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We calculate the bound state properties of stoponium using lattice formulation of nonrelativistic effective
field theory for stop which is moving nonrelativistically in the rest frame of stoponium. Our calculation
method is similar to that employed in lattice nonrelativistic quantum chromodynamics (NRQCD) studies
for charmonium and bottomonium. Using 163 × 256 quenched lattice gauge field configurations at
a−1 ¼ 50ð1Þ GeV, we obtain the stoponium mass and the lattice matrix element which is related to the
wave function at the origin for the 1S state and find that the lattice jR1Sð0Þj2=M3

1S is 3.5–4 larger than that
from a potential model calculation for 200 GeV ≤ M1S ≤ 800 GeV.
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I. INTRODUCTION

After the discovery of Higgs particle by ATLAS [1] and
CMS [2] at LHC, detailed measurements of its property
become very important and urgent. These precision mea-
surements will open up a new opportunity to search for
physics beyond the standard model. In particular, heavy
particles which can decay into Higgs boson are under active
experimental and theoretical investigations. Scalar top
quark (stop), the supersymmetric partner of top quark
and the next-to-lightest supersymmetric particle (NLSP),
is one of such possibilities. Then, stoponia, bound states
(binding through SUð3Þ color gauge interaction) of stop
and antistop may become interesting provided that stop is
long-lived enough to form a bound state. They can serve
as a probe to stop, and decay of stoponium via the stop–
antistop pair annihilation into diboson states may be
observed due to its distinct signature [3–7].
With regard to the production cross section calculation

of stoponium, a next-to-leading order computation of
the perturbative part of the production cross section is
available [8,9] and a resummed next-to-next-to-leading
logarithm calculation is performed [10]. Turning these
perturbative calculations into phenomenological compar-
isons requires matrix elements for stoponium. With
the observation that heavy quark moves slowly in the
rest frame of quarkonium (v2 ∼ 0.1 in bottomonium and
v3 ∼ 0.3 in charmonium where v is the heavy quark
velocity in the rest frame of quarkonium), nonrelativistic
quantum chromodynamics (NRQCD) is developed and the
quarkonium production cross section is given in terms of
perturbative parts and nonperturbative matrix elements
[11]. Similarly, the parton-level differential cross section
for the stoponium (Ψ) production in a collider can be
given as

dσ̂ðab→ΨþXÞ¼
X
n

dσ̂ðab→ ~t ~̄t½n�þXÞhOΨ½n�i; ð1Þ

where a, b are partons, ~t, ~̄t are stop and antistop, n denotes
the angular momentum of the stoponium states and OΨ½n�
are generic forms of nonrelativistic stoponium production
operators [8] by considering nonrelativistic effective field
theory (NREFT) for stoponium system since in the rest
frame of stoponium for M ∼Oð100Þ GeV, v2 is expected
to be ∼Oð0.01Þ and αsðMvÞ ∼Oð0.1Þ.
Following [11], one can relate the production matrix

elements to decay matrix elements by crossing relation in
leading order of v2. The decay matrix elements then can
be related to nonrelativistic wave functions in the vacuum
saturation approximation up to Oðv4Þ. For the 1S state
stoponium,

hOΨi≃ h0jχ†ψ j1Sih1Sjψ†χj0i ¼ jh0jχ†ψ j1Sij2; ð2Þ
when the leading v2-order term in the factorization expan-
sion is considered and a stoponium state is assumed to
dominate in the intermediate states [11]. Here, ψ denotes
nonrelativistic stop, χ† denotes nonrelativistic antistop.
This matrix element is related to the wave function at
the origin [11] as

jh0jχ†ψ j1Sij2 ≃ 4π

Nc
jR1Sð0Þj2 ð3Þ

and has been calculated on lattice for charmonium and
bottomonium decays1 [12–14] (see [15] for an improved
lattice calculation for bottomonium system).
So far, potential model estimates (e.g., [16]) have been

used for the stoponium masses and the stoponium wave
functions where typical bound states properties are sum-

marized in jRSð0Þj2
MS

3 with the mass of the S-wave stoponium
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1Note that in Eq. (3) the factor 1
Nc

instead of 1
2Nc

, due to the
spinless nature of stop.
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state, MS, and jRSð0Þj the value of stoponium radial wave

function at the origin. In jRSð0Þj2
MS

3 , uncertainty from the wave

function at the origin, jRSð0Þj, is more dominant than that
from the mass. The mass of stoponium will be mostly
from twice of the “free” stop mass and the “binding energy”
will be just a few percent in stoponium mass and the
uncertainty in binding energy will lead to subpercent level
uncertainty in stoponium mass. On the other hand, jRSð0Þj
depends very much on the functional form of potential
models [12,17,18].
Clearly, using potential model estimates for the binding

interaction of stoponium is unsatisfactory since it introdu-
ces model-dependence which can not be systematically
improved, and makes the stoponium cross section calcu-
lation unsystematic as a whole, despite the improved
perturbative calculations. Furthermore, potential models
have a difficulty in obtaining right decay widths for a given
state although they do better for relative ratios for different
states [17,18]. Employing different functional forms for
potential models can lead to a large differences. For
example, a potential model estimate for jRSð0Þj defies a
naive expectation that large stop mass (M > 100 GeV)
would result in Coulombic behavior of the wave function,
and exhibits substantial departure from the Coulombic
value of jRSð0Þj even at M ≃ 1 TeV [16]. This suggests
that there can be sizeable nonperturbative contribution to
the bound state properties. Indeed, next-to-next-to-next-to-
leading order calculation together with a scheme choice
which is less sensitive to the long distance effect of QCD is
necessary to understand the threshold behavior of the
top antitop S-wave pair production cross section [19].
In this work, we use lattice formulation of v2 NREFT

for stoponium and calculate the stoponium mass and a
stoponium matrix element, jh0jχ†ψ jΨij2. Unlike a potential
model calculation, lattice NREFT is based on the first
principles of quantum field theory and allows systematic
study of errors associated with a given result. This effective
lattice theory is similar to the lattice version of NRQCD
[12,20] which allows highly successful understanding of
nonperturbative quarkonium physics (see e.g., [15]) except
for the fact that stop is a spinless particle. Our calculation
for the stoponium property is performed on N3

s × Nτ ¼
163 × 256 lattices generated with “quenched approxima-
tion” and the lattice spacing, a−1 ≃ 50 GeV for the stop
mass range 1 ≤ Ma ≤ 8 (i.e, 50 ≤ M ≤ 400 GeV). A large
Nτ is necessary to avoid deconfining effects. In the rest
frame of stoponium, stop is expected to move slowly
with velocity vð≪ 1Þ and the size of stoponium should
be smaller than those of typical quarkonia [rough estimate
for the size of stoponium may be given by the
self-consistency relation, v ∼ αsðMvÞ with the size of
r ∼ ðMvÞ−1 and the stop mass M] and thus small Ns does
not cause a significant finite volume effect. Since the
momentum scale larger than the heavy particle mass is

“integrated out” in NREFT and Ma is chosen to be ∼1, we
need to consider only the lattice spacing scale in lattice
NREFT for stoponium.
We find that with Oðv2Þ NREFT Lagrangian, the lattice

result for jR1Sð0Þj2=M3
1S is factor 3.5–4 larger than a

potential model estimate in [16] for 200 GeV ≤
M1S ≤ 800 GeV. Although further study is necessary (in
particular in view of the difficulty associated with quantify-
ing the systematic uncertainty from the quenched approxi-
mation), this implies that the stoponium production rate at
LHC may be larger than the current estimates based on
the potential model. In the following, we briefly summarize
the lattice method used in the calculation of stoponium
properties (Sec. II). Then, we present our main result in
Sec. III and conclude with Sec. IV.

II. METHOD

The effective Lagrangian for nonrelativistic stop in
leading order of v2 is given by

L ¼ ψ†
�
Dτ −

D2

2M

�
ψ þ χ†

�
Dτ þ

D2

2M

�
χ; ð4Þ

where ψ is a complex scalar field for stop which transforms
as a SUð3Þ vector and χ is that for antistop and Dτ (D) are
gauge covariant temporal (spatial) derivative under the
strong interaction, SUð3Þ. Note that this leading order
NREFT Lagrangian does not differ from that for NRQCD.
The difference between stoponium NREFT Lagrangian and
NRQCD Lagrangian occurs only when next-to-leading
order NREFT Lagrangian is considered since the spin
interaction (e.g., σ ·B) in NRQCD is Oðv4Þ. Additional
terms for NREFT Lagrangian in v4 can be systematically
studied by including

δL¼ −
c1
8M3

½ψ†ðD2Þ2ψ − χ†ðD2Þ2χ�

þ c2
ig

8M2
½ψ†ðD ·E−E ·DÞψ þ χ†ðD ·E−E ·DÞχ�:

As for the Monte Carlo data of SUð3Þ lattice gauge fields
which are used in the calculation, they are generated on
163 × 256 lattice in “quenched approximation” at lattice
bare coupling β ¼ 6

g2 ¼ 8.751 using a single plaquette

Wilson action. Multihit Metropolis algorithm together with
interleaving over-relaxation algorithm [21] is used for the
gauge field update. Each configuration is separated by 1000
Monte Carlo sweeps. To convert a lattice result into a
quantity in a physical unit, one needs a lattice spacing as a
function of the bare coupling constant. In the scaling limit
(Nf ¼ 0 due to quenched approximation),

aΛL
0 ¼ exp

�
−

1

2b0g2

�
ðb0g2Þ

− b1
2b0

2 ¼ fðgÞ → a−1 ¼ ΛL
0

fðgÞ
ð5Þ
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where b0 ¼ 11
3

Nc
16π2

and 34
3
ð Nc
16π2

Þ2. We use the light hadron
spectrum calculation in [21] to set the lattice scale since
the experimental value for 1P − 1S level splitting
used in usual quenched lattice quarkonium calculations
is not available for stoponium. In [21], at 6=g2 ¼ 6.5,
mρðmq → 0Þa ¼ 0.200ð4Þ. We obtain a−1 ¼ 3.84ð8Þ GeV
(ΛL

0 ¼ 5.10ð1Þ MeV) from the lattice mρa and
mρðphysicalÞ ¼ 768.1ð5Þ MeV. This scale setting introdu-
ces ∼2% systematic error.2 Thus, the scale for β ¼ 8.751
is set as a−1 ¼ 50ð1Þ GeV ¼ 0.0039ð1Þ fm.
Under the background of these lattice gauge field

configurations, nonrelativistic stop correlators for Oðv2Þ
are calculated using the evolution equation,

Gðx; τ0Þ ¼ SðxÞ;

Gðx; τiÞ ¼
�
1 −

H0

2k

�
k
U†

4ðx; τi−1Þ
�
1 −

H0

2k

�
k
Gðx; τi−1Þ;

ð6Þ

where SðxÞ denotes an appropriate complex valued random
point source, diagonal in SUð3Þ color (random source
improves the signal to noise ratio), and H0 is the lattice
Hamiltonian corresponding to Eq. (4) andU4ðx; τi−1Þ is the
time directional gauge field. The parameter, k is introduced
to stabilize large momentum behavior of the lattice dis-
cretized evolution equation (see Table I for the choice of k).
The gauge link variables are divided by “tadpole factor”,
u0, which is chosen to be

u0 ¼ h0j 1
3
TrUplaqj0i14 ð7Þ

where Uplaq is a plaquette. For Oðv4Þ Lagrangian, a
modified evolution equation which includes the
Hamiltonian for Eq. (5) together with the improvement
term for finite lattice spacing [20] can be used such as

Gðx; τ0Þ ¼ SðxÞ;

Gðx; τ1Þ ¼
�
1 −

H0

2k

�
k
U†

4ðx; 0Þ
�
1 −

H0

2k

�
k
Gðx; 0Þ;

Gðx; τiÞ ¼
�
1 −

H0

2k

�
k
U†

4ðx; τÞ
�
1 −

H0

2k

�
k

× ð1 − δHÞGðx; τi−1Þ; ði ≥ 2Þ; ð8Þ

where δH denotes the lattice v4 Hamiltonian mentioned in
the above.

The zero-momentum stoponium correlators are then
formed by combining the Green function for stop and that
for antistop and are summed over the spatial lattice sites.
From the stoponium correlators, matrix elements are
obtained by fitting

GSðτÞ ¼
X
n

e−Enτjh0jχ†ψ jnij2

¼ A0e−E1Sτ þ A1e−E2Sτ þ � � � : ð9Þ

For the lattice determination of the wave-function at the
origin, jRð0Þj2, the matrix element obtained from fitting
Eq. (9) is related to the nonrelativistic Coulomb-gauge
fixed wave-function

A0 ¼ jh0jχ†ψ j1Sij2 ð10Þ

in the leading order of v2 with the normalization convention
for the radial wave function,

R
∞
0 drr2jRðrÞj2 ¼ 1 [11,12].

In NREFT formulation, the energy scale in the spectrum
is not known. In order to determine the mass of a state from
the energy of state for a given channel from Eq. (9), “energy
shift” needs to be determined,

MN ¼ 2ðZMM − E0Þ þ EN ð11Þ

where the mass of state, MN (N denotes the quantum
number of the state), is given in term of the energy of the
state (En), “zero point energy (E0)”, and the mass renorm-
alization (ZMM) [23] (or one can use the kinetic mass of
nonrelativistic dispersion relation to determine the mass
of a state [22]). In lattice NRQCD study of charmonium
and bottomonium, this energy shift is determined either by
the well measured experimental mass for one of the states
(such as J=ψ and ϒ) or by lattice perturbation theory
computation [24]. Stoponium is not discovered yet and the
perturbative estimate for the energy shift using the lattice
action used in this work is not calculated. Thus, we use
tadpole improved mean field estimate for the energy shift in
leading order [20], where

TABLE I. Mean field estimates of the zero energy shift.

Ma k ah0 ZM E0a 2ðZMMa − E0aÞ
1.0 4 0.209385 1.04700 0.285172 1.52367
2.0 2 0.104926 1.04700 0.178845 3.83034
2.5 1 0.083941 1.03008 0.158271 4.83339
4.0 1 0.052463 1.04700 0.125682 8.12470
5.0 1 0.041971 1.05265 0.114935 10.2966
6.0 1 0.034975 1.05641 0.107803 12.4613
7.0 1 0.029979 1.05910 0.102724 14.6219
8.0 1 0.026232 1.06111 0.098923 16.7799

2However, this small error bar should be taken with caution.
The quenched approximation effect in the hadron spectrum can
be as large as 20% and the ambiguity due to the quenched
approximation in the scale setting is far larger. (see, e.g., [22] for
the question of the scale setting in bottomonium system).
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E0 ¼ −a−1 ln
�
u0

�
1 −

ah0
2k

�
2k
�
;

ZM ¼ u−10

�
1 −

ah0
2k

�
ð12Þ

with

ah0 ¼ 3
ð1 − u0Þ
Ma

: ð13Þ

n is the integer parameter which is introduced in Eq. (6) to
prevent the high momentum instability of the evolution
equation. At β ¼ 8.751ðg2 ¼ 1.4585Þ, Monte Carlo simu-
lation gives u0 ¼ 0.930049ð1Þ. Perturbatively, u0 ∼ 1 −
0.083g2 − � � � [20] and u0 ≈ 0.94309 at β ¼ 8.751. The
difference between the lattice value of u0 and the pertur-
bative value of u0 is ∼1.4%, which suggests order of
magnitude for nonperturbative effect in tadpole factor, u0 at
β ¼ 8.751. Table I summarizes the mean field estimates of
the energy shift for various Ma and n used for stoponium
correlator calculation.
There are various sources for systematic errors with

nonrelativistic lattice calculation of stoponium properties.
An analysis similar to that in lattice NRQCD computation
of quarkonium [20] can be applied: (i) relativistic correc-
tion, (ii) finite lattice spacing, (iii) radiative correction,
(iv) finite lattice volume effect, and (v) light-quark vacuum
polarization. In this work, there are additional sources of
errors. First is the determination of the zero energy shift:
due to the rest mass of the particle and its renormalization,
NREFT has a undetermined “zero energy shift,” which can
be fixed by an experimental mass of one of quarkonium
states or by a perturbative calculation. Our use of a mean
field theory approximation [20] for the shift introduces a
source of systematic error. Additional error concerns a bare
stop mass used in the lattice calculation. An accurate
calculation of the stoponium masses requires “tuning of
stop mass” which compares a stoponium kinetic mass in
nonrelativistic dispersion relation for a given stop mass
with an experimental stoponium mass and changes stop
mass until the kinetic mass is equal to the experimental
stoponium mass. Since stoponium is not discovered yet,
this tuning procedure cannot be performed and the lattice
result in the following contains an uncertainty from the
imprecise tuning of stop mass.

III. RESULT

Figure 1 shows S-wave stoponium correlators, GðτÞ, on
163 × 256 lattice volume calculated with the v2 Lagrangian
[Eq. (4)] and the evolution Eq. (6) for each stop mass Ma,
where the vertical axis is in the logarithmic scale. By fitting
these stoponium correlators, we obtain the energy of 1S
state, E1Sa and the amplitude, A0a3. Table II summarizes
the fit results for each stop mass with the fit range

60 ≤ τ=a ≤ 100 where the fit range was chosen by locating
the plateau region of the effective mass plot (Fig. 2). The
error bar is from single elimination Jackknife error analysis
of the fitted E1Sa and A0a3. From these lattice quantities,
E1Sa and A0a3, we getM1S and jR1Sð0Þj2 by use of Eq. (11)
and Eq. (10) (the last two columns in Table II).
Figure 3 shows lattice jR1Sð0Þj2=M3

1S (the column 6 of
Table II) as a function of lattice M1S (the column 5 of
Table II) in the range of 100 GeV ≤ M1S ≤ 800 GeV. In
the figure, a line for a potential model result from [16] is
also drawn for a comparison, where the Λ ¼ 300 MeV
parametrization for M1S and jR1Sð0Þj2=M2

1S is used. The
figure shows that the result from lattice NREFT calculation
is larger by factor ∼4 at M1S ∼ 200 GeV and by ∼3.5
at M1S ∼ 800 GeV than that from a potential model
calculation.
Let us consider the magnitude of the systematic errors in

our lattice calculation of stoponium. First we consider the
finite spacetime volume effect in Table II by comparing
with the results from two different lattice volumes, Table III
from 203 × 256 lattices and Table IV from 123 × 256
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FIG. 1 (color online). The lattice nonrelativistic correlators for
the S-wave channel withOðv2Þ Lagrangian on 163 × 256 lattices.

TABLE II. E1S and A0 from lattice calculation (in lattice unit)
on 163 × 256 lattices with v2 NREFT Lagrangian. The result is
based on 400 stoponium correlators and the error bar is from the
jackknife analysis of the 1-exponential fit.

Ma k E1Sa A0a3 M1S (GeV) jRð0Þj2=M3
1S

1.0 4 0.1619(2) 0.00507(4) 84.28(1) 4.43ð5Þ × 10−3

2.0 2 0.1688(1) 0.02377(6) 200.0(1) 1.557ð7Þ × 10−3

2.5 1 0.1671(1) 0.03599(7) 250.0(1) 1.205ð5Þ × 10−3

4.0 1 0.1553(1) 0.1237(2) 414.0(1) 9.13ð3Þ × 10−4

5.0 1 0.1455(1) 0.2353(3) 522.1(1) 8.66ð3Þ × 10−4

6.0 1 0.1344(1) 0.4014(4) 629.8(1) 8.41ð3Þ × 10−4

7.0 1 0.1220(1) 0.6173(5) 737.2(1) 8.07ð3Þ × 10−4

8.0 1 0.1087(1) 0.8613(6) 844.4(1) 7.49ð3Þ × 10−4
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lattices (both at β ¼ 8.751 with the v2 Lagrangian). These
three tables show that between 163 × 256 and 203 × 256,
there is little lattice volume dependence in M1S and
jR1Sð0Þj2=M3

1S but between 16
3 × 256 and 123 × 256, there

are some lattice volume dependences. For Ma ≥ 4.0,
results from two larger lattice volumes agree within
error bar. For Ma < 4.0, M1S shows no difference and
jR1Sð0Þj2=M3

1S has ∼3% difference between the two larger
lattices. Thus, we can conclude that the finite volume effect
is small in the result from 163 × 256 lattices.
As discussed, in this work stop mass is not tuned and a

mean field estimate of the zero energy shift is used. These
two aspects are related to each other since tuning amounts
to changing lattice stop mass until the kinetic mass in the
nonrelativistic dispersion relation is equal to the mass of
the a given state where part of the “correct mass” is from the
zero energy shift, 2ðZMM − E0Þ. However, tuning stop
mass imprecisely is not a big source of systematic error.
For example, in a bottomonium study [25], the difference
between a properly tuned bottom quark mass, Ma ¼ 2.92
and a rough estimate, Ma ¼ 2.90 (using Mb ¼ 4.65 GeV
[26] and the lattice spacing 0.1127 fm) is consistent
compared with the accuracy of our calculation. From
Table I, one observes that the mean field estimate for
the mass renormalization effect is small (ZM − 1 ∼ 0.05)
at β ¼ 8.751 and the variation in E0a due to change of
Ma is ∼0.02 for Ma ≤ 4.0 and ∼0.005 for Ma > 4.0.
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FIG. 2 (color online). The effective mass plot (bottom) and the
A0 plot (top) for the S-wave channel with Oðv2Þ Lagrangian
using neighboring two points of the correlators (GðτiÞ, Gðτiþ1Þ)
on 163 × 256 lattices. Error bar is from Jackknife analysis.
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FIG. 3 (color online). jR1Sð0Þj2=M3
1S from nonrelativistic cor-

relators for the S-wave channel on a 163 × 256 lattice withOðv2Þ
Lagrangian.

TABLE III. E1S and A0 from lattice calculation (in lattice unit)
on 203 × 256 lattices with v2 NREFT Lagrangian. The result is
based on 400 stoponium correlators and the error bar is from the
jackknife analysis of the 1-exponential fit.

Ma k E1Sa A0a3 M1S (GeV) jRð0Þj2=M3
1S

1.0 4 0.1622(1) 0.00483(1) 84.29(1) 4.22ð1Þ × 10−3

2.0 2 0.1693(1) 0.02438(4) 200.0(1) 1.596ð5Þ × 10−3

2.5 1 0.1672(1) 0.03630(6) 250.1(1) 1.216ð4Þ × 10−3

4.0 1 0.1553(1) 0.1233(1) 414.0(1) 9.09ð2Þ × 10−4

5.0 1 0.1455(1) 0.2346(1) 522.1(1) 8.63ð3Þ × 10−4

6.0 1 0.1343(1) 0.4007(3) 629.8(1) 8.40ð3Þ × 10−4

7.0 1 0.1220(1) 0.6171(3) 737.2(1) 8.07ð2Þ × 10−4

8.0 1 0.1087(1) 0.8617(4) 844.4(1) 7.49ð2Þ × 10−4

TABLE IV. E1S and A0 from lattice calculation (in lattice unit)
on 123 × 256 lattices with v2 NREFT Lagrangian. The result is
based on 400 stoponium correlators and the error bar is from the
jackknife analysis of the 1-exponential fit.

Ma k E1Sa A0a3 M1S (GeV) jRð0Þj2=M3
1S

1.0 4 0.1526(4) 0.0048(4) 83.81(2) 4.27ð39Þ × 10−3

2.0 2 0.1635(2) 0.0193(2) 199.7(1) 1.27ð2Þ × 10−3

2.5 1 0.1638(1) 0.0310(2) 249.9(1) 1.040ð9Þ × 10−3

4.0 1 0.1549(1) 0.1201(2) 414.0(1) 8.86ð3Þ × 10−4

5.0 1 0.1455(1) 0.2328(4) 522.1(1) 8.56ð3Þ × 10−4

6.0 1 0.1344(1) 0.3994(6) 629.8(1) 8.37ð3Þ × 10−4

7.0 1 0.1220(1) 0.6155(8) 737.2(1) 8.04ð3Þ × 10−4

8.0 1 0.1087(1) 0.8592(9) 844.4(1) 7.47ð3Þ × 10−4
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Furthermore the difference between the leading order
perturbative estimate for the tadpole factor u0 and the
Monte Carlo estimate is 1.4%. Thus, the mean field
estimates themselves must be close to the perturbative
estimates for each quantity.
NREFT Lagrangian is an infinite series expansion in v2

which up toOðv4Þ is given in Eq. (4) and Eq. (5). Each term
other than the kinetic term3 [Eq. (4)] comes with effective
couplings and radiative corrections to these coefficients

gives series expansions of αs as 1þ cð1Þi αs þOðα2sÞ for ci
and are expected to be less than 10% since αsðMÞ ∼Oð0.1Þ
for M > 100 GeV. Similarly, the discretization error
due to the finite lattice spacing must be small since the
magnitude of the improvement terms which correct
for the finite lattice spacing effect of the spatial derivative

(αs
a2
P

i
pi

4

12M = p2

M ∼ αs
ðMaÞ2v2

12
) and the temporal derivative

(αs
að
P

i
pi

2Þ2
8kM2 = p2

M ∼ αs
Mav2
8k ) are small.

Estimating effects of the quenched approximation on
the matrix element is difficult. In the bottomonium case,
the comparison of S-wave function at the origin from the
dynamical simulation [14] and that from the quenched
simulation [13] using leading order NRQCD Lagrangian
found that the matrix element from the quenched approxi-
mation underestimates by ∼40% since the distance scale
associated with the bottomonium bound state (∼ 1

Mbv
) is

larger than the scale at which the matrix elements sample
the wave function (∼a ¼ 1

Mb
).

In the lattice calculation of the matrix elements, the
factorization scale is related to the lattice cutoff and the
effective cutoff is affected by the specific form of the lattice
action and the evolution equation of lattice Green’s
functions [27]. Such an effect needs to be studied if we
are interested in the lattice matrix elements beyond the
leading order of nonrelativistic expansion. Also, since the
matrix element in Table II is actually a lattice matrix
element, one needs to calculate perturbative matching
coefficients between the lattice regularization scheme
and a continuum regularization scheme which is used
for the parton level cross section (e.g., MS) to obtain
continuum matrix elements. In this leading order NREFT
Lagrangian study, the matching is not performed. However,
since αs is small, we expect that the renormalization effect
will be small.

IV. SUMMARY

Under the assumption that stop is long-lived enough to
form bound states, stoponium plays an important role in
the study of stop and offers an interesting probe to stop
searches [6,7]. In this case, nonperturbative quantity,

jR1Sð0Þj2=M3
1S where M1S is the mass of 1S state of

stoponium and R1Sð0Þj is the radial part of the wave
function at the origin, naturally appear in the study of
productions and decays of stoponium. Thus far, a potential
model estimate for jR1Sð0Þj2=M3

1S is used in phenomeno-
logical investigations of stoponium, which is unsuitable for
improved perturbative calculations.
In this work, using lattice nonrelativistic formulation for

heavy stop which is interacting through the strong inter-
action, we calculate the mass of S-wave stoponium and
the stoponium matrix element relevant for stop–antistop
annihilation decay, where this matrix element is related to
jR1Sð0Þj2 in NREFT scheme. Compared to potential model
studies, lattice study of stoponium is advantageous in that a
particular functional form of the potential between stop
and antistop needs not be assumed and errors associated
with a lattice calculation can be systematically studied and
improved.
Monte Carlo samples of SUð3Þ color gauge field at

β ¼ 8.751 (a−1 ¼ 50 GeV) on 163 × 256 lattices (which
is generated in quenched approximation with multihit
Metropolis/over-relaxation algorithm) is used for lattice
calculation. Table II and Fig. 3 summarizes the lattice result
for the 1S stoponium mass and the lattice matrix element
for jR1Sð0Þj2=M3

1S with Oðv2Þ NREFT Lagrangian.
In general, the lattice jR1Sð0Þj2=M3

1S is factor 3.5–4
larger than a potential model estimate of [16] for
200 ≤ M1S ≤ 800 GeV. The difference between the lattice
result and the potential model result is larger at lighterM1S
and becomes smaller at heavier M1S. According to this
trend, the lattice result may approach Coulombic behavior
of the wave function at heavier M1S > 1 TeV although up
to ∼800 GeV the lattice result is still far from reaching
Coulombic limit. E1S, the energy of 1S state of stoponium
ranges from ∼6 GeV (Ma ¼ 1) to ∼8 GeV (Ma ¼ 8).
Up to v2 order, toponium is equivalent to stoponium
except the spin degeneracy and the result in Table II is
equally applicable to toponium since the spin-flip term in
NRQCD is Oðv4Þ [11].
Although further studies on systematic effects in our

lattice result is necessary, factor 3.5–4 larger jR1Sð0Þj2=M3
1S

implies an enhanced stoponium production cross section
in hadron colliders such as LHC and can have interes-
ting consequences for stop search in hadron colliders.
Therefore, we hope to study stoponium using SUð3Þ lattice
gauge fields which includes vacuum polarization effect of
light dynamical quark and improve the above result using
Oðv4Þ NREFT Lagrangian in the future. For a next-to-
leading order NREFT Lagrangian study, other matrix
elements which are higher order in v2 is also needed
and the perturbative matching mentioned in the above
needs to be performed. Since excited states of S-wave
stoponium will contribute to the production cross section,
matrix elements for excited states will be also interesting
to study.

3In this case, tuning of the mass can absorb such correction
(reparametrization invariance).
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