þ ¼ f2πm2

π .

mπ=T 1.79(2)
fπ=T 0.46(1)
uf 0.76(1)
um 0.74(1)
uf=um 1.02(1)
ω0=T 1.32(2)
ftπ=T 0.62(1)
Resðω0Þ=T4 0.68(2)

FIG. 5 (color online). The difference ΔGAðjpj; x0Þ≡
½GAðx0; T;pÞ − Grec

A ðx0; T;pÞ�=T3 of the thermal correlator and
the reconstructed correlator for jpj ¼ 0 and 2π=L.
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The corresponding form of the correlation function then
reads

GAðx0; T;pÞ ¼ A1ðpÞ coshðωpðβ=2 − x0ÞÞ

þ A2ðpÞ
Nc

24π2

�
e−cx0

x0
þ e−cðβ−x0Þ

β − x0

�
: ð31Þ

We fit GAðx0; T;pÞ with the ansatz given in Eq. (31) for
the momenta pn ¼ ð0; 0; 2πn=LÞwith n ¼ 1; 2; 3; 4; 5. The
fit interval is chosen to be x0=a ∈ ½5; 12� in order to avoid
cutoff effects. There are four parameters involved, A1ðpÞ,
ωp, A2ðpÞ and c. Leavingωp as a fit parameter led to poorly
constrained fits. Therefore we set the value of ωp to the
prediction of Eq. (11) in order to test whether the data can
be described in this way. Motivated by the expected large-ω
behavior of the spectral function, we quote the rescaled
parameter ~A2 ¼ A2=p2. Note that the quark mass is
negligible compared to all the nonvanishing jpj values
considered here. The expected value of ~A2 is of order unity,
in view of Eq. (18). Equation (22) allows us to establish the
relation between the fit parameter A1ðpÞ and the residue
itself,

ResðωpÞ ¼ 2A1ðpÞωp sinhðωpβ=2Þ: ð32Þ

One may further convert the result for the residue into a
parameter bðpÞ, defined by

ResðωpÞ ¼ f2πðm2
π þ p2Þð1þ bðpÞÞ: ð33Þ

From the chiral prediction (20), we thus expect bðpÞ to be
small compared to unity if the effective description is
working. The results are summarized in Table IV.
The fits provide a good description of the data; see the

χ2=d:o:f: values and Fig. 6. We observe that at the smallest
momentum, jpj≃ 400 MeV, bðpÞ really is small, pointing
to a successful check of the chiral prediction. At higher
momenta, the negative, order-unity value of bðpÞ indicates
that the residue of the pion pole is reduced. It should also
be remembered that at higher momenta, neglecting the
width of the quasiparticle is bound to be an increasingly
poor approximation. The coefficient ~A2 is expected to be of

order unity from the tree-level prediction (18). Indeed the
numbers in Table IV are of order unity. One reason for the
relatively large value of the coefficient at the smallest
momentum could be that axial-vector excitations are
contributing around the threshold c, thus adding spectral
weight. The value of the threshold at jpj≃ 400 MeV, is
about 1.1 GeV, a value we consider to be reasonable given
that the mass of the lightest axial-vector meson in nature
is ma1 ≈ 1.2 GeV.
In order to gauge the discriminative power of the test, it

is interesting to ask whether a rather different model is
consistent with the lattice data on GAðx0;p; TÞ. We assume
for this purpose that the dispersion relation and the residue
have the same p dependence as at zero temperature. We

therefore set ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ p2

q
, and obtain for n ¼ 1 an

equally good description of the data, with a value of the
residue ResðωpÞ ¼ 3.01ð4Þ not too different from
ðftπÞ2ðω2

0 þ p2Þ ¼ 2.84ð7Þ. The other fit parameters take
the values ~A2 ¼ 2.42ð17Þ and c=T ¼ 10.2ð4Þ. While the
perturbative coefficient and the threshold values seem less

TABLE IV. Results of fits to the axial-charge density correlator at nonvanishing momentum pn. All errors quoted are statistical, and all
renormalization factors are included. The quantity ωp=T is not a fit parameter; rather it is set to the value predicted by Eq. (11) with
uðTÞ ¼ um ¼ 0.74ð1Þ.
n A1=T3 ωpn

=T ~A2
c=T Resðωpn

Þ=T4 b χ2=d:o:f:

1 2.95ð4Þ × 10−1 2.19(3) 1.78(8) 6.7(3) 1.72(6) −0.08ð3Þ 0.06
2 1.40ð5Þ × 10−1 3.73(6) 1.26(2) 6.1(1) 3.3(2) −0.39ð4Þ 0.15
3 4.9ð3Þ × 10−2 5.40(9) 1.19(1) 7.7(1) 3.9(5) −0.65ð4Þ 0.35
4 1.7ð2Þ × 10−2 7.1(1) 1.15(1) 9.67(9) 4.21(7) −0.78ð3Þ 0.49
5 4ð1Þ × 10−3 8.8(1) 1.12(1) 11.7(1) 3(1) −0.89ð3Þ 1.04

FIG. 6 (color online). Correlation functions GAðx0; T;pnÞ=T3

with pn ¼ ð0; 0; 2πn=LÞ, together with the fits resulting from the
four-parameter ansatz of Eq. (31). The corresponding parameter
values are given in Table IV. All renormalization constants are
included.
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plausible to us, we cannot completely exclude this model
on the basis of the lattice data.
To summarize, we have found that the dispersion relation

of the pion quasiparticle is consistent with Eq. (11), the
parameter u being determined at vanishing spatial momen-
tum. In order to test the dependence of our results on
the fit ansatz made, in the next section we apply the
Backus-Gilbert method.

E. The Backus-Gilbert method for ρAðω;pÞ
The Backus-Gilbert method is a method suitable for

inverting integral equations like Eq. (14). It has been
studied in many contexts (see e.g. Refs. [12–17]). While
it has not been applied in lattice QCD, to our knowledge,
the central notion of resolution function was used in
Ref. [36]. We first describe the method in some generality.
It is a completely model-independent approach since no
ansatz needs to be made for the spectral function.
The goal is to solve the integral equation

GðxiÞ ¼
Z

∞

0

dωfðωÞKðxi;ωÞ; xi ≠ 0 ∀ i ð34Þ

for the unknown function fðωÞ, given the kernel Kðxi;ωÞ
and given data on GðxiÞ. The idea is to define an estimator
f̂ðω̄Þ

f̂ðω̄Þ ¼
Z

∞

0

δ̂ðω̄;ωÞfðωÞdω ð35Þ

where δ̂ðω̄;ωÞ is called the resolution function or
averaging kernel. It is a smooth function concentrated
around some reference value ω̄, normalized according
to

R
∞
0 dωδ̂ðω̄;ωÞ ¼ 1, and parametrized at fixed ω̄ by

coefficients qiðω̄Þ,

δ̂ðω̄;ωÞ ¼
X
i

qiðω̄ÞKiðωÞ; ð36Þ

so that f̂ is obtained according to

f̂ðω̄Þ ¼
Xn
i¼1

GðxiÞqiðω̄Þ: ð37Þ

The goal is then to minimize the width of the resolution
function. Minimizing the second moment of δ̂ðω̄;ωÞ2 in its
second argument around its first argument yields

qiðω̄Þ ¼
P

jW
−1
ij ðω̄ÞRðxjÞP

k;lRðtkÞW−1
kl ðω̄ÞRðxlÞ

; ð38Þ

where

Wijðω̄Þ ¼
Z

∞

0

dωKðxi;ωÞðω − ω̄Þ2Kðxj;ωÞ; ð39Þ

RðxiÞ ¼
Z

∞

0

Kðxi;ωÞdω: ð40Þ

We remark that f̂ðωÞ equals fðωÞ if the latter is constant.
The matrixWijðω̄Þ is very close to being singular. This is

the reason why, when trying to use a data set with error
bars, one needs to regulate the inverse problem, replacing
the matrix W by

Wij → λWij þ ð1 − λÞSij; 0 < λ < 1; ð41Þ

where Sij is the covariance matrix of the data. The value of
λ controls the trade-off between resolution and stability.
For values of λ close to 1, we obtain the best possible
resolution. However the results tend to be unstable since the
matrix is poorly conditioned and large cancellations take
place among the terms in Eq. (37). Reducing λ improves the
stability of the result at the cost of deteriorating the
frequency resolution. One may start from a value for λ
near unity and decrease it until the statistical error on ρ̂ðωÞ
drops to say 5%. Of all linear methods, the result ρ̂ðωÞ then
has the best possible frequency resolution [as measured
by the second moment of δðω̄;ωÞ2 in its second argument]
for the given statistical uncertainty of 5%. It should be
emphasized that, as a matter of principle, any choice of λ
yields a correct result, in the sense that the relation between
ρ̂ðωÞ and ρðωÞ is given model independently by the
resolution function. However, in order to be useful, the
result must have both a reasonable statistical uncertainty
and a decent frequency resolution. It is worth noting that if
the statistical accuracy of the input correlator is increased
by a factor ξ (so that Sij is overall reduced by a factor 1=ξ),
then keeping λ constant will result in a better frequency
resolution; instead, choosing a new value for λ so as to keep
ð1 − λÞSij constant will maintain the same resolution
function and ρ̂ðωÞ will have a reduced statistical uncer-
tainty by 1=

ffiffiffi
ξ

p
. In particular, it is predictable by how much

the statistics needs to be increased in order to achieve a
certain frequency resolution at fixed statistical uncertainty.
We apply this method to Eq. (14). In order to regularize

the finite-temperature kernel at ω ¼ 0 we rewrite the
equation as

GAðx0;T;pÞ¼
Z

∞

0

dω
�

ρAðω;pÞ
tanhðω=2Þ

��
coshðωðβ=2−x0ÞÞ

coshðωβ=2Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≐Kðx0;ωÞ

:

ð42Þ

This defines our estimator ρ̂ at ω ¼ ω̄,
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ρ̂ðω̄;pÞ ¼
Z

∞

0

dωδ̂ðω̄;ωÞ
�

ρAðω;pÞ
tanhðωβ=2Þ

�
: ð43Þ

After regulating the problem via the covariance matrix Sij
as in Eq. (41), the inversion is carried out via singular value
decomposition. This offers the opportunity to diagnose
how badly conditioned the matrix is. With all quantities
made dimensionless by applying appropriate powers of the
temperature, we choose λ ¼ 2 · 10−3 in the following, so as
to yield an error ≲5% on ρ̂. Typical condition numbers of
the regularized matrix in Eq. (41) are ∼108. The situation
gets worse when λ approaches unity, as explained above.
The results for zero momentum and the first three units
of momentum are shown in the right panel of Fig. 7. As in

the case of the fit, we included the points of the correlation
in the interval x0=a ¼ ½5; 12� so Wijðω̄Þ is an n × n
symmetric matrix with n ¼ 8. With our chosen value of
λ, we obtain a relative error on ρ̂ of ∼3–5%, while the
resolution function is displayed in the left panel of Fig. 7.
One direct observation is the fact that the expected
asymptotic behavior for large values of ω is reproduced
very well.
The right panel of Fig. 7 also shows the expected

positions of the poles that follow from Eq. (11) as vertical
colored dashed lines. We now want to test the p depend-
ence of the residue ResðωpÞ via the following argument.
If we assume that, for a given value of ω, ρ̂ðω;pÞ is
dominated by the pion pole, we obtain the following
estimator for the residue:

FIG. 7 (color online). Left: Some examples of resolution functions for different values of λ centered at ω̄=T. Right: Estimators
ρ̂ðω;pnÞ=T2 for n ¼ 0, 1, 2, 3 together with its error shown as a band. The vertical colored dashed lines correspond to the locations of the
expected positions of the poles ωpn

according to Eq. (11) with uðTÞ ¼ um. The black horizontal lines correspond to the tree-level
asymptotic values of ρAðω;pÞ. All renormalization constants have been taken into account as well as the improvement program on the
axial correlators. Dimensionful quantities have been made dimensionless by the appropriate power of T ¼ 1=24a.

FIG. 8 (color online). The effective residue Resðωp;ωÞBG as defined in Eq. (44). Left: No momentum induced, p ¼ 0. Right: One unit
of momentum induced, p1 ¼ ð0; 0; 2π=LÞ. The grey band is the expectation in terms of screening quantities [Eq. (20)]. All
renormalization factors are included. The errors arise from the statistical uncertainty. The values of ωp are indicated by dashed vertical
lines.
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Resðωp;ωÞBG ¼ 2ωp tanhðωpβ=2Þρ̂ðω;pÞ
δ̂ðω;ωpÞ

: ð44Þ

Here we treat ωp as input and calculate it using Eq. (11)
with the value of u ¼ um ¼ 0.74ð1Þ determined at zero
momentum. The result as a function of ω is shown in Fig. 8
for zero and one unit of momentum. The natural choice
where Resðωp;ωÞBG is expected to be the best estimator of
the residue is at ω ≈ ωp. Looking at Fig. 8, one sees that
approximately around this value the curve intercepts the
grey band, which represents the prediction (20). The latter
is particularly well verified at zero momentum, while the
agreement at jpj ¼ jp1j ≈ 400 MeV is at the ten percent
level. These observations provide a further test that the pion
dispersion relation (11) predicted by the thermal chiral
effective theory is consistent with the lattice two-point
function of the axial-charge density.
Comparing the method followed in this subsection with

the previous method based on a global fit to the spectral
function, the former has the advantage of not requiring an
explicit parametrization of the non-pion contributions to the
spectral function. This observation may be useful in other
lattice studies of spectral functions.

V. CONCLUSION

We have found that the pion quasiparticle mass is
reduced significantly by thermal effects compared to its
vacuum value—unlike the pion screening mass, which
increases. Also, the energy cost of giving the pion quasi-
particle a momentum is significantly reduced, since the
“velocity” is well below unity, u ≈ 0.74. We have tested
that the pion indeed admits a modified dispersion relation,
Eq. (11), by analyzing lattice two-point functions. The test
is based on requiring the consistency with the lattice data of
the combined chiral prediction for the dispersion relation
and the residue of the pion pole in the two-point function
of the axial-charge density. These conclusions could be
strengthened further by repeating the calculation at smaller
quark masses and with higher statistics. Discretization
errors should also be studied. Having a higher resolution
in momentum could help in assessing the region of validity
of the chiral effective theory.
Assuming the results hold to further scrutiny, one may

wonder how much a modified mass and dispersion relation
of the pion affects (a) the freeze-out mechanism in heavy-
ion collisions and (b) the predictions of the hadron
resonance gas model for equilibrium properties. In answer-
ing the latter question, one must take into account that the
modification of the pion dispersion relation is due to the
presence of hadrons in the medium, and issues of double
counting arise. However, the following estimates may
provide a useful first idea of the size of the effect. At the
temperature of 169 MeV in the two-flavor theory that we
have been discussing, with a zero-temperature pion mass of
270 MeV, we estimate, using the hadron resonance gas

model, an isovector quark number susceptibility5 amounting
to χs=T2 ¼ 0.42. In the HRG model, the pion contributes6

χs=T2jpions¼ 4β3
R d3p

ð2πÞ3fBðpÞð1þfBðpÞÞ¼ 0.28. If the

spatial-momentum integral in the pion contribution is cut
off at pmax ¼ 400 MeV (roughly the range of validity of the
chiral effective theory that we found), the contribution is
reduced to 0.11. If we instead use the modified dispersion
relation with the lower quasiparticle mass ω0 ¼ 223 MeV
and u ¼ 0.74, the contribution for p < pmax amounts again
to 0.28. It is unclear whether one should include a contri-
bution from higher momenta, given that the thermal width of
the pion may then not be negligible. The numbers above
illustrate that the contribution of the pion to the quark number
susceptibility might not be as strongly affected as one may at
first think. However, the contribution comes from softer
pions, which implies a reduced amplitude of the transport
peak in the two-point function of thevector currentVa

i ðxÞ, an
effect that can be tested in lattice simulations.
Determining the dispersion relation of a non-Goldstone

hadron would be interesting to see whether the relatively
strong change we have seen in the pion properties is
specific to chiral dynamics. In general, a kinetic theory
description allows one to use as primary degrees of freedom
the quasiparticles specific to the temperature of interest. It
is therefore much broader in applicability than the hadron
resonance gas model, but requires input information on the
quasiparticles. The channel treated here illustrates the
importance of having guidance from an effective theory
in reconstructing the gross features of the spectral function.
In doing so, applying the Backus-Gilbert method in a first
step can be useful in narrowing down the region of
frequency where a specific ansatz for the spectral function
must be made.
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APPENDIX A: TENSOR STRUCTURE OF THE
AXIAL CURRENT TWO-POINT FUNCTIONS

We work in the Euclidean field theory and define the
correlation function in momentum space as

δabΠA
μνðϵ̂; kÞ≡

Z
d4xeik·xhAa

μðxÞAb
νð0Þiϵ̂: ðA1Þ

The unit vector ϵ̂ points in the direction that defines the
thermal boundary condition. It is ϵ̂ ¼ ð1; 0; 0; 0Þ in the
rest frame of the thermal system. By doing the change
of integration variables x → −x and using translation
invariance

hAμð−xÞAνð0Þiϵ̂ ¼ hAνðxÞAμð0Þiϵ̂ ðA2Þ

and symmetry under the O(4) rotation x → −x,

hAμð−xÞAνð0Þiϵ̂ ¼ hAμðxÞAνð0Þi−ϵ̂; ðA3Þ

we have the symmetries

ΠA
μνðϵ̂; kÞ ¼ ΠA

νμðϵ̂;−kÞ ¼ ΠA
μνð−ϵ̂;−kÞ: ðA4Þ

To write down the tensor decomposition, we have the
building blocks δμν, kμ and ϵ̂μ at our disposal. We can write
down four structures that respect the symmetries (A4),

δμν;
kμkν
k2

;
ϵ̂ · k
k2

ðϵ̂μkν þ kμϵ̂νÞ; ϵ̂μϵ̂ν: ðA5Þ

We can form one projector to the subspace orthogonal to
both ϵ̂ and k,

CT;t
μν ¼ δμν −

1

1 − ðϵ̂ · kÞ2=k2
�
ϵ̂μϵ̂ν þ

kμkν
k2

−
1

k2
ðϵ̂ · kÞðϵ̂μkν þ kμϵ̂νÞ

�
; ðA6Þ

and one projector onto the component of ϵ̂ which is orthogonal to k,

CT;l
μν ¼ δμν −

kμkν
k2

− CT;t
μν ¼ 1

1 − ðϵ̂ · kÞ2=k2
�
ϵ̂μ −

ðϵ̂ · kÞkμ
k2

��
ϵ̂ν −

ðϵ̂ · kÞkν
k2

�
: ðA7Þ

Two possible nontransverse combinations are

CL;l
μν ¼ kμkν

k2
; CM

μν ¼
1

1 − ðϵ̂ · kÞ2=k2
�
ϵ̂μϵ̂ν − ðϵ̂ · kÞ2 kμkνðk2Þ2

�
: ðA8Þ

The first one is the projector onto the direction of kμ. The
second tensor, while not a projector, has the properties

CM
μμ ¼ 1; CT;t

μαCM
αν ¼ CL;l

μαCM
αν ¼ 0: ðA9Þ

In summary, we can write

ΠA
μνðϵ̂; kÞ ¼ CT;t

μνΠT;t þ CT;l
μνΠT;l þ CL;l

μνΠL;l þ CM
μνΠM:

ðA10Þ

The argument of the C’s is ðϵ̂; kÞ, while the argument of the
form factors Π is ðϵ̂ · k; k2Þ.
It is helpful to be able to invert the relation (A10) in order

to project out the form factors individually. We find

ΠL;l ¼ kμkν
k2

ΠA
μν; ðA11Þ

ΠM ¼ 1

ϵ̂ · k
kμΠA

μν

�
ϵ̂ν −

ϵ̂ · k
k2

kν

�
; ðA12Þ

ΠT;l ¼ 1

1 − ðϵ̂ · kÞ2=k2
�
ϵ̂μΠA

μνϵ̂ν −
ðϵ̂ · kÞ2
ðk2Þ ΠL;l

− ð1þ ðϵ̂ · kÞ2=k2ÞΠM

�
; ðA13Þ

ΠT;t ¼ 1

2
fΠA

μμ − ½ΠT;l þ ΠM þ ΠL;l�g: ðA14Þ

1. Special kinematics

When ðϵ̂ · kÞ2 ¼ k2, corresponding to vanishing spatial
momentum in the rest frame of the thermal system, the
projectors CT;t

μν and CT;l
μν as well as CM

μν become singular.
Therefore we will define the value of the form factors in this
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limit by continuity. When ϵ̂ and k are collinear, there are
only two independent tensor structures,

ΠA;col
μν ðϵ̂;kÞ¼

�
δμν−

kμkν
k2

�
Π̂Tðk2Þþ

kμkν
k2

Π̂Lðk2Þ: ðA15Þ

Applying the relevant projectors as in Eqs. (A11)–(A14),
one finds that

ΠT;t ¼ ΠT;l ¼ Π̂T; ΠL;l ¼ Π̂L; ΠM ¼ 0: ðA16Þ

When ϵ̂ · k ¼ 0, corresponding to the static correlators,
CT;l
μν becomes equal to CM

μν. Therefore, in that situation the
Euclidean correlator is only sensitive to the sum of the two
corresponding form factors, ðΠM þ ΠT;lÞ. Equation (A12)
nonetheless provides an unambiguous definition of ΠM if,
expressed in the rest frame, limk0→0ΠA

0i=k0 is known. The
latter limit, however, requires an analytic continuation of
the Euclidean correlator.

2. The zero-temperature limit

At zero temperature, it is natural to parametrize the
correlation function as

ΠA
μνðkÞ ¼

�
δμν −

kμkν
k2

�
ΠTðk2Þ þ kμkν

k2
ΠLðk2Þ: ðA17Þ

Applying the same projectors as in Eqs. (A11)–(A14) onto
the correlation function (A17), and requiring that the same
result be obtained in the zero-temperature limit, we obtain

ΠL;lðϵ̂ · k; k2Þ → ΠLðk2Þ; ðA18Þ

ΠMðϵ̂ · k; k2Þ → 0; ðA19Þ

ΠT;lðϵ̂ · k; k2Þ → ΠTðk2Þ; ðA20Þ

ΠT;tðϵ̂ · k; k2Þ → ΠTðk2Þ: ðA21Þ

3. Relation to the correlators of the
pseudoscalar density

We define

δabAμðϵ̂; kÞ ¼
Z

d4xeikxhAa
μðxÞPbð0Þi; ðA22Þ

δabPðϵ̂; kÞ ¼
Z

d4xeikxhPaðxÞPbð0Þi: ðA23Þ

We note the symmetry relations

Aμðϵ̂; kÞ ¼ −Aμð−ϵ̂;−kÞ; ðA24Þ

Z
d4xeikxhPðxÞAνð0Þiϵ̂ ¼ Aνðϵ̂;−kÞ; ðA25Þ

respectively from O(4) invariance and from translation
invariance.
In Ref. [8] (see Eqs. (A7) and (A8) in that reference),

taking into account Eqs. (A25) and (A4), the Ward
identities

2mAμðϵ̂; kÞ ¼ ikαΠA
μαðϵ̂; kÞ; ðA26Þ

4m2Pðϵ̂; kÞ ¼ kμΠA
μαðϵ̂; kÞkα þmhψ̄ψi ðA27Þ

were derived. Inserting our tensor decomposition of
ΠA

μαðϵ̂; kÞ, we find

2mAμðϵ̂; kÞ ¼ ikμΠL;lðϵ̂ · k; k2Þ

þ iðϵ̂ · kÞ ϵ̂μ − ðϵ̂ · k=k2Þkμ
1 − ðϵ̂ · kÞ2=k2 ΠMðϵ̂ · k; k2Þ;

ðA28Þ

4m2Pðϵ̂; kÞ ¼ k2ΠL;lðϵ̂ · k; k2Þ þmhψ̄ψi: ðA29Þ

APPENDIX B: ON THE RESIDUE OF
THE PION POLE

In this appendix, we use the general results of the
previous section in the rest frame of the thermal system,
ϵ̂μ ¼ ð1; 0; 0; 0Þ. The form factors are thus functions of k0
and k2 and the dependence on ϵ̂ is no longer indicated
explicitly. All expressions for correlation functions in this
section refer exclusively to the pion contribution.
In Ref. [8], it was shown that the residue of the pion

pole in the two-point function of A0 at vanishing spatial
momentum is Resðω0Þ ¼ f2πm2

π . In order to determine the
form of the residue at finite momentum, we parametrize the
residue as

ResðωkÞ ¼ f2πðm2
π þ λk2Þ: ðB1Þ

To determine the parameter λ, we will exploit the fact that
the spectral representation of the two-point function of A0

in terms of real-time excitations must agree with the
spectral representation in terms of screening states. From
the former point of view, the pion contribution to the
correlator in momentum space takes the form

ΠA
00ðkÞ ¼

f2πðm2
π þ λk2Þ

k20 þ ω2
k

; ðB2Þ

with ωk given in Eq. (11). From the “screening” point of
view, the residue must be proportional to k20 at small k20
(here we invoke the analytic continuation in the frequency,
away from the Matsubara values k0 ¼ 2πTn). This is so
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because the screening pion is odd under the Euclidean time
reversal x0 → −x0, while A0 is even. Thus we can write

ΠA
00ðkÞ ¼

−jFj2k20
k2 þ k2

0

u2 þm2
π

ðB3Þ

for some parameter F to be determined. Equations (B2) and
(B3) must agree when the numerators are evaluated at the
pole, k20 ¼ −ω2

k. From here we learn the following:

jFj ¼ fπ
u2

; λ ¼ 1: ðB4Þ

This shows in particular that the residue has the form given
in Eq. (20). Essentially the same argument was already
used in Ref. [8] to determine the residue of the pion pole in
the two-point function of the pseudoscalar density,

PðkÞ ¼ −
hψ̄ψi2u2
4f2π

1

k20 þ ω2
k
: ðB5Þ

We note that for a one-pole contribution, factorization
relations such as

jA0ðkÞj2 ¼ jPðkÞjjΠA
00ðkÞj ðB6Þ

hold. The phase of A0 can then be determined through its
form at vanishing spatial momentum given in Ref. [8].

1. The pion contribution to ΠA
μν

Having found the residue of the pion pole in the various
two-point functions of the axial current, we give for
completeness the pion contribution to the form factors
defined in Eqs. (A11)–(A14),

ΠL;lðk0; k2Þ ¼ −
f2πm4

πu2

k2ðk20 þ ω2
kÞ

; ðB7Þ

ΠMðk0; k2Þ ¼
f2πm2

πk2ð1 − u2Þ
k2ðk20 þ ω2

kÞ
; ðB8Þ

ΠT;lðk0; k2Þ ¼
f2πk2ð1 − u2Þ

k20 þ ω2
k

; ðB9Þ

ΠT;tðk0; k2Þ ¼ 0: ðB10Þ

The first is obtained from Eq. (A29), then the second from
Eq. (A28), and the third by using Eq. (A13) and the first
two results. Via Eq. (A10), the form factors allow one to
obtain the entire tensor ΠA

μν.
These calculations could be greatly expedited by using

an effective Lagrangian, as written down in Ref. [11].
However it is also instructive to derive the results above
directly within QCD.

APPENDIX C: MOCK-DATA STUDY OF THE
BACKUS-GILBERT METHOD

In this appendix, we study the performance of the
Backus-Gilbert method in a realistic lattice QCD applica-
tion. We apply the method on mock data, where the
underlying spectral function is known. Our goal is to
validate the method used in Sec. IV E.
Our procedure is the following:
(1) We start from a real lattice correlator computed on

the “zero”-temperature ensemble O7 introduced in
Sec. III and Table I.

(2) In order to construct a realistic model, a spectral
function with sufficiently many free parameters is
fitted to the lattice data.

(3) The original correlator data is now replaced by mock
data, namely the correlator obtained by integrating
the fitted spectral function, with Gaussian noise
added (using the original covariance matrix of the
correlator).

(4) The mock data is now fed into the Backus-Gilbert
method, which generates a filtered spectral function
ρ̂BGðω̄Þ and the resolution function δðω̄;ωÞ. The
former is compared to the input spectral function.

(5) The final step, as in Sec. IV E, is to assume that the
true spectral function is dominated at low frequen-
cies by the contribution of a stable particle (the
pion), and we determine its residue in the correlator
from ρ̂BGðωÞ and δðω̄;ωÞ. The result is compared
with the input value.

1. Construction of realistic mock data

We use the Euclidean pseudoscalar density correlator
projected onto zero momentum due to its good signal-to-
noise ratio,

GPðx0Þδab ¼ −
Z

d3xhPaðxÞPbð0Þi: ðC1Þ

In a first step, we want to obtain a fit function Gfit
P ðx0Þ

which describes the data. We employ the following fit
ansatz for the spectral function:

ρPðωÞ¼
A1

2
eω0β=2δðω−ω0Þþ

A2Nc

ð4πÞ2 θðω−3ω0Þω2: ðC2Þ

It contains a δ-type pion contribution at a low frequency
ω0 and a continuum of multiparticle states beginning at
threshold ω ¼ 3ω0 due to the negative parity of the
pseudoscalar density operator. The corresponding correla-
tor is given by7

7The integrand in Eq. (C3) should really be divided by
ð1þ expð−βωÞÞ, but we neglect this effect because ω0β≃ 8.8.
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Gfit
P ðx0Þ ¼

Z
∞

0

dωρPðωÞðe−ωx0 þ e−ωðβ−x0ÞÞ ðC3Þ

¼ A1 coshðω0ðβ=2− x0ÞÞ

þA2Nc

ð4πÞ2
�
e−3ω0x0

x30
ð2þ 6ω0x0þ 9ω2

0x
2
0Þþ ðx0 → β− x0Þ

�
:

ðC4Þ
The fit to the data was performed in the interval x0=a ∈
½5; 64� in order to avoid cutoff effects present at small
distances. In view of Fig. 9 one clearly sees that Gfit

P ðx0Þ
describes the data in a satisfactory way yielding an
(uncorrelated) χ2=d:o:f: ∼ 10−2 with fit parameters shown
in Table V. Note that we do not quote statistical errors on
the parameters A1, ω0 and A2 since our goal is merely to
construct realistic mock data.
The next step is to generate the correlator Gfit

P ðx0Þ that
corresponds to the fitted spectral function via the integral
transform (C3). In order to be as realistic as possible, we
add Gaussian noise δGfit

P ðx0Þ to the correlator in order to
obtain the mock data ~Gfit

P ,

~Gfit
P ðx0Þ ¼ Gfit

P ðx0Þ þ δGfit
P ðx0Þ: ðC5Þ

The noise is generated by using the covariance matrix Sij of
the real data GPðxi0Þ where i and j label the discrete lattice

points. The eigenvalues and eigenvectors of S are obtained
by solving the eigenvalue equation

SvðiÞ ¼ ðσ2ÞðiÞvðiÞ: ðC6Þ

The statistically independent observables UðiÞ with squared
variance ðσ2ÞðiÞ are linear combinations of the points
GPðxi0Þ,

UðiÞ ¼ ðVTÞijGPðxj0Þ; ðC7Þ

where the orthogonal matrix V carries the eigenvectors
written in columns and diagonalizes S via VTSV ¼ D.
Random values δUðiÞ are generated according to the nor-
malized Gaussian probability distribution

PðδUðiÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2ÞðiÞ

q e
−ðδUðiÞÞ2

2ðσ2ÞðiÞ ðC8Þ

and by back-substitution we obtain the random noise

δGfit
P ðxi0Þ ¼ ðVÞijδUðjÞ: ðC9Þ

2. The Backus-Gilbert method applied to ~Gfit
P ðx0Þ

We now use the Backus-Gilbert algorithm on the mock-
data ~Gfit

P ðx0Þ with the goal to “reproduce” the spectral
function ρPðωÞ with parameters in Table V. We write the
following identity based on Eq. (C3)

~Gfit
P ðx0Þ¼

Z
∞

0

dω

�
ρPðωÞ
ω2

�
ω2ðe−ωx0 þe−ωðβ−x0ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≐Kðx0;ωÞ

ðC10Þ

so that the output ρ̂BGðωÞ of the Backus-Gilbert method is a

“filtered” version of ρPðωÞ
ω2 ,

ρ̂BGðω̄Þ ¼
Z

∞

0

dωδ̂ðω̄;ωÞ
�
ρPðωÞ
ω2

�
: ðC11Þ

The results are shown in the left panel of Fig. 10, which
corresponds to a value of the regulating parameter
λ ¼ 0.25, and the points considered in the Backus-
Gilbert method belong to the interval xi0=a ∈ ½5; 20�.
Consequently, the dimension of all matrices and vectors
defined previously is M ¼ 16. In view of Fig. 10 one sees
that the location of the pion pole agrees with the value
quoted in Table V. The same is true for the height of the
threshold, whose expectation is A2Nc

ð4πÞ2 and its flatness is

consistent with the assumed ω2 growth of ρPðωÞ.

FIG. 9 (color online). Euclidean correlator GPðx0Þ divided by
its fit function Gfit

P ðx0Þ.

TABLE V. Fit parameters corresponding to Gfit
P ðx0Þ. Dimen-

sionful quantities are made dimensionless by dividing with
T ¼ 1=128a. No renormalization constants are included.

A1=T3 463.911
ω0=T 8.394
A2 5.727
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3. Extraction of the pion residue

We now extract the residue of the pion in the cor-
relator from the output of the Backus-Gilbert method.
As in Eq. (44), we assume that at small frequencies
ρ̂ is dominated by the pion and therefore ρPðωÞ ¼
aBGδðω − ω0Þ þ � � �. Using Eq. (C11), we define an
estimator aBGðωÞ,

aBGðωÞ ¼
ρ̂BGðωÞω2

0

δ̂ðω;ω0Þ
; ðC12Þ

which we expect in view of Eq. (C2) to be equal to A1

2
eω0β=2

at ω ¼ ω0. Table VI and Fig. 11 show that the agreement
is excellent and stable as a function of ω. This study adds
to our confidence that the Backus-Gilbert method is a
viable approach for spectral function reconstruction in
lattice QCD.
To summarize, the interpretation of ρ̂BGðωÞ in terms of

the spectral function is model independent and determined
solely by the resolution function δ̂ðω̄;ωÞ. The latter in turn
depends on the regulating parameter λ, which is chosen to
balance good resolution in frequency against the statistical
precision of ρ̂BGðωÞ. Prior knowledge on the spectral
function, such as the existence of a sharp excitation, can
be used a posteriori to extract its amplitude in the
correlator.

FIG. 10 (color online). Left: Estimator ρ̂BGðωÞ with λ ¼ 0.25. Expected values are shown as dashed blue lines. Right: Resolution
functions δ̂ðω0;ωÞ for different values of λ.

FIG. 11 (color online). The estimator aBG=T3 as defined in Eq. (C12) with T ¼ 1=128a as a function of ω Left: λ ¼ 0.25. Right:
λ ¼ 0.005.

TABLE VI. The estimator aBG=T3 as defined in Eq. (C12) with
T ¼ 1=128a for different values of λ evaluated at ω ¼ ω0. The
expected value A1

2
eω0β=2 ¼ 1.54255 × 104.

λ aBG=T3

0.25 1.540ð28Þ × 104

0.05 1.536ð23Þ × 104

0.005 1.540ð20Þ × 104
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