
Quantum phase transition of high dimensional Yang-Mills theories

N. Irges, G. Koutsoumbas, and K. Ntrekis
Department of Physics, National Technical University of Athens, GR-15780 Athens, Greece

(Received 26 March 2015; published 6 November 2015)

We determine the critical value of the coupling where the first-order quantum phase transition takes place
for lattice SUð2Þ Yang–Mills theories in dimensions higher than 4. Within a mean-field approach, we
derive an approximate law valid for any dimension d, and in the context of a Monte Carlo approach, in
addition to the already known d ¼ 5 case, we look at d ¼ 6; 7; 8.
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Even though high (d > 4)-dimensional Yang–Mills the-
ories are perturbatively nonrenormalizable, one cannot
exclude the possibility that there exists a regime in their
phase diagram where a physically useful cutoff effective
theory can be constructed. Also, from the theoretical point
of view, these theories contain the basic ingredients (the
gauge fields) of various field theories motivated by string
theory.1 Therefore, their study is potentially useful.
A possible universal property of high-dimensional

Yang–Mills theories that emerges from previous studies
comes from the fact that in five dimensions a “bulk” or
“quantum” phase transition appears dividing the confined
phase from a Coulomb phase [2]. Recall that 4d pure Yang–
Mills [for SUðNÞ with N < 4]2 at zero temperature has
only a confined phase where the gauge fields always form
flux tubes. Intuition says that, as the number of dimensions
transverse to the surface of the tube increases, the harder it
is to sustain a stable flux tube, thus requiring a stronger
coupling. In phase diagram terminology, we expect the
confined phase to persist but also to shrink as d increases.
Here, we will perform a first check of this statement.
We take SUð2Þ as our model and regularize it on a d-

dimensional, Euclidean, periodic lattice with lattice spacing
a and linear dimension L. The action is the standard Wilson
plaquette action
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where UμνðxÞ¼UμðxÞUνðxþaμ̂ÞU†
μðxþaν̂ÞU†

νðxÞ, μ; ν ¼
1;…; d is the elementary plaquette located at the site xwith
UμðxÞ ¼ eiaAμðxÞ, and β ¼ 4a

g2 represents the dimensionless
lattice coupling. We will employ two methods, on one hand
the mean-field (MF) approximation [4,5], an analytic
method expected to work well near the phase transition

and in general increasingly well as d grows,3 and
Monte Carlo (MC) simulations on the other.
For SUð2Þ in d dimensions, the (ungauge-fixed) MF

approach to zeroth order determines the confined and
Coulomb phases via the solution to the coupled equations
for the MF background v0 [4],

v0 ¼
I2ðh0Þ
I1ðh0Þ

; h0 ¼ 2v30ðd − 1Þβ; ð2Þ

with Iνðh0Þ the modified Bessel function, by defining the
Coulomb phase as the regime of β where there is a solution
with v0 ≠ 0 and as the confined phase otherwise. In
Ref. [5], the equations were solved for d ¼ 5 by a
numerical, iterative method. The smallest positive and real
nonvanishing value of the background v0c satisfying
Eqs. (2) (i.e., where the iteration stabilizes) determines
the critical value of the lattice coupling βc where the phase
transition takes place. It is expected to be a quantum phase
transition since the MF at this order is volume independent.
This of course needs to be checked. In fact, for d ¼ 5, it
was found by a MC simulation on a 45 lattice in 1979 by
Creutz to be a quantum, first-order phase transition.
Subsequently, this was confirmed (and extended to aniso-
tropic lattices) by several authors [7]. Apart from the fact
that both methods agree on the order of the transition, their
estimates for the value of the critical coupling are also quite
close: the βMF

c ≃ 1.6762017 of the MF (corresponding to
v0c ≃ 0.73333) [5] is to be compared with the βMC

c ¼
1.642� 0.015 of the MC [2].
An observation stemming from Eqs. (2) is that the

quantity B ¼ ðd − 1ÞβMF
c and therefore also v0c are d

independent. We can then solve Eqs. (2) for general d
by noting that the zero of the function F ¼ I2ðh0Þ=I1ðh0Þ −
v0 that signals the phase transition is one where Fðv0Þ has
an extremum. The extremization condition F0 ¼ 0 yields
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¼ 1: ð3Þ1For Monte Carlo studies of high-dimensional (supersymmet-

ric) Yang–Mills theories from the point of view of matrix models,
see Ref. [1].

2For N ≥ 4, a first-order bulk phase transition emerges already
in d ¼ 4 [3].

3Or whenN of SUðNÞ grows; this, however, tends to shrink the
Coulomb phase instead [6].
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Using Eq. (2) and the recursion identity Iνðh0Þ ¼
Iν−2ðh0Þ − 2ðν−1Þ

h0
Iν−1ðh0Þ, we can express I3=I1 ¼

1–4v0=h0 and I0=I1 ¼ 2=h0 þ v0 and reduce Eq. (3) to
the quadratic equation

x2 − xþ 5

3B
¼ 0 ð4Þ

with x ¼ v20. The solution determines the value of the
background at the critical point
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Substituting the above back in the equation F ¼ 0 results
in an algebraic expression with only parameter B, the
relevant root of which can be found numerically to be
B≃ 6.704840, determining v0c ≃ 0.7333 from the upper
sign of Eq. (5), as expected. Thus, we find that the equation

ðd − 1ÞβMF
c ≃ 6.704840 ð6Þ

fixes the SUð2Þ critical coupling in any dimension d > 4.
What makes it possible to go high in d with Monte Carlo

simulations is that we are dealing with a bulk phase
transition. This means that, as long as the lattice extent
is large enough so that finite size effects do not interfere,
the phase transition is visible. Most times, a 4d lattice will
suffice to observe the effect, even though larger lattices will
be clearly needed to describe it with better precision. The
order parameter used in order to locate the phase transition
is the plaquette

P ¼ 2
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The Kennedy–Pendleton heat bath algorithm [8] has been
used to update the gauge field. Far from the region of the
phase transition, the number of thermalization sweeps
needed so that the plaquette achieves its equilibrium value
has been of the order of 100, 150, and 200 for d ¼ 6, 7, and
8, respectively. We have also employed over-relaxation hits
to decorrelate the measurements. They do not seem to affect
the results very much, since the measurements of the
autocorrelation times yield very small values. The accep-
tance rates have been of the order of 70%–90%.
The phase diagram has been obtained for d ¼ 6, 7, and 8,

while we also quote the results for d ¼ 5. The lattice sizes
used have a linear dimension L ¼ 4, and after thermal-
ization, hysteresis loops were performed. The step in β was
0.07 (starting at β ¼ 0.40 and going up to β ¼ 1.8 and
back); after 1000 initial heat up sweeps, 8000 iterations
through the lattice were done at each β value. There exist
well-known approximations that we have used as guides. In
the strong coupling regime (small values of β), the
plaquette P is well approximated by P≃ β

4
, while in the

weak coupling, the approximations read P≃ 1 − 3
dβ. It

appears that the β values shown in the figure are not large
enough to approach the weak coupling limit, but we have
checked that for larger values the agreement is good. The
results for the hysteresis runs along with the strong and
weak coupling approximations are shown on the left in
Fig. 1. The phase transition is seen to be a strong first-order
one, even for this quite modest linear dimension of the
lattices. We can read off estimates for the β intervals in
which the critical values lie: 1.29 < β < 1.45 for d ¼ 6,
1.07 < β < 1.27 for d ¼ 7, and 0.86 < β < 1.04 for d ¼ 8.
The right of Fig. 1 depicts a comparison of the mean-field
estimates for the critical β and the corresponding analytical
expression (6) against the results of the Monte Carlo runs.
We have also quoted the five-dimensional result from
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FIG. 1 (color online). Left: Hysteresis loops for 6, 7, and 8 dimensions. The strong and weak coupling predictions are also included.
Right: The pseudocritical values for βMC

c vs 1
d−1 and their estimated errors. The mean-field prediction Eq. (6) is represented by the

straight line.

N. IRGES et al. PHYSICAL REVIEW D 92, 094506 (2015)

094506-2



Ref. [2] for completeness. We observe a quite good
agreement between the two methods.
The determination of the order of the phase transition as

well as of the pseudocritical values of β is usually done
through long runs and by examining the fluctuations of the
plaquette between the values pertaining to each of the two
metastable states. This permits the construction of histo-
grams and the determination of the volume dependence of
the specific heats. Unfortunately, the gap between the two
values grows so much with increasing dimensions that it
has proven impossible to observe this behavior with the
algorithm used. This would require a multicanonical
simulation, so we defer this to a forthcoming publication.
For the time being, we have used long runs (of the order of
105 iterations) just to be sure about the upper and lower
bounds that we report. The results are encoded in the upper
and lower bounds for the critical β reported above.
Extending the work of Ref. [2], we determined the

critical value of the coupling where a first-order bulk phase
transition takes place for high-dimensional SUð2Þ lattice
gauge theories. We first derived a law valid in any
dimension d > 4 based on the mean-field method and
then performed corresponding Monte Carlo checks for the
first time in d ¼ 6; 7, and 8 dimensions.
The values of the plaquettes at selected values of β, as

well as several results relating to the error and autocorre-
lation issues, are presented in the Appendix.
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APPENDIX: LONG RUN PLAQUETTE
VALUES AND ERRORS

We collect in this Appendix some details of the simu-
lations. Near the region of the phase transition, the
autocorrelation question becomes important. For the six-
dimensional models, we plot in Figs. 2 the mean plaquette
resulting in long runs for a hot and a cold start and values of
β smaller than the phase transition value. We see that the
hot start makes the plaquettes take on their final values very
soon, while the cold start spends considerable computer
time in a false vacuum before actually landing on its true
value. The time spent in the false vacuum becomes longer
as one approaches the phase transition. For the relatively
large β0s depicted in Figs. 3, the opposite effect takes place:
it is the hot start which gives a fluctuation around the false
vacuum, and this fact is more intense as one approaches
the phase transition region; on the contrary, the cold start
fluctuates around the true vacuum from the beginning.
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FIG. 2 (color online). Long runs for six dimensions below the phase transition, at β ¼ 1.289; 1.290, and 1.291.
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FIG. 3 (color online). Long runs for six dimensions above the phase transition, at β ¼ 1.427; 1.426, and 1.425.
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It appears that the measurements in this region are highly
correlated; however, the correlation functions indicate that
the autocorrelation time is bigger than the total computer
time of the run, so it makes no sense to display them. This
behavior just signals the limitations of the method. Similar
results for d ¼ 7 are plotted in Figs. 4 and 5. Similar
behavior is observed for d ¼ 8, but one has to fine tune too
much to achieve the corresponding wandering around the
false vacua, so we do not show the results.

It is useful to report more details on the values of the
plaquettes and their errors, as calculated by the jackknife
method. We report the relevant values at the values of β that
have been used for the determination of the phase diagram
in Tables I, II, and III for d ¼ 6; d ¼ 7, and d ¼ 8,
respectively. We also depict the results of the long runs
in Fig. 6, including the error bars. We show both hot starts
and cold starts along with the corresponding errors. The
errors grow large only near the phase transition, as
expected.
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FIG. 4 (color online). Long runs for seven dimensions below the phase transition, at β ¼ 1.0728; 1.0730, and 1.0732.
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FIG. 5 (color online). Long runs for seven dimensions above the phase transition, at β ¼ 1.3105; 1.3100, and 1.3095.
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FIG. 6 (color online). Plaquette values with errors in 6, 7, and 8 dimensions.
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TABLE I. Plaquette values and errors in six dimensions

bg Cold start values Cold start errors Hot start values Hot start errors

1.200 0.299589 0.000011 0.299589 0.000011
1.230 0.308219 0.000007 0.308219 0.000007
1.250 0.314130 0.000007 0.314130 0.000007
1.280 0.323297 0.000007 0.323297 0.000007
1.289 0.349 0.017 0.32615 0.00001
1.290 0.40 0.03 0.326446 0.000013
1.291 0.469 0.005 0.326765 0.000004
1.341 0.523120 0.000008 0.343620 0.000012
1.350 0.529227 0.000012 0.346879 0.000013
1.410 0.563112 0.000013 0.373005 0.000009
1.423 0.569356 0.000008 0.381212 0.000015
1.424 0.569824 0.000011 0.52 0.03
1.425 0.570293 0.000009 0.52 0.03
1.426 0.570760 0.000009 0.54 0.02
1.427 0.571259 0.000005 0.567 0.004
1.430 0.572597 0.000008 0.5720 0.0006
1.500 0.60164 0.00014 0.601475 0.000009
1.520 0.608791 0.000007 0.608775 0.000009

TABLE II. Plaquette values and errors in seven dimensions

bg Cold start values Cold start errors Hot start values Hot start errors

0.8500 0.210118 0.000003 0.210116 0.000005
0.8900 0.220185 0.000005 0.220185 0.000003
1.0700 0.267476 0.000003 0.267473 0.000005
1.0728 0.275 0.007 0.268251 0.000003
1.0730 0.30 0.02 0.268303 0.000006
1.0731 0.290 0.018 0.268336 0.000003
1.0732 0.30 0.02 0.268388 0.000009
1.0733 0.285 0.017 0.268393 0.000006
1.0734 0.30 0.02 0.268415 0.000003
1.0735 0.437191 0.000017 0.268445 0.000003
1.1680 0.540070 0.000003 0.296037 0.000004
1.1720 0.542651 0.000004 0.297304 0.000004
1.1750 0.544582 0.000003 0.298252 0.000004
1.1980 0.558431 0.000005 0.305641 0.000005
1.2800 0.599198 0.000005 0.336737 0.000008
1.3090 0.611366 0.000004 0.59 0.03
1.3095 0.611544 0.000002 0.55 0.04
1.3100 0.611763 0.000002 0.597 0.015
1.3105 0.611938 0.000003 0.609 0.002
1.3120 0.612546 0.000004 0.612549 0.000004
1.3300 0.619573 0.000003 0.619576 0.000004
1.3400 0.623345 0.000004 0.623346 0.000004
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