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We present spin-independent and spin-spin interquark potentials for the charmonium and charmed-
strange mesons, which are calculated in 2þ 1 flavor lattice QCD simulations using the PACS-CS gauge
configurations generated at the lightest pion mass (Mπ ≈ 156ð7Þ MeV) with a lattice cutoff of a−1 ≈
2.2 GeV and a spatial volume of ð3 fmÞ3. For the charm quark, we use a relativistic heavy quark (RHQ)
action with fine tuned RHQ parameters, which closely reproduce both the experimental spin-averaged mass
and hyperfine splitting of the 1S charmonium. The interquark potential and the quark kinetic mass, both of
which are key ingredients within the potential description of heavy-heavy and heavy-light mesons, are
determined from the equal-time Bethe-Salpeter (BS) amplitude. The charmonium potentials are obtained
from the BS wave function of 1S charmonia (ηc and J=ψ mesons), while the charmed-strange potential are
calculated from the Ds and D�

s heavy-light mesons. We then use resulting potentials and quark masses as
purely theoretical inputs so as to solve the nonrelativistic Schrödinger equation for calculating accessible
energy levels of charmonium and charmed-strange mesons without unknown parameters. The resultant
spectra below the DD̄ and DK thresholds excellently agree with well-established experimental data.
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I. INTRODUCTION

The heavy-quark (Q)-antiquark (Q̄) potential is an
important quantity to understand properties of the heavy
quarkonium states, because the dynamics of heavy quarks
with masses much larger than the QCD scale (ΛQCD) is well
described within the framework of nonrelativistic quantum
mechanics [1]. Indeed the constituent quark potential
models with a QCD-motivated QQ̄ potential have success-
fully predicted the heavy quarkonium spectra and its decay
rates below open charm thresholds [2–4].
In such nonrelativistic potential (NRp) models, the

conventional heavy quarkonium states such as charmonium
and bottomonium are well understood to be a quark-
antiquark pair bound by the Coulombic potential induced
by a perturbative one-gluon exchange that dominates in
short range, plus linearly rising potential that describes the
phenomenology of confining quark interactions at large
distances [2]. This potential is called the Cornell potential
and its functional form is given by

VðrÞ ¼ −
4

3

αs
r
þ σrþ V0 ð1Þ

where αs is the strong coupling constant, σ denotes the string
tension and V0 is the constant term associated with a self-
energy contribution of the color sources. In addition to the

spin-independent potential, the NRp models include spin-
dependent interactions, which resolve the degeneracy among
spin-multiplets. The spin-dependent potentials appear as
relativistic corrections in powers of the relative velocity of
quarks, and their functional forms are also determined by
perturbative one-gluon exchange as the Fermi-Breit type
potential [5]. A more direct connection to QCD is estab-
lished by the modern approach of effective field theory
called potential nonrelativistic QCD (pNRQCD) [6].
We would like to stress here that the functional forms of

the QQ̄ potentials except at long distances are basically
deduced by the perturbative approach. Furthermore all of
the parameters needed in the NRp models, including a
constituent quark mass mQ, are phenomenologically fixed
to reproduce the experimental heavy quarkonium masses
[3,4]. The phenomenological spin-dependent potentials
based on the perturbative method would have validity only
at short distances and also in the vicinity of the heavy quark
mass limit. This fact could cause large uncertainties in
predictions for the higher-lying states of the heavy quar-
konium in the NRp models.
In addition, many of the charmonium-like mesons have

been announced by B-factories at KEK and SLAC, which
are primarily devoted to the physics of CP violation, also
by Charm factories at BEPC and CESR, and Tevatron at
Fermilab. These newly discovered state above the open
charm threshold could not be simply explained as conven-
tional charmonium states in the constituent quark descrip-
tion [7]. Indeed, the existence of the charged Z states
including two charged bottomonium-like states, Zbð10610Þ
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and Zbð10650Þ [8] indicates that the charmonium-like XYZ
mesons are good candidates for nonstandard quarkonium
mesons such as hadronic molecular states, diquark-
antidiquark bound states (tetraquark states), or hybrid
mesons [9].
To discriminate between standard and nonstandard

mesons in a zoo of the charmonium-like XYZ mesons, it
is essential to investigate the validity of the potential
description of the heavy-heavy and heavy-light mesons
directly from the first principles of QCD. In this paper, we
thus aim to provide the central QQ̄ potentials (the spin-
independent potential and the spin-spin potential), which
are determined through the Bethe-Salpeter (BS) amplitudes
of pseudoscalar and vector mesons in dynamical lattice
QCD simulations with almost physical quark masses.
In lattice QCD, understanding the properties of QQ̄

interactions is one of the great historic milestones. The
Wilson loop has been originally introduced as a nonlocal
order parameter in Z2 gauge theory by Wegner [10].
Subsequently, Wilson generalized it with continuous gauge
groups and related it to the static potential between infinitely
heavy-quark and antiquark in QCD so as to prove the quark
confinement in the strong coupling limit [11]. The staticQQ̄
potential determined from Wilson loops have been precisely
determined by lattice QCD in the past decades. The lattice
QCD calculations within the Wilson loop formalism support
a shape of the Cornell potential [12].
On the other hand, the spin-dependent QQ̄ potentials

regarded as the relativistic corrections to the static potential
can be determined within the framework of pNRQCD.
Although earlier quenched studies [13,14] and full QCD
studies [15,16] did not enable us to determine the func-
tional forms of the spin-dependent terms due to large
statistical errors, a full set of the spin-dependent terms (i.e.,
spin-spin, spin-orbit and tensor terms) have been success-
fully calculated in quenched QCD with high accuracy by
using the multilevel algorithm [17,18].
It is worth mentioning that the multilevel algorithm

employed in Refs. [17,18] is not easy to be implemented
in dynamical lattice QCD simulations. Furthermore, the
leading spin-spin potential determined at Oð1=m2

QÞ in
quenched QCD gives an attractive interaction for the higher
spin states in the hyperfine multiplet [17,18]. This contra-
dicts with the spin-spin term of the Fermi-Breit type
potential, which is described by a repulsive contact
interaction. Although one might think that the inverse of
the charm quark mass would be far outside the validity
region of the 1=mQ expansion, this issue still remains even
at the bottom quark mass.
We develop the new method proposed in our previous

works [19–21] in order to obtain proper interquark
potentials at finite quark masses, which are indispensable
for the potential description of the charmonium and
charmed-strange mesons. The interquark potential and
the quark kinetic mass, both of which are key ingredients

within the potential description, can be defined by the
equal-time and Coulomb gauge BS amplitude through an
effective Schrödinger equation [19]. This new method
enables us to determine the interquark potentials including
spin-dependent terms at finite quark masses from first
principles of QCD, and then fix all parameters needed in
the NRp models. In our previous works with quenched
lattice simulations [19,21], we demonstrated that both spin-
independent central potential and spin-spin potential cal-
culated in the BS amplitude method reproduce known
results calculated within the Wilson loop formalism in the
mQ → ∞ limit. We read off from our QQ̄ potentials, which
may encode all orders of the 1=mQ expansion, that the 1=mQ
expansion scheme may have the convergence behavior up
to the bottom sector, while the charm sector is far outside
the validity region for this expansion [21]. Furthermore, we
found that the higher order corrections beyond the next-to-
leading order are inevitably required for the repulsive feature
of the total spin-spin potential even at the bottom sector [21].
In addition, there is no restriction to extend the new method
to dynamical calculation [20]. Hereafter we call the new
method as the BS amplitude method.
Once one gets the reliable QQ̄ potentials, which contain

both the spin-dependent contributions as well as the spin-
independent central one, we can easily verify how well the
potential description is satisfied in the heavy-heavy and
heavy-light meson systems through solving the nonrela-
tivistic Schrödinger equation with purely theoretical inputs.
If the potential description is valid, many physical observ-
ables such as mass spectrum of heavy-heavy and heavy-
light mesons and their decay rates are easily accessible as is
in the NRp models.
In this paper, we extend our previous work [20] done in

2þ 1 flavor lattice QCD simulations using the PACS-CS
gauge configurations [22] in order to investigate the validity
of the potential description of the heavy-heavy and heavy-
light mesons. The simulated pion mass [Mπ ≈ 156ð7Þ MeV]
is close to the physical point, while the simulated K meson
mass as MK ≈ 554ð2Þ MeV is about 10% heavier than the
physical value. Although the strange quark is slightly off
the physical point, the parameters of clover fermions for the
strange quark are chosen to be equal to those of the strange
sea quarks used in gauge field generation. For the charm
quark, we employ the relativistic heavy quark (RHQ) action
that can control large discretization errors induced by large
quark mass [23]. The RHQ parameters in the action were
calibrated to reproduce the experimental spin-averaged mass
and hyperfine splitting of the 1S charmonium.
We first concentrate on the heavy-heavy systems so as to

calculate the charm quark mass and the charmonium
potential from the BS amplitudes of 1S charmonia (ηc
and J=ψ mesons). We reuse the data, which were pre-
viously published in Ref. [20], and then perform a more
elaborate analysis proposed in Ref. [21]. New analysis
significantly reduces systematic uncertainties on the shape
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of the charmonium potential at short distances due to the
usage of the highly improved Laplacian operator.1 Once the
charmonium potential and the charm quark mass are
precisely determined, we can numerically solve the non-
relativistic Schrödinger equation with such theoretical
inputs and without additional parameters.
We then extend our research to theDs heavy-light meson

systems to extract the strange quark mass and the charmed-
strange potential from the BS amplitudes of two lightest
charmed-strange mesons (i.e., the Ds and D�

s heavy-light
mesons). We will then discuss the validity of the potential
description on both charmonium and charmed-strange
mesons.
This paper is organized as follows. In Sec. II, we briefly

describe the methodology to calculate the spin-independent
and spin-dependent interquark potentials from the BS
amplitude of heavy-heavy and heavy-light mesons in lattice
QCD simulations. In Sec. III we give the details of
parameters used in our Monte Carlo simulations, and then
discuss the charmonium mass obtained from the standard
lattice spectroscopy with two point correlation functions
of mesons. In Sec. IV, we show numerical results of the
BS wave function, the quark kinetic mass mQ, the spin-
independent central and spin-spin potentials, calculated
from dynamical lattice QCD simulations. In Sec. V, we
show the charmonium mass spectrum obtained by solving
the nonrelativistic Schrödinger equation with the theoreti-
cal inputs determined from dynamical lattice QCD simu-
lations at almost physical point, and finally discuss possible
systematic uncertainties on the resulting energy spectrum
of the charmonium states. In Sec. VI, we present the results
from an application to the Ds heavy-light meson systems.
In Sec. VII, we summarize and discuss all results and future
perspectives.

II. FORMALISM

In this section, we will briefly review the BS amplitude
method to calculate the interquark potential with the finite
quark mass. This is an application based on the approach
originally used for the hadron-hadron potential, which is
defined through the equal-time BS amplitude [24–33].
More details of determination of the interquark potential
are given in Ref. [21].
For simplicity, we here consider the case of the heavy

quarkonium QQ̄. An extension to the heavy-light meson
made of two nondegenerate quarks is easy. In lattice
simulations, we measure the following equal-time QQ̄
BS amplitude in the Coulomb gauge for the quarkonium
states [34,35]:

ϕΓðrÞ ¼
X
x

h0jQ̄ðxÞΓQðxþ rÞjQQ̄; JPCi; ð2Þ

where r is the relative coordinate between quark and
antiquark at a certain time slice t. The operator Γ appeared
in Eq. (2) represents the Dirac γ metrics, which specifies
the spin and the parity of meson operators. For instance,
with γ5 and γi, one can form the pseudoscalar (PS) and the
vector (V) operators with JP ¼ 0− and JP ¼ 1−, respec-
tively. A summation over spatial coordinates x projects
out corresponding states with zero total momentum. The
r-dependent amplitude, ϕΓðrÞ, is called BS wave function.
The BS wave function can be extracted from the four-
point correlation function

GΓðr; t; tsÞ ¼
X
x;x0;y0

h0jQ̄ðx; tÞΓQðxþ r; tÞ

× ðQ̄ðx0; tsÞΓQðy0; tsÞÞ†j0i ð3Þ

at large time separation between the source (tS) and sink
(t) locations (jt − tSj=a ≫ 1) [21]. Here, the gauge field
configurations are necessarily fixed to the Coulomb
gauge at both time slices t and tS. In the limit of
r → 0, the four-point correlation functions are reduced
to the two-point correlation functions of mesons with a
wall source. In this paper, we focus only on the S-wave
BS wave function (ηc and J=ψ for the charmonium and
Ds and D�

s for the charmed-strange meson), obtained by
an appropriate projection to the Aþ

1 representation in
cubic group [36].
Below the inelastic threshold,2 the BS wave function

satisfies an effective Schrödinger equation with a nonlocal
and energy-independent interquark potential U [24,37,38]

−
∇2

2μ
ϕΓðrÞ þ

Z
dr0Uðr; r0ÞϕΓðr0Þ ¼ EΓϕΓðrÞ; ð4Þ

where μ is the reduced mass of the QQ̄ system. The energy
eigenvalue EΓ of the stationary Schrödinger equation is
supposed to be MΓ − 2mQ. If the relative quark velocity
v ¼ j∇=mQj is small as v ≪ 1, the nonlocal potentialU can
generally expand in terms of the velocity v as Uðr0; rÞ ¼
fVðrÞ þVSðrÞSQ · SQ̄ þVTðrÞS12 þVLSðrÞL · SþOðv2Þg
δðr0 − rÞ where S12 ¼ ðSQ · r̂ÞðSQ̄ · r̂Þ − SQ · SQ̄=3 with
r̂ ¼ r=r, S ¼ SQ þ SQ̄ and L ¼ r × ð−i∇Þ [24]. Here, V,
VS, VT and VLS represent the spin-independent central,
spin-spin, tensor and spin-orbit potentials, respectively.
The Schrödinger equation for S-wave states is sim-

plified as

�
−
∇2

mQ
þVðrÞþSQ ·SQ̄VSðrÞ

�
ϕΓðrÞ¼EΓϕΓðrÞ ð5Þ

1Note that the binding energy of the low-lying charmonium
states, which we may consider to be nearly Coulombic bound
states, are very sensitive to details of the short-range interaction.

2For the charmonium system, the inelastic threshold implies
the DD̄ threshold, while the DK threshold is a counterpart in the
charmed-strange meson system.
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at the leading order of the v-expansion. Here, we
essentially follow the NRp models, where the J=ψ state
is purely composed of the 1S wave function. However,
within this method, this assumption can be verified by
evaluating the size of a mixing between 1S and 1D wave
functions in principle.
The spin operator SQ · SQ̄ can be easily replaced by its

expectation values: −3=4 and 1=4 for the PS and V
channels, respectively. Then, the spin-independent and
spin-spin QQ̄ potentials can be evaluated through the
following linear combinations of Eq. (5):

VðrÞ ¼ Eave þ
1

mQ

�
3

4

∇2ϕVðrÞ
ϕVðrÞ

þ 1

4

∇2ϕPSðrÞ
ϕPSðrÞ

�
ð6Þ

VSðrÞ ¼ Ehyp þ
1

mQ

�
∇2ϕVðrÞ
ϕVðrÞ

−
∇2ϕPSðrÞ
ϕPSðrÞ

�
; ð7Þ

where Eave ¼Mave−2mQ and Ehyp¼MV−MPS. The mass
Mave denotes the spin-averaged mass as 1

4
MPS þ 3

4
MV.

The derivative ∇2 is defined by the discrete Laplacian on
the lattice.
In the BS amplitude method, there is a room for

optimizing the differential operator since the discrete
Laplacian is itself build in the definition of the interquark
potential. In Ref. [21], we showed that the discrete
Laplacian operator defined in the discrete polar coordi-
nates called r-Laplacian is more suitable than the naive
one defined in the Cartesian coordinates from the view-
point of the reduction of the discretization artifacts on
the short-range behavior of the interquark potential. The
latter was adopted in our earlier works [19,20], while
we use the r-Laplacian throughout this paper. For details
of the discrete Laplacian operators, we will explain
in Sec. IV.
The quark kinetic mass is also an important quantity in

the determination of the interquark potentials since Eq. (6)
and Eq. (7) requires information of the quark kinetic mass
mQ. In Ref. [19], we propose to calculate the quark kinetic
mass through the large-distance behavior of the difference
of “quantum kinetic energies” (the second derivative of the
BS wave function normalized by the BS wave function)
between the spin-singlet and -triplet states in the hyperfine

multiplet. The most simple choice is of course a pair of 1S0
and 3S1 states. Contributions of the long-range confining
force are canceled out in the difference of “quantum kinetic
energies”. Under a simple, but reasonable assumption as
limr→∞VSðrÞ ¼ 0 which implies there is no long-range
correlation and no irrelevant constant term in the spin-spin
potential, one may expect that the difference of “quantum
kinetic energies” at long distances stems only from the
hyperfine splitting energy Ehyp. Therefore, the quark kinetic
mass can be read off in the following way:

mQ ¼ lim
r→∞

−1
Ehyp

�
∇2ϕVðrÞ
ϕVðrÞ

−
∇2ϕPSðrÞ
ϕPSðrÞ

�
: ð8Þ

The idea has been numerically tested, and the assumption
of limr→∞VSðrÞ ¼ 0 is indeed appropriate in QCD [19].
We thus estimate the quark kinetic mass from asymptotic
behavior of the right-hand side of Eq. (8) in the long-
distance region.

III. LATTICE SETUP AND HEAVY
QUARKONIUM MASS

A. 2þ 1 flavor PACS-CS dynamical
gauge ensemble

The computation of the interquark potential for the
charmonium (cc̄) and charmed-strange (cs̄) system is
carried out on a lattice N3

s × Nt ¼ 323 × 64 using the
2þ 1 flavor PACS-CS gauge configurations [22].
The gauge fields are generated by nonperturbatively
OðaÞ-improved Wilson quark action with cSW ¼ 1.715
[39] and Iwasaki gauge action at β ¼ 1.90 [40], which
corresponds to a lattice cutoff of a−1 ¼ 2.176ð31Þ GeV
(a ¼ 0.0907ð13Þ fm) [22]. The spatial lattice size is
of about Nsa ∼ 3 fm. The hopping parameters for the
light sea quarks fκud; κsg ¼ f0.13781; 0.13640g give a
pion mass of Mπ ¼ 156ð7Þ MeV and a kaon mass of
MK ¼ 554ð2Þ MeV [22]. Simulation parameters of
dynamical QCD simulations used in this work is sum-
marized in Table I. Although the light sea quark masses
are slightly off the physical point, the systematic uncertainty
due to this fact could be extremely small in this project. Our
results are analyzed on all 198 gauge configurations, which
are available through International Lattice Data Grid and

TABLE I. Parameters of 2þ 1-flavor dynamical QCD gauge field configurations generated by the PACS-CS
collaboration [22]. The columns list number of flavors, lattice volume, the β value, hopping parameters for light and
strange quarks, approximate lattice spacing (lattice cutoff), spatial physical volume, pion mass, and number of
configurations to be analyzed.

Nf N3
s × Nt β κud κs a [fm] (a−1 [GeV]) Nsa [fm] Mπ [MeV] # configs

2þ 1 323 × 64 1.9 0.13781 0.13640 0.0907(13) (≈2.18) 2.90(4) ≈156 198
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Japan Lattice Data Grid.3 Gauge configurations is fixed to
the Coulomb gauge.

B. Relativistic charm quark

In order to control discretization errors induced by large
charm quark mass, we employ the relativistic heavy quark
(RHQ) action [23] that removes main errors of OðjpjaÞ,
Oððm0aÞnÞ and Oðjpjaðm0aÞnÞ from the on-shell Green’s
function. The RHQ action is the anisotropic version of the
OðaÞ improvedWilson action with five parameters κc, ν, rs,
cB and cE, called RHQ parameters (for more details see
Ref. [23,41]):

SRHQ ¼
X
x

Q̄ðxÞðm0aþ γ0D0 þ νγ · D −
rt
2
aðD0Þ2

−
rs
2
aðDÞ2 þ

X
i;j

i
4
cBaσijFij

þ
X
i

i
2
cEaσ0iF0iÞQðxÞ ð9Þ

where the Wilson parameter for the time derivative is set to
be rt ¼ 1 and the bare quark mass is related to the hopping
parameter κc as am0 ¼ 1

2κc
− rt − 3rs. The RHQ action

utilized here is a variant of the Fermilab approach [42] (See
also Ref. [43]).
The parameters rs, cB and cE in RHQ action are

determined by tadpole improved one-loop perturbation
theory [41]. For ν, we use a nonperturbatively determined
value, which is tuned by reproducing the effective speed of
light ceff to be unity in the dispersion relation E2ðp2Þ ¼
M2 þ c2effp

2 for the spin-averaged 1S-charmonium state,
since the parameter ν is sensitive to the size of hyperfine
splitting energy [44]. We choose the value of κc to reproduce
the experimental spin-averaged mass of 1S-charmonium
states Mexp

aveð1SÞ ¼ 3.0678ð3Þ GeV. To calibrate RHQ
parameters, we employ a gauge invariant Gauss smearing
source for the standard two-point correlation function with
four finite momenta. As a result, the relevant speed of light in
a energy-momentum dispersion relation E2 ¼ M2 þ c2effp

2

is consistent with unity within statistical uncertainties:
c2eff ¼ 1.04ð5Þ for the spin-averaged state [20]. Our chosen
RHQ parameters are summarized in Table II.
Using tuned RHQ parameters, we compute the two

valence quark propagators with wall sources located at
different time slices ts=a ¼ 6 and 57 to increase statistics.

Two sets of two- and four-point correlation functions are
constructed from the corresponding Γ operator with the
charm quark propagator, and folded together to create the
single correlation function. Dirichlet boundary conditions
are imposed for the time direction at t=a ¼ 0 and 63 to
eliminate unwanted contributions across time boundaries.

C. Charmonium spectroscopy from
two-point functions

Figure 1 shows the effective mass of the S-wave (η and
J=ψ ) and P-wave (χc0, χc1 and hc) charmonium states

TABLE II. The hopping parameter κQ and RHQ parameters
(ν, rs, cB and cE) used for the charm quark.

κc ν rs cB cE

0.10819 1.2153 1.2131 2.0268 1.7911

FIG. 1 (color online). Effective mass plots for ηc (upper panel),
J=ψ (center panel) and 1P charmonium states (χc0, χc1 and hc)
(lower panel). Charmonium states are specified in the legend.
Solid lines indicate fit results and shaded bands display the fitting
ranges and one standard deviations estimated by the jackknife
method.

3International Lattice Data Grid/Japan Lattice Data Grid,
http://www.jldg.org.
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calculated from the dynamical lattice QCD simulation.
These five charmonium states are classified with quantum
numbers JPC and corresponding operators Γ as shown in
Table III. A effective mass is defined as

MΓðtÞ ¼ log
GΓðt; tsÞ

GΓðtþ 1; tsÞ
; ð10Þ

where GΓðt; tsÞ is the two-point function obtained by
setting r to be zero in the four-point function GΓðr; t; tsÞ
defined in Eq. (3). Each effective mass plot shows a
reasonable plateau in the range 33 ≤ t=a ≤ 47 for S-wave
charmonium states and 14 ≤ t=a ≤ 26 for P-wave char-
monium states. We estimate masses of the five charmonium
states by a constant fit to the plateau over time ranges
shown in Table III. A correlation among effective masses
measured at various time slices is taken into account by
using a covariance matrix in the fit. An inversion of the
covariance matrix is performed once for average and it is
used for each jackknife block. The statistical uncertainties
indicated by shaded bands in Fig. 1 are estimated by the
jackknife method. In Table II, we summarize resultant
charmonium masses together with fit ranges used in the fits
and values of χ2 per degrees of freedom (d.o.f.). Note that
all masses calculated in this study are obtained from the
Coulomb-gauge wall source propagator, while gauge-
invariant Gaussian smeared source was used for results
of charmonium masses compiled in Table I of Ref. [19].
Low-lying charmoniummasses calculated below theDD̄

threshold are all close to the experimental values, though
the hyperfine mass splitting Mhyp ¼ 0.1124ð9Þ GeV is
slightly smaller than the experimental value, Mexp

hyp ¼
0.1166ð12Þ GeV [45]. The similar value of the hyperfine
mass splitting is reported even on the exact physical point
in Refs. [44,46]. Note that here we simply neglect the
disconnected diagrams in all two-point correlation func-
tions. The several numerical studies reported that the
contributions of charm annihilation to the hyperfine split-
ting of the 1S-charmonium state is sufficiently small, which

is of order 1–4 MeV. [47–49]. At the charm sector, the
effect of the disconnected diagrams on the charmonium,
especially on the vector state, is perturbatively expected to
be small due to Okubo-Zweig-Iizuka suppression.

IV. DETERMINATION OF INTERQUARK
POTENTIAL

A. QQ̄ BS wave function

We calculate the BS wave functions only for S-wave
states (ηc and J=ψ). This is simply because the Coulomb-
gauge wall source4 adopted in this study is not suitable for
studying the wave function of P-wave states, whose spatial
part is odd under spatial reflection.
Figure 2 shows the QQ̄ BS wave functions of

1S-charmonium states (ηc and J=ψ states). The BS wave
functions are defined by Eq. (2) with a normalization
condition of

P
ϕ2
Γ ¼ 1. We use the reduced wave function

uΓðrÞ for displaying the wave function: uΓðrÞ ¼ rϕΓðrÞ.
We practically take a time-average of the BS wave function
at fixed r over the range 33 ≤ t=a ≤ 47, where effective
mass plots for 1S-charmonium states show excellent
plateaus and excited state contaminations should be neg-
ligible. To resolve the strong correlations between data of
the BS wave function at different time slices, we take into
account the covariance matrix during the averaging process
over the time slice.
We find that a breaking of rotational symmetry for the

QQ̄ BS wave functions is sufficiently small in our
calculation. The resulting wave functions become isotropic
with the help of a projection to the Aþ

1 sector of the cubic
group that corresponds to the S-wave in the continuum
theory (Fig. 2). All data points of the QQ̄ BS wave
functions calculated in the three different directions fall
onto a single curve.
The spatial lattice extent Nsa ≈ 2.9 fm is sufficiently

large enough to study the 1S-charmonium system. Indeed,
the BS wave functions shown in Fig. 2 are localized around
the origin and vanished at r≳ 1.1 fm. It suggests that the
QQ̄ BS wave functions for the ηc and J=ψ states fit into the
box N3

s fair enough. Needless to say, the localized wave
functions is interpreted as a sign of bound states. This fact
however reminds us that the interquark potential can be
deduced within the interior of the hadron due to its localized
wave function. This is simply because the signal-to-noise
ratio in the calculation of ∇2ϕ=ϕ of Eq. (6)–(8) is getting
worse outside the spatial size of the hadron.
Other important information can be read off from

Fig. 2. The spatial size of the J=ψ state is slightly larger
than that of the ηc state. This indicates that there is a

TABLE III. Masses of low-lying charmonium states calculated
from two-point functions, the spin-averaged mass and hyperfine
splitting energy of 1S charmonium states. Five charmonium
states are classified with quantum numbers JPC and correspond-
ing operators Γ. The fitting ranges and values of χ2=d:o:f: are also
included. Results are given in units of GeV.

state (JPC) Γ fit range mass [GeV] χ2=d:o:f:

ηc (0−þ) γ5 [33∶47] 2.9851(5) 0.70
J=ψ (1−þ) γi [33∶47] 3.0985(11) 0.62
Maveð1SÞ � � � � � � � � � 3.0701(9) � � �
Ehypð1SÞ � � � � � � � � � 0.1138(8) � � �
χc0 (0þþ) 1 [14∶26] 3.3928(59) 0.66
χc1 (1þþ) γ5γi [14∶26] 3.4845(62) 1.03
hc (1þ−) γiγj [14∶26] 3.5059(62) 0.63

4Clearly, the spatial part of the meson operator constructed
from a local quark bilinear operator with the wall source, where
the quark operator is summed over all spatial sites at given time
slice, belongs to the trivial Aþ

1 irreducible representation of the
cubic group. The plus sign in superscript indicates even parity.
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repulsive spin-spin interaction near the origin for the higher
spin states. It is consistent with the pattern of level ordering
for the hyperfine multiplet. The spin-spin charmonium
potential will be discussed in more detail later.

B. Quark kinetic mass

In our formalism, the kinetic mass of the charm quark is
determined self-consistently within the BS amplitude
method as well [19]. According to Eq. (8), the quark
kinetic mass can be evaluated from an asymptotic behavior
of the quantity −ð∇2ϕV=ϕV − ∇2ϕPS=ϕPSÞ=Ehyp at long
distances. For the discrete Laplacian operator ∇2, we use r-
Laplacian, which is defined in polar coordinates as follows:

∇2ϕΓðrÞ ¼
2

r
ϕΓðrþ ~aÞ − ϕΓðr − ~aÞ

2~a

þ ϕΓðrþ ~aÞ þ ϕΓðr − ~aÞ − 2ϕΓðrÞ
~a2

ð11Þ

where r is the absolute value of the relative distance as
r ¼ jrj, and ~a is a spacing between grid points along
differentiate directions. In the on-axis direction r ∝ ð1; 0; 0Þ
(labeled by “on-axis”), two off-axis directions r ∝ ð1; 1; 0Þ
(labeled by “off-axis I”) and r ∝ ð1; 1; 1Þ (labeled by
“off-axis II”), the effective grid spacings correspond to
~a ¼ a,

ffiffiffi
2

p
a and

ffiffiffi
3

p
a, respectively. The difference of ratios

∇2ϕΓ=ϕΓ at each r are obtained by a constant fits to the
lattice data with reasonable χ2=d:o:f: values over the range
of time slices where two-point functions exhibit the plateau
behavior (33 ≤ t=a ≤ 47).
Figure 3 illustrates the determination of quark kinetic

mass mQ for the charmonium system. The value of mQ can
be determined from an asymptotic value of −ð∇2ϕV=ϕV −
∇2ϕPS=ϕPSÞ=Ehyp in the range of 6 ≤ r=a ≤ 7

ffiffiffi
3

p
(0.54 fm≲ r≲ 1.10 fm), where VSðrÞ should vanish. In
this study, three data sets are obtained from three directions:
on-axis, off-axis I and off-axis II, are separately analyzed so

as to expose the size of the possible lattice discretization
artifacts. On each data set, a value of mQ is obtained by a
constant fit to a long-distance asymptotic value over the
range as described above. Finally we average them over
three directions, and then obtain mQ ¼ 1.784ð23Þ
ð6Þð20Þ GeV. The first error is statistical, given by the
jackknife analysis. In the second error, we quote a
systematic uncertainty due to rotational symmetry breaking
by taking the largest difference between average value and
individual ones obtained for specific directions. The third
ones are systematic uncertainties stemming from choice of
tmin in the averaging process over the time-slice range
tmin=a ≤ t=a ≤ 47. The minimum time-slice tmin=a is
varied over range from 33 to 41 and then take a largest
difference from the preferred determination of mQ.
The charm quark mass obtained in this study is somewhat

heavier than the usual quark kinetic mass in the NRpmodels.
For example, the quark kinetic mass adopted in Ref. [4] is
about 17% smaller. This difference however should not be
taken seriously, because the value of mQ in the NRp models
highly depends on a constant term V0 of the Cornell
potential, and V0 is actually forced to be zero in many of
the NRp models. In addition, the spatial profile of the spin-
spin potential from lattice QCD is slightly different from the
one used in the NRp models as we will discuss later.

C. Spin-independent interquark potential

Once the quark kinetic mass is determined, we can
calculate the central spin-independent and spin-spin char-
monium potentials from the QQ̄ BS wave function through
Eq. (6) and Eq. (7). First, we show a result of the spin-
independent charmonium potential VðrÞ in the upper panel
of Fig. 4. The constant energy shift Eave is not subtracted in

FIG. 3 (color online). The determination of quark kinetic mass
within the BS amplitude method. The values of −ð∇2ϕV=ϕV −
∇2ϕPS=ϕPSÞ=Ehyp as a function of the spatial distance r are
shown in this figure. The quark kinetic mass mQ is obtained from
the long-distance asymptotic values of −ð∇2ϕV=ϕV − ∇2ϕPS=
ϕPSÞ=Ehyp. Horizontal solid line indicates a value of quark kinetic
mass obtained by fitting a asymptotic constant in the range
0.54 fm ≲ r ≲ 1.10 fm. A shaded band indicates a statistical
error estimated by the jackknife method.

FIG. 2 (color online). The reduced QQ̄ BS wave functions of
the ηc (circles) and J=ψ (squares) states, shown as a function of
the spatial distance r. The data points are taken along r vectors
which are multiples of three directions (1, 0, 0), (1, 1, 0) and
(1, 1, 1).
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this figure. As we reported in Ref. [20], the charmonium
potential calculated by the BS amplitude method from
dynamical lattice QCD simulations properly exhibits the
linearly rising potential at large distances and the Coulomb-
like potential at short distances. At first glance, the data
points of the charmonium potential obtained from lattice
QCD roughly follow the phenomenological potential used
in the NRp models, which is represented by the dashed
curve. Nevertheless, the data points at short distances are
slightly off the dashed curve. In addition, a string breaking-
like behavior is found in the range r≲ 1.1 fm, where the

charmonium potential reaches the level of open-charm
threshold. We will discuss this point later, and for a while
we concentrate only on data points in the range r≲ 1.1 fm,
where the linearly rising potential is clearly visible.
For closer comparison, as a first step, we simply adopt

the Cornell parametrization to fit the data of the spin-
independent central potential:

VðrÞ ¼ −
A
r
þ σrþ V0 ð12Þ

with the Coulombic coefficient A, the string tension σ, and
a constant V0. All fits are performed individually for each
three directions over the range ½rmin=a∶rmax=a� ¼ ½4∶7 ffiffiffi

3
p �,

where rmax ≈ 1.1 fm. We minimize the χ2=d:o:f: with the
covariance matrix and get the Cornell parameters of the
charmonium potential as A ¼ 0.713ð26Þð38Þð31Þð62Þ andffiffiffi
σ

p ¼ 0.402ð6Þð4Þð9Þð9Þ MeV with χ2=d:o:f: ≈ 3.2. The
first error is statistical, and the second, third and fourth ones
are systematic uncertainties due to the choice of data points
taken from three directions, and variations of tmin and rmin,
respectively.
The resulting Cornell parameters are summarized in

Table IV. We also include both phenomenological ones
adopted in a NRp model [4] and ones of the static potential
obtained from Polyakov-line correlators. The latter is
estimated using the same method as in Ref. [22].
Additionally, we calculate the Sommer parameter defined
as r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1.65 − AÞ=σp
, and then obtain the value of

r0 ¼ 0.476ð6Þð11Þð3Þð6Þ fm, which is fairly consistent
with the value quoted in Ref. [22].
From our previous research in quenched QCD [21], the

finite mQ corrections could be encoded into the Cornell
parameters. Indeed, as shown in Table IV, in the charmo-
nium potential from the BS wave function, a Coulomb-like
behavior is enhanced and the linearly rising force is slightly
reduced due to finite charm quark mass effects in com-
parison to the conventional static potential from Wilson
loops or Polyakov-line correlators. Furthermore, a gap for
the Cornell parameters between the static and the phenom-
enological potentials seems to be close by our new
approach, which nonperturbatively accounts for a finite
quark mass effect.

FIG. 4 (color online). Central spin-independent and spin-spin
charmonium potentials calculated from the BS wave functions in
the dynamical QCD simulation with almost physical quark
masses. In the upper panel, we show the spin-independent
potential VðrÞ. A solid (dot-dashed) curve is the fit results with
the Cornell (Cornell plus log) form. The shaded bands show
statistical uncertainties in the fitting procedure where the jack-
knife method is used. Note that the spin-averaged mass of 1S-
charmonium states Eave is not subtracted in this figure. A
horizontal line indicates the level of open-charm (D0D̄0) thresh-
old ≈3729 MeV. In the lower panel, we show the spin-spin
potential VSðrÞ. A solid (dot-dashed) curve corresponds to fitting
results with exponential (Yukawa) form. The inset shows a
magnified view. In both panels, the phenomenological potentials
adopted in a NRp model [4] are also included as dashed curves
for comparison.

TABLE IV. Summary of the Cornell parameters and the quark
mass determined by the BS amplitude method. For comparison,
ones adopted in a phenomenological NRp model [4] and ones of
the static potential obtained from Polyakov line correlations are
also included. In the first column, the quoted errors indicate the
sum of the statistical and systematic added in quadrature.

This work Polyakov lines NRp model [4]

A 0.713(83) 0.476(81) 0.7281ffiffiffi
σ

p
[GeV] 0.402(15) 0.448(16) 0.3775

mQ [GeV] 1.784(31) ∞ 1.4794
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Here, we give a few technical remarks on the systematic
uncertainties on the Coulombic coefficient A, which highly
depends on the choice of minimum value rmin of the fitting
window compared to the string tension σ. This is simply
because the linear part in the Cornell potential parametri-
zation is dominated in the region in which we have data
points. Indeed, as shown in the upper panel of Fig. 4, a solid
curve, which corresponds to fitting results with the Cornell
potential form, does not describe well data points outside
the range ½rmin∶rmax� used in the fit.
In order to provide an adequate fit to the data points at

shorter distances, we employed several alternative fitting
forms. We found that a simple extension of the Cornell
potential can describe the behavior of our charmonium
potential reasonably well. An alternative fitting form is
given such that a log term is added to the Cornell potential:

VðrÞ ¼ −
A
r
þ σrþ V0 þ B logðrΛÞ ð13Þ

where the value of Λ is simply set to be lattice cutoff a−1.
Such a logarithmic r-dependence may appear in the leading
1=mQ correction to the static potential as reported in
Ref. [50]. Moreover, as reported in Ref. [51], the charmo-
nium potential obtained from the BS amplitude is con-
sistent with the QQ̄ potential obtained in the Wilson-loop
approach within errors, when a leading 1=mQ correction
calculated in Ref. [52] is added to the static potential from
Wilson loops.
A fit with the “Cornell-plus-log” form (13) leads to the

values of A ¼ 0.194ð137Þð33Þð36Þð66Þ, ffiffiffi
σ

p ¼ 0.300ð38Þ
ð19Þð20Þð21Þ GeV and B¼ 0.390ð113Þð20Þð39Þð61ÞGeV
with the slightly smaller value of χ2=d:o:f: ≈ 2.3. We here
chose the fitting range to be ½rmin=a∶rmax=a� ¼ ½3∶7 ffiffiffi

3
p �

and used a covariance matrix for taking into account the
correlation among data points in the fit. The quoted errors
have the same meaning as described above.
We also plot the fit result with the Cornell-plus-log form,

which is represented by a dot-dashed curve, in the upper
panel of Fig. 4. The shaded band displays one standard
deviation estimated by the jackknife method. The short-
distance behavior of the charmonium potential is better
described by the Cornell-plus-log form than the Cornell
form (solid curve). If compared with the phenomenological
potential of the NR models, the shape of the fitted curve of
the Cornell-plus-log form at long-distances are much in
agreement with the NR models though the string tension σ
becomes a slightly smaller value compared with the
phenomenological one. In this context, the inclusion of
the log term into the Cornell form gives only a minor
modification at long-distances as far as the data is acces-
sible in this study.
Finally, we would like to comment on the string break-

ing-like behavior appeared in the range r≳ 1.1 fm.
Although in principle, string breaking due to the presence
of dynamical quarks is likely to be observed, the observed

feature in this study is suspicious and unreliable. As
mentioned previously, the signal-to-noise ratio on the
quantity of ∇2ϕΓ=ϕΓ becomes worse rapidly as the spatial
distance r increases because of the localized nature of the
BS wave function ϕΓðrÞ. Moreover, the lattice data of
the potential near the spatial boundaries are also sensitive to
the possible distortion of its spatial profile as finite volume
effects. Therefore, at least, calculations of the higher
charmonium near the open charm threshold using a larger
lattice is necessary for observing the string breaking in this
sense. Their wave functions are extended until the string
breaking sets in.
We also emphasis that there might be another possible

reason for no evidence of string breaking from a view point
of studies within the Wilson loop approach [53–56]. The
string breaking in the static heavy quark potential can be
observed only after inserting a operator of light quark-
antiquark to create the heavy-light meson-antimeson state
ðQq̄ÞðqQ̄Þ, because the QQ̄ creation operator poorly over-
laps with jðQq̄ÞðqQ̄Þi state in Fock space [57–59] (See also
Ref. [60] in the case of nonzero temperature). It is worth
reminding that the static potential from Wilson loops is
regarded as the “energy eigenvalue” of the considering
states. There would be nothing to change for the charmo-
nium potential extracted from the “stationary” wave func-
tion of the charmonium state, which is well defined in the
BS amplitude method unless its energy level is above the
open-charm threshold.

D. Spin-spin potential

The lower panel in Fig. 4 shows the spin-spin charmo-
nium potential obtained from the BS amplitude method
with almost physical quark masses. The spin-spin potential
exhibits the short-range repulsive interaction, which is
required to lead to energy gain for the higher spin state.
Recall that the Wilson loop approach currently dose not
achieve to reproduce the correct behavior of the spin-spin
interaction. The leading-order spin-spin potential classified
in pNRQCD becomes attractive at short distances [17,18].
Their calculation at next-to-leading order is unavailable at
present. In contrast of the case of the spin-independent
potential, the spin-spin potential obtained from the BS wave
function is absolutely different from a repulsive δ-function
potential generated by perturbative one-gluon exchange [5].
Such contact form∝ δðrÞ of the Fermi-Breit type potential is
widely adopted in the NRp models [3,61].
The pointlike spin-spin interaction easily lifts the mass

degeneracy between 11P1 state (hc) and spin-weighted

average of 13PJ states (χcJ); Mð13PJÞ ¼ ðMχc0 þ 3Mχc1þ
5Mχc2Þ=9. On the other hand, a finite-range interaction
gives a nonzero, but small finite hyperfine splitting to the
P- or higher-wave charmonia [7]. In the current experi-

ments, however, the splitting Mhypð1PÞ ¼ Mð13PJÞ −Mhc
for 1P-charmonium states is not appreciably observed
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within experimental error. Here we quote Mhypð1PÞ ¼
0.02� 0.19ðstatÞ � 0.13ðsystÞ MeV from the CLEO experi-
ment [62,63] (See also Ref. [64]).
The QQ̄ interaction is not entirely due to one-gluon

exchange so that the spin-spin potential is not necessary to
be a simple contact form ∝ δðrÞ [65–68]. This is shown to
be true even for the Oð1=m2

QÞ spin-spin corrections in the
Wilson-loop approach [17,18], regardless of the sign issue.
In the phenomenological side, the finite-range spin-spin
potential described by the Gaussian form is adopted by
some NRp model in Ref. [4], where many properties of
conventional charmonium states at higher masses are
predicted. This phenomenological spin-spin potential is
also plotted in the lower plot of Fig. 4 for comparison.
There is a slight difference at very short distances, although
the range of spin-spin potential calculated from the BS
amplitude method is similar to the phenomenological one.
To examine an appropriate functional form for the spin-

spin potential, we try to fit the data with several functional
forms, and explore which functional form can give a
reasonable fit over the range of r=a from 2 to 7

ffiffiffi
3

p
. As

a results, the long-range screening observed in the spin-spin
potential is accommodated by the exponential form and the
Yukawa form:

VSðrÞ ¼
�
α expð−βrÞ ∶ Exponential form

α expð−βrÞ=r ∶ Yukawa form:
ð14Þ

All results of correlated χ2 fits are summarized in Table V.
We also try to fit with the Gaussian form that is often
employed in the NRp models, and it however gives an
unreasonable χ2=d:o:f: value. Note that we here use only
the on-axis data which are expected to less suffer from the
rotational symmetry breaking and the discretization error,
because fit results to the lattice data taken in each direction
significantly disagree with each other [21]. We need
the finer lattice to have a solid conclusion to the shape
of the spin-spin potential and the uncertainties due to the
rotational symmetry breaking.

V. CHARMONIUM MASS SPECTRUM FROM
CHARMONIUM POTENTIAL

Once the quark kinetic mass and the charmonium
potentials are determined by first principles of QCD,

we can solve the nonrelativistic Schrödinger equation
defined with the theoretical inputs for the bound cc̄
systems the same as calculations in the NRp models
[2,65,66,69].
In the nonrelativistic description, each charmonium

state is generally labeled by a symbol 2Sþ1½L�J, with
the spin angular momentum (S ¼ 0; 1;…), the orbital
angular momentum (½L� ¼ S, P, D… corresponding to
L ¼ 0; 1; 2;…) and the total angular momentum
(J ¼ S ⊕ L) quantum numbers. The JPC notation is also
used to classify the charmonium state. The parity (P) and
the charge-conjugation (C) are given by P ¼ ð−1ÞLþ1 and
C ¼ ð−1ÞSþL within the nonrelativistic description.
Recall that all of the charmonium states below the open-

charm threshold are experimentally well established [45].
The last missing 1P-charmonium state, hc, and also the first
excited state of the pseudoscalar 1S-charmonium state,
ηcð2SÞ, have already been observed in recent experiments
[62,63,70–75].
In this section, we will discuss whether we can get the

correct low-lying charmonium spectra within the hybrid
approach between lattice QCD simulations and the NRp
models in comparison to experimental data. In addition,
we also perform a consistency check between two
different methods in lattice QCD to verify the validity
of our approach. One is of course the standard lattice
spectroscopy, where the mass information is extracted
from the large-time asymptotic behavior of the two-point
correlation functions, while another mainly uses the
information about the spatial profile of the BS ampli-
tudes. In this sense, these two methods are essentially
different.

A. Nonrelativistic Hamiltonian from
lattice QCD

For solving a nonrelativistic Schrödinger equation, the
constant energy shift is irrelevant. We here introduce the
energy-shifted potential in the spin-independent part as
V 0ðrÞ ¼ VðrÞ − Eave for the following reason: The quantity
of V 0ðrÞ can be directly obtained from the BS amplitudes of
1S-charmonium states except the overall factor of 1=mQ.
It ends up with less statistical uncertainties compared to the
original potential VðrÞ, whose estimation requires the
subtraction of Eave. This is simply because the value of
Eave ¼ Mave − 2mQ receives somewhat large uncertainties,
which arise mainly in the determination of mQ through
Eq. (8). Indeed, when we evaluate a difference between V0

and Eave directly from the fit with the Cornell functional
form to the data of V0ðrÞ, this quantity shows much smaller
error such as V0 − Eave ¼ −0.146ð13Þ GeV, in comparison
to the values of Eave ¼ 0.508ð69Þ GeV and mQ ¼
1.789ð34Þ GeV.
We therefore adopt the energy-shifted potential of V 0ðrÞ

to reduce uncertainties on the final result for energy

TABLE V. Results of fitted parameters for the spin-spin
potential with the exponential and Yukawa forms. The quoted
errors are statistical only. In the case of the spin-spin potential, we
use only the on-axis data.

Functional form α β χ2=d:o:f:

Exponential 2.15(7) GeV 2.93(3) GeV 2.0
Yukawa 0.815(27) 1.97(3) GeV 1.7
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eigenvalues, and then solve the following Schrödinger
equation for the reduced wave function uSLJðrÞ5:
�
−
∇2

mQ
þ LðLþ 1Þ

mQr2
þ V 0

SLJðrÞ
�
uSLJðrÞ ¼ E0

SLJuSLJðrÞ

ð15Þ

where V 0
SLJðrÞ ¼ VSLJðrÞ − Eave and E0

SLJ ¼ ESLJ − Eave

with angular momentum quantum numbers (S, L and J).
The interquark potentials V 0

SLJðrÞ, which may involve the
spin-dependent interactions, clearly depend on the char-
monium states labeled with specific S, L and J. The rest
mass energy of the desired charmonium state is obtained
simply by adding the energy eigenvalue of E0

SLJ to the spin-
averaged 1S-charmonium mass ofMave, which is evaluated
by the standard lattice spectroscopy with high accu-
racy: MSLJ ¼ Mave þ E0

SLJ ¼ 2mQ þ ESLJ.
The potential calculated from lattice QCD with the

BS amplitude method are by definition discretized in
space. In this context, instead of the continuum
Schrödinger equation, we practically solve eigenvalue
problems of finite-dimensional vector un ¼ uðn ~aÞ and
finite-dimensional matrix [76] as

X
n>0

Hm;nun ¼ E0um: ð16Þ

Note that a summation of n does not include n ¼ 0 since
the reduced wave function is required to vanish at the
origin. In the symmetric matrix Hm;n for n, m > 0,
diagonal and off-diagonal matrix elements are given by

Hn;n ¼
1

~a2mQ

�
2þ LðLþ 1Þ

n2

�
þ V 0ðn ~aÞ; ð17Þ

Hn�1;n ¼ −
1

~a2mQ
; ð18Þ

and all other elements are zero. Here we omit the labels
SLJ for clarity.
In this work, we separately solve Eq. (16) in the

directions of vectors r which are multiples of (1, 0, 0),
(1, 1, 0) and (1, 1, 1). We prefer to use mainly on-axis data,
which is expected to receive smallest discretization error
and correction due to rotational symmetry breaking as
studied in Ref. [21], and take the largest difference between
on-axis and off-axis results as the systematic error due
to the choice of the r direction, while statistical errors
are estimated by the jackknife method. Systematic

uncertainties stemming from the choice of the fitting
window in the averaging process over the time-slice range
are smaller than other errors.
Alternatively, we may solve the continuum Schrödinger

equation with the parametrized charmonium potential by
empirical functional forms such as the Cornell form or the
Cornell-plus-log form as discussed in Sec. IV. This pro-
cedure, however, yields large uncertainties in the low-lying
energy levels, which highly depend on the choice of
functional forms especially at short distances. To avoid
such model dependence, we adopt the former strategy,
which does not suffer from the sensitivity to the shape of
the potential at short distances.

B. Wave functions solving the Schrödinger equation

In Fig. 5, we plot energy-levels (dotted lines) and
corresponding reduced wave functions (curves with square
symbols) up to the second excited state for the spin-
averaged S-wave charmonium states, which are given by
the charmonium potential with an expectation value of
the spin operator being zero, hSQ · SQ̄i ¼ 0. The spin-
independent charmonium potential, which is calculated
from lattice QCD, is also overlaid in the figure as circle
symbols together with its fitting result using the Cornell-
plus-log form (shaded band).

FIG. 5 (color online). The energy-levels (dotted lines) and
corresponding reduced wave functions uðrÞ (squares) of spin-
averaged 1S-charmonium states, obtained by solving the Schrö-
dinger equation with the lattice inputs. Only the central (average)
values are shown for both quantities. A horizontal line indicates
the open-charm threshold. The spin-independent charmonium
potential obtained from lattice QCD and its fitting result with the
Cornell-plus-log functional form as a function of r are also
overlaid in the same plot as circles and a shaded band,
respectively.

5Here, we assume that the reduced wave function vanishes at
origin limr→0rϕ0ðrÞ ¼ uðrÞ ¼ 0. Indeed, if the potential satisfies

r2VðrÞ →
r→0

0, one can easily show the reduced wave function

asymptotically behaves as uðrÞ →
r→0

rLþ1.
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We first carefully examine the energy eigenvalue E0
ave

of the spin-averaged 1S charmonium state whose mass was
used as input to calibrate the RHQ parameters for the charm
quark. Recall that the value of E0

ave is supposed to be zero
because of its definition on the shifted energy E0 introduced
in Eq. (15). We consequently obtain E0

ave ¼ 0.2ð1.3Þ
ð0.5Þ MeV, where the first error is statistical, the second
error is a systematic error due to rotational symmetry
breaking. The obtained value is sufficient for satisfying the
condition E0

ave ¼ 0 as a self-consistency check in our
approach. We then conclude that the spin-averaged
1S-charmonium state can be well described by our char-
monium potential given in the range r≲ 1.1 fm.
The boundary condition implemented in the definition of

the Hamiltonian matrix defined in Eq. (16) enforces the
wave functions to vanish outside the interval r ≤ ~aNs=2.
Although our choice of Ns=2 × Ns=2 for the size of
Hamiltonian matrix Hn;m is large enough for the
1S-charmonium states as discussed above, the higher-lying
states that have more extended wave functions seem to
suffer from the finite size effect caused by the boundary
condition. Indeed, the resulting wave functions of the
2S and 3S charmonium states might be somewhat squeezed
due to the smaller size of ~aNs=2. Therefore, these energy
levels would be pushed down slightly due to the shrinkage

of wave functions being less affected by the confining
potential. As we mentioned above, the lattice data of the
spin-independent potential becomes noisy in the range
r≳ 1.1 fm, where signal-to-noise ratio of the BS wave
function is poor, and also suffers from the finite volume
effect in lattice QCD simulations. In order to draw a firm
conclusion for properties of higher-lying charmonium
states without these effects, we clearly need to extend
the calculation of the charmonium potential derived from
the ground state wave function to the higher-lying states
such as 2S and 3S states, which have more extended wave
functions, using a sufficiently large lattice.

C. Charmonium mass spectrum

We show the charmonium spectrum below 4200 MeV in
Fig. 6. Theoretical spectra plotted as rectangular shaded
boxes are given by solving the discrete nonrelativistic
Schrödinger equations with the theoretical inputs. Vertical
box length represents the level of uncertainty, which is given
by adding statistical and systematic errors in quadrature.
For the purpose of comparison, we plot both experimental
values (horizontal lines) and results of the standard lattice
spectroscopy (square symbols) together. The experimental
values are taken from Particle Data Group [45]. At first

FIG. 6 (color online). Mass spectrum of charmonium states below and near the open-charm threshold. The vertical scale is in units of
MeV. Labels of 2Sþ1½L�J (JPC) are displayed in the lower (upper) horizontal axis. Rectangular shaded boxes indicate predictions from the
NRp model with purely theoretical inputs based on lattice QCD and their errors which are the sum of the statistical and systematic added
in quadrature. Solid lines indicate experimental values of well established charmonium states, while square symbols represent results of
the standard lattice spectroscopy. A horizontal solid line shows the open-charm threshold. A symbol of 3PJ denotes the spin-weighted
average of spin-triplet 3PJ states whose mass is given by MχcJ ¼ ðMχc1 þ 3Mχc2 þ 5Mχc2Þ=9.
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glance, one can find that below the open charm threshold,
our theoretical calculations from the NRp model with the
lattice inputs excellently agree with not only the lattice
spectroscopy, but also experiments. Especially an agreement
between two lattice results provides a strong check for the
validity of our new method. All results including the lattice
spectroscopy results are also summarized together with the
experimental values in Table VI.
In this study, we have succeeded in extracting only the

spin-spin potential among the spin-dependent parts of the
interquark potential. Thus at this stage we cannot predict
the spin-orbit splitting which is led by the tensor and spin-
orbit terms of the spin-dependent potential. In other words,
we can compute only the spin-averaged mass for higher-
wave charmonium states like P-wave charmonium χcJ state.
The mass splitting between the radial excitations and the

ground state also provides an important validity check on
our new approach. Figure 7 shows several mass splittings
theoretically predicted by the hybrid approach in compari-
son to physical values of the corresponding splittings. In
the top left panel of Fig. 7, the radial excitation mass
splitting of the spin-averaged 1S and 2S states is
Maveð2SÞ −Maveð1SÞ ¼ 573ð10Þð5Þ MeV, of which value
is slightly smaller than the experimental value of 606
(1) MeV [45]. This deviation (∼30 MeV) from the experi-
ment can be attributed to the finite volume effect, which is
caused by the fact that more extended 2S state than 1S state
is forced to fit in the spatial volume ∼ð3 fmÞ3. Note that the
S-D mixing due to the tensor force is simply ignored in our
calculations. Thus, the spin-spin potential solely gives the
mass splitting in hyperfine multiplets. The top right panel
of Fig. 7 shows the hyperfine-splitting energy for the 1S
charmonium states: M1S;hyp ¼ MJ=ψ −Mηc . It is found that
there is a good agreement between two lattice results; 113.4
(9)(1) GeV from the NRp model with lattice inputs and
113.8(8) GeV from the standard lattice spectroscopy. This
simply suggests that there is no additional uncertainties
induced by both determining the charmonium potential and
the charm quark mass by the BS amplitude method and
solving the nonrelativistic Schrödinger equation with them.
We remark that the values of the hyperfine-splitting are

slightly smaller than the experimental one Mexp
1S;hyp ¼

116.6ð1.2Þ GeV. This would be simply due to insufficient
calibration of the RHQ parameters and also other possible
systematic uncertainties including the remnant discretiza-
tion artifact. On the other hand, the hyperfine splitting
energy for the 2S charmonium states, which is plotted in
the bottom left panel of Fig. 7, shows that the value of
Mψ 0ð2SÞ −Mηcð2SÞ ¼ 41ð6Þð3Þ MeV obtained from the
hybrid approach is roughly consistent with the experimen-
tal value 47(1) MeV, within its error range.
The bottom right panel of Fig. 7 shows the 1P hyperfine

mass splitting which is given by an energy difference
between between the hc and spin-averaged χcJ states:
M1P;hyp ¼ MχcJ −Mhc . Experimentally, the value of

TABLE VI. Masses of the charmonium states below
4200 MeV are summarized in units of MeV. The labels of
AVE and HYP in a column of “state” for S-wave states denotes
the spin-averaged mass ðM1S0 þ 3M3S1Þ=4 and hyperfine split-
ting mass M3S1 −M1S0 . Experimental data (denoted as Exp.) in
the second column are taken from Particle Data Group, rounded
to 1 MeV [45]. There are two kinds of lattice QCD results
tabulated in the third and fourth columns. One is obtained by the
standard lattice spectroscopy, while another is evaluated by
solving the Schrödinger equation with the charmonium poten-
tial determined from lattice QCD. For the latter, the first error is
statistical and the second error systematic as described in text.

The spin-weighted average mass (denoted as 3½L�J) are also
included for spin triplet states 3½L�J. The last column shows the
results from a NRp model [4].

Lattice QCD

state Exp spectroscopy BS amplitude NRp model [4]

ηc ð11S0Þ 2981 2985(1) 2985(2)(1) 2982

J=ψð13S1Þ 3097 3099(1) 3099(2)(1) 3090

AVE 3068 3070(9) 3070(2)(1) 3063

HYP 116 114(1) 113(1)(0) 108

ηc ð21S0Þ 3639 3612(9)(7) 3630

ψð23S1Þ 3686 3653(12)(5) 3672

AVE 3674 3643(11)(5) 3662

HYP 47 41(6)(3) 42

ηc ð31S0Þ 4074(20)(70) 4043

ψð33S1Þ 4039 4099(24)(98) 4072

AVE 4092(22)(91) 4065

HYP 25(15)(28) 29

hc ð11P1Þ 3525 3506(6) 3496(7)(19) 3516

χcJ ð13PJÞ 3525 3503(7)(10) 3524

χc0 ð13P0Þ 3415 3393(6) 3424

χc1 ð13P1Þ 3511 3485(6) 3505

χc2 ð13P2Þ 3556 3556

hc ð21P1Þ 3927(16)(34) 3934

χcJ ð23PJÞ 3916(19)(31) 3943

χc0 ð23P0Þ 3918 3852

χc1 ð23P1Þ 3925

χc2 ð23P2Þ 3927 3972

ηc2 ð11D2Þ 3783(12)(4) 3799

ψ̄ ð13DJÞ 3774(13)(2) 3800

ψð13D1Þ 3773 3785

ψð13D2Þ 3800

ψð13D3Þ 3806

ηc2 ð21D2Þ 4221(21)(72) 4158

ψ̄ ð23DJÞ 4193(25)(88) 4159
ψð23D1Þ 4153 4142
ψð23D2Þ 4158

ψð23D3Þ 4167
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Mexp
1P;hyp is known to be zero with high accuracy as

Mexp
1P;hyp ¼ 0.02ð23Þ MeV [62,63]. The hybrid approach

yields a small splitting energy as M1P;hyp ¼ 7.2ð1.6Þ
ð9.3Þ MeV, which is consistent with the zero value within
a large error. Of course, however, the spin-spin charmo-
nium potential determined in the BS amplitude method is
not still enough to describe the tiny 1P hyperfine splitting
measured in experiment. As we mentioned in the previous

subsection, a finite-range spin-spin potential gives a non-
zero value of hyperfine mass splitting even in the case of
higher-wave states such as P-wave state, while zero hyper-
fine splitting measured in experiments is easily reproduced
by the pointlike spin-spin potential widely adopted in
phenomenological quark potential models. Here, we stress
that the spin-spin potential from the BS amplitude method
is finite-range and therefore the value of Mexp

1P;hyp is highly
sensitive to both shapes of the spin-spin potential and wave
functions of P-wave states. According to our systematic
study of the BS amplitude method performed in quenched
lattice QCD [21], the spin-spin potential receives large
uncertainties due to the discretization artifacts more than
the spin-independent central potential. To make a firm
conclusion, it is necessary to perform the present calcu-
lation on the finer lattice.
Our theoretical calculations for the charmonium mass

spectrum below the open-charm threshold are basically in
good agreement with the experimental measurements. The
point we wish to emphasize here is that our novel approach
has no free parameters in solving the Schrödinger equation
in contrast to the phenomenological NRp models. All of the
parameters are fixed by lattice QCD simulations, where
three light hadron masses (e.g., pion, kaon and Ω baryon)
are used for setting the lattice spacing a and hopping
parameters of the light and strange quarks (i.e., the light and
strange quark masses). In this study, the charm quark was
treated in the quenched approximation. Then the exper-
imental values of ηc and J=ψ charmonium masses are used
to determine the charm quark parameters appeared in the
RHQ action. In this sense, the hybrid approach proposed
here is distinctly different from existing calculations in the
phenomenological quark potential models.
Let us now attempt to straightforwardly extend the hybrid

approach to above the open-charm threshold. Only the
spin-averaged mass is considered for the P and D spin-

triplet states:Mðn3PJÞ¼ðMn3P0
þ3Mn3P1

þ5Mn3P2
Þ=9 and

Mðn3DJÞ ¼ ð3Mn3D1
þ 5Mn3D2

þ 7Mn3D3
Þ=15. In order to

provide mass splittings among these spin-triplet states, the
tensor and spin-orbit potentials are inevitably required.
Since, in this paper, we succeeded in extracting the spin-
spin potential solely for the spin-dependent potentials, we
should focus on the spin-averaged masses.
First of all, one can observe that the values obtained from

the hybrid approach above the open-charm threshold fairly
agree with the existing experimental data, although errors
are relatively large as shown in Table VI. We, however,
are not in a position to give a realistic description to the
higher-lying charmonium states, which are located above
the open-charm threshold. This is because there are the
following remarks in our calculations including the higher-
lying charmonium states.
(1) The higher-lying charmonium states significantly

suffer from systematic uncertainties, which are

FIG. 7 (color online). Mass splittings of states lying below the
open charm threshold in units of MeV, compared to the physical
mass splitting. Upper panels show the mass splitting Maveð2SÞ −
Maveð1SÞ between the spin-averaged 1S- and 2S-states (left), and
the hyperfine mass splittings MJ=ψ −Mηc between 1S-states
(right), while lower panels show mass splitting of Mψð2SÞ −
Mηcð2SÞ between 2S-states (left) and mass splitting of MχcJ −Mhc
between 1P-states (right). In each plot, cross and circle symbols
indicate the experimental data and theoretical results obtained
from the NRp model with the lattice inputs, respectively. The
quoted errors indicate the sum of the statistical and systematic
errors added in quadrature. Dashed lines represent the central
value of the experiment. Only for the hyperfine mass splitting
between 1S-states, the results of the lattice spectroscopy is shown
as a square.
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mainly due to the less knowledge of the long-range
part of the spin-independent potential. We have no
reasonable data for the charmonium potential at
longer distances than about 1.1 fm since the wave
function of the 1S ground-state possesses the highly
localized nature. Therefore we need to calculate the
potential form the higher-lying charmonium states.
Alternatively, we simply extrapolate the long-range
behavior of the potential outside the region, where
the charmonium potential is really determined from
the localized wave function. In the latter case, the
higher-lying spectrum of the charmonium is more
sensitive to the choice of the adopted functional form
in the fitting procedure.

(2) The possible mass shift due to mixing theQQ̄ states
with DD̄ continuum is completely neglected in this
study. One may expect that the NRp models with-
out such mixing works well to describe the low-
lying charmonium systems far below its threshold.
On the other hand, such coupled channel effects
might not be negligible near and above the thresh-
old and then the potential description may lose the
accuracy of theoretical prediction, though the naive
treatment of the NRp models even for higher-lying
charmonium states was phenomenologically suc-
cessful despite the absence of coupled channel
effects [3,4].

(3) For the higher-lying excitations of the spin-1 char-
monium state, the S-D mixing becomes severe since
the level spacings between ðnþ 1Þ3S1 and n3D1 get
narrower [77]. However, S-D mixing effects on J=ψ ,
ψð2SÞ and ψð3SÞ states are not taken into account in
the present calculation since the tensor term in the
spin-dependent potentials is not determined in this
study. Similarly, the mass estimations of χcJðnPÞ and
ψ̄ðnDÞ tabulated in Table VI are calculated without
consideration of possible partial-wave mixings such
as S-D, F-P and D-G mixings.

To calculate the BS wave function of 1P-states, better
source operators with respect to odd-parity wave function
[78] are required. Meanwhile some extension of the
variational method [79,80] to the four-point correlation
functions is necessary for extracting the BS wave function
of the radial excitation of the S-wave states. These new
calculations can give more realistic prediction especially
to the higher-lying charmonia. The former provides
information of the spin-orbit and also tensor potentials
[78]. The latter can provide not only the tensor potential,
but also the mixing angle between 23S1 and 13D1 states in
the same way as the nuclear force [25]. Furthermore more
data points of the charmonium potential at large distances
can be accessible from such excited states of the charmo-
nium, which have more extended wave function than that
of 1S ground states. These kinds of studies are now under
way [81].

VI. APPLICATION TO HEAVY-LIGHT SYSTEM

In the charmonium (heavy-heavy) system, the spectrum
below the open charm threshold are well described by
potential description with our charmonium potential
including the spin-spin interaction, which was determined
by the BS amplitude method in dynamical lattice QCD
simulations. In this section, we apply the new method to the
Ds heavy-light meson system, which represents the case of
mesons with nondegenerate quark masses. Apart from the
phenomenological interest, we also would like to examine
the validity range of the new method in terms of the size of
quark kinetic mass.

A. Lattice setup for charmed-strange mesons

The numerical setup for the charmed-strange (Ds)
mesons system is basically same as for the calculation
of the charmonium system. For the charm quark, we use
the RHQ action with the parameters calibrated by 1S-
charmonium states. In addition to the computation of the
charm quark propagator, another fermion matrix inver-
sion for a strange quark is required to compute the
Ds-meson correlation functions. The nonperturbatively

FIG. 8 (color online). Effective mass plots for low-lying S and
P-wave Ds meson states. S-wave states (Ds and D�

s ) and P-wave
states [D�

s0ð2317Þ, Ds1ð2460Þ and Ds1ð2536Þ] are shown in the
upper and lower panels, respectively. Each Ds meson state is
specified in the legend. Horizontal lines and shaded bands denote
fit results with statistical errors estimated by the jackknife method
and their fit range.
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OðaÞ-improved Wilson quark action (cSW ¼ 1.715) is
used for the strange quark. A hopping parameter of the
strange quark is chosen to be κs ¼ 0.13640, which is the
same as the sea strange quark used in gauge field
generation. Simultaneously, ss̄-mesons are supplemen-
tarily calculated, and we use ss̄-meson data for a con-
sistency check on the kinetic masses of the strange quark
determined through ss̄ and cs̄ systems as we will
discuss later.
Figure 8 shows the effective mass plots for S and P-wave

Ds-meson states. The Ds-meson masses are determined by
constant fits to the plateaus observed in the effective mass
plots with covariance matrices accounting for the data
correlation among different time slices. Results of the
Ds-meson masses together with fit ranges used in the fits
and the values of χ2=d:o:f: are summarized in Table VII.
The quoted errors represent only the statistical errors given
by the jackknife analysis. The RHQ action for the charm
quark works well even for the low-lying Ds-mesons. The
spin-averaged and hyperfine splitting Ds-meson masses,
M1S

ave ¼ 2.0865ð33Þ GeV and M1S
hyp ¼ 0.1461ð37Þ GeV,

are obtained from the standard lattice spectroscopy.
Although the simulated strange quarks are slightly off
the physical point, these results are quite close to the
experimental data of Mexp

aveð1SÞ ¼ 2.07635ð27Þ GeV and
Mexp

hypð1SÞ ¼ 0.1438ð4Þ GeV. The deviations from the
experimental results are within about 0.5%. Furthermore,
results of P-wave Ds-meson states from the lattice spec-
troscopy marginally reproduce the experimental data.6

Similar results are reported by the PACS-CS collaboration
using 2þ 1 flavor dynamical gauge configurations gen-
erated with the physical strange quark [44,82].
The two-point correlation functions of both pseudoscalar

and vector ss̄-mesons, i.e., ηss̄ð0−Þ and ϕð1−Þ mesons,

are also calculated in this study. We obtain results of
Mηss̄ ¼ 0.7699ð9Þ GeV and Mϕ ¼ 1.0827ð68Þ GeV. The
similar values are reported in Ref. [22]. The fit range was
chosen to be 24 ≤ t ≤ 39 for both states. The ϕmeson mass
is somewhat heavier than the experimental values of
Mexp

ϕ ¼ 1.019455ð20Þ GeV. It should be attributed to the
fact that the simulated strange quarks are slightly off the
physical point. Although the systematic uncertainty due to
slightly heavier strange quark mass is expected to be
extremely small in the charmonium spectrum, we should
take into account some corrections for the Ds-meson
spectrum [46].

B. BS wave function

In Fig. 9, we show the reduced BS wave functions for
the 1S vector cc̄, cs̄ and ss̄ states corresponding to J=ψ ,D�

s
and ϕ mesons, respectively. It is found that the D�

s wave
function is spatially extended to at least the half of the
spatial extent of lattice volume (Nsa=2 ∼ 1.5 fm).
Although the amplitude of the wave function of the D�

s
meson is considerably small at r ∼ 1.5 fm, it still seems to
remain nonzero values in the range of r > 1.5 fm, where
only off-axis data points are available. The wrap around
effect would cause the rotational symmetry breaking at
longer distances and also superficially weaken the long-
range confining force. Therefore, in the Ds system, the
interquark potential could be more affected by the finite
volume effect than the charmonium system. In the case of
the ss̄ system, which is more spatially extended than the cs̄
system as shown in Fig. 9, this problem could become more
severe.

C. Quark kinetic mass

Figure 10 illustrates the determination of quark kinetic
mass from the cs̄ and ss̄ meson systems in the BS amplitude
method. A quantity mQq is defined as twice the reduced
mass of the Ds (cs̄) system: mQq ¼ 2mQmq=ðmQ þmqÞ,
while mq corresponds to the strange quark mass.

FIG. 9 (color online). The reduced BS wave function uðrÞ ¼
rϕðrÞ for the 1S vector cc̄ (circles), cs̄ (squares) and ss̄ (triangles)
states, as a function of spatial distance r. They are normalized asP

ϕð~xÞ ¼ 1.

TABLE VII. Masses of low-lying Ds meson states, the spin-
averaged mass and hyperfine splitting energy of 1S Ds states. The
columns have the same meaning as in Table VI. Results are given
in units of GeV.

state (JP) Γ fit range mass [GeV] χ2=d:o:f:

Ds (0−) γ5 [30∶47] 1.9780(12) 1.08
D�

s (1−) γi [30∶47] 2.1230(42) 0.61
Maveð1SÞ � � � � � � 2.0865(33) � � �
Ehypð1SÞ � � � � � � 0.1461(37) � � �
D�

s0 (0þ) 1 [14∶26] 2.3536(77) 1.45
Ds1 (1þ) γ5γi [14∶26] 2.4689(83) 1.14
Ds1 (1þ) γiγj [14:22] 2.4893(87) 1.20

6The cs̄-mesons do not have definite charge-conjugation
properties, so that two JP ¼ 1þ states (3P1 and 1P1 states) in
the nonrelativistic description can undergo mixing. In this study,
we simply identify the 3P1 state with the Ds1ð2460Þ meson and
1P1 state with the Ds1ð2535Þ meson without considering the
mixing of the two nearly degenerate JP ¼ 1þ states.
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As shown in the upper panel of Fig. 10, we fit the data
points of the cs̄ meson system at relatively large distances,
where the reasonable plateau is found in the region of
r≳ 0.7 fm. We then obtain the value of mQq ¼ 0.959ð45Þ
ð34Þð36Þ GeV. The first error is statistical, and the second
and third ones are systematic uncertainties due to the choice
of data points taken from three directions and a variation
of tmin, respectively. The strange quark mass mq can be
evaluated by two data sets of mQq and mQ through the
relation mq ¼ mQqmQ=ð2mQ −mQqÞ. The value of mQ
corresponds to the charm mass, which was already deter-
mined in the previous section. When combined with results
obtained from theDsðcs̄Þ and charmonium (cc̄) system, we
obtain the value of mq ¼ 656ð41Þ MeV for the strange
quark mass. Quoted error is statistical one, which was
determined by the jackknife method.
Independently, the strange quark mass mq can be deter-

mined through the ss̄ system as depicted by circle symbols in
the lower panel of Fig. 10. Similar to the upper figure, the

reasonable plateau is found in the region of r≳ 0.7 fm.
We compute a weighted average of the data points in the
range of 8 ≤ r=a ≤ 7

ffiffiffi
3

p
with a covariance matrix account-

ing for the correlation, and then obtain the value of
mq ¼ 554ð19Þð6Þð8Þ MeV, which is close to a typical value
of constitute strange quark mass (∼Mϕ=2 ≈ 500 MeV)
adopted in SUð6Þ quark models [1]. The meaning of the
three quoted errors is explained above.
For comparison, the previously estimated value of

mq ¼ 656ð41Þ MeV from the data sets of mQq and mQ
is also displayed by a horizontal shaded band in the lower
figure. There is 2σ discrepancy between this band and the

FIG. 10 (color online). The determination of the reduced mass
mQq from the Ds (cs̄) system (upper) and strange quark mass mq
from the ss̄ system (lower) in the BS amplitude method. We
obtain the quark kinetic masses of mQq and mq from the
asymptotic behavior of the right-hand side of Eq. (8) in long-
distance region. Solid lines with shaded bands represent the
fitting results and fit ranges with the statistical error estimated by
the jackknife method. In the lower plot, a horizontal shaded band
indicates a kinetic mass of the strange quark, which is inde-
pendently evaluated by the relation mq ¼ mQqmQ=ð2mQ −mQqÞ
with the values of mQq and mQ from the cs̄ and cc̄ systems.

TABLE VIII. Charm and strange quark masses, which are
determined from the Coulomb-gauge quark-antiquark BS ampli-
tude and the Landau-gauge quark propagator, are summarized in
units of GeV.

BS amplitude quark propagator

flavor QQ̄ or qq̄ Qq̄ Landau gauge

charm 1.784(23) � � � 1.776(8)
strange 0.554(19) 0.656(41) 0.643(5)

FIG. 11 (color online). Effective masses of gauge-variant quark
two-point correlator in the Landau gauge for charm (upper panel)
and strange (lower panel). Solid lines indicate fit results for
“pole” masses of charm and strange quarks and shaded bands
display the fitting ranges and one standard deviations estimated
by the jackknife method. In each panel, a wider and horizontal
shaded band indicates a kinetic mass evaluated from the cs̄ and/or
cc̄ systems within the BS amplitude method.
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plateau behavior of −ð∇2ϕV=ϕV − ∇2ϕPS=ϕPSÞ=Ehyp for
the ss̄ system at large distances. Although this discrepancy
may imply that nonrelativistic treatment is no longer valid
for the heavy-light system, we would like to remind of the
fact that the BS wave function of the ss̄-meson system at
large distances is likely affected by the finite volume effect
as discussed previously.
The following discussion shows that the above specu-

lation is likely to be true. The strange quark mass
determined from the BS wave function of the ss̄-meson
states is indeed underestimated compared to a “pole mass”
determined from the effective mass of gauge-variant quark
two-point correlator in the Landau gauge, while two
different calculations show remarkable consistency for

the charm quark as summarized in Table VIII. Figure 11
shows effective mass plots and comparisons with ones
obtained within the BS amplitude method. The Landau-
gauge pole mass is an alternative way of measuring the
quark mass in lattice QCD. For details of how to calculate
it, see Ref. [83].
If one may choose the cs̄ result rather than the ss̄ result

for the BS amplitude method, the strange quark masses
from two estimation methods become consistent again.
Although the physics behind the consistency discussed here
is beyond the scope of this paper, we may simply conclude
that the discrepancy between results from the cs̄ and ss̄
mesons is mainly attributed to the finite volume effect on
the ss̄ wave function.

D. Charmed-strange potential

Figure 12 shows results of the spin-independent and
spin-spin interquark potentials obtained from the Ds and
D�

s meson states (hereafter called cs̄ potential) in the
dynamical QCD simulation. For purpose of comparison,
the charmonium potentials are also displayed.
At first glance, a shape of the cs̄ potential is basically

similar to that of the charmonium potential, so that
we similarly adopt the Cornell potential form for the
spin-independent cs̄ potential and also exponential

FIG. 12 (color online). The spin-independent and spin-spin
interquark potentials for the cc̄ (circles) and cs̄ (squares) systems,
calculated from the BS wave functions in dynamical lattice QCD
simulations with almost physical quark masses. In the upper
panel, the spin-independent parts of both the charmonium and cs̄
potentials are plotted. For clarity of the figure, the constant energy
shift Eave, which is given by the spin-averaged mass of 1S states,
is not subtracted. Solid and dashed curves represent the fit results
with the Cornell parametrization. The shaded bands show
statistical uncertainties in the fitting procedure where the jack-
knife method is employed. In the lower panel, we show the spin-
spin potential VSðrÞ. The exponential form is used for fitting the
resultant spin-spin potentials for the cc̄ and cs̄ systems. The inset
shows a magnified view.

TABLE IX. Masses of low-lying Ds mesons are summarized in
units of MeV. The labels of AVE and HYP in a column of “state”
for S-wave states denotes the spin-averaged mass ðM1S0 þ
3M3S1Þ=4 and hyperfine splitting mass M3S1 −M1S0 . Experimen-
tal values in the second column are taken from the Particle Data
Group, rounded to 1 MeV [45]. There are two kinds of lattice
QCD results tabulated in the third and fourth columns. One is
obtained by the standard lattice spectroscopy, while another is
evaluated by solving the Schrödinger equation with the cs̄
potential determined from lattice QCD. For the latter, the first
error is statistical and the second error systematic as described in
text. The spin-weighted average mass (denoted as 3½L�J) are also
included for spin triplet states 3½L�J . The last column gives the
results from a NRp model [84].

Lattice QCD (This work)

state Exp spectroscopy BS amplitude NRp model [84]

Ds ð11S0Þ 1968 1978(1) 2000(10)(3) 1963
D�

s ð13S1Þ 2112 2123(4) 2138(8)(3) 2099
AVE 2076 2087(3) 2103(8)(3) 2065
HYP 144 146(4) 138(5)(1) 136
Ds ð21S0Þ 2766(38)(50)
D�

s ð23S1Þ 2709 2857(42)(80)
AVE 2834(40)(73)
HYP 92(9)(30)
Ds1 ð11P1Þ 2535 2489(9) 2623(30)(32) 2527

DsJ ð13PJÞ 2506 2629(29)(32) 2532
D�

s0 ð13P0Þ 2318 2354(8) 2446
Ds1 ð13P1Þ 2460 2469(8) 2515
D�

s2 ð13P2Þ 2572 2561

TAICHI KAWANAI AND SHOICHI SASAKI PHYSICAL REVIEW D 92, 094503 (2015)

094503-18



(Yukawa) form for the spin-spin cs̄ potential as is the case
in the charmonium potential. We obtain the Cornell
parameters of the cs̄ potential as A ¼ 1.30ð8Þð22Þð21Þ
ð21Þ and

ffiffiffi
σ

p ¼ 324ð16Þð34Þð26Þð4Þ MeV with a reason-
ably small value of χ2=d:o:f: ≈ 1.9. The first error is
statistical and the second, third and fourth ones are
systematic uncertainties due to the choice of data points
taken from three directions, and variations of tmin and rmin,
respectively.
The appropriate fitting range was determined to mini-

mize a χ2=d:o:f: value taking into account the data
correlation among different spatial distances r. We choose
the fit range of ½rmin=a∶rmax=a� ¼ ½4∶7 ffiffiffi

3
p �, which corre-

sponds to the same range in the case of the charmonium
potential. Although the string tension has weak dependence
on quark kinetic mass [21], the Coulomb coefficient of the
cs̄ potential significantly grows in comparison with that of
the charmonium potential. For the spin-spin potential,
we obtain α ¼ 3.79ð36Þ GeV and β ¼ 2.89ð9Þ GeV
[α ¼ 1.48ð14Þ and β ¼ 1.97ð9Þ GeV] from the exponential
(Yukawa) form fit with χ2=d:o:f: ≈ 1.49 (χ2=d:o:f: ≈ 1.86).
We quote only the statistical errors, which are determined
by the jackknife method. We find that the size of the finite-
range of the spin-spin potential for the cs̄ system is almost

consistent with the one obtained from the charmonium
spin-spin potential within statistical uncertainties.

E. Charmed-strange meson mass spectrum

Using the cs̄ potential calculated from lattice QCD, we
obtain the spectrum of the charmed-strange mesons in the
same footing as the charmonium spectrum discussed in
Sec. V C. The resulting Ds meson spectrum together with
the experimental values and the results from the standard
lattice spectroscopy are summarized in Table IX and also
Fig. 13.
The results of 1S states in the Ds-meson family by

solving the discrete nonrelativistic Schrödinger equation
with lattice inputs show a good agreement with both
experiments and standard lattice calculations below the
DK threshold. Above the DK threshold, the cs̄ potential
obtained from the BS amplitude method can properly
reproduce the mass ordering of the Ds mesons, while
absolute values of the masses are systematically larger than
the experimental values; for example, the corresponding
Ds1ð2536Þ state is overestimated by about 90 MeV, and
then observe a large systematic discrepancy between two
kinds of lattice QCD results.

FIG. 13 (color online). Mass spectrum of the charmed-strange mesons around theDK threshold. The vertical scale is in units of MeV.
Labels of 2Sþ1½L�J (JP) are displayed in lower (upper) horizontal axis. Solid lines indicate experimental values of well established Ds
meson states, while square symbols represent results of the standard lattice spectroscopy. Rectangular shaded boxes indicate predictions
from the NRp models with purely theoretical inputs based on lattice QCD and their errors which are the sum of the statistical and
systematic errors added in quadrature. A horizontal solid line shows the DK threshold. A symbol of 3PJ denotes the spin-weighted
average of spin-triplet 3PJ states.
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Recall that the results obtained from the standard lattice
spectroscopy near the DK threshold are also slightly
deviated from the experimental values. Although this
implies that the observed discrepancies among them are
not solely attributed to the BS amplitude approach, there
are three possible sources of above mentioned discrepan-
cies in our method.
The first is, as we have noted repeatedly, associated with

uncertainties in the long-range part of the spin-independent
potential. The fact that the Ds state has the wider wave
function leads to the large finite volume effect on the
interquark potential determined within the BS amplitude
method at long distances. Especially, the wrap around effect
due to periodic boundary conditions in space would
superficially weaken the long-range confining force. It
ends up that energy levels obtained by solving the discrete
nonrelativistic Schrödinger equation with the given cs̄
potential would be pushed up from the experimental values.
Indeed, even for the 1S states, the results from the BS
amplitude approach are slightly higher than the standard
lattice spectroscopy.
The second possibility is that there are the DK and D�K

threshold effects. Since Ds0ð2317Þ and Ds1ð2460Þ are
located near the DK and D�K thresholds respectively.
Therefore, the coupling of these states to the DK and D�K
two-hadron states could not be negligible [85,86]. Such
channel couplings may cause level repulsion and thus mass
shift by the threshold effect might have happened [87–89].
Finally, it is worth pointing out that we assumed that

there is no S-D mixing due to the tensor force because of
the large energy gap between 1S and 1D states. Strictly
speaking, however, the D�

s meson which is specified by the
quantum numbers JP ¼ 1− is not purely composed of the
3S1 wave function. This approximation could introduce a
small correction to the intermediate and short-range parts of
the cs̄ potential calculated in the BS amplitude method.
Therefore, we need further development of our approach

to take into account both the coupled channel effect and
S-D mixing. A simulation with sufficiently large volume
is also required for precise prediction of masses of the
Ds-meson states near and above the DK (D�K) threshold
within our approach.

VII. SUMMARY

We have calculated the interquark potentials for both the
charmonium (cc̄) and charmed-strange (cs̄) mesons at an
almost physical point. The interquark potential with finite
quark masses are defined through the equal-time Bethe-
Salpeter wave functions of the pseudoscalar and vector
mesons. Our simulations have been done in the vicinity of
the physical light quark masses, which corresponds to
Mπ ≈ 156 MeV, using the PACS-CS Iwasaki gauge con-
figurations with 2þ 1 flavors of dynamical clover light
quarks. We use the relativistic charm quark tuned to

reproduce the experimental values of the ηc and J=ψ
masses.
We first investigated the charmonium potential. The

resulting spin-independent potential has the Coulomb-
plus-linear form, and their parameters are close to the
values used in the phenomenological NRp models. The
string breaking due to the presence of dynamical sea quarks
is not apparently observed. The spin-spin potential obtained
from the dynamical simulations exhibits the finite-range
repulsive interaction. Its shape is quite different from a
repulsive δ-function potential induced by the one-gluon
exchange, which is often adopted in the NRp models.
Our ultimate goal is to reveal the mystery behind rich

structures recently observed in the heavy-heavy and heavy-
light systems including the newly discovered charmonium-
like mesons. As a first step, we calculated the charmonium
mass spectrum by solving nonrelativistic Schrödinger
equation with purely theoretical inputs of the spin-
independent and spin-spin potentials, and also the quark
kinetic mass. To avoid any model dependence from fitting,
we practically solve the discrete Schrödinger equation in
finite volume with Dirichlet boundary condition, and thus
can handle direct lattice data of the charmonium potential
without any parametrization.
We found an excellent agreement of low-lying charmo-

niummasses between our results and the experimental data.
We here emphasize that our novel approach has no free
parameters in solving the Schrödinger equation in contrast
to the phenomenological NRp models. In our calculations,
three light hadron masses (e.g., the pion, kaon and Ω
baryon are chosen in the PACS-CS collaboration) and two
charmonium masses (the ηc and J=ψ) are used for fixing
the lattice spacing and quark mass parameters in the lattice
QCD action including the RHQ parameters for the charm
quarks.
In order to precisely predict the mass spectrum above the

open charm threshold, we should take into account both
coupled-channel effect with the DD̄ continuum and S-D
mixing due to the presence of the tensor force. In this study,
we simply ignore these effects and then apply the hybrid
approach to higher-lying charmonium states above the
open-charm threshold. We found that the theoretical
predictions of the NRp model calculation with lattice
inputs are remarkably consistent with well-established
experimental data for the conventional charmonium states.
For an application, we straightforwardly extend our

method to calculate the charmed-strange meson system,
which represents the case of mesons with nondegenerate
quark masses and also heavy-light system. A shape of the
interquark cs̄ potential in the Ds-meson system is basically
similar to that of the charmonium potential. Using the
resulting cs̄ potential as theoretical inputs, we obtain the
spectrum of the charmed-strange mesons. Below the DK
threshold, our new method works well in spite of the fact
that the Ds mesons contain a strange quark or strange
antiquark. Although above the DK threshold our cs̄
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potential can reproduce the mass ordering of the Ds
mesons, absolute values of the masses are consistent with
neither the experimental values nor the results from the
standard lattice spectroscopy.
Although it is difficult to draw any firm conclusion at this

stage, the discrepancies observed above the DK threshold
suggest that all of coupled-channel effect, S-D mixing and
higher-order relativistic corrections, that are omitted in this
study, are possibly important to understand the properties of
the heavy-light mesons near the threshold. To disentangle
these effects, simulations in a larger lattice is necessary.
Conversely, one might say that by taking into account these
effects properly, our approach can give a systematic way to
examine the validity of the potential description even for the
charmed-strange system. Such full analysis finally sheds
light on the detailed properties of the Ds mesons.
At least, in this study, the charmonium and charmed-

strange potentials obtained from the BS amplitude method
have been successful in reproducing the low-lying masses
below the open charm threshold and DK threshold respec-
tively. Furthermore we showed that our new analysis can
potentially shed light on the detailed properties of the heavy
quarkonium system. While only energy eigenvalues are
evaluated from temporal information of meson correlation
functions in the standard lattice spectroscopy, the new
method takes advantage of full spatial information together
with temporal information. The BS wave functions can be
identified with the eigenstates of the Hamiltonian. Hence,
without knowing the details of an explicit form of the
Hamiltonian, lots of physical quantities could be calculated
directly by the BS wave functions as studied in the NRp
models. For examples, E1 and M1 radiative partial widths
are supposed to be evaluated with the BS wave functions of
the charmonium states. Such information is important to
reveal the structure of hadrons.

To derive a complete nonrelativistic Hamiltonian of the
heavy-heavy and heavy-light systems from lattice QCD, we
must calculate all spin-dependent terms (spin-spin, tensor
and spin-orbit forces), which are required for more realistic
predictions for the higher-lying states. We now develop the
BS amplitude method to calculate the BS wave functions of
P-wave mesons, which provides information of the spin-
orbit and also tensor potentials.
Once all spin-dependent terms of the interquark potential

are determined and also all systematic uncertainties are well
understood, we will gain new and valuable insight on the
mesons newly discovered in the heavy-heavy and heavy-
light systems. It is also important to examine the validity of
the potential description with the BS amplitude method
from the viewpoint of the v-expansion for a nonlocal and
energy-independent interquark potential U originally
appeared in Eq. (4). For this purpose, we would like to
examine whether the same interquark potential is obtained
from the BS wave function of the radial excitation of the
S-wave states. All of the above-mentioned extensions of the
new method are now in progress [81].
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