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We compute masses of D mesons, Ds mesons and charmonium states using Wilson twisted mass lattice
QCD. We present results for spin J ¼ 0, 1, 2, 3, parity P ¼ −, þ and in case of charmonium also charge
conjugation C ¼ −, þ. Computations are based on quark-antiquark creation operators and performed at
three different unphysically heavy u=d quark masses allowing an extrapolation to the physical u=d quark
mass. Within combined statistical and systematic errors, which are around 2%…3%, our results agree with
available experimental results. Particular focus is put on the JP ¼ 1þ mesonsD1ð2430Þ andD1ð2420Þ. We
separate and classify these close-by states according to the total angular momentum of their light degrees of
freedom, j ≈ 1=2 and j ≈ 3=2. This is a first important step to study decays Bð�Þ → D1 þ lþ ν, for which a
long-standing conflict between theory and experiment exists.
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I. INTRODUCTION

More than fifty D meson, Ds meson and charmonium
states have been observed in experiments [1]. Several of
them seem to be theoretically well understood, e.g. the
JP ¼ 0− pseudoscalar and JP ¼ 1− vector ground states.
There are, however, open questions regarding some of the
more recently found excitations. A prominent example is
the charmonium-like state Xð3872Þ first observed by Belle
[2], which is most likely not an ordinary quark-antiquark
state and whose structure is under debate. The situation is
similar for several other charmonium-like X states. In
particular the electrically charged states, e.g. Xð3900Þ�
or Xð4020Þ�, cannot be simple cc̄ pairs. One rather
assumes a four quark structure, e.g. a mesonic molecule
or a diquark-antidiquark pair. The situation for open charm
mesons is related, even though fewer D and Ds states have
been observed. For example the positive parity mesons
D�

s0ð2317Þ and Ds1ð2460Þ first reported by BABAR [3] and
CLEO [4], respectively, are unexpectedly light. Again this
could be an indication that these states are not just quark-
antiquark pairs, but are composed of two quarks and two
antiquarks, a scenario at the moment neither established nor
ruled out.
There are many interesting and to some extent successful

approaches to study D mesons, Ds mesons and charmo-
nium states theoretically, e.g. quark models [5], effective
theories respecting QCD symmetries [6] or Dyson-
Schwinger and Bethe-Salpeter equations [7], to just name
a few. Of course, it would be highly desirable to understand
these mesons and their properties starting from first
principles, i.e. the QCD Lagrangian, without any assump-
tions, model simplifications or truncations. The corre-
sponding and commonly used method to achieve that
goal is lattice QCD, a numerical method to compute

QCD observables. In principle, it allows us to investigate
and to quantify all possible sources of systematic error.
Lattice meson spectroscopy is, however, a challenging task,
where many problems have currently only partly been
solved. On the one hand there are issues concerning lattice
QCD in general. For example simulations with physically
light u=d quarks are extremely demanding with respect
to high performance computing resources. Similarly, to
remove discretization errors one has to study the continuum
limit, which requires simulations at several different lattice
spacings, again a very challenging task with respect to
computational resources. On the other hand there are
problems specific to lattice hadron spectroscopy. An
example is the investigation of states, which can decay
into lighter multiparticle states. Such states should theo-
retically be treated as resonances and not as stable quark-
antiquark states, which is technically extremely difficult,
even for simple cases, where only a single decay channel
exists. Examples are D�

0ð2400Þ and D1ð2430Þ with quan-
tum numbers JP ¼ 0þ and JP ¼ 1þ. Similarly, it is very
challenging to study mesons, which might have a structure
more complicated than a simple quark-antiquark pair, e.g.
candidates for tetraquarks or hybrid mesons. While there
has been a lot of impressive progress regarding lattice
hadron spectroscopy within the last couple of years, there is
certainly still a lot of room for improvement. Simple states,
in particular pseudoscalar and vector ground state mesons,
have, meanwhile, been studied very accurately, including
simulations at or extrapolations to physically light u=d
quark masses and the continuum limit. On the other hand,
the majority of studies concerned with parity, radial and
orbital excitations are still at a more exploratory stage, i.e.
have quite often been performed at unphysically heavy
quark masses or at a single finite lattice spacing. Recent
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reviews discussing the status of lattice QCD computations
of D and Ds mesons and of charmonium are [8–10],
respectively.
The most common approach to compute meson masses

using lattice QCD is to employ meson creation operators,
which are composed of a quark and an antiquark operator,
and to extract meson masses from the exponential decay of
corresponding correlation functions.1 This strategy yields
accurate and solid results for mesons, which resemble
quark-antiquark pairs and which are quite stable, i.e. many
of the low-lying states in the D meson, Ds meson and
charmonium sector. Recent lattice QCD papers following
this strategy to compute masses and spectra of D and Ds
mesons and of charmonium are [12–26]. Rigorous treat-
ments of more complicated mesonic systems like the
previously mentioned unstable D�

0ð2400Þ and D1ð2430Þ
mesons or any of the tetraquark candidates, e.g. Xð3900Þ�
or Xð4020Þ�, require more advanced techniques, in par-
ticular the implementation of meson creation operators
composed of two quark and two antiquark operators and
possibly studies of the volume dependence of the masses of
corresponding scattering states.2 Examples of recent lattice
papers exploring and using such techniques to study
specific D, Ds or charmonium states are [28–38].
The goal of this paper is to compute the masses of several

low-lying D meson, Ds meson and charmonium states
using Wilson twisted mass lattice QCD with 2þ 1þ 1
dynamical quark flavors. One of the main advantages of
this particular discretization of QCD is automatic OðaÞ
improvement, i.e. discretization errors appear only quad-
ratically in the small lattice spacing a and are, hence, quite
small. From a technical point of view we employ a large
variety of quark-antiquark meson creation operators and
are, hence, able to study total angular momentum J ¼ 0, 1,
2, 3, parity P ¼ −, þ and in case of charmonium charge
conjugation C ¼ −, þ. Computations are performed at
several unphysically heavy u=d quark masses (correspond-
ing pion masses mπ ≈ 276 MeV, 315 MeV, 443 MeV),
which allow extrapolations to the physical point. At the
moment computations are, however, restricted to a single
lattice spacing a ≈ 0.0885 fm, i.e. we are currently not able
to perform a continuum extrapolation. Nevertheless, by
using two different Wilson twisted mass discretizations
of the meson creation operators we are able to crudely
estimate the magnitude of discretization errors associated
with our resulting meson masses. Computations at smaller
lattice spacings and corresponding continuum extrapola-
tions are planned for the near future and will be part of an
upcoming publication.

As mentioned above some D meson, Ds meson and
charmonium states are quite unstable or might have a
structure much different from a quark-antiquark pair.
Even though we present results for these states in the
following, a rigorous treatment might require more advanced
techniques, in particular the inclusion of four-quark creation
operators as discussed above. We are in the process of
developing such techniques using a similar lattice QCD
setup [39–41]. The techniques and results presented in this
paper are an important prerequisite for such more advanced
computations. Our long-term goal is the computation of
the low-lying D and Ds meson and charmonium spectra as
fully as possible with all sources of systematic error removed
or quantified (in particular computations at physically light
u=d quark masses including continuum extrapolations),
using quark-antiquark creation operators supplemented,
whenever necessary, by four-quark creation operators.
In this work we also study the structure of the two lightest

D mesons with JP ¼ 1þ, D1ð2430Þ and D1ð2420Þ. These
states are similar in mass, but their structure is quite different.
One of them has j ≈ 1=2, while the other has j ≈ 3=2, where
j denotes the total angular momentum of the light quark and
of gluons. Assuming that both states have predominantly
quark-antiquark structure, we demonstrate how to resolve
and classify them from computations based on a single
JP ¼ 1þ correlation matrix. The eigenvector components
obtained by solving a generalized eigenvalue problem
provide linear combinations of meson creation operators
suited to specifically exciteD1ð2430Þ andD1ð2420Þ. This is
an important first step to study decays Bð�Þ → D�� þ lþ ν,
for which there is a persistent conflict between theory and
experiment regarding branching ratios (cf. [42] for a detailed
discussion). Our techniques and results can be used to extend
recent lattice QCD computations of these decays, whereD��

has been restricted to JP ¼ 0þ, 2þ, but did not include
D1ð2430Þ and D1ð2420Þ [43,44].
Parts of this work have been presented at recent confer-

ences [45–47].
This paper is structured as follows. In Sec. II we

introduce the 2þ 1þ 1 flavor Wilson twisted mass lattice
setup. In Sec. III and Sec. IV we discuss the technical
aspects of our computations, in particular the employed
meson creation operators, their corresponding quantum
numbers and how we compute correlation matrices and
meson masses. In Sec. V we present our results, first
for D and Ds mesons in Sec. VA, then for charmonium in
Sec. V B. These results are summarized in plots and tables
in Sec. VI, where we also give a brief outlook.

II. LATTICE QCD SETUP

A. Gauge link ensembles, sea quarks

We use gauge link configurations generated with 2þ
1þ 1 dynamical quark flavors by the European Twisted
Mass Collaboration (ETMC) [48–51]. The gluonic action is

1For a basic introduction to lattice hadron spectroscopy
cf. [11].

2For a basic introduction on how to study resonances using
lattice QCD cf. [27].
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the Iwasaki gauge action [52]. For the light degenerate
ðu; dÞ quark doublet the standard Wilson twisted mass
action

Slight½ χðlÞ; χ̄ðlÞ; U� ¼
X
x

χ̄ðlÞðxÞðDWðm0Þ þ iμγ5τ3ÞχðlÞðxÞ

ð1Þ

has been used [53], for the heavy ðc; sÞ sea quark doublet
the Wilson twisted mass formulation for nondegenerate
quarks

Sheavy½ χðhÞ; χ̄ðhÞ; U�
¼

X
x

χ̄ðhÞðxÞðDWðm0Þ þ iμσγ5τ1 þ μδτ3ÞχðhÞðxÞ ð2Þ

[54]. DW denotes the Wilson Dirac operator,

DWðm0Þ ¼
1

2
ðγμð∇μ þ∇�

μÞ −∇�
μ∇μÞ þm0; ð3Þ

χðlÞ ¼ ð χðuÞ; χðdÞÞ and χðhÞ ¼ ð χðcÞ; χðsÞÞ are thequark fields
in the so-called twistedbasis and τ1 and τ3 denote the first and
third Pauli matrix acting in flavor space. At maximal twist
physical quantities, e.g. meson masses, are automatically
OðaÞ improved [55]. The tuning has been done by adjusting
m0 such that the PCAC quark mass in the light quark sector
vanishes (cf. [50] for details). For a reviewonWilson twisted
mass lattice QCD we refer to [56].
In this work we use three ensembles with gauge coupling

β ¼ 1.90, which amounts to a lattice spacing a ≈ 0.0885 fm
(scale setting via the pion mass and the pion decay constant
[57]). The ensembles differ in the unphysically heavy u=d
quark mass μ ¼ 0.0030, 0.0040, 0.0080 corresponding to
mπ ≈ 276 MeV, 315 MeV, 443 MeV. The s and the c quark
masses are represented by μσ ¼ 0.150 and μδ ¼ 0.190.
These values have been chosen such that the lattice QCD
results for 2m2

K −m2
π and for mD, quantities, which depend

only weakly on the light u=d quark mass, are close to the
corresponding physical values [50,58,59]. Details of these
gauge link ensembles are collected in Table I.

B. Valence quarks

For the light degenerate ðu; dÞ valence quark doublet we
use the same action, which was used to simulate the
corresponding sea quarks, i.e. the action (1).

For the heavy s and c valence quarks we use twisted mass
doublets of degenerate quarks, i.e. a different discretization
as for the corresponding sea quarks. We use the action (1)
with the replacements χðlÞ → χðsÞ ¼ ðχðsþÞ; χðs−ÞÞ, μ → μs
and χðlÞ → χðcÞ ¼ ðχðcþÞ; χðc−ÞÞ, μ → μc, respectively. We do
this, to avoid mixing of strange and charm quarks, which
inevitably takes place in a unitary nondegenerate Wilson
twisted mass setup, and which is particularly problematic for
observables containing charm quarks, e.g. masses of D and
Ds mesons and of charmonium (cf. [58,59] for a detailed
discussion of these problems).
The degenerate valence doublets allow two realizations

for strange as well as for charm quarks, either with a twisted
mass term þiμs;cγ5 (i.e. χðs

þÞ or χðcþÞ) or −iμs;cγ5 (i.e. χðs
−Þ

or χðc−Þ). For a quark-antiquark meson creation operator,
e.g. χ̄ð1Þγ5χð2Þ, the sign combinations ðþ;−Þ and ð−;þÞ for
the antiquark χ̄ð1Þ and the quark χð2Þ are related by
symmetry, i.e. the corresponding correlation functions
are identical. These correlation functions differ, however,
from their counterparts with sign combinations ðþ;þÞ and
ð−;−Þ due to different discretization errors. In Sec. V we
will show for each computed meson mass both the
ðþ;−Þ≡ ð−;þÞ and the ðþ;þÞ≡ ð−;−Þ result. The mass
differences areOða2Þ, because of automaticOðaÞ improve-
ment at maximal twist. These differences provide a first
estimate of the magnitude of discretization errors at our
currently used lattice spacing a ≈ 0.0885 fm.
The tuning of the valence quark masses μs and μc is

discussed in Sec. IV C.

III. MESON CREATION OPERATORS
AND TRIAL STATES

A. Meson creation operators in the continuum

In the continuum a quark-antiquark operator creating a
mesonic trial state with definite quantum numbers JPC

(total angular momentum J, parity P, charge conjugation
C), when applied to the vacuum jΩi, is

Ophysical
Γ;ψ̄ ð1Þψ ð2Þ ≡ 1ffiffiffiffi

V
p

Z
d3rψ̄ ð1ÞðrÞ

×
Z
jΔrj¼R

d3ΔrUðr;rþΔrÞΓðΔrÞψ ð2ÞðrþΔrÞ:

ð4Þ

TABLE I. Gauge link ensembles [ðL=aÞ3 × T=a: number of lattice sites; # of configurations: number of gauge link configurations
used].

ensemble β ðL=aÞ3 × T=a μ μσ μδ a (fm) mπ (MeV) # of configurations

A30.32 1.90 323 × 64 0.0030 0.150 0.190 0.0885 276 1200
A40.32 323 × 64 0.0040 315 800
A80.24 243 × 48 0.0080 443 1700
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ð1= ffiffiffiffi
V

p Þ R d3r projects to vanishing total momentum
(V is the spatial volume), i.e. realizes a meson at rest.
To allow for orbital angular momentum between the
antiquark ψ̄ ð1Þ and the quark ψ ð2Þ, they are spatially
separated.

R
jΔrj¼R d

3Δr denotes an integration over a sphere
of radius R, which is the distance between the antiquark and
the quark. ΓðΔrÞ is a suitable combination of spherical
harmonics and γ matrices [cf. Table II, column “ΓðnÞ, pb”],
which combines orbital angular momentum and the two
quark spins to total angular momentum J and determines
parity P and in case of identical quark flavors charge
conjugation C. Uðr; rþ ΔrÞ is a straight gluonic parallel
transporter connecting the antiquark and the quark in a
gauge invariant way. For D mesons e.g. ψ̄ ð1Þψ ð2Þ ¼ ūc,
for Ds mesons e.g. ψ̄ ð1Þψ ð2Þ ¼ s̄c and for charmonium
ψ̄ ð1Þψ ð2Þ ¼ c̄c.

B. Meson creation operators in Wilson twisted
mass lattice QCD

Our lattice meson creation operators are of similar form,

Otwisted
Γ;χ̄ð1Þχð2Þ ≡

1ffiffiffiffiffiffiffiffiffiffiffi
V=a3

p X
n

χ̄ð1ÞðnÞ
X

Δn¼�ex;�ey;�ez

×Uðn;nþ ΔnÞΓðΔnÞχð2Þðnþ ΔnÞ; ð5Þ

where the integration over a sphere with center at r has
been replaced by the sum over the six neighboring lattice
sites of n and Uðn;nþ ΔnÞ denotes the link between n
and nþ Δn. Moreover, physical basis quark operators
ψ̄ ð1Þ, ψ ð2Þ have been replaced by their twisted basis
counterparts χ̄ð1Þ, χð2Þ.

1. Physical basis and twisted basis

In the continuum the relation between the physical and
the twisted basis is given by the twist rotation

ψ ðfÞ ¼ expðiγ5τ3ω=2ÞχðfÞ; ψ̄ ðfÞ ¼ χ̄ðfÞ expðiγ5τ3ω=2Þ
ð6Þ

with the twist angle ω, where ω ¼ π=2 at maximal twist.
χðfÞ denotes either the light doublet χðlÞ ¼ ðχðuÞ; χðdÞÞ, the
strange doublet χðsÞ ¼ ðχðsþÞ; χðs−ÞÞ or the charm doublet
χðcÞ ¼ ðχðcþÞ; χðc−ÞÞ (cf. also Sec. II B).
When transforming a twisted basis quark bilinear

χ̄ð1ÞΓχð2Þ as e.g. appearing in (5) to the physical basis or
vice versa, the result depends not only on Γ, but also on the
flavor combination, i.e. whether χ̄ð1Þ and χð2Þ are upper
components (twisted mass term þiμγ5) or lower compo-
nents (twisted mass term −iμγ5) of twisted basis doublets.
For example

ψ̄ ðuÞγ5ψ ðc−Þ ¼ χ̄ðuÞ expðþiγ5ω=2Þγ5 expð−iγ5ω=2Þχðc−Þ
¼ χ̄ðuÞγ5χðc

−Þ; ð7Þ

while

ψ̄ ðuÞγ5ψ ðcþÞ ¼ χ̄ðuÞ expðþiγ5ω=2Þγ5 expðþiγ5ω=2ÞχðcþÞ
¼ χ̄ðuÞ expðþiγ5ωÞγ5χðcþÞ

¼ω¼π=2
χ̄ðuÞðþiγ5Þγ5χðcþÞ

¼ þiχ̄ðuÞχðcþÞ: ð8Þ

In the columns “tb, ð�;∓Þ” and “tb, ð�;�Þ” of Table II we
list for all flavor combinations (þ and − denote the signs in
front of the twisted mass terms for χ̄ð1Þ and χð2Þ) and all Γ
combinations of our meson creation operators, how physi-
cal and twisted basis are related. “pb” indicates that the
twisted basis Γ is the same as the physical basis Γ [cf. e.g.
(7)], while “�iγ5×” denotes that the physical basis Γ has
to be multiplied from the left with �iγ5 to obtain the
corresponding twisted Γ [cf. e.g. (8)].
At finite lattice spacing the twist rotation only holds for

renormalized operators, i.e. for bare lattice quark oper-
ators the twist rotation (6) is only an approximate
relation. Nevertheless, it is possible to unambiguously
interpret states obtained from correlation functions of
twisted basis meson creation operators in terms of QCD
quantum numbers as we will explain and demonstrate in
Sec. IV B.

2. Isospin, parity and charge conjugation

Isospin I and parity P are symmetries of QCD. While in
Wilson twisted mass lattice QCD the z component of
isospin Iz is still a quantum number, I and P are broken by
OðaÞ due to the Wilson term −χ̄ðlÞða=2Þ∇�

μ∇μχ
ðlÞ appear-

ing in the twisted mass actions (1) and (3). Only a specific
combination of both symmetries, light flavor exchange
u↔d combined with parity, is still a symmetry. We denote
this symmetry by PðtmÞ acting on the light twisted basis
quark doublet χðlÞ ¼ ðχðuÞ; χðdÞÞ according to PðtmÞχðlÞ ¼
γ0τ1χ

ðlÞ. Similarly, PðtmÞχðsÞ ¼ γ0τ1χ
ðsÞ and PðtmÞχðcÞ ¼

γ0τ1χ
ðcÞ. Note that ½Iz;PðtmÞ� ≠ 0. In general, it is, therefore,

not possible to classify states according to Iz and PðtmÞ at
the same time.
For D mesons we use trial states Otwisted

Γ;χ̄ð1Þχð2Þ jΩi with

defined Iz, e.g. χ̄ð1Þχð2Þ ¼ χ̄ðdÞχðcþÞ is suited for D mesons
with Iz ¼ þ1=2. There are eight appropriate flavor combi-
nations for D mesons, where the four with opposite signs
in front of the twisted mass terms (denoted by ð�;∓Þ
throughout the paper),

χ̄ðdÞχðcþÞ; χ̄ðuÞχðc−Þ; χ̄ðc−ÞχðuÞ; χ̄ðcþÞχðdÞ; ð9Þ
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TABLE II. Meson creation operators.

index
continuum twisted mass lattice QCD

ΓðnÞ, pb J PC tb, ð�;∓Þ tb, ð�;�Þ OS ⊗ OL → OJ

1 γ5

0

−þ pb �iγ5×

A1 ⊗ A1

A1

2 γ0γ5 −þ �iγ5× pb

3 1 þþ pb �iγ5×

4 γ0 þ− �iγ5× pb

5 γ5γjnj −− �iγ5× pb

T1 ⊗ T1

6 γ0γ5γjnj −þ pb �iγ5×

7 γjnj þþ �iγ5× pb

8 γ0γjnj þþ pb �iγ5×

1 γ1

1

−− �iγ5× pb

T1 ⊗ A1

T1

2 γ0γ1 −− pb �iγ5×

3 γ5γ1 þþ �iγ5× pb

4 γ0γ5γ1 þ− pb �iγ5×

5 n1 −− pb �iγ5×

A1 ⊗ T1

6 γ0n1 −þ �iγ5× pb

7 γ5n1 þ− pb �iγ5×

8 γ0γ5n1 þ− �iγ5× pb

9 ðn × ~γÞ1 þþ �iγ5× pb

T1 ⊗ T1

10 γ0ðn × ~γÞ1 þþ pb �iγ5×

11 γ5ðn × ~γÞ1 −− �iγ5× pb

12 γ0γ5ðn × ~γÞ1 −þ pb �iγ5×

13 γ1ð2n2
1 − n2

2 − n2
3Þ −− �iγ5× pb

T1 ⊗ E
14 γ0γ1ð2n2

1 − n2
2 − n2

3Þ −− pb �iγ5×

15 γ5γ1ð2n2
1 − n2

2 − n2
3Þ þþ �iγ5× pb

16 γ0γ5γ1ð2n2
1 − n2

2 − n2
3Þ þ− pb �iγ5×

1 ðn2
1 þ n2

2 − 2n2
3Þ

2

þþ pb �iγ5×

A1 ⊗ E

E

2 γ0ðn2
1 þ n2

2 − 2n2
3Þ þ− �iγ5× pb

3 γ5ðn2
1 þ n2

2 − 2n2
3Þ −þ pb �iγ5×

4 γ0γ5ðn2
1 þ n2

2 − 2n2
3Þ −þ �iγ5× pb

5 ðγ1n1 þ γ2n2 − 2γ3n3Þ þþ �iγ5× pb

T1 ⊗ T1

6 γ0ðγ1n1 þ γ2n2 − 2γ3n3Þ þþ pb �iγ5×

7 γ5ðγ1n1 þ γ2n2 − 2γ3n3Þ −− �iγ5× pb

8 γ0γ5ðγ1n1 þ γ2n2 − 2γ3n3Þ −þ pb �iγ5×

1 ðγ3n2 þ γ2n3Þ

2

þþ �iγ5× pb

T1 ⊗ T1

T2

2 γ0ðγ3n2 þ γ2n3Þ þþ pb �iγ5×

3 γ5ðγ3n2 þ γ2n3Þ −− �iγ5× pb

4 γ0γ5ðγ3n2 þ γ2n3Þ −þ pb �iγ5×

5 γ1ðn2
2 − n2

3Þ −− �iγ5× pb

T1 ⊗ E
6 γ0γ1ðn2

2 − n2
3Þ −− pb �iγ5×

7 γ5γ1ðn2
2 − n2

3Þ þþ �iγ5× pb

8 γ0γ5γ1ðn2
2 − n2

3Þ þ− pb �iγ5×
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are related by symmetry and yield identical correlation
functions. Similarly the four flavor combinations with
identical signs in front of the twisted mass terms [denoted
by ð�;�Þ],

χ̄ðuÞχðcþÞ; χ̄ðdÞχðc−Þ; χ̄ðcþÞχðuÞ; χ̄ðc−ÞχðdÞ; ð10Þ

also yield identical correlation functions. However, at finite
lattice spacing ð�;∓Þ and ð�;�Þ correlation functions
slightly differ. As a consequence D mesons computed on
the one hand with a ð�;�Þ and on the other hand with a
ð�;∓Þ flavor combination, but which are otherwise iden-
tical, will differ in mass. Due to automatic OðaÞ improve-
ment of Wilson twisted mass lattice QCD at maximal twist,
this mass splitting will be proportional to a2, i.e. is expected
to be rather small and will vanish quadratically, when
approaching the continuum limit. Even though we consider
only a single lattice spacing a ≈ 0.0885 fm throughout
this work, the splitting between ð�;∓Þ and ð�;�Þ flavor
combinations will provide a crude estimate of the magni-
tude of lattice discretization errors associated with the
resulting meson masses.
Since parity is not a symmetry, there is no rigorous

separation between P ¼ þ and P ¼ − states in Wilson
twisted mass lattice QCD. Corresponding correlation
functions, e.g. between the meson creation operators
Otwisted

γ5;χ̄ðdÞχðc
þÞ (continuum quantum numbers JP ¼ 0−) and

Otwisted
1;χ̄ðdÞχðcþÞ (continuum quantum numbers JP ¼ 0þ), are

OðaÞ, but do not vanish.
Identical considerations apply for Ds mesons, when

replacing ðu; dÞ → ðsþ; s−Þ.
For charmonium states there is an additional symmetry,

charge conjugation C, where CχðfÞ ¼ γ0γ2ðχ̄ðfÞÞT . For
charmonium creation operators there are two appropriate
flavor combinations,

χ̄ðcþÞχðcþÞ; χ̄ðc−Þχðc−Þ; ð11Þ

which are again related by symmetry. One might also
consider flavor combinations with opposite signs in front of
the twisted mass terms,

χ̄ðcþÞχðc−Þ; χ̄ðc−ÞχðcþÞ: ð12Þ

In this case C is not a symmetry, but C combined with PðtmÞ

denoted by C∘PðtmÞ. Note, however, that a rigorous treat-
ment of charmonium states with flavor combinations (12)
is not possible, because disconnected diagrams are
excluded by construction. Since disconnected diagrams
are expected to be negligible compared to statistical errors
and, therefore, ignored in this work (cf. also the discussion
in Sec. V B), computations using (12) are still useful to
get a first estimate of lattice discretization errors (as

discussed above, the differences between ð�;�Þ and
ð�;∓Þ charmonium masses are proportional to a2).

3. Rotational symmetry and total angular momentum

On a cubic lattice rotational symmetry is reduced to
symmetry with respect to cubic rotations. There are only
five different irreducible representations of the cubic group
O (labeled by A1, T1, E, T2, A2), each corresponding to an
infinite number of SO(3) irreducible representations in the
continuum (labeled by a non-negative integer referring
to e.g. spin, orbital angular momentum or total angular
momentum S; L; J ¼ 0; 1; 2;…):

A1 → angular momenta 0; 4;…
T1 → angular momenta 1; 3; 4;…
E → angular momenta 2; 4;…
T2 → angular momenta 2; 3; 4;…
A2 → angular momenta 3;…

The two quark spins of the meson creation operators (5) can
be combined via γ matrices to S ¼ 0; 1, which corresponds
to the A1 (singlet) and the T1 (triplet) representation. The
spin is coupled to orbital angular momentum L, where we
can access with our choice of summing over six neighbor-
ing lattice sites in (5) the cubic representations A1, T1 and
E. Therefore, the total angular momentum O representa-
tions of our lattice meson creation operators are

ðA1⊕T1Þ|fflfflfflfflffl{zfflfflfflfflffl}
spin S

⊗ ðA1⊕T1⊕EÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
orbital angular momentumL

¼ A1⊕A1⊕T1⊕T1⊕T1⊕T1⊕E⊕E⊕T2⊕T2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total angular momentum J

: ð13Þ

The meson creation operators listed in Table II are sorted
and organized according to these 10 multiplets (cf. the
column “OS ⊗ OL → OJ”).

C. Smearing of gauge links and quark fields

To enhance the overlap of trial states Otwisted
Γ;χ̄ð1Þχð2Þ jΩi to low

lying meson states, we use standard smearing techniques.
This allows us to read off meson masses from the
exponential decay of correlation functions at rather small
temporal separations, where the signal-to-noise ratio is
favorable.
Smearing is done in two steps. First we replace spatial

gauge links by their APE [60] smeared counterparts. Then
we use Gaussian smearing on the quark fields χðlÞ, χðsÞ and
χðcÞ, which resorts to the APE smeared spatial links. The
parameters we have chosen are NAPE ¼ 10, αAPE ¼ 0.5,
NGauss ¼ 30 and κGauss ¼ 0.5. This corresponds to a
Gaussian width of the smeared quark fields of approx-
imately 2.7 × a ≈ 0.24 fm (cf. [61] for detailed equations).
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Smearing is a symmetric operation with respect to cubic
rotations and spatial reflections. Therefore, it does not
change the quantum numbers J and P generated by the
corresponding meson creation operators as listed in
Table II.

IV. COMPUTATION AND ANALYSIS
OF CORRELATION MATRICES

A. Computation of correlation matrices

For each twisted mass sector characterized by flavor
χ̄ð1Þχð2Þ, the cubic representation OJ and, in case of
charmonium, either C (for twisted mass signs ð�;�Þ) or
C∘PðtmÞ3 (for twisted mass signs ð�;∓Þ), we compute
temporal correlation matrices of meson creation operators

CΓj;Γk;χ̄
ð1Þχð2Þ ðtÞ

≡ hΩjðSðOtwisted
Γj;χ̄ð1Þχð2Þ

ÞÞ†ðtÞðSðOtwisted
Γk;χ̄ð1Þχð2Þ

ÞÞð0ÞjΩi: ð14Þ

j and k label the rows and columns of a correlation
matrix or, equivalently, are indices of the meson creation
operators entering a correlation matrix (cf. Table II, column
“index”). Sð…Þ indicates that APE smeared gauge links
and Gaussian smeared quark fields are used for the meson
creation operators (cf. Sec. III C). For the computations we
use a generalization of the one-end trick, which is explained
in detail in the Appendix.
Since parity is only an approximate symmetry in twisted

mass lattice QCD, we consider correlation matrices of
meson creation operators with both P ¼ þ and P ¼ −.
(1) For D and Ds mesons:

(a) A1, E, T2: 8 × 8 correlation matrices.
(b) T1: 16 × 16 correlation matrix.

(2) For charmonium and twisted mass signs ð�;�Þ, i.e.
χ̄ðcþÞχðcþÞ and χ̄ðc−Þχðc−Þ:
(a) A1, E and C ¼ þ: 6 × 6 correlation matrices; A1,

E and C ¼ −: 2 × 2 correlation matrices.
(b) T1 and C ¼ þ: 6 × 6 correlation matrix; T1 and

C ¼ −: 10 × 10 correlation matrix.
(c) T2 and C ¼ þ: 4 × 4 correlation matrix; T2 and

C ¼ −: 4 × 4 correlation matrix.
(3) For charmonium and twisted mass signs ð�;∓Þ, i.e.

χ̄ðcþÞχðc−Þ and χ̄ðc−ÞχðcþÞ:
(a) A1, E and C∘PðtmÞ ¼ þ: 4 × 4 correlation ma-

trices; A1, E and C∘PðtmÞ ¼ −: 4 × 4 correlation
matrices.

(b) T1 and C∘PðtmÞ ¼ þ: 10 × 10 correlation matrix;
T1 and C∘PðtmÞ ¼ −: 6 × 6 correlation matrix.

(c) T2 and C∘PðtmÞ ¼ þ: 6 × 6 correlation matrix;
T2 and C∘PðtmÞ ¼ −: 2 × 2 correlation matrix.

In Table I we list for each ensemble the number of gauge
link configurations used for the computation of the corre-
lation matrices CΓj; Γk; χ̄

ð1Þχð2Þ . The four stochastic sources

needed for the one-end trick [cf. Eq. (A3)] are located on a
time slice, which is randomly chosen for every gauge link
configuration. We only use a single set of four stochastic
time slice sources, i.e. a single sample, for each gauge link
configuration.
We have checked the computation of the correlation

matrices CΓj; Γk; χ̄
ð1Þχð2Þ ðtÞ by testing the symmetries twisted

mass γ5 hermiticity, twisted mass parity PðtmÞ, twisted mass
time reversal, charge conjugation C and cubic rotations on
the level of correlation matrix elements. In a second step we
have averaged the elements related by these symmetries, to
improve the signal-to-noise ratio.

B. Determination of meson masses
and assignment of parity

We determine meson masses from the correlation matri-
ces CΓj;Γk;χ̄

ð1Þχð2Þ specified in the previous subsection (in the

following denoted by Cjk ≡ CΓj;Γk;χ̄
ð1Þχð2Þ for simplicity).

In a first step we replace

CjkðtÞ → ĈjkðtÞ≡ CðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjjðt ¼ aÞCkkðt ¼ aÞp : ð15Þ

This amounts to a correlation matrix ĈðtÞ with meson
creation operators Ôj ≡Oj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjjðt ¼ aÞp

, i.e. operators,
which are normalized differently than operators (5), but are
otherwise identical. Such a normalization clearly does not
change the exponential decay of correlation matrix ele-
ments, i.e. the meson masses we are interested in. However,
it corresponds to trial states ÔjjΩi, which have a similar
norm. This is important both for a correct assignment of
parity and for a meaningful interpretation of the structure of
the state associated with an extracted meson mass.
We solve generalized eigenvalue problems

ĈðtÞ~vðnÞðtÞ ¼ λðnÞðtÞĈðt0Þ~vðnÞðtÞ ð16Þ

with t0 ¼ a4 (for a detailed discussion of this generalized
eigenvalue problem cf. [62] and references therein). For an
N × N correlation matrix ĈðtÞ one obtains N eigenvalues

3The C∘PðtmÞ quantum number associated with a twisted basis
meson creation operator from Table II, column “tb, ð�;∓Þ” is the
product of the P and C quantum numbers also listed in Table II,
column “PC”.

4Theoretical arguments given in [62] suggest to choose
t0 ≥ t=2, since then unwanted contributions of excited states
are strongly suppressed, in particular, when using large correla-
tion matrices. In practice we find effective masses, which are
essentially independent of t0, but with statistical errors increasing
for t0 > a.
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λðnÞðtÞ and N corresponding eigenvectors ~vðnÞðtÞ,
n ¼ 0;…; N − 1.
From the eigenvalues we compute N effective masses

meff
n ðtÞ by solving

coshðmeff
n ðtÞðT=2 − tÞÞ

coshðmeff
n ðtÞðT=2 − ðtþ aÞÞÞ≡

λðnÞðtÞ
λðnÞðtþ aÞ : ð17Þ

While for mnðT=2 − tÞ ≫ 1 this equation is equivalent to
the commonly known definition

meff
n ðtÞ≡ 1

a
ln

�
λðnÞðtÞ

λðnÞðtþ aÞ

�
; ð18Þ

(17) yields in contrast to (18) plateau-like effective masses
meff

n ðtÞ ≈ const also for large temporal separations t in the
region t ≈ T=2. The low-lying meson masses mn in the
sector defined by the operators of the correlation matrix Ĉ,
i.e. by Γj and by χ̄ð1Þχð2Þ, are then determined by perform-
ing uncorrelated χ2-minimizing fits of constants mn to the
plateau-like regions of meff

n ðtÞ at sufficiently large t.
As an example we consider a 2 × 2 correlation matrix

with quark flavors χ̄ð1Þχð2Þ ¼ χ̄ðs−ÞχðcþÞ [i.e. twisted mass
signs ð−;þÞ], OJ representation A1 and Γ0 ¼ γ5 (operator
index 1 in Table II) and Γ1 ¼ 1 (operator index 3 in

Table II). The two resulting effective masses meff
n ðtÞ are

plotted in Fig. 1 (top). Clearly, there are plateaus at large
temporal separations t. The fitting ranges for the constants
mn are indicated by straight orange lines. The resulting
values for mn and the corresponding χ2=dof ≲ 1 are also
included in the plot. Statistical errors formn are obtained by
an evolved jackknife analysis starting at the level of the
correlation matrices (cf. Sec. IV D for details).
The eigenvectors ~vðnÞðtÞ allow us to assign parity to the

extracted meson masses and to make qualitative statements
about the structure of the corresponding states, assuming
that the state can at least crudely be described within the
subspace spanned by the trial states ÔjjΩi forming the
correlation matrix. The absolute values of the jth entry of
the normalized vector

~uðnÞðtÞ≡ Ĉðt0Þ~vðnÞðtÞ
jĈðt0Þ~vðnÞðtÞj

ð19Þ

then indicates, to which extent the meson creation operator
Ôj associated with the jth line and jth column of the
correlation matrix ĈðtÞ excites the state corresponding to
the nth extracted meson mass mn.

In Fig. 1 (bottom, left) the “operator content” juð0Þj j2 of
the ground state (corresponding to the extracted massm0) is
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FIG. 1 (color online). Determination of meson masses and assignment of parity for Ds mesons with J ¼ 0: 2 × 2 correlation matrix
with quark flavors χ̄ð1Þχð2Þ ¼ χ̄ðs−ÞχðcþÞ, OJ representation A1 and Γj ∈ fγ5; 1g (A30.32 ensemble).
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plotted as a function of the temporal separation t. At large t
the meson creation operator with Γ ¼ γ5 is clearly domi-
nating (≈95%), while the meson creation operator with
Γ ¼ 1 contributes on a negligible level (≈5%). Since
Γ ¼ γ5 corresponds to negative parity, we assign the
quantum number P ¼ − to the ground state (i.e. identify
that state as the Ds meson). From a similar plot (Fig. 1,
[bottom, right]) one can infer that the first excitation, which
is dominated by Γ ¼ 1, has P ¼ þ, i.e. should correspond
to D�

s0.

C. Extrapolating meson masses to physical strange
and charm valence quark masses

For each ensemble we compute mK at two different
values of the strange valence quark mass, μs;1 and μs;2,
both in the region of the physical value. By means of a
linear extrapolation we then determine μs;phys such that
2mKðμsÞ2 −m2

πjμs¼μs;phys
agrees with the experimental result

2m2
K0 −m2

π0
¼ 0.477 GeV2 [1]:

μs;phys ¼ μs;2 þ ðμs;1 − μs;2Þ
Xphys − Xðμs;2Þ
Xðμs;1Þ − Xðμs;2Þ

;

XðμsÞ≡ 2mKðμsÞ2 −m2
π ð20Þ

(for mKðμsÞ and mπ we use ð�;∓Þ twisted mass sign
combinations, which are known to yield smaller discreti-
zation errors [63,64]). Since in leading order chiral per-
turbation theory 2m2

K −m2
π is independent of the light u=d

quark mass, μs;phys should be very close to the physical
strange quark mass. Results are collected in Table III.
For ensemble A80.24 the procedure is illustrated in Fig. 2
(top left; red points correspond to μs;1 and μs;2, the black
dashed lines to μs;phys). To verify the validity of these
linear extrapolations, we performed for ensemble A80.24
additional computations with a third value of the strange
valence quark mass, μs;3. The corresponding result
2mKðμsÞ2 −m2

πjμs¼μs;3
(the blue point in Fig. 2 [top left])

is consistent with the linear extrapolation.
Proceeding in an analogous way we determine a

charm valence quark mass μc;phys for each ensemble,
which is close to the physical charm quark mass, this time
using mD:

μc;phys ¼ μc;2 þ ðμc;1 − μc;2Þ
mD;phys −mDðμc;2Þ
mDðμc;1Þ −mDðμc;2Þ

ð21Þ

with mD;phys ≡mD0 ¼ 1.865 GeV [1] (cf. Table III and
Fig. 2 [top right]). Again we tested the quality of the linear
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extrapolation for ensemble A80.24 with a third value of the
charm valence quark mass, μc;3. This time, there is a visible
discrepancy between mDðμcÞjμc¼μc;3

and the corresponding
linear extrapolation. This difference, however, is less than
10 MeV, i.e. significantly smaller than the estimated
magnitude of lattice discretization errors (cf. Sec. V).
Moreover, the obtained valence charm quark mass
μc;phys, which is rather close to μc;1, is essentially identical
to a valence charm quark mass one would obtain, when
using μc;1, μc;3 instead of μc;1, μc;2.
Note that there is a mismatch of around 10%…20% of

the strange and charm sea quark masses of our ensembles
(represented by μσ ¼ 0.150 and μδ ¼ 0.190; cf. Sec. II A)
and the corresponding physical values: 2m2

K;sea −m2
π;sea ≈

0.59 GeV2 andmD;sea ≈ 2.1 GeV. Since strange and charm
sea quarks are expected to have a rather small effect on
hadron masses this slight mismatch should have negligible
influence on the resulting meson spectra.
Now that physical strange and charm valence quark

masses are known, the linear extrapolation procedure is
reversed: each D meson, Ds meson and charmonium mass
m is computed at two or three pairs of valence quark
masses, (μs;1, μc;2), (μs;2, μc;1) and (μs;2, μc;2), and the
linear extrapolation is then performed to (μs;phys, μc;phys)
according to

mphys ¼ mðμc;2Þ þ ðmðμc;1Þ −mðμc;2ÞÞ
μc;phys − μc;2
μc;1 − μc;2

ð22Þ

for D mesons and charmonium and according to

mphys ¼mðμs;2;μc;2Þþ ðmðμs;1;μc;2Þ
−mðμs;2;μc;2ÞÞ

μs;phys −μs;2
μs;1−μs;2

þðmðμs;2;μc;1Þ−mðμs;2;μc;2ÞÞ
μc;phys −μc;2
μc;1−μc;2

ð23Þ

for Ds mesons. Of course, it would have been possible to
perform computations of these meson spectra using directly
strange and charm valence quark masses (μs;phys, μc;phys).
We consider this linear extrapolation procedure, Eqs. (22)
and (23), however, superior, because it allows a lot more
flexibility during the final analysis. For example, one can
easily change the value of the lattice spacing to investigate a
possible source of systematic error5 without the need for
redoing propagator computations and contractions. Alter-
natively, one can even determine the lattice spacing in
physical units by matching the obtained meson spectra with
corresponding experimental data. Another application
would be to crudely estimate systematic errors due to
isospin breaking and electromagnetic effects using e.g.
2m2

K� −m2
π� and mD� instead of 2m2

K0 −m2
π0

and mD0 ,
when determining the strange and charm valence quark
masses μs;phys and μc;phys. We plan to investigate such issues
and use this flexibility for an evolved error analysis in an
upcoming publication, when we have meson masses
available for several values of the lattice spacing.
In Fig. 2 (bottom) we show examples of linear extrap-

olations of various Ds meson masses [ð�;∓Þ twisted mass
sign combinations, OJ representations A1, T1, T2 and
P ¼ �] both in μs and in μc to physical strange and charm
valence quark masses (ensemble A80.24). Again we com-
pare with computations performed with a third strange and
charm valence quark mass (blue points). We find excellent
agreement demonstrating once more the validity of the linear
extrapolations. Similar consistent results have been obtained
for D meson and for charmonium masses and for both
ð�;∓Þ and ð�;�Þ twisted mass sign combinations.

TABLE III. Determining physical strange and charm valence quark masses ( �: experimental results for
2m2

K0 −m2
π0

and mD0 from [1]).

ensemble x μs;x 2m2
K −m2

π in GeV2 μc;x mD in GeV

A30.32 1 0.018750 0.454(2) 0.22700 1.782(2)
2 0.022800 0.551(2) 0.27720 2.002(2)

phys 0.01969(8) 0.477� 0.2459(4) 1.865�

A40.32 1 0.018750 0.449(1) 0.23887 1.841(2)
2 0.023220 0.555(1) 0.27678 2.007(3)

phys 0.01994(5) 0.477� 0.2443(5) 1.865�

A80.24 1 0.018749 0.452(2) 0.22999 1.820(3)
2 0.023280 0.561(2) 0.29299 2.080(2)
3 0.016844 0.406(2) 0.21438 1.748(2)

phys 0.01979(8) 0.477� 0.2408(5) 1.865�

5There appear to be unresolved inconsistencies between
different collaborations regarding scale setting and standard
nonperturbative scales like r0 [65]. Even within the ETM
Collaboration there exist two values of the lattice spacing for
the ensembles we are using: a ¼ 0.0885ð36Þ fm obtained from
the pion decay constant [57] and a ¼ 0.0920ð21Þ fm obtained
from the nucleon mass [66].
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D. Determination of statistical errors

Statistical errors for D and Ds meson and charmonium
masses (extrapolated to physical strange and charm valence
quark masses as explained in the previous subsection) are
determined on each ensemble via an evolved jackknife
analysis starting at the level of the correlation matrices (14).
In other words each meson mass as well as each inter-
mediate result (e.g. effective masses or a meson mass
corresponding to a slightly unphysical value of the strange
and charm quark mass [obtained by fitting a constant to the
corresponding effective mass plateau], etc.) is computed on
each reduced jackknife sample. To exclude statistical
correlations between gauge link configurations, which
are close in Monte Carlo simulation time, we performed
a suitable binning of these configurations.

V. RESULTS

We compute D meson, Ds meson and charmonium
masses on each of the three ensembles listed in Table I.
These ensembles correspond to a single lattice spacing
a ≈ 0.0885 fm, but differ in the unphysically heavy u=d
quark mass (mπ ≈ 276 MeV, 315 MeV, 443 MeV). Each
meson mass is extrapolated linearly in m2

π to the physical
value of the u=d quark mass (mπ ¼ mπ0 ¼ 135 MeV).
Strange and charm valence quark masses correspond to
their physical values (cf. Sec. IV C).
Since at the moment computations are only available for

a single lattice spacing, we are not in a position to perform a
continuum extrapolation. Lattice discretization errors are,
however, expected to be small, because the lattice spacing
we use, a ≈ 0.0885 fm, is rather fine and meson masses are
automatically OðaÞ improved due to our specific quark
discretization, Wilson twisted mass lattice QCD at maximal
twist [55]. In this formulation each meson mass can be
computed in two slightly different ways, either using
ð�;∓Þ or ð�;�Þ twisted mass sign combinations
(cf. Sec. III B 1). The corresponding two results differ by
lattice discretization errors. We use these differences to
crudely estimate the magnitude of the lattice discretization
errors associated with our resulting meson masses.
The continuum limit will be studied in a future pub-

lication. There we also plan to include a more detailed
discussion and analysis of systematic errors, including e.g.
isospin breaking and electromagnetic effects.

A. D and Ds mesons

Since theD and the Ds meson spectrum are qualitatively
very similar, these two sectors are discussed in parallel in
the following. The charmonium sector is presented sepa-
rately in Sec. V B.

1. A1 representation (spin J ¼ 0)

We compute the masses of the two lowest states in the A1

sector (both forD and forDs mesons), one with P ¼ −, the

other with P ¼ þ, for each of the three ensembles
(cf. Table I) and both twisted mass sign combinations
ð�;∓Þ and ð�;�Þ. In this process we solve the generalized
eigenvalue problem (16) using 2 × 2 correlation matrices
with creationoperator indices1,3 (cf. Table II), i.e.Γ ¼ γ5,1.
Note again that parity is not an exact symmetry in Wilson
twistedmasslatticeQCDatfinite latticespacing.Thepositive
and negative parity states form a single sector, where the
ground state has P ¼ − (the D=Ds meson) and the first
excited state has P ¼ þ (the D�

0=D
�
s0 meson). One has to

determine the masses of both states at the same time from a
single correlation matrix (cf. the detailed discussion in
Sec. IV B).
Even though we have implemented eight different

creation operators for the A1 representation (cf. Table II),
the above mentioned rather small 2 × 2 correlation matrices
turn out to be an optimal choice: statistical errors are quite
small and long and stable plateaus are obtained both for
effective masses and for operator contents (cf. e.g. Fig. 1).

a.P ¼ −: D and Ds
As already mentioned above and as expected the ground

states in the A1 sectors have negative parity, i.e. correspond
to theDmeson and theDs meson. In Fig. 3 the computedD
meson masses (left) and Ds meson masses (right) are
shown for all three ensembles (i.e. mπ ≈ 276 MeV,
315 MeV, 443 MeV) and for both twisted mass sign
combinations, ð�;∓Þ (red points) and ð�;�Þ (green
points). The straight red and green lines are linear extrap-
olations in m2

π to physical u=d quark masses corresponding
to mπ ¼ mπ0 ¼ 135 MeV. The results of these extrapola-
tions are shown in magenta. The blue points are exper-
imental results for mD0, mD� and mDs

[1] (note that there
are two experimental results in the left plot, because
the neutral and the charged D meson differ in mass,
mD� −mD0 ¼ 5 MeV).6

For each ensemble the valence charm quark mass is
chosen such that the ð�;∓Þ version of theDmeson mass is
identical to the experimental result mD0 ¼ 1865 GeV, as
discussed in Sec. IV C. Therefore, these ð�;∓Þ D meson
masses should not be considered as predictions and,
consequently, a linear extrapolation of these masses (which
would trivially be a constant) is neither needed nor shown.
The statistical errors of these masses enter an evolved

6The majority of plots shown in this section, including the two
plots in Fig. 3, follow this style. The right panel of each plot is a
zoomed version of the left panel with respect to the vertical axis,
but otherwise identical. In the left panels the scale of the vertical
axis, which represents the meson mass, always ranges from 0 to
4.6 GeV. Hence from the left panels one can conveniently read off
the relative errors and precision of our results. They also allow to
directly compare meson masses from different plots. The right
panels are strongly zoomed (individually for each meson) and,
hence, show more clearly details regarding the data quality, the
absolute size of the errors and the dependence of the meson mass
on the u=d quark mass.
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jackknife procedure and are, therefore, not only considered
in the errors of the valence quark masses μc;phys, but also in
the errors of all D meson, Ds meson and charmonium
masses computed in this work.
The differences between the lattice QCD results obtained

with ð�;∓Þ and with ð�;�Þ twisted mass sign combina-
tions are for both the D and the Ds meson around 50 MeV.
These differences, which will vanish in the continuum
limit, are a crude estimate of the magnitude of lattice
discretization errors associated with our current results
obtained at a single lattice spacing, i.e. relative errors of
around 2.5%. Note that for meson masses obtained with
ð�;∓Þ twisted mass sign combinations discretization
errors are expected to be significantly smaller [63,64],
i.e. the mentioned 50 MeV are most likely a rather
conservative estimate. This is consistent e.g. with our
ð�;∓Þ lattice result for the Ds meson, which differs by
less than 10 MeV from the experimental result.
The linear increase of the Ds meson mass for decreasing

u=d quark mass is an expected consequence of our
procedure for setting the charm valence quark mass
μc;phys. We choose μc;phys for each ensemble such that
the lattice result for mD agrees with the experimental result
mD0 ¼ 1865 MeV, i.e. independently of the u=d quark
mass (cf. Sec. IV C). Clearly an increasing u=d quark mass
leads to a decreasing μc;phys slightly lighter than the
physical charm quark mass. This in turn yields the observed
u=d quark mass dependence of mDs

.
The experimentally observed splitting mD� −mD0 ¼

5 MeV indicates the magnitude of electromagnetic and
isospin breaking effects. Since the currently estimated
discretization errors of ≲50 MeV are much larger, we will
at the moment not consider systematic errors due to the
neglect of electromagnetism and isospin breaking. We plan
to address such errors in a future publication, where we will
study the continuum limit.

b.P ¼ þ: D�
0 and D�

s0
The first excitations in the A1 sectors have positive parity,

i.e. should correspond to the D�
0 meson and the D�

s0 meson

(cf. Fig. 4). While the masses of these states have been
extracted from a 2 × 2 correlation matrix with creation
operators Γ ¼ γ5 and Γ ¼ 1 (indices 1 and 3 in Table II),
we have studied their structure by considering also larger
correlation matrices with additional P ¼ þ creation oper-
ators (indices 4, 7 and 8 in Table II). Interestingly, the
operator contents of both the D�

0 meson and the D�
s0 meson

are mixtures of Γ ¼ 1, γ0 and Γ ¼ γjnj, γ0γjnj of roughly
the same magnitude. This indicates that the quarks inside
these mesons form superpositions of S and Pwaves and not
predominantly P waves as suggested by many quark
models.
In both cases we observe decreasing meson masses

for decreasing u=d quark mass, a behavior not present
for the previously discussed P ¼ − parity partners. A
likely explanation is that the extracted P ¼ þ states
contain rather light two-meson contributions with the
same quantum numbers, Dþ π and Dþ K, respectively
(for D�

s0 this is strongly supported by a recent lattice
QCD study of D�

s0ð2317Þ and Ds1ð2460Þ [35,37]). In
Fig. 4 this is illustrated by the gray curves, which
correspond to the estimated masses of the two-meson
states, mD þmπ and mD þmKðmπÞ.7 For the D�

0 meson
this is also supported by the rather large χ2=dof of the
extrapolation to physical u=d quark mass (cf. Fig. 4
[left]). Surprisingly such a behavior has not been
observed in [16], where a rather similar lattice QCD
setup, in particular a similar set of creation operators,
has been used.
Since it is unexpectedly light, in the literature the D�

s0
meson is frequently discussed as a mesonic molecule
or tetraquark candidate (cf. e.g. [67,68]). In principle it
is possible to investigate the structure of these states
using lattice methods, but this will require the imple-
mentation of additional four-quark creation operators
of mesonic molecule, of diquark-antidiquark and/or of
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FIG. 3 (color online). A1 representation (spin J ¼ 0), P ¼ −. Left: D meson. Right: Ds meson.

7Here and in the following we have used mKðmπÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.477 GeV2 þm2

πÞ=2
p

, mD ¼ 1.865 GeV and mD� ¼
2.007 GeV for these estimates.
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two-meson type. We are in the process of developing
techniques for computing corresponding correlation
matrices [39–41]. Recent lattice papers using four-
quark operators and focusing specifically on D�

0 and
D�

s0 are [28–30,33,35,37].
This time lattice discretization errors indicated by the

differences between results obtained with ð�;∓Þ and
ð�;�Þ twisted mass sign combinations are somewhat
larger, of the order of 60 MeV…100 MeV (i.e. relative
errors ≈3%…5%). Within this crude conservative estimate
there is consistency with experimental results. It is
reassuring that the ð�;∓Þ result for mD�

0
, which is

expected to have significantly smaller discretization errors
than the ð�;�Þ result, is within 1σ of the experimental
result for mD�

0
ð2400Þ0 without taking discretization errors

into account. The ð�;∓Þ Ds0 result is around 80 MeV
larger than its experimental counterpart. This is similar
to what has been found in quark models (cf. e.g. [5])
and other lattice QCD computations using exclusively
quark-antiquark meson creation operators (cf. e.g. [16]). It
could be an indication that the D�

s0 meson is not
predominantly a quark-antiquark state, but possibly a
mesonic DK molecule (e.g. supported by [30]) or a
diquark-antidiquark pair.

2. T1 representation (spin J ¼ 1)

a.P ¼ −: D� and D�
s

We proceed as in Sec. VA 1, where we have discussed
the A1 representation. This time we have solved generalized
eigenvalue problems (16) using 4 × 4 correlation matrices
with creation operator indices 1,2,3,4 (cf. Table II) includ-
ing the commonly used P ¼ − operators Γ ∈ fγ1; γ0γ1g.
As expected the ground states in the T1 sectors have
negative parity, i.e. correspond to the D� meson and the D�

s
meson (cf. Fig. 5).
While at physically light u=d quark masses the decay of

D� to Dþ π is possible, it is excluded in our computations
with pion masses mπ ≳ 276 MeV. This is consistent with
the rather mild m2

π dependence of mD� (cf. Fig. 5 [left]).
The differences between the lattice QCD results obtained

with ð�;∓Þ and with ð�;�Þ twisted mass sign combina-
tions are around 10 MeV…20 MeV, i.e. lattice discretiza-
tion errors seem to be smaller than in the A1 representation.
There is also a discrepancy of around 20 MeV…40 MeV
to the corresponding experimental results [1]. In this
context it is interesting to note that the mass differences
mD� −mD and mD�

s
−mDs

are rather strongly dependent
on scale setting, i.e. the lattice spacing in physical units.

D*
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FIG. 4 (color online). A1 representation (spin J ¼ 0), P ¼ þ. Left: D�
0 meson. Right: D�

s0 meson.
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FIG. 5 (color online). T1 representation (spin J ¼ 1), P ¼ −. Left: D� meson. Right: D�
s meson.
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For example, when using a ¼ 0.0920ð21Þ fm (obtained
from the nucleon mass [66]) instead of a ¼ 0.0885ð36Þ fm
(obtained from the pion decay constant [57]), the above
mentioned discrepancy of 20 MeV…40 MeV is reduced to
15 MeV…20 MeV. We consider this as an indication that
the larger lattice spacing obtained from the nucleon mass
might be better suited to determine hadron masses with
small discretization errors than the lattice spacing obtained
from the pion decay constant (which is more commonly
used within the ETM Collaboration). Similar observations
have been reported in spectrum computations of B and Bs
mesons [61,69] and b baryons [70]. As mentioned before
we plan to investigate such scale setting issues and the
continuum limit in detail in a future publication, when we
have meson masses available for several values of the
lattice spacing.

b.P ¼ þ: D1ð2430Þ, D1ð2420Þ and Ds1ð2460Þ,
Ds1ð2536Þ
To determine masses of positive parity states we use

larger 8 × 8 correlation matrices with creation operator
indices 1,2,3,4,7,8,9,10 (cf. Table II), i.e. the previously
used P ¼ − operators Γ ∈ fγ1; γ0γ1g and all available
P ¼ þ operators with L ¼ 0 and L ¼ 1. The first
and second excitations in the T1 sectors have positive
parity, i.e. correspond to D1ð2430Þ, D1ð2420Þ and
Ds1ð2460Þ, Ds1ð2536Þ.
The masses of the two states in each sector are rather

close. Therefore, it is not obvious, how to correctly assign
the obtained lattice QCD results to D1ð2430Þ and
D1ð2420Þ and to Ds1ð2460Þ and Ds1ð2536Þ, respectively.
Such an assignment is not only important for a complete
and precise computation of the D and Ds meson spectrum,
but also in the context of specific decays, in particular
Bð�Þ → D�� þ lþ ν, where D�� denotes the four positive
parity D mesons with J ¼ 0; 1; 2, which include D1ð2430Þ
and D1ð2420Þ. To understand these decays is e.g. essential
for a precise determination of the CKMmatrix element Vcb.
However, there is a long-standing conflict between theory
and experiment regarding the corresponding branching
ratios [42]. While these decays have been studied with
lattice QCD in the static limit some time ago [71], recently
computations with b and c quarks of finite mass have been
started [43,44]. The latter computations are, however,
restricted to D�� with J ¼ 0; 2, mainly because the sepa-
ration of the two J ¼ 1 states is rather difficult. In the
following we demonstrate, how to distinguish those two
states and correctly assign their masses to D1ð2430Þ and
D1ð2420Þ (and similarly to Ds1ð2460Þ and Ds1ð2536Þ in
the Ds sector).
At first it is important to note that even thoughD1ð2430Þ

and D1ð2420Þ have similar masses, their structure is quite
different. Due to the heavy charm valence quark D mesons
are expected to be qualitatively similar to static-light
mesons. Since the spin of a static quark is irrelevant, it

is appropriate to label static light mesons by the half-integer
total angular momentum j of their light degrees of freedom,
i.e. the light quarks and gluons. One of the two states
D1ð2430Þ and D1ð2420Þ has j ≈ 1=2, while the other
has j ≈ 3=2 (this expectation has been confirmed by
model calculations, e.g. [5]). For a detailed discussion
cf. e.g. [61,69].
The experimental results can be classified according to

j ≈ 1=2 and j ≈ 3=2 as follows:
(i) D mesons:

Both D1ð2430Þ and D1ð2420Þ can decay to
D� þ π: D1ð2430Þ has a rather large width
(Γ ¼ 384þ130

−110 MeV), whereas D1ð2420Þ is compa-
rably stable (Γ ¼ 27.4� 2.5 MeV). This difference
in the widths suggests the assignment j ≈ 1=2 to
D1ð2430Þ and j ≈ 3=2 to D1ð2420Þ: while
D1ð2430Þ can then readily decay via an S wave,
D1ð2420Þ is protected by angular momentum
j ≈ 3=2,whichonlyallowsa less likelyDwavedecay.

(ii) Ds mesons:
OnlyDs1ð2536Þ can decay toD� þ K.Ds1ð2460Þ

is too light for such a decay, since mDs1ð2460Þ <
m�

D þmK. Both states, however, have rather small
widths, Γ < 3.5 MeV and Γ ¼ 0.92� 0.05 MeV,
respectively. Consequently, the heavier state
Ds1ð2536Þ must be protected by angular momen-
tum, i.e. have j ≈ 3=2, while the other state
Ds1ð2460Þ corresponds to the remaining j ≈ 1=2.

To decide, which of the two lattice QCD results for
masses of JP ¼ 1þ D meson states corresponds to j ≈ 1=2
and which to j ≈ 3=2, we study the eigenvectors obtained
by solving the generalized eigenvalue problem (16). We use
linear combinations of T1 meson creation operators from
Table II, which excite not only states with definite J, but
also with definite light total angular momentum j. These 16
linear combinations are collected in Table IV and sorted
into five classes C1;…; C5, one with P ¼ − and four
with P ¼ þ, where the latter differ in j ¼ 1=2; 3=2 and
L ¼ 0; 1; 2. For each extracted mass n ¼ 0; 1; 2 (0: P ¼ −
ground state; 1,2: P ¼ þ excitations) and for each class
k ¼ 1;…; 5 we sum over the squared components of the

vectors uðnÞj [cf. Eq. (19)],

ZðnÞ
k ðtÞ≡ X

fjjÔj∈Ckg
juðnÞj ðtÞj2: ð24Þ

These quantities ZðnÞ
k indicate the parity of the state n and

in case of P ¼ þ its light total angular momentum j and
orbital angular momentum L.

ZðnÞ
k obtained by solving 16 × 16 generalized eigenvalue

problems are plotted in Fig. 6 as functions of the temporal
separation t for D mesons and the A30.32 ensemble. The
upper plot confirms that the ground state has P ¼ −, i.e.
corresponds to D�. The lower left plot corresponding to the
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first excitation shows a strong dominance of (P ¼ þ,
j ¼ 1=2, L ¼ 0) and (P ¼ þ, j ¼ 1=2, L ¼ 1). Clearly,
this state should be interpreted as j ≈ 1=2, i.e. asD1ð2430Þ,
where L ¼ 0 has a somewhat larger contribution than

L ¼ 1. The second excitation (lower right plot) is almost
exclusively j ≈ 3=2, i.e. corresponds to D1ð2420Þ, with
L ¼ 1 (this is the reason, why we discard L ¼ 2 meson
creation operators in the final determination of JP ¼ 1þ D

TABLE IV. JP ¼ 1þ meson creation operators with definite j and L.

class
continuum twisted mass lattice QCD

P j L ΓðnÞ,pb tb, ð�;∓Þ tb, ð�;�Þ

C1 −

1=2

0 γ1 �iγ5× pb

γ0γ1 pb �iγ5×

1 γ5ðn × ~γÞj þ iγ0nj pb �iγ5×

γ0γ5ðn × ~γÞj þ nj �iγ5× pb

3=2

1 γ5ðn × ~γÞj − 2iγ0nj �iγ5× pb
γ0γ5ðn × ~γÞj − 2nj pb �iγ5×

2 γ1ð2n2
1 − n2

2 − n2
3Þ �iγ5× pb

γ0γ1ð2n2
1 − n2

2 − n2
3Þ pb �iγ5×

C2 þ 1=2 0 γ5γ1 �iγ5× pb
γ0γ5γ1 pb �iγ5×

C3 þ 1=2 1 ðn × ~γÞj − iγ0γ5nj �iγ5× pb
γ0ðn × ~γÞj − iγ5nj pb �iγ5×

C4 þ 3=2 1 ðn × ~γÞj þ 2iγ0γ5nj pb �iγ5×
γ0ðn × ~γÞj þ 2iγ5nj �iγ5× pb

C5 þ 3=2 2 γ5γ1ð2n2
1 − n2

2 − n2
3Þ �iγ5× pb

γ0γ5γ1ð2n2
1 − n2

2 − n2
3Þ pb �iγ5×
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FIG. 6 (color online). Operator content for JP ¼ 1− and JP ¼ 1þ D mesons (A30.32 ensemble).
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meson masses; cf. also the first paragraph of this
subsection).
Note again that our results are based on using exclusively

meson creation operators of quark-antiquark type. Such
operators should be well-suited to excite the stable j ≈ 3=2
D1ð2420Þ meson. On the other hand the unstable j ≈ 1=2
D1ð2430Þ meson might have a strong four-quark compo-
nent and results could change as soon as corresponding
four-quark creation operators are included in the compu-
tations. In particular the requirement that the extracted
D1ð2430Þ state can at least crudely be described within the
subspace spanned by our quark-antiquark trial states (a
requirement necessary for a meaningful interpretation of
the eigenvector components; cf. also the discussion in
Sec. IV B) might not be fulfilled. We could, however,
clearly identify one j ≈ 3=2 state, where no such problems
are expected, and one j ≈ 1=2 state. Moreover, as men-
tioned above, one j ≈ 3=2 and one j ≈ 1=2 state are
expected. We consider this as a certain indication that also
the j ≈ 1=2 identification works reasonably well within our
quark-antiquark approach. In this context it is interesting
to refer to the lattice QCD study [29], where the identi-
fication of j ≈ 1=2 and j ≈ 3=2 has been done applying a
different strategy, namely including and excluding meson
creation operators composed of four quarks. One of the two

JP ¼ 1þ states is essentially unaffected and, therefore,
interpreted as the stable D1ð2420Þ meson with j ≈ 3=2,
while the other state exhibits a certain sensitivity with
respect to the inclusion/exclusion of four quark creation
operators and, hence, is interpreted as the less stable
D1ð2430Þ meson with j ≈ 1=2.
We have carried out a similar analysis for JP ¼ 1þ Ds

mesons and obtained qualitatively identical results: the
lighter of the two extracted states has j ≈ 1=2 [i.e. corre-
sponds to the Ds1ð2460Þ meson], while the heavier has
j ≈ 3=2 [i.e. corresponds to the Ds1ð2536Þ meson].
The JP ¼ 1þ D and Ds meson masses are shown in

separate plots for j ≈ 1=2 and j ≈ 3=2 in Figure 7.
The lattice result for the mass of D1ð2430Þ (j ≈ 1=2; top

left plot) is in perfect agreement with the corresponding
experimental result. Nevertheless it should be treated with
caution. Since the D1ð2430Þ has a large width and is
expected to be rather unstable (it can decay in D� þ π), a
solid and more rigorous result will require a proper
resonance treatment as e.g. pioneered in [29].
The corresponding Ds mass with j ≈ 1=2 [Ds1ð2460Þ;

top right plot] is about 70 MeV larger than its experimental
counterpart. As before for D�

s0, this is similar to what has
been found using quark models, e.g. [5]. It could be an
indication that theDs1ð2460Þmeson is not predominantly a

D1(2430) meson (j ≈ 1/2)
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FIG. 7 (color online). T1 representation (spin J ¼ 1), P ¼ þ. Top left: D1ð2430Þ meson (j ≈ 1=2). Top right: Ds1ð2460Þ meson
(j ≈ 1=2). Bottom left: D1ð2420Þ meson (j ≈ 3=2). Bottom right: Ds1ð2536Þ meson (j ≈ 3=2).
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quark-antiquark state, but possibly a mesonic D�K mol-
ecule or a diquark-antidiquark pair.
The lattice QCD results for the masses of the j ≈ 3=2

states, D1ð2420Þ and Ds1ð2536Þ are also around
50 MeV…100 MeV larger than the corresponding exper-
imental results. This mismatch is somewhat surprising,
since both states are rather stable and quark model
calculations assuming a straightforward quark antiquark
structure are able to reproduce the experimental values
quite accurately. We presume that this discrepancy of
around 2%…4% is due to discretization errors. For
example when using the lattice spacing a ¼
0.0920ð21Þ fm obtained from the nucleon mass [66], the
discrepancy is only half as large. It will be interesting to
see, whether there will be agreement with experimental
results, after performing a continuum extrapolation.

3. E and T2 representations (spin J ¼ 2)

Effective mass plateaus obtained by solving generalized
eigenvalue problems (16) are rather short for the E and the
T2 representation, i.e. the determination of meson masses
is more subtle than for the A1 and the T1 representation
before.
There seem to be stronger statistical fluctuations for the

E representation than for the T2 representation. Therefore,
for the E representation we only determine the ground state,
which has P ¼ þ. We use 4 × 4 correlation matrices with
creation operator indices 5 to 8 (cf. Table II), i.e. operators
with angular momentum L ¼ 1.
For the T2 representation it is possible to extract addi-

tionally two P ¼ − states. The corresponding correlation
matrices contain creation operators with indices 1 to 4
(operators with L ¼ 1; cf. Table II) and for the Ds sector
also operators with indices 5 and 6 (operators with L ¼ 2;
cf. Table II).

a.P ¼ þ: D�
2ð2460Þ and D�

s2ð2573Þ
The ground states in the E and the T2 representations

have positive parity and are of similar mass. This strongly

indicates that these are J ¼ 2 states, since total angular
momentum J ¼ 2 is part of both E and T2, in contrast to
e.g. J ¼ 3. Consequently, we interpret them as D�

2ð2460Þ
and D�

s2ð2573Þ.
Within statistical errors the meson masses are

essentially independent of m2
π (cf. Fig. 8). This indicates

rather stable states and is expected, because total angular
momentum J ¼ 2 allows decays D�

2ð2460Þ → Dþ π and
D�

s2ð2573Þ → Dþ K, respectively, only viaDwaves. Such
decays are strongly suppressed compared to Swave decays,
which are possible e.g. for corresponding JP ¼ 0þ and
ðJP ¼ 1þ; j ≈ 1=2Þ states (cf. the more detailed discussion
in section VA 2).
Discretization errors indicated by the differences

between results obtained with ð�;∓Þ and ð�;�Þ twisted
mass sign combinations as well as from the E and the T2

representations are together with statistical errors of the
order of 100 MeV (i.e. relative errors ≈4%). The extrapo-
lation to physically light u=d quark mass yields meson
masses, which are also around 100 MeV larger than the
corresponding experimental results. As discussed for the
(J ¼ 1, j ¼ 3=2) states in the previous subsection, discre-
tization errors might be the reason for this discrepancy.

b.P ¼ −: Dð2750Þ
Resulting meson masses from the T2 representation are

shown in Fig. 9. Crude results with large statistical errors
from the E representation (not shown in Fig. 9) are in
agreement and, hence, suggest J ¼ 2. There seems to be
only little dependence on m2

π indicating rather stable states.
Note, however, that these negative parity states are less
strongly protected by angular momentum than their parity
partners D�

2ð2460Þ and D�
s2ð2573Þ, since P wave decays to

D� þ π and D� þ K are possible.
The experimentally observed Dð2750Þ is usually inter-

preted as a JP ¼ 2− state. We find agreement with this
experimental result [1] within statistical errors as well as
with recent lattice QCD computations of the mass of the D
meson with JP ¼ 2− (at unphysically heavy u=d quark
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FIG. 8 (color online). E and T2 representations (spin J ¼ 2), P ¼ þ. Left: D�
2ð2460Þ meson. Right: D�

s2ð2573Þ meson.
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mass corresponding to mπ≈266MeV and mπ≈391MeV,
respectively) [24,29]. The corresponding JP ¼ 2− Ds state
has experimentally not yet been measured or clearly
identified. Therefore, our lattice result can be considered
as theoretical prediction. We find meson masses consistent
with the lattice QCD computation [24] and quark model
predictions from [5].

B. Charmonium

We compute masses of charmonium states using both
twisted mass sign combinations ð�;∓Þ and ð�;�Þ
neglecting disconnected contributions to the correlation
matrix elements (14). It is expected that this neglect of
disconnected diagrams introduces only tiny systematic
errors, which are much smaller than our combined stat-
istical uncertainties and lattice discretization errors,
because of the suppression of these diagrams according
to the Okubo-Zweig-Iizuka (OZI) rule. This expectation is
quantitatively supported e.g. by a quenched lattice QCD
computation, where the effect of disconnected diagrams on
the charmonium hyperfine splitting is found to be
≈1…4 MeV [72]. A corresponding consistent perturbative
estimate is a shift of charmonium masses by ≈2.4 MeV
(cf. [73–75] and references therein).

Note that twisted mass quantum numbers are different,
when using ð�;∓Þ and ð�;�Þ twisted mass sign combi-
nations. For ð�;�Þ charge conjugation C is a quantum
number (but not parity P), while for ð�;∓Þ only the
product P∘C is a quantum number (cf. also Sec. IVA,
where we list the sizes of our correlation matrices, or,
alternatively, Table II, columns “C” and “PC”, respec-
tively). All charmonium analyses are based on the maximal
sets of available meson creation operators, i.e. 2 × 2, 4 × 4,
6 × 6 or 10 × 10 correlation matrices as listed in Sec. IVA.

1. A1 representation (spin J ¼ 0)

a.P ¼ −: ηcð1SÞ and ηcð2SÞ
In Fig. 10 (left) JPC ¼ 0−þ charmonium masses

are shown.
The ground state and the first excitation can clearly be

identified with the experimentally known ηcð1SÞ meson
and ηcð2SÞ meson. Even though we use a heavy c quark
and a heavy c̄ antiquark, discretization errors indicated by
the differences between results obtained with ð�;∓Þ and
ð�;�Þ twisted mass sign combinations are rather small,
around 70 MeV, i.e. ≈2.5%. Moreover, within this uncer-
tainty there is perfect agreement with experimental results
[1]. The fact that our lattice QCD result for the mass of

ηc(1S) and ηc(2S) mesons
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FIG. 10 (color online). A1 representation (spin J ¼ 0). Left: PC ¼ −þ, ηcð1SÞ and ηcð2SÞmesons. Right: PC ¼ þþ, χc0ð1PÞmeson.
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FIG. 9 (color online). T2 representation (spin J ¼ 2), P ¼ −. Left: Dð2750Þ meson. Right: Ds sector.
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ηcð1SÞ at finite lattice spacing is slightly below the
experimental result is also in agreement with a 2-flavor
twisted mass lattice QCD study including the ηcð1SÞ
meson [76].
'We are also able to extract a crude signal for a third state,

for which there is currently no clearly identified exper-
imental counterpart. Such a state has, however, been
observed in previous lattice QCD computations, e.g. in
[20,29] (at unphysically heavy u=d quark mass correspond-
ing to mπ ≈ 266 MeV and mπ ≈ 391 MeV, respectively),
around 400 MeV…500 MeV above the mass of the ηcð2SÞ
meson. Here we observe an unexpectedly large difference
of around 200 MeV between ð�;∓Þ and ð�;�Þ results.
The reason for this could be the rather bad plateau quality
of the corresponding effective masses (short plateaus
formed by only three points, before the signal is lost in
noise), which might be a sign of contamination by even
higher excitations. This is also supported by the fact that
our result is around 600 MeV…800 MeV heavier than the
mass of ηcð2SÞ, i.e. heavier than the above mentioned
lattice QCD results from [20,29]. Another reason could be
mixing with a lighter state of the PC ¼ þþ sector: for the
ð�;�Þ result we observe a rather large contribution of
around 30% of the operator ΓðnÞ ¼ γ0γjnj corresponding
to quantum numbers PC ¼ þþ (index 8 in Table II),

while for ð�;∓Þ such a mixing is excluded by the
symmetry P ∘C.
Even though we use a meson creation operator with

quantum numbers PC ¼ −− (index 5 in Table II), we do
not obtain a clear signal, i.e. a trustworthy effective mass
plateau, to extract a corresponding meson mass.

b.P ¼ þ: χc0ð1PÞ
In Fig. 10 (right) the resulting masses for χc0ð1PÞ

(quantum numbers JPC ¼ 0þþ) are shown. Discretization
errors indicated by the differences between results obtained
with ð�;∓Þ and ð�;�Þ twisted mass sign combinations
are rather small, around 50 MeV, i.e. ≈1.5%. The u=d
quark mass extrapolated ð�;∓Þ result, for which one
expects smaller discretization errors, is in perfect agreement
with its experimental counterpart [1].
Similarly to the PC ¼ −− sector we are not able to

reliably determine an exotic PC ¼ þ− state.

2. T1 representation (spin J ¼ 1 and J ¼ 3)

a.P ¼ −: J=Ψð1SÞ, Ψð2SÞ and Ψð3770Þ
For PC ¼ −− we are able to extract the masses of four

states, which are shown in Fig. 11 (top).
The two lowest states can be identified as the J=Ψð1SÞ

and the Ψð2SÞ meson. The lattice QCD results for both

J/Ψ(1S), Ψ(2S) and Ψ(3770) mesons and a state with J = 3
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FIG. 11 (color online). T1 representation (spin J ¼ 1 and J ¼ 3). Top: PC ¼ −−, J=Ψð1SÞ, Ψð2SÞ and Ψð3770Þ mesons and a state
with J ¼ 3. Bottom left: PC ¼ þþ, χc1ð1PÞ meson. Bottom right: PC ¼ þ−, hcð1PÞ meson.
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twisted mass discretizations ð�;∓Þ and ð�;�Þ and the
corresponding experimental results [1] differ by less than
50 MeV, i.e. are in agreement within the expected dis-
cretization errors.
The second and third excitation are very close in mass,

around 3800 MeV…3900 MeV. One of these two states
should correspond to the Ψð3770Þ meson. The other state
seems to correspond to a J ¼ 3 state in the continuum (the
continuum spins of T1 are J ¼ 1; 3; 4;…), because a state
with the same mass is observed in the T2 representation
(continuum spins J ¼ 2; 3; 4;…), but not in the E repre-
sentation (continuum spins J ¼ 2; 4;…; cf. Sec. V B 3).
A JPC ¼ 3−− state in this energy region has also been
observed in other lattice QCD studies (cf. e.g. [20,29])
and has also been predicted using Dyson-Schwinger and
Bethe-Salpeter equations [7].
Even though we use two creation operators with exotic

quantum numbers PC ¼ −þ (indices 6 and 12 in Table II),
we do not obtain a clear signal, to reliably extract a
corresponding mass.

b.P ¼ þ: χc1ð1PÞ and hcð1PÞ
In Fig. 11 (bottom) the resulting masses for χc1ð1PÞ

(quantum numbers JPC ¼ 1þþ) and hcð1PÞ (quantum
numbers JPC ¼ 1þ−) are shown. The lattice QCD results

for both twisted mass discretizations ð�;∓Þ and ð�;�Þ
and the corresponding experimental results [1] differ by
less than 40 MeV, i.e. are in agreement within the estimated
discretization errors.

3. E and T2 representations (spin J ¼ 2 and J ¼ 3)

a.P ¼ þ: χc2ð1PÞ and χc2ð2PÞ
For P ¼ þ we are able to extract two states with C ¼ þ

both for the E and the T2 representation (cf. Fig. 12 [top]).
Since the masses of the two ground states as well as the
masses of the two excitations agree within errors, we
interpret them as J ¼ 2 states, i.e. as the χc2ð1PÞ meson
and the χc2ð2PÞ meson. Within statistical errors there is
essentially no dependence on m2

π . Discretization errors
indicated by the differences between results obtained with
ð�;∓Þ and ð�;�Þ twisted mass sign combinations as well
as from the E and the T2 representations are for the χc2ð1PÞ
meson together with statistical errors of the order of
50 MeV (i.e. relative errors ≈1.5%). Within this estimated
uncertainty there is excellent agreement with the corre-
sponding experimental result. For the χc2ð2PÞ meson the
uncertainty is roughly twice as large, i.e. around 100 MeV.
Our lattice QCD result is also slightly larger (around
150MeV i.e. 1.5σ larger) than the experimentally measured
mass, which could be an indication that there is a small

χc2(1P) and χc2(2P) mesons
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FIG. 12 (color online). E and T2 representations (spin J ¼ 2 and J ¼ 3). Top: PC ¼ þþ, χc2ð1PÞ and χc2ð2PÞ mesons. Bottom left:
PC ¼ −þ, ηc2 meson. Bottom right: PC ¼ −−, one state with J ¼ 2 and (in the T2 representation) another state with J ¼ 3.
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contamination of higher excitations (cf. also the lattice
QCD study [20], where a similar trend has been observed).

b.P ¼ −: ηc2
For P ¼ − we are able to determine one state with

C ¼ þ both for the E and the T2 representation, which
should correspond to the ηc2 meson (cf. Fig. 12 [bottom
left]). Again combined discretization and statistical errors
are around 50 MeV. Currently there is no established
experimental result available, to which we can confront
our result. We find, however, agreement with theoretical
predictions from other lattice QCD computations [20,29]
and from a calculation using Dyson-Schwinger and Bethe-
Salpeter equations [7].
For P ¼ − and C ¼ − in the mass region

3800 MeV…3900 MeV we find only a single state for
the E representation (continuum spins J ¼ 2; 4;…), but
two states for the T2 representation (continuum spins
J ¼ 2; 3; 4;…) (cf. Fig. 12 [bottom right]). This suggests
to interpret the state, which is present both in the E and the
T2 representation, as a J ¼ 2 state in the continuum and the
additional state in the T2 representation as a J ¼ 3 state
in the continuum. This is supported by our results for
the T1 representation (continuum spins J ¼ 1; 3; 4;…),
where we have extracted a state in the same mass region
(cf. section V B 2, in particular Fig. 11 [top]). Again we can
only compare to other theoretical predictions, e.g. from
[7,20,29], which are in agreement with our results.

VI. SUMMARY AND CONCLUSIONS

We have computed masses of low lying D meson,
Ds meson and charmonium states with total angular
momentum J ¼ 0; 1; 2; 3, parity P ¼ −;þ and charge
conjugation C ¼ −;þ using Wilson twisted mass lattice
QCD. We have used gauge link ensembles generated by
the European Twisted Mass Collaboration with three
different u=d quark masses corresponding to mπ ∈
f276 MeV; 315 MeV; 443 MeVg. After performing com-
putations on these three ensembles, we have extrapolated
the resulting meson masses to physically light u=d quark
mass.
Our computations are currently limited to a single lattice

spacing, a ≈ 0.0885 fm. Therefore, we are not able to study
the continuum limit at the moment. In Wilson twisted mass
lattice QCD it is, however, possible to compute meson
masses using two different discretizations, either ð�;∓Þ or
ð�;�Þ twisted mass sign combinations in the meson
creation operators (cf. Sec. III B). The differences between
the resulting meson masses can be considered as crude
estimates of lattice discretization errors. For the majority of
mesons we have found differences of the order of 50 MeV,
which we take as an estimate of discretization errors.
We expect these discretization errors to be the currently

dominating source of systematic uncertainty. Further
sources of error are listed in the following:

(i) Finite spatial volume:
Since for all three ensembles the spatial volume

is rather large, i.e. mπL≳ 4, we expect that
finite volume corrections are negligible compared
to the above mentioned discretization errors of
≈50 MeV.

(ii) Disconnected diagrams:
When computing correlation matrices for char-

monium states, we have omitted disconnected con-
tributions. These contributions are expected to be
very small due to OZI suppression. The correspond-
ing systematic errors for charmonium masses
have been estimated to be less than 4 MeV (cf. sec-
tion V B and [72–75]).

(iii) Electromagnetism and isospin breaking:
We estimate the magnitude of electromagnetic

corrections and effects due to isospin breaking by
comparing experimental results for masses of essen-
tially stable charged and neutral D mesons (D, D�,
D1ð2420Þ, D�

2), yielding corresponding systematic
errors ≲5 MeV. This is consistent with [73–75],
where such effects have been estimated to be
≈2.6 MeV using a potential model.

(iv) Extrapolations in the up/down quark mass:
The extrapolations to physically light u=d quark

mass are linear in m2
π . To quantify a possibly

associated systematic error, one could compare
different strategies of extrapolation, e.g. also includ-
ing a quadratic term in m2

π or using parametrizations
of meson masses obtained from effective theories.
We anticipate the corresponding uncertainty to be
smaller than the currently estimated discretization
errors of around 50 MeV. We plan to study this issue
in more detail in a future publication, where we will
address the continuum limit.

(v) Tuning of strange and charm sea quark mass:
A probably tiny error might arise due to the slight

deviation of strange and charm sea quark masses
from their physical values (cf. Sec. IV C).

The final results of this work forDmeson,Ds meson and
charmonium masses are shown in Fig. 13 and collected in
Table V. The numbers we quote have been obtained in the
following way:

(i) We use the u=d quark mass extrapolated results
corresponding to ð�;∓Þ twisted mass sign combi-
nations, which are supposed to exhibit smaller
discretization errors than their ð�;�Þ counter-
parts [63,64].

(ii) At the moment systematic errors are expected to be
strongly dominated by discretization errors (cf. the
detailed discussion above). Therefore, we estimate
all systematic errors to be around or less than
50 MeV, the previously mentioned typical difference
between meson masses computed with ð�;∓Þ and
ð�;�Þ twisted mass sign combinations. Since we
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use ð�;∓Þ results, we consider this estimate to be
rather conservative.

(iii) We assume independence of statistical and system-
atic errors. The total error is, hence, obtained by
adding statistical errors and the 50MeV representing
systematic errors in quadrature.

(iv) For J ¼ 2 charmonium states we take the results
from the E representation, where a mixing with and
contamination by J ¼ 3 states is excluded due to
cubic rotational symmetry (in contrast to results
from the T2 representation). For D mesons and Ds
mesons we take the results from the T2 representa-
tion, which exhibit smaller statistical errors than the
corresponding results from the E representation.

(v) For the JPC ¼ 3−− charmonium state we take the
result from the T1 representation, which has smaller

statistical errors than the corresponding result from
the T2 representation.

In Fig. 13 P ¼ − states are shown in blue, while P ¼ þ
states are shown in red. Statistical errors are represented by
dark blue and dark red boxes, while the combined statistical
and systematic errors are represented by light blue and light
red boxes, respectively. The relative combined statistical
and systematic errors of our results are in most cases
between 2% and 3%. Within these errors our lattice QCD
results agree with available experimental results [1], which
are shown in gray. However, note again that systematic
errors are currently dominated by lattice discretization
errors, which we could only estimate in a rather crude
way from our computations at a single lattice spacing by
comparing results obtained with ð�;∓Þ and ð�;�Þ twisted
mass sign combinations.

TABLE V. Summary of lattice QCD results for D meson, Ds meson and charmonium masses (error sta.: statistical error; error com.:
combined statistical and systematic error) and comparison to experimental results from [1]. Note that systematic errors are dominated by
lattice discretization errors, which could only be crudely estimated, since computations are currently limited to a single lattice spacing.

D mesons Ds mesons
lat. error exp. PDG lat. error exp. PDG

JP mass sta./com. mass name mass sta./com. mass name

0− 1865 1870(0) D� 1962 3 50 1968(0) Ds

1865(0) D0

0þ 2278 20 54 2403(40) D�
0ð2400Þ� 2407 12 51 2318(1) D�

s0ð2317Þ
2318(29) D�

0ð2400Þ0
1− 2051 6 50 2010(0) D�ð2010Þ� 2145 4 50 2112(0) D�

s

2007(0) D�ð2007Þ0
1þ 2402 23 55 2427(40) D1ð2430Þ0 2521 18 53 2460(1) Ds1ð2460Þ
1þ 2474 35 61 2423(2) D1ð2420Þ� 2608 23 55 2535(0) Ds1ð2536Þ

2421(1) D1ð2420Þ0
2þ 2549 42 65 2464(2) D�

2ð2460Þ� 2680 18 53 2572(1) D�
s2ð2573Þ

2463(1) D�
2ð2460Þ0

2− 2909 66 83 2761(5) Dð2750Þ 2969 33 60
2− 2996 106 118 3001 46 68

charmonium
lattice error exp. PDG

JP mass sta./com. mass name

0−þ 2884 4 50 2984(1) ηcð1SÞ
0−þ 3535 23 55 3639(1) ηcð2SÞ
0−þ 4372 54 74
0þþ 3412 6 50 3415(0) χc0ð1PÞ
1−− 3056 5 50 3097(0) J=ψð1SÞ
1−− 3662 24 56 3686(0) ψð2SÞ
1−− 3865 23 55 3773(0) ψð3770Þ
1þþ 3480 9 51 3511(0) χc1ð1PÞ
1þ− 3494 11 51 3525(0) hcð1PÞ
2þþ 3536 14 52 3556(0) χc2ð1PÞ
2þþ 4066 41 64 3927(3) χc2ð2PÞ
2−þ 3863 21 54
2−− 3841 12 52
3−− 3865 23 55
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One of the next steps will be a computation of the same
meson masses on several gauge link ensembles at finer
lattice spacings. This will enable us to perform a continuum
extrapolation and to quantify lattice discretization errors
more precisely. We also expect that the resulting lattice
discretization errors will then be significantly smaller than
the current crude and conservative estimate of 50 MeV,
which in turn will lead to more precise results for the meson
masses.
Our strategy of computing meson masses using quark-

antiquark creation operators allows us to obtain solid
and accurate results for states, which are mainly composed
of a quark and an antiquark and which are quite stable.
States, which might not fulfill these requirements, e.g. the
rather unstable D�

0, which readily decays into Dþ π,
or D�

s0, which is frequently discussed as a tetraquark
candidate, should finally be treated with more advanced
lattice techniques. Further creation operators composed
of four quarks (e.g. of mesonic molecule type, of
diquark-antidiquark type and of two-meson type) have to

be included in the correlation matrices. In case of unstable
mesons, corresponding resonance parameters (mass, width)
can then be extracted from the volume dependence of the
spectrum of scattering states. We are currently in the
process of developing and implementing such methods
using a similar lattice setup [39–41].
Another important aspect of this work is the separation

and classification of the two JP ¼ 1þ Dmeson states. Even
though they have identical quantum numbers, their struc-
ture is quite different: one of them, D1ð2430Þ, has j ≈ 1=2,
while the other,D1ð2420Þ, has j ≈ 3=2, where j denotes the
spin and angular momentum of the light quark and gluons.
Extracting those two states unambiguously from a single
JP ¼ 1þ correlation matrix [both masses and eigenvector
components, where the latter provide suitable linear com-
binations of D1ð2430Þ and D1ð2420Þ creation operators]
constitutes an important first step to study decays Bð�Þ →
D1 þ lþ ν using lattice QCD. Such a study is of particular
interest, because there is a long standing conflict between
theory and experiment regarding the corresponding
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FIG. 13 (color online). Summary of lattice QCD results for D meson, Ds meson and charmonium masses (P ¼ − states are shown in
blue, P ¼ þ states in red; statistical errors are represented by dark blue/dark red boxes, combined statistical and systematic errors by
light blue/light red boxes). For easy comparison experimental results from [1] are shown in black. Note that systematic errors are
dominated by lattice discretization errors, which could only be crudely estimated, since computations are currently limited to a single
lattice spacing.
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branching ratios (“1=2 versus 3=2 puzzle”). A solid under-
standing of these decays is in turn necessary for a precise
determination of the standard model parameter Vcb (cf. [42]
for a detailed discussion). The results and corresponding
techniques discussed in Sec. VA 2 can be used to extend
existing lattice computations of decays Bð�Þ → D��þ
lþ ν, where D�� is currently limited to JP ¼ 0þ and
JP ¼ 2þ, but does not include the two D1 states [43,44].
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APPENDIX: COMPUTATION OF CORRELATION
MATRICES USING THE ONE-END TRICK

To compute the elements of the correlation matrices
defined in (14) we first insert the definition of the meson
creation operators (5),

CΓj;Γk;χ̄
ð1Þχð2Þ ðtÞ ¼

1

V=a3
hΩj

�X
r

ðχ̄ð1ÞSÞðr; tÞ
X

Δr¼�ex;�ey;�ez

Uðr; rþ Δr; tÞΓjðΔrÞðSχð2ÞÞðrþ Δr; tÞ
�†

×
X
s

ðχ̄ð1ÞSÞðs; 0Þ
X

Δs¼�ex;�ey;�ez

Uðs; sþ Δs; 0ÞΓkðΔsÞðSχð2ÞÞðsþ Δs; 0ÞjΩi;

where U denotes APE smeared gauge links. Gaussian smearing is a linear operation on the quark fields and can, therefore,
be written in terms of a matrix S in color and position space, where S ¼ S†. After writing the vacuum expectation value
hΩj…jΩi as a path integral and integrating over the quark fields, one obtains an average over gauge link configurations
(denoted by h…i), which includes quark propagators ðDðfÞÞ−1 (f ∈ fu; d; sþ; s−; cþ; c−g is the quark flavor),

CΓj;Γk;χ̄
ð1Þχð2Þ ðtÞ ¼ −

1

V=a3
X
r

X
Δr¼�ex;�ey;�ez

X
s

X
Δs¼�ex;�ey;�ez

hTrspin;colorðΓkðΔsÞγ5Uðs; sþ Δs; 0ÞðSðDð2̄ÞÞ−1;†SÞ

× ðsþ Δs; 0; rþ Δr; tÞUðrþ Δr; r; tÞγ5γ0Γ†
jðΔrÞγ0ðSðDð1ÞÞ−1SÞðr; t; s; 0ÞÞi: ðA1Þ

We have also used twisted mass γ5 hermiticity, ðDðfÞÞ−1 ¼ γ5ðDðf̄ÞÞ−1;†γ5, where the bar on top of the flavor index indicates
a flip of the sign in front of the twisted mass term (e.g. if 2 denotes u, 2̄ denotes d, if 2 denotes sþ, 2̄ denotes s−, etc.).
Finally, it is convenient to rearrange the expression and to write spin indices A, B, C, D explicitly,

CΓj;Γk;χ̄
ð1Þχð2Þ ðtÞ ¼ −

1

V=a3
X

Δr¼�ex;�ey;�ez

ðγ5γ0Γ†
jðΔrÞγ0ÞAB

X
Δs¼�ex;�ey;�ez

ðΓkðΔsÞγ5ÞCD

×
X
r

X
s

hTrcolorðUðs; sþ Δs; 0ÞðSðDð2̄ÞÞ−1;†SÞDAðsþ Δs; 0; rþ Δr; tÞUðrþ Δr; r; tÞ

× ðSðDð1ÞÞ−1SÞBCðr; t; s; 0ÞÞi: ðA2Þ
To estimate (A2) stochastically, we generate for each gauge link configuration 4 spin diluted stochastic time slice sources

(index B ¼ 1; 2; 3; 4) on a randomly chosen time slice (here w.l.o.g. at time t ¼ 0),

ξa;ðBÞA ðr; tÞ ¼ δt;0δABNaðrÞ ðA3Þ
(a is a color index, A is a spin index), where the entries of the noise vector NaðrÞ are randomly and uniformly chosen
numbers �1=

ffiffiffi
2

p � i=
ffiffiffi
2

p
. Then we solve the 4 linear systems (index C ¼ 1; 2; 3; 4)

X
y

Dð1Þðx; yÞϕð1;CÞðxÞ ¼ ðSξðCÞÞðyÞ → ϕð1;CÞðr; tÞ ¼
X
x

ððDð1ÞÞ−1SÞðr; t; xÞξðCÞðxÞ ðA4Þ
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and the 4 × 6 linear systems (indices D ¼ 1, 2, 3, 4 and Δs ¼ �ex;�ey;�ez)X
y

Dð2̄Þðx; yÞϕð2̄;DÞðyÞ ¼
X
y

Sðx; yþ ð0;ΔsÞÞUðyþ ð0;ΔsÞ; yÞξðDÞðyÞ

→ ϕð2̄;D;ΔsÞðr; tÞ ¼
X
y

ððDð2̄ÞÞ−1SÞðr; t; yþ ð0;ΔsÞÞUðyþ ð0;ΔsÞ; yÞξðDÞðyÞ

→ ðϕð2̄;D;ΔsÞÞ†ðr; tÞ ¼
X
y

ðξðDÞÞ†ðyÞUðy; yþ ð0;ΔsÞÞðSðDð2̄ÞÞ−1;†Þðyþ ð0;ΔsÞ; r; tÞ ðA5Þ

with respect to ϕ using [77] (to minimize the required computation time, we always choose the quark flavors such, that the
lighter quark corresponds to flavor 1 and the heavier to quark to flavor 2̄). Using these results we compute the quantities

XABCD;ΔrΔs
χ̄ð1Þχð2Þ ðtÞ≡X

r

hððϕð2̄;D;ΔsÞÞ†SÞAðrþ Δr; tÞUðrþ Δr; r; tÞðSϕð1;CÞÞBðr; tÞiMC ðA6Þ

(h…iMC denotes the average over the finite number of Monte Carlo generated gauge link configurations [cf. Table I]), for
which one can show

XABCD;ΔrΔs
χ̄ð1Þχð2Þ

ðtÞ ¼
X
r

X
s

hTrcolorðUðs; sþ Δs; 0ÞðSðDð2̄ÞÞ−1;†SÞDAðsþ Δs; 0; rþ Δr; tÞ

× Uðrþ Δr; r; tÞðSðDð1ÞÞ−1SÞBCðr; t; s; 0ÞÞi þ noise; ðA7Þ
where

hNaðrÞðNbÞ�ðsÞiMC ¼ δabδr;s þ noise ðA8Þ

has been used and “noise” denotes unbiased stochastic noise, which decreases proportional to 1=
ffiffiffiffi
N

p
, where N is the

number of gauge link configurations used to compute h…iMC. This technique of stochastic estimation is referred to as one-
end trick (cf. e.g. [78,79]). It is most efficient for large spatial volumes and light quark masses. For the computations of D
mesons, Ds mesons and charmonium states done in this work it has been found to be superior compared to the traditional
technique of using point sources and point-to-all propagators [40].
To obtain arbitrary elements of the correlation matrices (14), one simply has to combine (A2) and (A7),

CΓj;Γk;χ̄
ð1Þχð2Þ ðtÞ ¼ −

1

V=a3
X

Δr¼�ex;�ey;�ez

ðγ5γ0Γ†
jðΔrÞγ0ÞAB

X
Δs¼�ex;�ey;�ez

ðΓkðΔsÞγ5ÞCDXABCD;ΔrΔs
χ̄ð1Þχð2Þ ðtÞ: ðA9Þ
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