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We present a calculation of the hindered M1 ϒð2SÞ → ηbð1SÞγ decay rate using lattice nonrelativistic
quantum chromodynamics. The calculation includes spin-dependent relativistic corrections to the NRQCD
action through Oðv6Þ in the quark’s relative velocity, relativistic corrections to the leading order current
which mediates the transition through the quark’s magnetic moment, radiative corrections to the leading
spin-magnetic coupling and for the first time a full error budget. We also use gluon field ensembles at
multiple lattice spacing values, all of which include u, d, s and c quark vacuum polarization. Our result
for the branching fraction is Bðϒð2SÞ → ηbð1SÞγÞ ¼ 5.4ð1.8Þ × 10−4, which agrees with the current
experimental value.
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I. INTRODUCTION

Quantum chromodynamics (QCD) has been accepted as
the theory describing the strong force of nature ever since
the discovery of the J=ψ . Since then, there has been a long
history of using the spectrum and decays of heavy
quarkonia in order to understand QCD, heavy quarkonia
being the ideal theoretical testing grounds when using
potential models, and more recently, lattice QCD. Heavy
quarkonium states below threshold are very narrow, and
electromagnetic transition rates are therefore significant.
Comparing the theoretical and experimental rates for these
decays then provides a very clear test of our understanding
of the internal structure of heavy quarkonia.
A certain class of electromagnetic transitions between

quarkonium states, known as hindered M1 transitions,
requires a spin-flip between different radial excitations
and is particularly sensitive to small relativistic effects [1]
which can illuminate the dynamics of the initial and final
state systems. These hindered M1 transitions still remain a
challenge from both the experimental and theoretical
perspective. Within the bottomonium sector, such decays
include the ϒð2SÞ → ηbð1SÞγ radiative transition, where
BABAR measured Bðϒð2SÞ→ηbð1SÞγÞ¼3.9ð1.5Þ×10−4

[2] in 2009.
On the theory side, hindered M1 decays have been

notoriously difficult to pin down from within a potential
model framework [1], where systematic errors are hard to
quantify and branching fractions ranging from 0.05 × 10−4

to 15 × 10−4 are found. The reasons for the difficulty in
accurately predicting these decays from within a potential
model will be discussed in Sec. VI. The continuum
effective field theory approach called potential non-rela-
tivistic QCD (pNRQCD) has been used to predict radiative
bottomonium decays, including M1 transitions. While
these calculations have become quite precise for the
allowed 1S → 1S M1 transitions, the results for hindered
M1 transitions are dominated by theoretical uncertainties
and presently can only give an order-of-magnitude esti-
mate [3,4].
Lattice NRQCD is a first principles tool that has been

systematically improved by the HPQCD collaboration and
can aid in reliably pinning down this difficult to predict
decay. Using this formalism, one can accurately overcome
each of the issues arising from within a potential model
framework. Previous exploratory work on this decay in a
lattice NRQCD framework was done in [5,6]. We make a
number of improvements to those studies so that an
accurate calculation can be done, complete with a full
error budget. Some of these improvements include using
one-loop radiative corrections in the NRQCD action and
we show in Sec. V that these decays are very sensitive to a
subset of these radiative corrections.
This paper is organized as follows. In Sec. II we set up

notation and formulas relevant to this decay, and in Sec. III
we give details of the computational setup including a
discussion of states in NRQCD at nonzero momentum.
In Sec. IV the different currents mediating this transition
in NRQCD are shown and the perturbative calculation
of the matching coefficient from the leading order
current to full QCD is performed. Finally, analysis of
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the ϒð2SÞ → ηbð1SÞγ decay rate with a full error budget is
given in Sec. V. We conclude with a discussion in Sec. VI.

II. DECAY RATES FOR RADIATIVE
TRANSITIONS

BABAR has measured the branching fraction of the
ϒð2SÞ → ηbð1SÞγ decay as 3.9ð1.5Þ × 10−4 [2], which
when combined with the ϒð2SÞ total width 31.98�
2.63 keV [7], gives the decay rate 1.25ð49Þ × 10−2 keV.
The large errors on the branching fraction are due to the
difficulty in isolating the small ηbð1SÞ signal from other
nearby photon lines (χbJð2P; 1PÞ → ϒð1SÞγ, ϒð3S; 2SÞ →
ϒð1SÞγ) and from the large background in the energy
spectrum of inclusive decays [8].
We want to perform an accurate and reliable theoretical

calculation to compare to this experimental result.
Computation of the theoretical decay rate requires the
matrix element of the appropriate operator between the
ϒð2SÞ and ηbð1SÞ states as input. In a Lorentz-invariant
theory, using the fact that the matrix element transforms as
a vector under parity (and parity invariance of our theory),
the only possible decomposition of the matrix element is

hηbðmSÞðkÞjjμð0ÞjϒðnSÞðp; ϵðp; λÞÞi

¼ 2Vϒηb
nm ðq2Þ

mϒðnSÞ þmηbðmSÞ
εμνρσpνkρϵðp; λÞσ; ð1Þ

where q is the photon momentum, ϵðp; λÞσ is the polari-
zation vector of the ϒðnSÞ and p ¼ kþ q by momentum
conservation. Using time reversal invariance, one can
show that Vϒηb

nm ðq2Þ is real [9]. As the ϒð2SÞ is a b̄b bound
state, this M1 (spin-flip) transition can occur by flipping
the spin on either the quark or the antiquark. Since this
is a symmetric process, the form factor resulting from
coupling the current to the quark or to the antiquark is then
identical. In our lattice calculation we only couple the
current to the quark (c.f. Sec. IV) and actually com-
pute Vϒηb

nm ðq2Þjlat ¼ Vϒηb
nm ðq2Þ=2.

The decay rate can now be written as

Γðϒð2SÞ → ηbð1SÞγÞ

¼ 16αQEDe2q
3

jqj3
ðmϒð2SÞ þmηbð1SÞÞ2

jVϒηb
21 ð0Þjlatj2; ð2Þ

where αQED is the fine structure constant, eq is the quark
charge in units of e (i.e., −1=3 for b quarks) and jqj ¼
ðm2

ϒð2SÞ −m2
ηbð1SÞÞ=2mϒð2SÞ by energy conservation, ensur-

ing that the photon is on shell with q2 ¼ 0. Thus, from the
theoretical perspective, the most challenging part of cal-
culating the decay rate from first principles is computing
the single unknown dimensionless hadronic form factor
Vϒηb
21 ðq2 ¼ 0Þ, which encodes the nonperturbative effects

of QCD. This quantity can be calculated in lattice QCD,
and this study will focus on the computation of
Vϒηb
21 ðq2 ¼ 0Þjlat.
Using the experimental value of the decay rate men-

tioned above, as well as jqj ¼ 609ð5Þ MeV measured from
experiment [2] and αQED ¼ 1=137, we infer

Vϒηb
21 ðq2 ¼ 0Þjexp ¼ 0.069ð14Þ: ð3Þ

This form factor can be directly compared to
Vϒηb
21 ðq2 ¼ 0Þjlat. From now on, we drop the jlat subscript

to avoid superfluous notation.

III. COMPUTATIONAL DETAILS

A. Second generation Nf ¼ 2þ 1þ 1
gluon ensembles

Our calculation uses gauge field configurations gen-
erated by the MILC collaboration [10]. For the gauge
fields, they used the tadpole-improved Lüscher-Weisz
gauge action, fully improved to Oðαsa2Þ. This is possible
as the gluon action has coefficients corrected perturba-
tively through OðαsÞ, including pieces proportional to the
number of quark flavors in the sea [11]. These ensembles
are said to have 2þ 1þ 1 flavors in the sea, the up and
down quarks (treated as two degenerate light quarks
with mass ml), the strange quark, and the charm quark.
The sea quarks are included using the HISQ formulation
of fermions [12], fully improved to Oðαsa2Þ, removing
one-loop taste-changing processes and possessing
smaller discretization errors compared to the previous
staggered actions.
Five ensembles were chosen, spanning three lattice

spacing and three values of ml=ms, so that any dependence
on the lattice spacing and sea quark mass could be fit and
extrapolated to the physical limit. Details are given in
Table I. Due to the computational expense, most of the

TABLE I. Details of the gauge ensembles used in this study. β is
the gauge coupling. aϒ is the lattice spacing determined from the
ϒð2S − 1SÞ splitting [13], where the error combines statistics,
experiment and the dominant NRQCD systematic error. amq are
the sea quark masses, Ns × NT gives the spatial and temporal
extent of the lattices in lattice units and ncfg is the number of
configurations in each ensemble. We use 16 time sources on each
configuration to increase statistics. Ensemble 1 is referred to as
“very coarse,” 2, 3, and 4 as “coarse,” and 5 as “fine.”

Set β aϒðfmÞ aml ams amc Ns × NT ncfg

1 5.8 0.1474(15) 0.013 0.065 0.838 16 × 48 1020
2 6.0 0.1219(9) 0.0102 0.0509 0.635 24 × 64 1052
3 6.0 0.1195(10) 0.00507 0.0507 0.628 32 × 64 1000
4 6.0 0.1189(9) 0.00184 0.0507 0.628 48 × 64 1000
5 6.3 0.0884(6) 0.0074 0.037 0.440 32 × 96 1008
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ensembles use heavier ml than in the real world; however
one of the ensembles used in this study (set 4 in Table I) has
physical aml=ams, enabling our calculations to be per-
formed at the physical point and reducing uncertainties
associated with unphysically heavy sea quark masses.
Successive configurations generated within each ensem-

ble are expected to be correlated. These autocorrelations in
meson correlators were studied in [13] for the ensembles
in Table I. There we find that the autocorrelations for
bottomonium correlators are not appreciable and that the
configurations can be treated as statistically independent.
The ensembles have been fixed to Coulomb gauge to allow
nongauge invariant smearings to be used, helping extract
precise results for the excited states in our calculation
(c.f. Sec. III D).

B. b quarks using NRQCD

This study focuses purely on bottomonium processes,
and information on these processes can be computed on
the lattice using combinations of b-quark propagators,
calculated on the gluon ensembles listed in Table I. As the
b quark has a Compton wavelength of about 0.04 fm,
these lattices cannot resolve relativistic b-quark formu-
lations, owing to a > 0.08 fm. However, it is well known
that b quarks are very nonrelativistic inside their bound
states (v2 ≈ 0.1), and thus, using a nonrelativistic effec-
tive field theory (NRQCD) for bottomonium states is very
appropriate. Within NRQCD, with expansion parameter v
(the velocity of the quark inside the bound state), one
writes down a tower of operators to a certain order in v
allowing for a systematic inclusion of ever-decreasing
relativistic corrections. This effective field theory is then
discretized as lattice NRQCD [14]. There are a number
of systematic improvements which need to be made in
order to produce highly accurate results. These will be
addressed shortly.
We use a lattice NRQCD action correct through Oðv4Þ,

with additional spin-dependent Oðv6Þ terms1 and include
discretization corrections. This lattice formalism has
already been used successfully to study bottomonium
S, P and D wave mass splittings [13,15], precise hyper-
fine splittings [16,17], B meson decay constants [18],
ϒ and ϒ0 leptonic widths [19] and B, D meson mass
splittings [17]. The Hamiltonian evolution equations can
be written as

Gðx; tþ 1Þ ¼ e−aHGðx; tÞ
Gðx; tsrcÞ ¼ ϕðxÞ ð4Þ

with

e−aH ¼
�
1 −

aδHjtþ1

2

��
1 −

aH0jtþ1

2n

�
n
U†

t ðxÞ

×

�
1 −

aH0jt
2n

�
n
�
1 −

aδHjt
2

�
; aH0¼ − Δð2Þ

2amb
;

aδH ¼ aδHv4 þ aδHv6 ; ð5Þ

aδHv4 ¼ −c1
ðΔð2ÞÞ2
8ðambÞ3

þ c2
i

8ðambÞ2
ð∇ · ~E − ~E · ∇Þ

− c3
1

8ðambÞ2
σ · ð ~∇ × ~E − ~E × ~∇Þ

− c4
1

2amb
σ · ~Bþ c5

Δð4Þ

24amb
− c6

ðΔð2ÞÞ2
16nðambÞ2

aδHv6 ¼ −c7
1

8ðambÞ3
fΔð2Þ; σ · ~Bg

− c8
3

64ðambÞ4
fΔð2Þ; σ · ð ~∇ × ~E − ~E × ~∇Þg

− c9
i

8ðambÞ3
σ · ~E × ~E: ð6Þ

The parameter n is used to prevent instabilities at large
momentum due to the kinetic energy operator. A value of
n ¼ 4 is chosen for all amb values. A smearing function
ϕðxÞ is used to improve projection onto a particular state
in the lattice data. Using an array of smearing functions to
improve the overlap with the ground state and the first
excited state will prove crucial to obtaining accurate
results for the ϒð2SÞ → ηbð1SÞγ decay. To evaluate the
propagator, we use random wall sources that are imple-
mented stochastically with Uð1Þ white noise, signifi-
cantly improving the precision of the S-wave states [13].
Here, amb is the bare b quark mass, ∇ is the symmetric

lattice derivative, with ~∇ being the improved version, and
Δð2Þ, Δð4Þ are the lattice discretizations of ΣiD2

i , ΣiD4
i

respectively. ~E, ~B are the improved chromoelectric and
chromomagnetic fields, details of which can be found in
[13]. Each of these fields, as well as the covariant
derivatives, must be tadpole improved using the same
improvement procedure as in the perturbative calculation
of the matching coefficients [13,20] (thus removing
unphysical tadpole diagrams from using the Lie group
element rather than the Lie algebra element in the con-
struction of the lattice field theory). We take the mean trace
of the gluon field in Landau gauge, u0L ¼ h1

3
TrUμðxÞi, as

the tadpole parameter, calculated in [13,18].
The matching coefficients ci in the above Hamiltonian

take into account the high-energy UV modes from QCD
processes that are not present in NRQCD. Each ci can be

expanded perturbatively as ci ¼ 1þ cð1Þi αs þOðα2sÞ and,
after tadpole improvement, we expect the radiative correc-

tions cð1Þi to be Oð1Þ. Each cð1Þi can then be fixed by
1The quantities relevant to this study are insensitive to the

spin-independent Oðv6Þ terms within our precision.
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matching a particular lattice NRQCD formalism2 to full
continuum QCD. These corrections have previously been
computed [13,20]. Alternatively, particular cis can be tuned
nonperturbatively, which we discuss in Sec. V B 9.
A high-precision calculation with a reliable error budget

will require knowledge of at least the OðαsÞ corrections to
the matching coefficients. For example, when tuning the
quark mass amb fully nonperturbatively in NRQCD, one
computes the kinetic mass of a hadron3 [13]. This kinetic
mass depends on the internal kinematics of the hadron, and
hence on the terms c1, c5, and c6 in the Hamiltonian. Using
the one-loop corrected coefficients to these terms has a
small but visible effect on the kinetic masses and hence on
the value of the tuned amb [13].
In addition to this, for an Oðv4Þ NRQCD action with

c4 ¼ 1, the kinetic mass for the ηb is actually found to be
larger than that of the ϒ [13], opposite to what is seen at
zero momentum and, more importantly, in experiment. The
explanation is that the σ · B term gives rise to the hyperfine
splitting, and the splitting from this term is correctly
included in the static mass (the mass at zero energy, offset
due to removing the mass term from the Lagrangian).
However, relativistic corrections to σ · B (the term propor-
tional to c7 in the Hamiltonian above) are needed to
correctly feed this splitting into the kinetic mass. On a
fine lattice, a value of c4 ¼ 1.18 and c7 ¼ 1.25 was needed
to yield a hyperfine splitting using kinetic masses which
agreed with experiment within errors [16]. In order to
remove the sensitivity to the σ · B term when tuning amb,
one does not use the kinetic mass of a single state, but
the spin-averaged kinetic mass of the ϒ and ηb [13,21].
Including aδHv6 terms in the evolution equations makes the
ηb kinetic mass lower than that of the ϒ, as they include
relativistic corrections to the σ · B term. The spin-averaged
kinetic mass gets smaller and the bare quark mass gets
larger [16].
The parameters used in this study are summarized in

Table II. There, c1; c5 and c6 are the correct values for a v4

NRQCD action [13], but the small changes to these
coefficients in going to a v6 NRQCD action have a
negligible effect on the quantities studied here, as shown
in Fig. 7. While the amb values from ensembles 1, 2 and 5
listed in Table II have all been tuned against the spin-
averaged kinetic mass using the Hamiltonian above [16],
the amb values from ensembles 3 and 4 were previously
tuned without the aδHv6 terms [18]. Ensembles 2, 3 and 4
are all coarse lattices and only differ by having different
light quark masses in the sea. Ensemble 2 has a correctly

tuned amb ¼ 2.73 for the Hamiltonian we use, correspond-
ing to mb ¼ 4.418 GeV. It is appropriate to tune the amb
values on the other coarse lattices to match this physical
value. Using the lattice spacings listed in Table I, we find
the amb values on ensemble 3 and 4 listed in Table II. All
these ensembles have essentially the same value of the
lattice spacing, so the running of the bare mass is a
negligible effect. This was observed with a Oðv4Þ
Hamiltonian [13].
Within NRQCD, the Dirac field Ψ can be written in

terms of the quark ψ and antiquark χ as Ψ ¼ ðψ ; χÞT . The
propagator is then found to be

SðxjyÞ ¼
�
Gψ ðxjyÞ 0

0 −GχðxjyÞ
�
;

where GψðxjyÞ is the two-spinor component quark propa-
gator and GχðxjyÞ is the two-spinor component antiquark
propagator. γ5 hermicity becomes Gψ ðxjyÞ ¼ −G†

χðyjxÞ.
As such, we write our interpolating operators as in Table III
and then use the above decomposition, with suitable
boundary conditions, to write the correlator in terms
of Gψ ðxjyÞ.

TABLE II. Parameters used for the valence quarks. amb is the
bare b-quark mass in lattice units, u0L is the tadpole parameter.
The ci are coefficients of terms in the NRQCD Hamiltonian [see
Eq. (6)]. Details of their calculation can be found in [13,20]. c3,
c7, c8 and c9 are included at tree level. We also list the values of
αs used to determine the one-loop corrections in the perturbative
matching in Sec. IVA and for the error budget in Sec. V D.

Set amb u0L c1, c6 c2 c4 c5 αsðπ=aÞ
1 3.31 0.8195 1.36 1.29 1.23 1.21 0.275
2 2.73 0.8346 1.31 1.02 1.19 1.16 0.255
3 2.68 0.8349 1.31 1.02 1.19 1.16 0.255
4 2.66 0.8350 1.31 1.02 1.19 1.16 0.255
5 1.95 0.8525 1.21 0.68 1.18 1.12 0.225

TABLE III. The local bilinear operators used in this study. Note
the iγ5 is needed to make the overlaps real [9]. The second
column gives the JPC states that these operators create at rest in an
infinite-volume continuum. The third column gives the helicity
eigenvalues λ that these operators create at nonzero momentum in
an infinite-volume continuum which is only rotationally invari-
ant, while the J in brackets are the states which contribute to that
helicity (c.f. Sec. III E).

OΓðxÞ JPC λð←JPÞ
ψ̄iγ5ψ 0−þ 0−ð←JP ¼ 0−; 1þ; 2−;…Þ
ψ̄γiψ 1−−

0þð←JP ¼ 0þ; 1−; 2þ;…Þ
j1jð←J ¼ 1; 2; 3;…Þ

2Changing the NRQCD action can modify the Feynman rules
used in the computation of cð1Þi in perturbation theory, in general
changing its value.

3The static mass (the energy corresponding to zero-spatial
momentum) in lattice NRQCD [13] is shifted due to the removal
of the mass term from the Hamiltonian and so one can only tune
static mass differences fully nonperturbatively.
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C. Noninteger momentum on the lattice

Using periodic boundary conditions (PBC) for the quark
fields forces the momentum components to be pi ¼ 2πni=L,
where ni is an integer. The issue with this is that processes
which occur at a specific momentum, such as those needed
for an on-shell photon in the form factor Vϒηb

21 ðq2 ¼ 0Þ,
cannot be reached at an integer-valued momentum. Here, we
use “twisted boundary conditions” (θBC) [22,23] in order to
find the matrix element at the physical q2 ¼ 0 point. There
are some subtleties with using θBC in our calculation that,
to our knowledge, are not found in the literature, and we give
an explicit example of the construction of our twisted
correlators in Appendix B. As seen there, and confirmed
by numerical data, the twisted and untwisted correlator data
should agree (if the same momentum is used) on a
configuration level if everything is done correctly.
In our calculations, we choose pi ¼ pf ¼ q ¼ 0 and

only twist a single propagator so that pθ
f ¼ −qθ ¼ θ. The

choice of isotropic twist momentum θ ¼ χ0ð1; 1; 1Þ ×
2π=L that gives q2 ¼ 0 depends on the specific process
under study and for theϒð2SÞ → ηbð1SÞγ decay χ0 is found
from (2) as

χ0 ¼
L

2
ffiffiffi
3

p
π

m2
ϒð2SÞ −m2

ηbð1SÞ
2mϒð2SÞ

ð7Þ

yielding jqθj2 ¼ jθj2. We choose an isotropic momentum as
it has been shown to reduce discretization errors from
rotational symmetry breaking [13]. Since static masses
obtained from correlators at rest are shifted by an arbitrary
value in NRQCD, tuning χ0 from lattice data would require
a more lengthy computation of the kinetic masses. Instead,
we use the experimental values of these masses [7] to tune
χ0 and check that q2 ¼ 0 from the results.

D. Energies and amplitudes from lattice QCD

Extracting matrix elements on the lattice requires knowl-
edge of the lattice amplitudes and energies corresponding
to the states being studied. The lattice quantity which most
naturally encodes information on these is the two-point
correlator

C2ptðnsrc; nsnk;pθ; tÞ
¼

X
x

e−ix·p
θhOðnsnk;x; tþ t0ÞO†ðnsrc; 0; t0Þi: ð8Þ

Here, t0 is the source time, nsrc, nsnk are the smearing type
(discussed below) and pθ is the twisted momentum. After
performing the Wick contractions with the bilinear oper-
ators listed in Table III, the connected4 correlator has the
form

C2ptðnsrc; nsnk;pθ; tÞ
¼

X
x

e−ix·p
θ
Tr½ΓsrcSð0jx; nsrc; nsnkÞΓsnk

~Sθðxj0Þ�;

where ~Sθ is the twisted propagator (c.f. Appendix B). We
use smearing functions ϕsrcðrÞ, ϕsnkðrÞ on the antiquark
field at the source and sink respectively. We employ
hydrogenlike wave functions which have been successful
in previous studies of b-physics: ϕðrÞ ¼ δr;0, expð−r=r0Þ,
ð2r0 − rÞ expð−r=2r0Þ. r0 is the smearing radius, and we
point the reader to [13] for further details on the smearings.5

The different smearing combinations used in this study give
a 3 × 3 matrix of correlators. We do not smear the quark
fields due to complications on using twisted-smeared fields
as outlined in Appendix B.
The two-point correlator in (8) can be spectrally decom-

posed as

C2ptðnsrc; nsnk;pθ; tÞ ¼
Xnexp
k¼1

aðnsnk; kÞa�ðnsrc; kÞe−Ekt; ð9Þ

where Ek is the ðk − 1Þth energy excitation of the inter-
polating operator OðxÞ used in the construction of the
correlator and aðnsrc=nsnk; kÞ are the corresponding ampli-
tudes, labeled by the smearing used at the source or sink.
We are only interested in the first few excited states, so we
do not need to worry about multiparticle states or the open
b-threshold. Our two-point correlators are propagated for a
maximum of t=a ¼ 15 time slices, as after this the locally
smeared correlator on a fine lattice is largely saturated by
the ground state. In addition, correlators were calculated
with 16 different time sources on each configuration in
order to increase statistics. To avoid complications due to
correlations between these time sources, correlators were
then averaged over all sources on the same configuration.
We fit the 3 × 3 matrix of correlators from t=a ¼ 1 − 15

using a simultaneous multiexponential Bayesian fit [24,25]
to the spectral decomposition in (9). Different smearings
give rise to different amplitudes and so we take priors
on them to be 0.1(1.5). The priors on the ground state
energies are estimated from previous results and given
a suitably wide width [13]. For the zero-momentum
case, prior information tells us that the energy splittings
Enþ1 − En are of the order 500(250) MeV, while for the
nonzero-momentum case, priors of 480(250) MeVare used
(due to the inclusion of additional states in the correlator;
see Sec. III E). Logarithms of the energy splittings are taken
in the fit to ensure that the ordering of states is preserved,
helping the stability of the fit [25].

4Disconnected diagrams for heavy quarkonia are expected to
be negligible as they are suppressed by the heavy quark mass [9].

5We use the smearing types l; g; e as described in that
reference.
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E. Energy eigenstates in lattice NRQCD

Theoretically, particle states living in the Hilbert space
are classified in terms of invariant quantities within
irreducible representations (irreps) of the symmetry group
of a theory. For our calculation, two groups need to be
considered: the Lorentz group and the continuous rotational
group in three dimensions. Appendix A reviews the
construction of the irreps of both these groups at zero
and nonzero momentum.
As is well known, the irreps of the Lorentz group at rest

are described by jp2 ¼ m2; JPC;Mi, where J, M are the
total and third component of angular momentum respec-
tively. P is the parity quantum number and for quarkonia C
is the charge conjugation. The quantum numbers JPC

classify all particles seen in experiments to date [7].
However, the symmetry group of NRQCD is only the

rotational group. At zero momentum, the states within such
a theory are also described by jp ¼ 0; JPC;Mi. At nonzero
momentum, the situation is significantly different, and the
irreps are described by jp ≠ 0; λi, where λ is an eigenvalue
of the helicity operator λ̂ ¼ p̂ · Ĵ=E. This has important
consequences for the energy spectrum extracted from
our lattice calculation (compare the zero- and nonzero-
momentum lattice spectrum seen in Figs. 1 and 2) and
therefore needs to be fully understood in order to have a
reliable computation.
At rest the bilinear operators that we use in our

calculation, listed in Table III with Γ ¼ iγ5; γi, overlap
onto definite JPC ¼ 0−þ, 1−− energy eigenstates respec-
tively in the infinite-volume continuum version of our
theory (which is rotationally invariant) [26]. In Appendix A
(as in [26]) it is shown that at nonzero momentum, Oγ5ðpÞ
is a helicity operator which creates a definite λ ¼ 0− energy
eigenstate, but OγiðpÞ creates an admixture of λ ¼ 0þ, �1

eigenstates, where these λ get contributions from JP values
as listed in the third column of Table III. The � superscript
on the λ ¼ 0 represents the eigenvalue ~η≡ Pð−1ÞJ from
the Π̂ symmetry (a parity transformation followed by a
rotation to bring the momentum direction back to the
original direction) [26].
In the correlator data from using Oγ5ðp ≠ 0Þ, guided

by the experimental masses and this analysis, the lowest
states in the spectrum should be ηbð1SÞð¼ 0−þÞ,
χb1ð1PÞð¼ 1þþÞ, ηbð2SÞð¼ 0−þÞ, etc. whereas from using
OγiðpÞ the lowest states in the spectrum should be
ϒð1SÞð¼ 1−−Þ, hbð1PÞð¼ 1þ−Þ, ϒð2SÞð¼ 1−−Þ, etc.
These are the JP states which we see in our lattice spectrum
at nonzero momentum.
The first three states extracted from the spectrum with

the operator Oγ5, Oγi are shown in Figs. 1 and 2 respec-
tively. On the same plot, the solid lines represent the energy
of the states according to a nonrelativistic, rotational
dispersion relation reconstructed using the experimental

masses, e.g., aEðjpjÞ ¼ amsim þ jpj2=2amkin, where mkin

is the kinetic mass which we set equal to the experimental
mass, and msim is the static mass offset due to neglecting
the mass term in the NRQCD Hamiltonian. We find amsim

in the correlator data from the Oγ5 operator by taking
the ground state lattice energy at zero momentum and
finding the shift in the static mass as the difference
aΔ ¼ amexp

ηbð1SÞ − amlat
ηbð1SÞ. We then use this value of the

shift to find amexp;sim
JPC ¼ amexp

JPC − aΔ, to be used in the

above dispersion relation. We found the shift in the Oγi

correlator data in the same way.
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FIG. 1 (color online). The first three energies extracted from
the lattice NRQCD correlator data with the operator Oγ5 across
multiple momenta. Statistical errors only. At nonzero momentum,
the energy of the first excited state is lower than the energy of the
first excited state at zero momentum. This is a consequence of
new states being present in the correlator data at nonzero
momentum, as described in Sec. III E. Thus, care must be taken
not to misidentify states. aEexp represents the energy of the states
according to a nonrelativistic, rotational dispersion relation
reconstructed using the experimental masses, details of which
can be found in the text.
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The important point to observe in these figures is that at
nonzero momentum the energy of the first excited state is
actually lower than the energy of the first excited state at
zero momentum, opposite to what one would expect from a
dispersion relation. The reason is clear: at nonzero momen-
tum energy eigenstates have definite helicity, not definite
JP. Therefore our correlator data get contributions from the
JP states listed in Table III.
We conclude that, as Figs. 1 and 2 show, one has to

be careful in equating the states found in NRQCD at
nonzero momentum with continuum JPC quantum num-
bers and also in extracting matrix elements involving a
state in flight. However, here we only extract excited
states at zero momentum in order to avoid unnecessary
complications and to obtain high-precision results,
which can be muddled when extracting excited states
in flight due to the addition of extra states in the
spectrum and their small overlap factors as described
in Appendix A. After our analysis, we can then be sure
that we have extracted the correct matrix element for the
ϒð2SÞ → ηbð1SÞγ decay.

F. Matrix elements from lattice QCD

The simplest quantity which encodes information on a
meson-to-meson decay matrix element from within lattice
QCD is the three-point correlator

Cmn
3ptðnsrc; nsnk;pθ

f ¼ −qθ; t; TÞ
¼

X
x;y

e−ix·p
θhOfðnsnk;x; TÞJnðqθ; y; tÞOm†

i ðnsrc; 0; 0Þi;
ð10Þ

where Om
i , Of are interpolating operators which create the

initial state with polarization m and final state respectively,
Jnðqθ; y; tÞ ¼ ψ†Γnðqθ; y; tÞψ is the current which induces
the transition with n labeling the polarization of the photon,
and the twisted momenta are described in Sec. III C. The
three-point correlator is visualized as in Fig. 3 where the
three points in lattice units correspond to the source point
of the initial particle at time t0 [equal to zero in (10)]; the
position and time of the current causing the transition at
(y, t); and the position and time of the final state at (x, T).
After performing Wick contractions on the three-point
correlator the connected contribution, written in terms of
NRQCD propagators as discussed in Sec. III B, is

Cmn
3ptðnsrc;nsnk;pθ

f ¼−qθ;t;TÞ
¼−

X
x;y

e−ix·p
θ
Tr½Γm

i Gχð0jxÞΓf
~Gθ
ψ ðxjyÞΓnðqθ;yÞGψ ðyj0Þ�;

ð11Þ

where the twisted propagator ~GθðxjyÞ is defined in
Appendix B. Direct computation of the propagator
GðxjyÞ is unnecessarily expensive as we can use the
sequential source technique (SST) [9,27] to yield the
desired propagator, which only requires one further evo-
lution. There are two ways to package the GðxjyÞ propa-
gator in the three-point correlator when using the SST. The
first is called the fixed current method, which requires the
insertion time t to be fixed and for propagator 2 in Fig. 3 to
be used as a source for propagator θ. However, this method
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FIG. 2 (color online). As in Fig. 1 but with the operator Oγi.

FIG. 3 (color online). Setup for the three-point correlator
calculation as described in Sec. III F. Propagator 1 is the antiquark
and ξðxÞ is the random noise source as described in the text.
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does not scale well and is undesirably expensive for
relativistic quark formalisms.
The second approach is called the fixed sink method.

In this approach, one fixes the sink time T and factorizes
(11) as

Cmn
3ptðnsrc; nsnk;pθ

f ¼ −qθ; t; TÞ
¼ −

X
y

e−iy·θTr½Γm
i H

θ†ðyj0ÞΓnðqθ; yÞGψðyj0Þ� ð12Þ

with

Hθðyj0Þ ¼
X
x

eix·pGθ
ψ ðyjxÞΓ†

fGψðxj0Þ;

where we have written Hðyj0Þ in terms of the twisted
propagator that satisfies periodic boundary conditions and
used the fact that Γf commutes with the exponential as
described in Appendix B. We have also used the NRQCD
γ5-hermicity conditions from Sec. III B, and used
G†

ψ ðxjyÞ ¼ −Gψ ðyjxÞ because GðxjyÞ ¼ hψðxÞψ†ðyÞi.
We can obtain Hθðyj0Þ by using the twisted evolution
equations with the source eix·pΓ†

fGψ ðxj0Þ.
Clearly, the two methods should give the same correlator

data as they only differ in howGðxjyÞ is packaged. We have
checked this numerically and found it to be true on any
given configuration up to machine precision. As the fixed
sink method is more cost effective, this method was used
for the calculation. Our program structure can be visualized
in Fig. 3. Propagator 1 is generated with a smeared, random
wall source at time t0 and propagated to time T where the
sink smearing is applied. Hθðyj0Þ is found by using the
source eix·pΓ†

fG
1
ψ ðxj0Þ and evolving backwards in time

using the twisted configurations to a time 0 ≤ t ≤ T.
Propagator 2 is made from the same random wall as 1.
We then combine propagator 2, Hθðyj0Þ and the current as
in (12) to obtain the three-point correlator. We use the same
16 time sources as in the two-point correlator and prior to
fitting, all data are translated to a common t0 ¼ 0.
The three-point correlator (10) can be related to matrix

elements of the current by inserting a complete set of states
[9]. By doing so, and using the rotational parametrization of
the overlaps as described in Appendix A, Cmn

3pt is seen to be
antisymmetric. We average over the six nonzero contribu-
tions using an isotropic momentum as

CV
3pt ¼

1

6

X3
l¼1

ϵlmnCnm
3pt: ð13Þ

In addition, inserting the complete set of states also leads
to the functional form of the fitting function

CV
3ptðnsrc; nsnk; θ; t; TÞ
¼

X
i;f

aðnsnk; iÞVfit
ifb

�ðnsrc; fÞe−Eite−EfðT−tÞ; ð14Þ

where aðnsnk; iÞ and bðnsrc; fÞ are amplitudes from the two-
point fitting function in (9). The two-point and three-point
correlators can be simultaneously fit to (9) and (14)
respectively using multiexponential chained [28], margin-
alized [29] Bayesian fitting. Chained, marginalized fitting
has been shown to significantly decrease the fitting time
and produce reliable, precise and accurate results if the data
are in the limit of high statistics (Gaussianly distributed)
[30]. We check that results are compatible from both with
and without chained, marginalized fits on a subset of the
data. We use a prior of 0.1(0.2) for all Vfit

if and the same
priors for the amplitudes and energies as in the two-point
fits described in Sec. III D. For each current, we obtain data
for fixed T ¼ 9; 12; 15 and the same 3 × 3 matrix of
smearings as in the two-point correlators. This allows
accurate extractions of the matrix element as it includes
excited state contributions.
The use of a singular value decomposition stabilizes the

fit and is standard practice in the literature [28]. In our
Bayesian fit, this is performed by setting a tolerance and
replacing all eigenvalues of the correlation matrix smaller
than this tolerance times the maximum eigenvalue to this
value [28]. By doing so, this leads to larger errors in the fit
results and so is a conservative step. We use a tolerance
of 10−4.
The matrix element for the ϒð2SÞ → ηbð1SÞγ decay will

be proportional to Vϒηb
21 . By equating the fitting functions to

their continuum correlator counterparts with conventional
relativistic normalization, parametrizing our overlaps using
rotational invariance with the initial particle at rest, we find

Vϒηb
21 ðq2Þ ¼ mϒð2SÞ þmηbð1SÞ

mϒð2SÞθi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϒð2SÞEηb

q
Vfit
21; ð15Þ

where θ is the twisted momentum described in Sec. III C.
Since the static masses obtained from an NRQCD calcu-
lation are shifted, as explained previously, we extract
Vϒηb
21 ðq2Þ from Vfit

21 using the same experimental masses
as in Sec. II. A nonrelativistic dispersion relation was used
to find Eηbð1SÞ, which is appropriate as shown in Fig. 1.

IV. M1 RADIATIVE DECAY CURRENTS

In order to compute the form factor Vϒηb
nm ðq2Þ, we need to

choose currents which will induce a hindered M1 radiative
decay. Within a nonrelativistic framework, it is a standard
result in the literature [31–33] that the leading order
contribution to the matrix element is suppressed due to
the orthogonality of the radial wave functions and relativ-
istic corrections are necessary. This suppression introduces
a sensitivity to a range of effects that we must test and
quantify in order to perform an accurate calculation. The
first of these effects is the fact that next-to-leading order
current contributions are appreciable and we need to
include them.
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As we are using NRQCD to simulate the b quark,
choosing the currents from a NRQCD and non-relativistic
quantum electrodynamics (NRQED) effective field theory
is most appropriate. This effective field theory can be
found straightforwardly by extending the SUð3Þ Lie
algebra of NRQCD to a SUð3Þ ×Uð1Þ Lie algebra to
produce NRQCDþ NRQED [3]. Then, in principle, one
could discretize the SUð3Þ × Uð1Þ theory and choose
appropriate currents from the resulting operators.
However, this introduces complications, e.g. the Uð1Þ
magnetic field only decouples from the SUð3Þ chromo-
magnetic field to leading order in the lattice spacing,
resulting in lattice artefact currents which are not present
in the continuum. Calculating such currents would require
more computational resources and make the computation
of the matching coefficients more difficult.
Instead, we are free to choose the currents from the

continuum NRQCDþ NRQED theory and renormalize
these. It is important to understand the power counting
in the NRQCDþ NRQED effective field theory in order to
choose our currents appropriately. Given that NRQCDþ
NRQED is a SUð3Þ ×Uð1Þ effective field theory, it has two
expansion parameters. For NRQCD, we have the standard
expansion parameter v, where v2 ∼ 0.1 for bottomonium.
The only scale available for the on-shell emitted photon is
the photon’s energy j~qγj ∼ 0.6 GeV. Since the photon’s
energy is the difference between the masses of two heavy
S-wave quarkonia, it is of the order j~qγj ∼mv2 ∼ 0.4 GeV.
Thus we can expand our effective field theory in terms of
v only.
We summarize the power counting as
(i) AQED ∼ j~qγj.
(ii) BQED, EQED ∼ j~qγj2.
(iii) The standard QCD power-counting rules for the

QCD fields.
(iv) The knowledge that when a derivative acts on the

photon field, it gives a factor of j~qγj and when acting
on the quark field a factor of pq ∼mv (as the valence
quark knows nothing of the photon momentum in
the initial quarkonium rest frame).

Ordering the operators that induce a M1 (spin-flip)
transition from NRQCDþ NRQED, we find (to next-to-
leading order for our decay andborrowingnotation from [34])

OF ¼ ωF
eeb
2mb

ψ†σ · BQEDψ

OW1 ¼ ωW1

eeb
8m3

b

ψ†fD2; σ · BQEDgψ

OS ¼ ωS
ieeb
8m2

b

ψ†σ · ðD × EQED − EQED × DÞψ

OS2 ¼ ωS2
i3eeb
64m4

b

ψ†fD2; σ · ðD × EQED − EQED × DÞgψ

Otot ¼ OF þOW1 þOS þOS2: ð16Þ

Here, i ~D ¼ i ~∇þ g~Aa
QCDTa are all pure QCD covariant

derivatives, fields marked QED (QCD) are the QED
(QCD) fields and ωi are the matching coefficients needed
to reproduce full QCDþ QED from our effective theory.
Using the power-counting rules above, we find OF ∼ v4,
OW1 ∼ v6,OS ∼ v5 andOS2 ∼ v7. We can then factor out the
photon and electric charge in order to derive the currents
Jkðqθ; y; tÞ which give the decomposition of the matrix
element in (1). For example, the operator OF gives rise to
the current

JkF ¼ −ωF
1

2mb
ψ†ðσ × iqÞke−iq·xψ :

We then write all currents as Jkðqθ; y; tÞ ¼
ψ†Γkðqθ; y; tÞψ so that Γkðqθ; y; tÞ will be what enters
the three-point correlator as in (12). We use the terminology
that the form factor coming from the current JF is called
Vϒηb
21 jF ¼ ωF

~Vϒηb
21 jF, where the tilde implies we have

factored off the matching coefficient from the form factor
in the numerical calculation and this should be applied later
in the analysis. Similar notation is used for the other
currents and we refer to ~Vϒηb

21 ji as unrenormalized form
factors. The final form factor is Vϒηb

21 ¼ P
i ωi

~Vϒηb
21 ji.

It should be noted that there are other currents (sup-
pressed by v or αs) that contribute to this decay and which
might be of interest, notably, the QCD analogues of the
OW1, OS, operators arising from choosing the electric
(magnetic) fields in (16) to be gluon fields and the photon
coming from the full SUð3Þ ×Uð1Þ covariant derivative.
Other operators are those which only occur at loop level in
the full QCDþ QED theory. These can be written as

OW1QCD ¼ −ωW1QCD
ieeb
8m3

b

ψ†

× fAQED · Dþ D · AQED; σ · gBQCDgψ
OSQCD ¼ ωSQCD

eeb
8m2

b

ψ†

× σ · ðAQED × gEQCD − gEQCD × AQEDÞψ
OW2 ¼ ωW2

eeb
4m3

b

ψ†Diσ · BQEDDiψ

Op0p ¼ ωp0p
eeb
8m3

b

ψ†σ · DBQED · Dþ D · BQEDσ · Dψ :

ð17Þ

When attempting power counting on the QCD operators
above, it is helpful to draw the Feynman diagram that such
an operator would produce. Essentially, we need to contract
the gluon field with another, producing another factor of
gv3 at least [14]. Consequently these operators are expected
to be of order αsv8 at most. We confirm numerically that the
form factors from these QCD operators are suppressed as
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expected and they are negligible within the errors of our
final results. Since ωW2;ωp0p occur only at loop level they
are suppressed by OðαsÞ relative to OW1. We introduce a
systematic error for neglected currents in the final analysis.

A. Matching coefficients for the currents

The matching coefficients, ωi, appearing in the operators
in (16) are needed to take into account the high-energy
UV modes from processes in the full theory but not present
in our effective field theory. They have the expansion

1þ ωð1Þ
i αs þOðα2sÞ. Here we compute the one-loop cor-

rection to the coefficient ωF from the leading order current.
Following this, we estimate the errors from neglecting
corrections that we do not calculate.

Our calculation of the one-loop coefficient ωð1Þ
F is very

similar to the computation of the one-loop correction of c4
in [20]. Following that analysis, by matching the current
from NRQCDþ NRQED to continuum QCDþ QED, we
find

ωð1Þ
F ¼ bð1Þσ;QED − ZNR;ð1Þ

m − Ztad;ð1Þ
m − ZNR;ð1Þ

2 − ZNR;ð1Þ
σ;QED ;

ð18Þ

where bð1Þσ;QED ¼ CF=2π is the coefficient of the first order
correction to the quark’s magnetic moment, computed
analytically in continuum QCD following standard tech-
niques. As bσ;QED is UV finite, this allows us to directly
equate results obtained on the lattice to those obtained in
the continuum, since the difference between the schemes
for UV regulation is then irrelevant. In the general matching
procedure the continuum and lattice IR divergences cancel
in the computation of the radiative correction; here, because
of the standard Ward identity, the continuum and lattice

contributions to ωð1Þ
F are separately finite.

ZNR
m , ZNR

2 , ZNR
σ;QED are the renormalization factors of

the bare quark mass, the wave function and the current JF
from (16). These are calculated in lattice NRQCD. We
automatically generate the Feynman rules for a specific
NRQCD action (along with the Symanzik-improved
gluonic action) using the HiPPy package, then compute
the numerical evaluation of these diagrams using the
HPsrc package [35,36]. We use the full v4 NRQCD
Hamiltonian with spin-dependent v6 pieces as defined in

(6). Computation of ZNR;ð1Þ
m and ZNR;ð1Þ

2 is identical to [20].

ZNR;ð1Þ
m will get contributions from mean-field corrections

which we denote as Ztad;ð1Þ
m . We use the Landau mean link

uð2Þ0 ¼ 0.750 [37]. For the action that we use, the tadpole
correction is [20]

Ztad
m ¼ −

�
2

3
þ 3

ðambÞ2
�
uð2Þ0 : ð19Þ

The NRQCD diagrams contributing to ZNR;ð1Þ
σ;QED are shown

in Fig. 4. Since we do not actually include the QED field
in our calculation, there are no tadpole factors from this
term. Note that Fig. 4(a) is generated by the current coming
from ψ†σ · BQEDψ=2amb being inserted at the vertex, and
Figs. 4(b)–4(d) arise from mixing effects from the higher
order currents (that we include in the calculation of the
decay rate) from (16). Computation of the Feynman
diagrams shown in Figs. 4(b)–4(d) is more involved
than that of Fig. 4(a), so they are not included in this
calculation, but we plan on computing them in future work.
For now, we introduce a systematic error from neglecting
these contributions.
A breakdown of the numerical values of the various

terms that enter ωð1Þ
F for the masses that we use in this

calculation is shown in Table IV. ωð1Þ
F was computed for a

range of masses (neglecting the mixing down) and we give
these values in Table V.

We show the values of ωð1Þ
F with a smooth interpolating

curve in Fig. 5. This interpolating curve was chosen to be a
polynomial in 1=amb in order to reproduce the static limit
as mb → ∞. To fit these values easily we increased the
errors on the points returned by HPsrc to 1%. We use a

(a) (b)

(c) (d)

FIG. 4 (color online). Classes of one-loop diagrams which
contribute to Zð1Þ

σ;QED as described in the text. The cross inside a
circle represents the JF current obtained from (16), while the
solid box represents the higher order currents from (16) and the
exchange of a gluon is denoted by a curly line.

TABLE IV. Breakdown of the different terms that go into ωð1Þ
F .

The αsðq� ¼ π=aÞ values are taken from Table II.

amb 1.90 2.70 3.30

Zð1Þ
m þ Zð1Þ

2 þ Zð1Þ
σ;QED

1.2961(5) 0.9061(4) 0.7585(6)

Ztad
m −1.1233 −0.8086 −0.7066

ωð1Þ
F

0.0394(5) 0.1148(4) 0.1603(6)

αsðπ=aÞωð1Þ
F

0.0089(1) 0.0293(1) 0.0441(2)

TABLE V. Values of ωð1Þ
F at various amb values.

amb 1.1 1.5 2.1

ωð1Þ
F

−0.211ð2Þ −0.030ð1Þ 0.0626(9)

amb 2.4 4.0 4.6

ωð1Þ
F

0.0918(7) 0.2039(4) 0.2372(5)
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Bayesian fit to all points in Fig. 5 against a polynomial in
1=amb. We found the smallest χ2=dofðdofÞ ¼ 0.7ð9Þ and
largest Gaussian Bayes factor [24] when including all terms
in the polynomial up to and including the quartic term.
We used a prior for the constant piece as the polynomial
of 0.4(2) and priors for the coefficients of the 1=ðambÞn
pieces of 0(1).

B. Systematic error from current
matching coefficients

We need to include a systematic error from not knowing
the matching coefficients in the currents to infinite pre-
cision. There are two distinct types of errors in this case: the
first is from neglecting the Oðα2sÞ corrections in ωF and
the OðαsÞ corrections to the matching coefficients of the
other currents; the second is from neglecting the mixing

down effects on the values of ωð1Þ
F used in the calculation.

We estimate each of these in turn.
To estimate the effect of neglecting the higher order

corrections that we have not calculated, it is helpful to
compare our result to the pure NRQED calculation of [34].
There, the authors find that the continuum QED contribu-

tion to their ωð1Þ
F is the anomalous magnetic moment of the

electron α=2π, while for us it is the anomalous magnetic
moment of the quark CFαs=2π. For the NRQED contri-
bution, they find neither an IR log nor a constant piece and
in their continuum approach the UV power law divergences
may be omitted. Although we find no IR log in our data, we
cannot neglect the UV power law divergence associated
with the momentum cutoff. This shows up as a polynomial
in 1=amb as mentioned above. We observe that this lattice
artefact contribution gives a negative contribution to the
continuum value, as shown in Table IV, and for the amb

range that we are interested in, jαsωð1Þ
F j < CFαs=2π. As we

are observing similar behavior over this mass range as the
pure NRQED calculation, we can use that calculation to
estimate the error conservatively.
As shown in [34] and confirmed by the small values of

our numerical data, the matching coefficients can actually
be expanded in αs=π. In principle, the second order

coefficient of ωF could be Oð1Þ, and then this contribution
could be Oðα2s=π2Þ. As such, we allow for an additive
systematic error (assumed to be correlated across all
ensembles) of 1� α2s=π2 from not knowing higher order
contributions to ωF.
We have not included the Oðαs=πÞ contributions to the

other matching coefficients in (16), namely ωS, ωW1 and
ωS2. A difficult calculation would be necessary to deter-
mine them. Again, we use the equivalent parameters from
the pure NRQED calculation [34] to estimate the system-
atic error. The pure NRQED equivalent of ωW1 has log
contributions in its first order coefficient and so we allow
for an additive correlated systematic error of 1� αs=π to
the tree level value. We allow the same error on ωS2.
The one-loop correction of the pure NRQED equivalent

of ωS was found to be 2ωð1Þ
F ¼ α=π. As such, we allow for

an additive correlated systematic error on our ωS of
1� CFαs=π, to compensate for using the tree level value
in the calculation of the decay rate. This is a conservative
estimate as we see above that the lattice artefacts actually
subtract away some of this contribution over the mass range
we are interested in.
The mixing down effects from diagrams (b)–(d) in Fig. 4

are difficult to estimate since each graph by itself can be IR

divergent but ωð1Þ
F is IR finite. We allow an uncertainty of

30% in the one-loop coefficient (correlated across all lattice
spacings) from neglecting the mixing down. There is no
substitute for the actual calculation though, and we intend
to do this in the future.

V. RESULTS FOR THE ϒð2SÞ → ηbð1SÞγ DECAY

The unrenormalized form factors, ~Vϒη
21 ðq2 ¼ 0Þji, for

each of the currents obtained from (16) are computed for
each of the ensembles listed in Table I and their values
are given in Tables VI–X. A visual representation of
~Vϒη
21 ðq2 ¼ 0Þji is shown in Fig. 6. From this, we can see

that the form factor from the current JF is leading order, and
the other currents give a negative contribution to JF of
approximately 30%, 20%, 3% for JW1, JS, JS1 respectively
across all ensembles. Note that these values do not appear

1 2 3 4 5
amb

0 6

0 4

0 2

0 0

0 2

0 4

0 6

ω
F

Lattice Results

FIG. 5 (color online). The values ωð1Þ
F with a smooth inter-

polating curve as described in the text.

TABLE VI. Values of the unrenormalized form factors ~Vϒηb
21 ji,

as described in Sec. V, from the lattice NRQCD data on the
ensemble labeled set 1 in Table I. We also give elements of the
correlation matrix. A value of a2q2 ¼ 0.0034ð21Þ was found
from the data.

p Value Cðp; ~VjFÞ Cðp; ~VjW1Þ Cðp; ~VjSÞ
~Vϒηb
21 jF 0.1818(42)

~Vϒηb
21 jW1

−0.0594ð12Þ −0.4010

~Vϒηb
21 jS −0.0339ð17Þ −0.2932 0.1261

~Vϒηb
21 jS1 −0.0037ð3Þ −0.0624 0.3488 −0.2678
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to obey the power counting for the currents given in
Sec. IV; however, we understand (and explain below) that
the leading order contribution is suppressed for these
hindered transitions. Similar behavior was seen in previous
lattice NRQCD studies of this decay [5,6].

We also need to determine the sensitivity of our form
factors to the different parameters used in our calculation
and use this analysis to give a reliable error budget. This is
easily done in lattice NRQCD, as we can simply change
the value of a single parameter and rerun the whole
calculation. The results are shown in Fig. 7, where we
denote p as a parameter to vary (either ci or mb) and use
Δ ¼ ptest − pOðαsÞ to signify an upwards/downwards shift
from the OðαsÞ correct value pOðαsÞ [amb is tuned fully
nonperturbatively but we use amb ¼ pOðαsÞ to avoid addi-
tional superfluous notation]. The values of the changed
parameters are given in Table XI.

JF JW1 JS JS1

Currents

0 2

0 1

0 0

0 1

0 2

Ṽ
η b

21
q2

0
i

Set 1

Set 2

Set 3

Set 4

Set 5

FIG. 6 (color online). The value of the unrenormalized form
factor, as described in the text, arising from each current across
the different ensembles listed in Table I. Statistical error only
(≈2% − 3% for each current).

TABLE VII. Values and correlation matrix elements of the
~Vϒηb
21 ji from the ensemble labeled set 2 in Table I. A value of

a2q2 ¼ 0.00338ð92Þ was found from the data.

p Value Cðp; ~VjFÞ Cðp; ~VjW1Þ Cðp; ~VjSÞ
~Vϒηb
21 jF 0.1765(22)

~Vϒηb
21 jW1

−0.0593ð7Þ −0.5298

~Vϒηb
21 jS −0.0293ð8Þ −0.3803 0.3065

~Vϒηb
21 jS1 −0.0045ð2Þ −0.0134 0.3962 −0.2264

TABLE VIII. Values and correlation matrix elements of the
~Vϒηb
21 ji from set 3 in Table I. A value of a2q2 ¼ 0.0007ð12Þ was

found from the data.

p Value Cðp; ~VjFÞ Cðp; ~VjW1Þ Cðp; ~VjSÞ
~Vϒηb
21 jF 0.1720(36)

~Vϒηb
21 jW1

−0.0577ð10Þ −0.2634

~Vϒηb
21 jS −0.0309ð12Þ −0.1887 0.2733

~Vϒηb
21 jS1 −0.0032ð3Þ 0.0213 0.1346 −0.1634

TABLE IX. Values and correlation matrix elements of the
~Vϒηb
21 ji, from set 4 in Table I. A value of a2q2 ¼ 0.00066ð70Þ

was found from the data.

p Value Cðp; ~VjFÞ Cðp; ~VjW1Þ Cðp; ~VjSÞ
~Vϒηb
21 jF 0.1710(27)

~Vϒηb
21 jW1

−0.0596ð7Þ −0.4441
~Vϒηb
21 jS −0.0289ð10Þ −0.3281 0.2708

~Vϒηb
21 jS1 −0.0038ð2Þ 0.0206 0.1493 −0.3195

TABLE X. Values and correlation matrix elements of the
~Vϒηb
21 ji, from set 5 in Table I. A value of a2q2 ¼ −0.0021ð6Þ

was found from the data.

p Value Cðp; ~VjFÞ Cðp; ~VjW1Þ Cðp; ~VjSÞ
~Vϒηb
21 jF 0.1785(31)

~Vϒηb
21 jW1

−0.0618ð15Þ −0.0703

~Vϒηb
21 jS −0.0276ð10Þ −0.0925 0.1526

~Vϒηb
21 jS1 −0.0060ð5Þ 0.0457 0.3260 −0.0266

c1 c6 c2 c3 c4 c5 c7 mb

Parameters

0 00

0 05

0 10

0 15

0 20

0 25

V
η b

21
q2

0

Δ 0

V ηb
21 q2 0 exp

Δ 0

Δ 0

FIG. 7 (color online). The variation of the form factor with the
parameters used in this study. Δ > 0 (Δ < 0) denotes an upward
(downward) shift in the parameter as described in the text, and the
values of the varied parameters can be found in Table XI. The
data for Δ > 0 (Δ < 0) were generated on a subset of 400
configurations of the coarse lattice denoted set 2 in Table I. Error
is statistical only.
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From Fig. 7 we can see that the form factor is most
sensitive to the value of c4, while c7 and mb are also
important. We need to describe this sensitivity in order to
give a reliable estimate on the error from not knowing each
of these parameters to infinite precision. Interestingly, it is
useful to note that the sensitivity to these parameters comes
from the JF current, as shown in Fig. 8. We use a simple
potential model analysis to understand the deficiencies in
the naive power counting, where these sensitivities arise
from, and to gain insight into this hindered M1 decay.

A. Phenomenological insight: potential
model analysis

In a potential model framework one would consider
periodic harmonic time-dependent perturbations and find
the matrix element as the overlap between the spatial part of

the potential and the initial and final states under study. For
an M1 decay, mediated by either of the constituent quarks’
magnetic moment σ ·B, one can find the matrix element as
[38] (labeling the spatial part of the potential as JF, similar
to the current we use in Sec. IV to highlight comparisons)

hηbðmSÞjJFjϒðnSÞi

¼ Sfi

Z
∞

0

drr2R�
m;ηbðrÞj0

�jqjr
2

�
Rn;ϒðrÞ

with the integral expanded as

Z
∞

0

drr2R�
m;ηbðrÞj0

�jqjr
2

�
Rn;ϒðrÞ

¼ δnm þ a2jqγj2r20 þ a4jqγj4r40 þ � � � : ð20Þ

Here, we have factored the spin piece Sfi in the matrix
element from the radial integral (appropriate in the non-
relativistic limit) and used the Taylor expansion of j0ðxÞ ¼
sinðxÞ=x ¼ P

n ð−1Þnx2n=ð2nþ 1Þ! to see that it is a
polynomial in jqγj2. Additionally, the only scale in the
wave functions capable of being combined with jqγj2 to
make it dimensionless is some combination of the Bohr
radii of each state, which we call r0. The a2l are coefficients
which could be calculated if wave functions were supplied.
The leading Kronecker δ-function in (20) comes from
noting the orthogonality condition in the extreme non-
relativistic limit, jqγj2 → 0.
As can be seen, for a nS → nS transition, the leading

order term in (20) is one. However, for transitions between
different radial excitations, the δnm vanishes and we are
left with a leading order jqγj2r20 term. The radii of the
bottomonium states under study are of the order of the
reciprocal of the typical momentum, e.g, r0 ∼ 1=mv. Thus,
as jqγj2r20 ∼m2v4=ðm2v2Þ ∼ v2, the leading order matrix
element from JF in a radially excited decay is suppressed
by a factor of v2 more than naively expected from using
power-counting rules on the currents alone. This suppres-
sion leads to an array of sensitivities that make this decay
particularly difficult to pin down theoretically from within a
potential model [1], as we expand upon in Sec. VI.
Due to the derivatives in the other currents listed in (16),

the matrix elements of these currents give rise to wave
function overlaps that are not orthogonal in the extreme
nonrelativistic limit, and as such are not more suppressed
for radially excited transitions. The derivatives act on
the initial bottomonium state and give a leading order
p ∼OðmvÞ effect, which does not depend on the photon
momentum, as can be seen by taking the jqγj → 0 limit.
This results in the relativistic corrections to the leading
order JF current, which we have included in our calcu-
lation, having appreciable effects (see Fig. 6), namely JW1,
JS. The orthogonality of the radial wave function muddles

TABLE XI. Values of the varied parameters used to obtain
Fig. 7. Δ > 0 (Δ < 0) denotes an upward (downward) shift in the
parameter as described in the text. pOðαsÞ for Δ ¼ 0 values are
taken from Table II and reproduced here for convenience.

Parameter ptest for Δ < 0 pOðαsÞ for Δ ¼ 0 ptest for Δ > 0

c1 ¼ c6 1.00 1.31 1.50
c2 0.75 1.02 1.25
c3 0.75 1.00 1.25
c4 1.00 1.19 1.50
c5 1.00 1.16 1.50
c7 � � � 1.00 1.50
mb 2.5935 2.73 � � �

JF JW1 JS JS1

Currents

0 2

0 1

0 0

0 1

0 2

Ṽ
η b

21
q2

0
i

c4 1 00

c4 1 19 αs value

c4 1 50

FIG. 8 (color online). How each of the unrenormalized form
factors from the different currents vary with c4. As can be seen,
the sensitivity comes from the JF current. The reason for this is
described in Sec. V B 1.
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up the power counting of the first few currents, but
additional derivatives in relativistic corrections to these
currents will suppress them further. By including the
current JS2, we check that added derivatives do suppress
the contribution of the current further as expected.
By examining (20), we found that the leading order

matrix element for the radially excited radiative transition
can be suppressed more than we would naively expect from
just power counting the current alone. Relativistic correc-
tions to the JF current are then appreciable, explaining the
behavior seen in Fig. 6. Even if we included the relativistic
corrections to the current in a potential model, we still
would not get the correct value for this decay, as we also
need to consider all relativistic corrections to the wave
functions arising from perturbative potentials in the
Hamiltonian. This gives rise to the sensitivities to the
different parameters as seen in Fig. 8, which we explain
below. To do so, it is sufficient to consider first order time-
independent perturbation theory.

B. Sensitivity and errors from terms
in the NRQCD action

We want to consider potentials arising from relativistic
corrections in the NRQCD action causing perturbations of
the wave function. To first order in αs we have

jηbð1SÞið1Þ ¼ jηbð1SÞið0Þ −
X
m≠1

jηbðmSÞið0Þ V
ηb
m1

Eηb
m1

jϒð2SÞið1Þ ¼ jϒð2SÞið0Þ −
X
n≠2

jϒðnSÞið0Þ V
ϒ
n2

Eϒ
n2
: ð21Þ

The state jnið1Þ (jnið0Þ) is the first order perturbed state
(the unperturbed state), Vnm ¼ ð0ÞhnjVjmið0Þ with V being
the potential representing the perturbation and Enm ¼
Eð0Þ
n − Eð0Þ

m . Now, we take currents of interest between
these states to yield

ð1Þhηbð1SÞjJijϒð2SÞið1Þ
¼ ð0Þhηbð1SÞjJijϒð2SÞið0Þ

−
X
m≠1

Vηb
m1

�

Eηb
m1

ð0ÞhηbðmSÞjJijϒð2SÞið0Þ

−
X
n≠2

Vϒ
n2

Eϒ
n2

ð0Þhηbð1SÞjJijϒðnSÞið0Þ: ð22Þ

As mentioned above, for the current JF, due to the fact
that ð0Þhηbð1SÞjJFjϒð2SÞið0Þ is suppressed for radially
excited decays, the ð0ÞhηbðnSÞjJFjϒðnSÞið0Þ pieces in
the second term in (22) become appreciable. The matrix
elements arising from currents with derivatives are
already suppressed, and the first order corrections to
these matrix elements are not appreciable, as seen
in Fig. 8.

1. Sensitivity and error from c4
Including a potential from the exchange of a single gluon

between two vertices involving the chromomagnetic oper-
ator as shown in Appendix C, we find

ð1Þhηbð1SÞjJFjϒð2SÞið1Þ ¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ þ
c24g

2

9m2
bE21

ψ�
1ð0Þψ2ð0Þ

× ð6ð0Þhηbð2SÞjJFjϒð2SÞið0Þ þ 2ð0Þhηbð1SÞjJFjϒð1SÞið0Þ þOðv2ÞÞ

¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ þ
8c24g

2

9m2
bE21

Sfiψ
�
1ð0Þψ2ð0Þ þOðv2Þ: ð23Þ

The reason for the sensitivity to c4 is clear. The matrix
element ð0Þhηbð1SÞjJFjϒð2SÞið0Þ is suppressed due to the
orthogonality of the radial wave functions in (20), while
ð0ÞhηbðnSÞjJFjϒðnSÞið0Þ is not. This results in the second
term in (23) being sizeable compared to the first.
Since we have values of the form factor at three values of

c4 on a coarse lattice as shown in Fig. 8, and an under-
standing that the functional dependence of the form factor

on c4 should be ~Vϒ
F ¼ ac4 þ c24bc4 from (23), we should

check that this is consistent. We use the c4 ¼ 1.00 and c4 ¼
1.19 values from our lattice NRQCD calculation listed
in Table XII to find the values of ac4 and bc4 in Table XIII.

We can also relate the second term from the leading
order approximation in (23) to quantities that are
measured in experiment and check the consistency of
the value of bc4 given in Table XIII. By comparing the
decay rate formulas from a potential model calculation
[9] with the one given in (2), we find

Vϒηb
21 ¼

�
mϒð2SÞ þmηbð1SÞ

2mb

�

×
Z

∞

0

drr2R�
m;ηbðrÞj0

�jqjr
2

�
Rn;ϒðrÞ
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and then using this in (23) yields

c24bc4 ¼
�
mϒð2SÞ þmηbð1SÞ

2mb

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð2SÞΔð1SÞp

E21

þOðv2Þ;

ð24Þ

where ΔðiSÞ is the hyperfine splitting between i’th
radial excitations. Using the values of c4, a and amb
from set 2 in Table II, along with the Particle Data
Group (PDG) average [7] values for ΔðiSÞ and the
spin-averaged E21, we find bc4 ¼ 0.105ð14Þ. This is
consistent with the value of bc4 from Table XIII.
In Fig. 9, we show the strong c4 dependence of

~Vϒηb
21 jF ¼ ac4 þ c24bc4 , along with the the lattice values of

~Vϒηb
21 jF shown in Fig. 8. This illustrates both the need for at

least the OðαsÞ-correct value of c4 and the consistency of
ac4 and bc4 with all our lattice data.
Since we only know c4 to one loop in perturbation

theory, there will be a systematic error associated with not
knowing it to higher orders. With the above functional
dependence of ~Vϒηb

21 jF ¼ ac4 þ c24bc4 , an error of 2α2sbc4
should be introduced from not knowing c4 to second order.
As there is little lattice spacing dependence in the unrenor-
malized form factors as shown in Fig. 6, we use the value of
bc4 from Table XII across all ensembles and introduce an
additive systematic error (correlated across lattice spacings)
of 2α2sbc4 from not knowing c4 to more than one loop. We

also allow for the statistical error in the determination of

cð1Þ4 coming from the Vegas integration [20] by adding an

error of 2αsδc
ð1Þ
4 bc4 .

With the other currents that have derivatives, the sit-
uation is significantly different. Due to the derivatives, the
second term in (22) is always suppressed and relativistic
corrections are not an appreciable effect, as seen in Fig. 8.
Variations of these currents with c4 are not appreciable
within the other errors.

2. Sensitivity and error from c7
The c7 operator is a D2 correction to the c4 term and is

expected to be a Oðv2Þ effect. We can proceed as before,

TABLE XIII. Values of the functional dependency of ~Vϒηb
21 jF with parameters from the action using data from

Table XII. See the text for details. Error is statistical only.

p Value Cðp; ac4Þ Cðp; bc4Þ Cðp; ac7Þ Cðp; bc7Þ Cðp; ac2Þ Cðp; bc2Þ Cðp; amb
Þ

ac4 0.060(16)
bc4 0.083(13) −0.974
ac7 0.194(18) −0.257 0.395
bc7 −0.017ð16Þ 0.202 −0.307 −0.979
ac2 0.179(24) −0.389 0.510 0.486 −0.378
bc2 −0.001ð21Þ 0.366 −0.459 −0.403 0.316 −0.988
amb

0.077(34) −0.382 0.487 0.442 −0.346 0.562 −0.506
bmb

2.04(65) 0.363 −0.448 −0.381 0.300 −0.512 0.469 −0.994

TABLE XII. Values of the form factor ~Vϒηb
21 jF with a variation of certain parameters from the lattice NRQCD data

on a coarse lattice (set 2 in Table I). Error is statistical only.

p Value Cðp; ~Vϒηb
21 jF;c4¼1.00Þ Cðp; ~Vϒηb

21 jF;c4¼1.19Þ Cðp; ~Vϒηb
21 jF;c7¼1.50Þ Cðp; ~Vϒηb

21 jF;c2¼1.25Þ
~Vϒηb
21 jF;c4¼1.00

0.1426(47)

~Vϒηb
21 jF;c4¼1.19

0.1772(44) 0.3040

~Vϒηb
21 jF;c7¼1.50

0.1687(67) 0.0342 0.0472

~Vϒηb
21 jF;c2¼1.25

0.1769(46) 0.2979 0.3352 0.0467

~Vϒηb
21 jF;mb¼2.59

0.1939(48) 0.3070 0.3479 0.0508 0.3411

1 0 1 1 1 2 1 3 1 4 1 5 1 6
c4
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0 15

0 20

0 25

V
η b

21
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ac4 c2
4bc4 Lattice Results

FIG. 9 (color online). The c4 dependence of ~Vϒηb
21 jF as

described in the text, along with the lattice values of ~Vϒηb
21 jF.
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assuming a linear functional dependence on c7 as ~Vϒηb
21 jF ¼

ac7 þ c7bc7 , coming from the exchange of a single gluon
from a c4 vertex and a c7 vertex. Using our data points in
Table XII, we find ac7 ; bc7 listed in Table XIII.
It is seen that bc7 gives a negative contribution as a

consequence of the D2 and the ratio bc7=bc4 ¼ −0.20ð18Þ
should be a Oðv2Þ effect. This is roughly consistent. We
assume a dependence on c7 as bc7 ≈ 2v2bc4 ¼ 0.2bc4 , and
similarly to the c4 error above, introduce an additive
systematic error (correlated across lattice spacings) of
2αsv2bc4 from not knowing c7 past tree level. Just as with
variations of c4, the currents with derivatives are insensitive
to variations of c7 and are all consistent within our small
statistical errors.

3. Sensitivity and error from mb

Using the fact that radial splittings are expected to be
E21 ∼mbv2, by examining (23) we observe that the form
factor should have a functional dependence on mb as
~Vϒηb
21 jF ¼ amb

þ bmb
=m3

b. Using our data points in
Table XII, we find amb

, bmb
listed in Table XIII.

Again, we can check consistency within this first
order approximation. Comparing the assumed functional
forms against the equation from which they came (23),
we find bmb

¼ c24m
3
bbc4 . Thus, using the values of bc4 , bmb

we obtain from the lattice data, we find the ratio
bmb

=c24m
3
bbc4 ¼ 0.85ð35Þ, consistent with 1.0.

We allow for a systematic error from the (small)
uncertainty in mistuning the b-quark mass estimated from
[13]. By using the above inverse cubic functional depend-
ence on mb, we find an error of 3bmb

δmb
=m4

b. Using the
estimate of bmb

in terms of bc4 , we find the error
as 3c24bc4δmb

=mb.

4. Sensitivity and error from c2
From our numerical data, it appears as if the form factor

is not sensitive to a variation in c2. We can understand this
and use it in our analysis of the errors. In Appendix C
we show how the the leading spin-independent perturbative
potential from the exchange of a single gluon involving the
Darwin term at one of the vertices [20] gives rise to a
correction to the leading order matrix element that is
Oðαsv2Þ. Using the data in Table XII for how ~Vϒηb

21 jF
varies with c2, and using the functional form ~Vϒηb

21 jF ¼
ac2 þ c2bc2 , we find the values listed in Table XIII.
To test the consistency of this description, by comparing

the value bc4 associated with the second term in (23) and
the second term in (C5) we see bc2 ≈ 3v2bc4=8. Using the
values in Table XIII gives 3v2bc4=8 ¼ 0.00311ð49Þ, con-
sistent with bc2 ¼ 0.001ð21Þ. Due to the smallness of this
dependency, we can safely neglect the systematic error
from not knowing c2 to two-loop order.

5. Sensitivity and error from c3
Since the bottomonium states under study have no

orbital angular momentum, there is no sensitivity to c3
arising from a spin-orbit perturbing potential. This is
confirmed by the numerical data in Fig. 7. We introduce
no error from c3.

6. Sensitivity and error from four-quark operators

The four-quark operators in NRQCD [13] are contact
terms between the quark and antiquark fields arising from
α2s processes in relativistic QCD. These can have a
noticeable effect on the hyperfine splitting [16]. Since
the matrix element in (23) is sensitive to parameters in
much the same way as the hyperfine splitting, we would
expect contributions from the four-quark operators. In
Appendix C, we show the effect of the four-quark potential
on the matrix element to first order.
We introduce a systematic error (correlated across lattice

sites) for neglecting these leading order four-quark oper-
ators in our calculation. We estimate this by comparing the
second term in (23) with the second term in (C7) to find an
error 27bc4ðd1αs − d2αsÞ=16π and then use the values of
d1αs − d2αs from [20] (as corrected per [39]).

7. Error from missing higher order operators
in the NRQCD action

The terms in the action that have not been considered
are the Oðv2Þ corrections to the c2 and c7 terms. Since the
coefficient bc2 is already quite small, the v2 correction to
this will be negligible within our numerical precision and
can be neglected. The error from v2 corrections to c7 is
estimated as v2bc7 ¼ 2v4bc4 .

8. Total error on ~Vϒηb
21 jF from terms

in the NRQCD action

After performing the final continuum and chiral extrapo-
lation as shown in Sec. V D, we can obtain a breakdown of
how each of the uncertainties arising from the NRQCD
action effects the error in ~Vϒηb

21 jF as a percentage of the error
on the total form factor given in Table XIV. We find that
the errors from the NRQCD action contribute to a 10.4%
systematic error in ~Vϒηb

21 jF as a percentage of the total error
on the total form factor. In order of dominance, the most
sizable of these errors is a 7.9% error from neglecting the
Oðα2sÞ correction in c4, then a 4.4% error from the statistical

error in cð1Þ4 while 3.9% comes from neglecting the one-
loop correction to c7. These numbers should be added in
quadrature and each is a percentage of the total error on the
total form factor.
Note that due to the destructive interference between the

leading order form factor, ~Vϒηb
21 jF, and the other currents as

shown in Sec. V, the error coming from ~Vϒηb
21 jF as a
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percentage of the total error on Vϒηb
21 is larger than the errors

on ~Vϒηb
21 jF alone. As a result, improvement of the errors

coming from the NRQCD action has an appreciable effect.

9. Test of uncertainties from the NRQCD action

To ensure that we have performed a reasonable estima-
tion of the errors arising from the NRQCD action, we have
also tuned c4 against the ϒð1SÞ − ηbð1SÞ hyperfine split-
ting on the coarse lattice denoted set 2 in Table I. In a
perturbative framework as described above, the hyperfine
splitting can be pictured as a result of perturbative poten-
tials shifting the unperturbed energies. The most sizable
of these is the leading order c24 potential, as described in
Sec. V B 1, and then the four-quark potential, as described
in Sec. V B 6. In a numerical calculation with no four-
fermion operators, tuning the numerical hyperfine splitting
against the experimental one would have the effect of
absorbing the above four-fermion term (among others) into
the tuned c4. Stated more concretely,

ðclat4 Þ2 → ðctuned4 Þ2 ¼ c24 −
27

16π
ðd1 − d2Þαs: ð25Þ

Then, putting ðctuned4 Þ2 into (23) gives exactly the four-
fermion term which we need in (C7). As such, using ctuned4

numerically would include the effect of the four-fermion
operator for this decay automatically. For the nonperturba-
tive tuned ctuned4 error budget, there are no c7, leading order
four-quark, or missing v8 operator errors as these will be
absorbed into the value of ctuned4 and fed back into the
matrix element calculation automatically. However, from
(C7) we see there is still an additive systematic error of

3v2ð27=16πÞαsbc4 from only knowing the difference
ðd1 − d2Þ, and not d1 and d2 individually.
The Particle Data Group average for the hyperfine

splitting is Δexp ¼ 62.3ð3.2Þ MeV [7], while our lattice
calculation with c4 ¼ 1.23 gives Δlat ¼ 62.54ð46Þ MeV
(statistical and scale setting error only). We get a value of
ctune4 ¼ 1.230ð5Þð31Þ from tuning c4 against the experi-
mental hyperfine splitting, where the first error is from the
lattice, and the second is from experiment. The change
from the one-loop perturbative value 1.19 to the non-
perturbatively tuned 1.230(5)(31) is well accounted for in
the error budget (see Sec. V B 8) from the statistical error

on δcð1Þ4 alone, and including the higher order corrections to
c4 and the four-quark error is significantly overcompensat-
ing for this change.
Rerunning the computation of the form factor with c4 ¼

1.23 gives a value of Vϒηb
21 ¼ 0.097ð14Þ. This includes all

errors, and the only difference from the above error budget
is that the error in ~Vϒηb

21 jF now comes from ctune4 and the
error from knowing only the difference d2 − d1. This value
is to be compared with the form factor from a perturbatively
tuned c4 shown in Sec. V D, i.e., Vϒηb

21 ¼ 0.089ð22Þ. These
are entirely consistent, giving evidence that our error
budget is a reliable estimation of the errors.
The four-quark operators appear to increase the value of

the form factor, in a similar way as they do for the hyperfine
splitting. However, it was found that including the four-
quark operators in the calculation of the hyperfine splitting
largely changed the slope of the continuum extrapolation but
did not shift the final result away from the value computed
without the four-fermion operators included [16].
Based on our analysis, we estimate that by tuning c4

against the hyperfine splitting on all ensembles and redoing
the full calculation, one could reduce the error on ~Vϒηb

21 jF
to ∼4%. Also, we estimate that such a calculation would
give an error on the final form factor of ∼11% (compared
against the value given in Table XIV), where now the
uncertainties in order of dominance are from the neglected

currents, neglecting the mixing down in ωð1Þ
F , and neglect-

ing the one-loop correction to ωW1.

C. Errors from missing higher order currents

Since we are using an effective field theory to study this
transition, there will be higher order currents which we
have not included in this study but that contribute to the
final form factor. The most sizable current which we have
not included is the D2 correction to JW1. Therefore, we
include a systematic uncertainty (correlated across all
lattice sites) of v2 ~Vϒηb

21 jW1.

D. Full error budget

After the analysis performed in the previous sections,
we are now in a position to give a full error budget for the

TABLE XIV. Full error budget for the total form factor
Vϒηb
21 relevant for the ϒð2SÞ → ηbð1SÞγ decay from Fig. 10. A

discussion of the uncertainties in ~Vϒηb
21 jF is given in Sec. V B 8.

The form factor inferred from experimental data in Sec. II is
Vϒηb
21 jexp ¼ 0.069ð14Þ and has a relative error of 19.74%.

Error % Vϒηb
21

Systematic ~Vϒηb
21 jF 10.36

Stats in Vϒηb
21 5.48

Radiative α2s in ωF 0.83
Radiative αs in ωW1 4.71
Radiative αs in ωS 2.36
Radiative αs in ωS1 0.51

Mixing down in ωð1Þ
F 3.92

Missing currents 7.08
afm scale 1.07
Experimental masses 0.03
Priors 4.18
Total 15.81
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form factor Vϒηb
21 . To compare to experiment, we perform a

simultaneous lattice spacing and sea quark mass extrapo-
lation. We fit results from all ensembles to the form [13,40]

Vða2; ambÞ

¼ Vphys ×

�
1þ

X
j¼1;2

ðaΛÞ2jkjð1þ kj1δxm þ kj2ðδxmÞ2Þ

þ 2l1δmð1þ l2ðaΛÞ2Þ
�
: ð26Þ

The lattice spacing dependence is set by a scale
Λ ¼ 500 MeV, δxm ¼ ðamb − 2.7Þ=1.5 allows for a mild
dependence on the effective theory cutoff amb, and
δxl ¼ ðaml=amsÞ − ðaml=amsÞphys for each ensemble with
ðml=msÞphys ¼ 27.4ð1Þ is taken from lattice QCD [41]. We
take a Gaussian prior on the leading order a2 term to be
0.0(3), as the HISQ action is correct through Oðαsa2Þ; a
prior of 0.0(1.0) on the higher order a terms; a prior of
0.00(3) on l1 allowing for a 3% shift if the light quarks were
as heavy as the strange; and a prior of 0.10(5) on Vphys.

6

The extrapolation with all errors is shown in Fig. 10 and a
full error budget is shown in Table XIV.
By studying the error budget we see that the main

sources of error are from the systematics in ~Vϒηb
21 jF. Here, as

discussed in Sec. V B 8, the main sources of uncertainty

come from the statistical error in cð1Þ4 and from not knowing
the coefficient of α2s in the expansion of c4. While the

statistical error on cð1Þ4 could potentially be reduced from
7%–10% to 2%–3% [20], computation of the two-loop
coefficient of α2s would be difficult and lengthy, and
unlikely to be done in the near future. Alternatively, one
could tune c4 against the hyperfine splitting on all ensem-
bles, as shown in Sec. V B 9, and the error on Vϒηb

21 could be
reduced to ∼11%.

After this, the main uncertainty comes from the missing
currents. These could be included with more computational
time if necessary. While the statistical error on each current
alone is around 3%, these statistical errors do not allow the
correlations between the data points in the fit to constrain
the final result as much as we would like, and the final error
from statistics in the error budget is 5% as a result.
Reducing the error from statistics is unlikely to have a
sizable effect.
Based on our analysis, we estimate that by including

the next order of relativistic corrections to the current, the

mixing down in ωð1Þ
F , and tuning c4 against the hyperfine

splitting on all ensembles, an error on Vϒηb
21 of 8% could be

possible (compared against an error of 19% on the value
inferred from experiment), where the uncertainties in order
of dominance would be from the one-loop corrections to
ωW1 and ωS and the systematic error coming from ~Vϒηb

21 jF.
Our final answer for the form factor is

Vϒηb
21 ðq2 ¼ 0Þ ¼ 0.081ð13Þ: ð27Þ

Final values for the decay rate and branching fraction are
given in Sec. VI.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have computed the hindered M1
ϒð2SÞ → ηbð1SÞγ decay rate using a lattice NRQCD
formalism for the b quark. We include several improve-
ments on earlier exploratory work [5,6] which are funda-
mental to obtaining an accurate value for this decay rate.
The key improvements are the following:

(i) Previous work only had one lattice spacing. We use
five ensembles with a fully Oðαsa2Þ tadpole-
improved Lüscher-Weisz gluon action with HISQ
u, d, s and c quarks in the sea, provided by the
MILC collaboration. These ensembles each have
∼1000 configurations and one has physical light
quark masses.

(ii) We use three relativistic corrections to the leading
order current as described in Sec. IVand we also test
the sensitivities of the form factors from all these
currents to the parameters in our action as shown
in Fig. 7.

(iii) We use OðαsÞ correct values for the matching
coefficients in the NRQCD action. We also take into
account issues in tuning the b-quark mass as de-
scribed in Sec. III B. As shown in Fig. 7, this decay is
very sensitive to a subset of these parameters.

(iv) We calculate the OðαsÞ contribution to the matching
coefficient of the leading order ψ†σ ·BQEDψ=2mb

current which mediates this decay, as described in
Sec. IVA.

(v) While previous work extracted the matrix element
by extrapolating/interpolating to the jqjphys point,
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V ηb
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FIG. 10 (color online). Fit results for the form factor relevant to
the ϒð2SÞ → ηbð1SÞγ decay, all errors included. The error budget
is shown in Table XIV.

6The width on this prior is chosen so as to ensure that the fitted
result is insensitive to the central value.
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which only gives the photon on-shell contribution
q2 ¼ 0 if the hyperfine splitting is correct, we
use twisted boundary conditions to extract the
form factor relevant to this decay at the physical
q2 ¼ 0 point.

In Sec. III E we performed an analysis of the energy
eigenstates of NRQCD at nonzero momentum. This is
necessary as the energy eigenstates of a rotationally
invariant theory, like NRQCD, in an infinite-volume
continuum at nonzero momentum are classified by helicity,
unlike in a Lorentz-invariant theory where they are
described by the standard angular momentum J. This
has important consequences for a lattice NRQCD calcu-
lation as additional states appear in the spectrum at nonzero
momentum (see Fig. 1) and one has to be careful to ensure
that the correct matrix elements are extracted from the
correlator data.
In Sec. V, we show results for the four form factors from

the currents listed in Sec. IV which when renormalized,
summed and extrapolated to the continuum limit can be
compared to the form factor inferred from experimental data.
We found that relativistic corrections to the leading order
current gave a negative contribution causing destructive
interference, the power counting of the currents deviated
fromwhat onewould naively expect in NRQCD, and a range
of sensitivities needed to be explained.
In Sec. V B, using a simple potential model, we

explained that the matrix element of the leading order
current was suppressed due to the orthogonality of the
radial wave functions, and this causes the matrix element to
become sensitive to a multitude of effects such as relativ-
istic corrections to the leading order current, and certain
parameters in the NRQCD action that give rise to per-
turbing potentials causing relativistic corrections to the
wave functions, particularly those which effect the hyper-
fine splitting.
It has been suggested [5,6] that the large changes

experienced in going from an unimproved calculation to
an improved calculation may mean that it would be
beneficial to avoid nonrelativistic approximations. We
come to a different conclusion and illustrate that although
such a calculation is intrinsically difficult, NRQCD does
indeed show that a systematic approach works while also
giving insight into the process under study.
After performing the continuum and sea quark mass

extrapolation, we obtain the form factor Vϒηb
21 ð0Þjlat ¼

0.081ð13Þ, with a full error budget in Table XIV. This
form factor can be combined with the experimental masses
used in Sec. II to produce the decay rate:

Γlatðϒð2SÞ → ηbð1SÞγÞ ¼ 1.72ð55Þ × 10−2 keV ð28Þ

which can be compared against the experimental decay rate
Γexpðϒð2SÞ → ηbð1SÞγÞ ¼ 1.25ð49Þ × 10−2 keV [2,7].
Using the experimental total width from the PDG average

given in Sec. II with our decay rate gives a branching
fraction of Bðϒð2SÞ → ηbð1SÞγÞ ¼ 5.4ð1.8Þ × 10−4 which
can be compared against the BABAR result of 3.9ð1.5Þ ×
10−4 [2]. A comparison of our calculation with potential
model results including relativistic corrections [1] is shown
in Fig. 11.
Potential model predictions of hindered M1 decay rates

are known to be particularly difficult to pin down [38] and
can mischaracterize the experimental data by an order of
magnitude without relativistic corrections [8]. According to
the Quarkonium Working Group reviews [8,38], sources of
uncertainty that contribute to making such decays compli-
cated to calculate include the form of the long range
potential chosen, and the results depending explicitly on
the quark mass and the perturbative potential chosen.
Without relativistic corrections, the branching fraction of
the ϒð2SÞ → ηð1SÞγ decay from potential model predic-
tions ranges from ð0.67 − 11.0Þ × 10−4 [1]. Due to the
suppression mentioned above, the value of the decay rate
is very dependent on good knowledge of the relativistic
corrections [1]. Including relativistic corrections, potential
model predictions for the same branching fraction have a
wider range ð0.05 − 15.0Þ × 10−4, showing indeed that the
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2S ηb 1S γ 104
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FIG. 11 (color online). Comparison of our result for the
branching fraction (square) with experiment (vertical gray band)
and potential model estimates from [1] (crosses). The y axis labels
the different references [42–46] and more information about these
can be found in [1]. Using the pNRQCD decay rate [4], combined
with the experimental total width from the PDG average given in
Sec. II, gives a branching fraction of 1.9þ8.1

−1.9 × 10−4.
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decay rates may be sensitive to small details of the
potential [1].
The ϒð2SÞ → ηbð1SÞγ decay is sensitive to many of the

same effects as the hyperfine splitting and an accurate
calculation of this decay relies on having the correct
hyperfine splitting. Given the large range of estimates of
the hyperfine splitting from potential model predictions
(46–87 MeV [38]), we should not be surprised that the
potential model estimates for this decay rate also have a
large range.
Additionally, radiative transitions between bottomonium

states provide a search for new-physics effects, separate
from the weak-sector searches common in the literature
[47]. For example, the hyperfine splitting between the
ϒð1SÞ and ηbð1SÞ has been an important quantity in
bottomonium physics, being historically difficult for both
experimentalists and theorists to predict reliably. Using
hindered M1 decays, the BABAR [2,48] and CLEO [49]
experiments inferred this hyperfine splitting to be Δexp

M1 ¼
69.3� 2.8 MeV [50]. However, in 2012, BELLE mea-
sured the hbð2P; 1PÞ → ηbð1SÞγ branching fractions
(called E1 decays in the literature), removing the depend-
ence on hindered M1 decays, and used a significantly
larger sample of events to yield a hyperfine splitting of
Δexp

E1 ¼ 57.9� 2.3 MeV [51], where Δexp
M1 − Δexp

E1 has a
3.2σ tension with being zero.
It has been suggested that the tension of Δexp

E1 and theory
[16] with Δexp

M1 could, if it persists, indicate a hint at new
physics [52,53]. For example, in a multiple-Higgs exten-
sion to the standard model, one would speculate that the
ηexpb seen in experiments is actually an admixture of the true
ηb and a charge parity (CP)-odd Higgs boson with mass
ranging from 9.4–10.5 GeV. A relatively light CP-odd
Higgs scalar can appear in nonminimal supersymmetric
extensions of the standard model, such as the next-to-
minimal supersymmetric standard model [53]. In such
cases, the measured decay rate forϒð2SÞ → ηbð1SÞγ would
likely differ from the standard model prediction. As stated
above, this decay is sensitive in much the same way as the
hyperfine splitting. To observe a similar tension between
theory and experiment here as that existing between Δexp

E1
and Δexp

M1 would require a 5% uncertainty on the form factor
(∼10% on the decay rate). The error on the lattice form
factor could be reduced to ∼8% (as discussed in Sec. V D)
if more precise experimental results became available.
Any hint of new physics arising from a deviation between
the experimental ϒð2SÞ → ηbð1SÞγ decay rate and theory
could then be explored more concretely. Additionally,
the ηbð2SÞ → ϒð1SÞγ decay is an alternative approach to
studying such effects and a study of this decay rate is
already underway.
E1 radiative decays are more easily computed than

hindered M1 decays, and so the E1 decay rates hbð1PÞ →
ηbð1SÞγ and hbð2PÞ → ηbð1SÞγ could be calculated within
this NRQCD framework. Additionally, E1 currents can be

readily renormalized nonperturbatively. Combined with the
experimental branching fraction of these decays [51], this
could give a prediction of the total width of the hbð1PÞ
and hbð2PÞ.
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APPENDIX A: CLASSIFICATION
OF PARTICLE STATES

Theoretically, particle states living in the Hilbert space
are classified by unitary irreps of the symmetry group of a
theory. We need to consider two symmetry groups here: the
Lorentz group and the continuous rotational group in three
dimensions (the symmetry group of NRQCD). The stan-
dard procedure to build infinite dimensional unitary irreps
of these groups is via the method of induced representa-
tions, where one considers finite dimensional unitary irreps
of the little group and then uses these to build unitary irreps
of the full group.
The Poincaré group is the symmetry group of a relativ-

istic quantum field theory, and is given by the semidirect
product of the Lorentz group and four translations. For
massive irreps of the Poincaré group, the little group is
SOð3Þ7 [54]. Thus in a Lorentz-invariant theory, massive
irreps are defined as jp2; J;Mi. Note that for quarkonia
these states are eigenvectors of the charge-conjugation
operator and parity is also a conserved quantum number,8

giving the standard jp2; JPC;Mi decomposition. This
description classifies experimental states seen to date [7].
In a continuum theory that is only rotationally invariant,

the analogue of the Poincaré group is the semidirect
product of the rotational group SOð3Þ with the three
translations. For a rotationally invariant theory with zero
momentum, the little group is also SOð3Þ and the states are
classified as jp2; J;Mi. Thus states in a rotationally
invariant theory at rest overlap with those in a Lorentz-
invariant theory at rest, where again, parity and charge

7At nonzero momentum we can perform a Lorentz boost back
to the rest frame, ensuring the little group is the same for zero and
nonzero three-momentum.

8At nonzero momentum, these states are not eigenvectors of
the parity operator, but are eigenstates of the Π̂ operator defined
in the text, which conserves parity.
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conjugation are good quantum numbers in similar situa-
tions. Given that at nonzero momentum in a rotationally
invariant theory we cannot perform a Lorentzian boost to
the rest frame, the little group at nonzero momentum is now
different to the zero-momentum little group. The little
group is now SOð2Þ9 [54]. In this case, the unitary irreps are
classified by jp2; λi, where λ is an eigenvalue of the helicity
operator λ̂ ¼ p̂ · Ĵ=E. The helicity λ ¼ λ0 will get contri-
butions from all J with λ0 ≤ J. This can have important
consequences for the extracted energy spectrum in
NRQCD, c.f., Figs. 1 and 2, and is fundamentally different
from the Lorentzian theory.
At zero momentum, the operators iγ5 and γi that we use

in this calculation overlap onto 0−þ and 1−− states in a
rotationally invariant continuum theory [26]. We now need
to find which helicity eigenstates these operators overlap
with at nonzero momentum. The authors of [26] illustrate
how to construct helicity operators via

OJ;λðpÞ ¼
X
M

DJ�
MλðRÞOJ;MðpÞ; ðA1Þ

where DJ
MλðRÞ is a Wigner-D matrix, R is the active

transformation which rotates ð0; 0; jpjÞ to p, OJ;λðpÞ is a
helicity operator with helicity λ in an infinite-volume
continuum, e.g.,

h0jOJ;λðpÞjp; J0; λ0i ¼ Z½J;J0;λ�δλλ0 ðA2Þ

and we refer the reader to Ref. [26] for further details.
For quarkonium, the possibile values of λ ¼
f0þ; 0−; j1j; j2j;…g, where theþ=− on the λ ¼ 0 represent
the Π̂ symmetry with eigenvalue ~η≡ Pð−1ÞJ [26]. Using
the fact that the Wigner-D matrices with J ¼ 0 are δλM, the
Oγ5 , Oγi bilinear operators which we use in this calculation
give rise to the helicity operators at nonzero momentum

OJ¼0;λ¼0−ðpÞ ¼ Oγ5ðpÞ
OJ¼1;λ¼0þðpÞ ¼

X
M

DJ¼1�
Mλ¼0ðRÞOγMðpÞ

OJ¼1;λ¼j1jðpÞ ¼
X
M

DJ¼1�
Mλ¼j1jðRÞOγMðpÞ: ðA3Þ

As can be seen,Oγ5ðpÞ is a helicity operator which creates a
λ ¼ 0− state, butOγiðpÞ creates an admixture of λ ¼ 0þ; j1j
states.
The question now is the following: how do we identify

which JPC contributes to each λ, and how do we para-
metrize the amplitudes? By noticing that the helicity λ̂ ¼ Jz
when the momentum is projected onto the z axis, all

states with J ≥ λ will have a Jz large enough to give a
contribution to this helicity state (see Table III).
We also want to know how to quantify the amplitudes. In

a rotationally invariant theory, the invariant quantities are
δij and εijk. For a JP state, we also have the momentum pi

J

and the symmetric polarization tensor ϵi1;…;iJ. We can use
these to parametrize the amplitudes relevant for a rotation-
ally invariant theory. For the operator Oγi, Table XI in [26]
has the possible decompositions and we reproduce the
parametrizations for the Oγ5 operator which are important
for our calculation

h0jOγ5ðpÞjn0−þðpÞi ¼ Zn

h0jOγ5ðpÞjn1þþðϵ; pÞi ¼ Z0
nϵipi=mn1þþ

h0jOγ5ðpÞjn2−þðϵ; pÞi ¼ Z1
nϵii þ Z2

nϵijpipj=m2
n2−þ ; ðA4Þ

where n is the radial label. Using the overlap for the 1þþ
from (A4) to parametrize the continuum two-point corre-
lator with nonzero momentum, one finds that the ampli-
tudes from our fit with local smearing should be suppressed
by jpj=m1þþ relative to states which overlap with the
operator at zero momentum. For the momentum that we
use in our calculation, this factor is around 7%, and we
observe that in our correlator data, the amplitudes for the
states which do not overlap at zero momentum (and for
which we get a signal) such as the 1þþ, are suppressed by
this factor while the other amplitudes areOð1Þ. We observe
that as the momentum increases, so does the value of the
amplitude at fixed lattice spacing.
Additionally, the symmetry group giving rise to the

invariants which classify states, e.g., the little group, is
broken by a finite-volume lattice to a reduced symmetry
group [55]. At zero momentum with a cubic lattice, this
reduced symmetry group for quarkonia is the octahedral
group, Oh. States are now classified in terms of irreps of
Oh, denoted ΛPC, where [56] shows how to subduce
operators with continuum spin JPC to operators with
definite ΛPC on the lattice. As mentioned above, in an
infinite-volume continuum theory, the Oγ5 (Oγi) operator
overlaps only with JPC ¼ 0−þð1−−Þ at rest, but this
operator falls into the A−þ

1 (T−−
1 ) irrep of Oh on the lattice,

where mixing with the JPC ¼ 4−þð3−−Þ state (and higher
spins) is possible. However we do not see this mixing:
rotational symmetry breaking is found to be weakly broken
with a fine lattice and with a rotationally invariant smearing
for a particular lattice setup [56], where the spectrum and
overlaps were compatible with an effective restoration of
rotational symmetry. For this reason, we choose to use a
rotationally invariant smearing and an isotropic lattice,
and to have discretization improvements in our action.
Secondly, the masses of the additional states are too large to
be seen in the first few energy levels which we are
interested in. As such, they will only potentially contribute

9The construction of the irreps for a rotationally invariant
theory at nonzero momentum is similar to a massless represen-
tation in a Lorentz-invariant theory.
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as additional discretization effects in the lowest energy
modes. Indeed, studies of the spectrum from NRQCD by
the HPQCD collaboration indicate this to be the case (see
Appendix C of [13]).
For the nonzero momentum case, the reduced little group

actually depends on the type of momenta. This is due to the
fact that a general integer-valued momentum on the lattice
cannot be rotated into the z axis like in an infinite-volume
continuum,10 e.g. there is no octahedral transformation
which rotates (0,1,1) to the z axis. We use an isotropic
momentum (rather than an on-axis momentum) as it has
been shown to break rotational invariance less and lead to
smaller discretization effects [13]. For our isotropic
momentum, the reduced little group is Dic3 [26]. The
operator Oγ5 (Oγi ) falls into the A2 (A1 and E2) irrep of
Dic3, where mixing with λ ¼ 3 (3 and 2) states is possible.
For Oγ5, this gives rise to potential mixing from 3�þ, 4�þ
states (and higher spin). As in the zero-momentum
case, this mixing due to the lattice was found to be
negligible with a fine lattice and a rotationally invariant
smearing for a particular setup [26]. These states should be
of higher energy than the first few states in our spectrum,
and we see no evidence of them in our low-lying
spectrum. For the Oγi operator, there can be mixing with
λ ¼ 2 (2 ≤ J with Jz ¼ 2 states) which is not important for
our analysis.
There is an important distinction to be understood from

using a rotationally invariant formalism for the quark
versus a Lorentz-invariant one. If each of these formalisms
is discretized, then at fixed nonzero momentum, the
discretized version of the Lorentz-invariant theory might
be broken to a rotationally invariant theory, e.g., by using
an anisotropic lattice spacing in the time direction. As such,
as the infinite-volume continuum limit is taken, any overlap
onto JPC as a result of helicity eigenstates (such as the 1þþ

from theOγ5 operator) would disappear [57]. However, in a
rotationally invariant theory like NRQCD, as the lattice
spacing is taken to zero, these overlaps are still present as
they are an infinite-volume continuum effect. This is why
we find a similar signal across all lattice spacings for these
states in NRQCD.

APPENDIX B: TWISTED CORRELATORS
WITH DERIVATIVE OPERATORS

For clarity, we describe the construction of the twisted
correlators with derivative operators in this section. To
gain access to arbitrary momenta on the lattice, one
can define a quark field [22,23] that satisfies θBC via
~ψθðxþ eiLÞ ¼ ei2πχi ~ψθðxÞ, where θi ¼ 2πχi=L. Now the

available momentum space is ~Λ ¼ fk ¼ pþ θjki ¼
2πðni þ χiÞ=L; where ni ∈ Zg. Notice that the available
momentum space has an arbitrary shifted value θ that we
can choose to give the physical point q2 ¼ 0. One now
builds interpolating operators from these θBC fields as
Oðx; θ2θ1Þ ¼ ~̄ψθ2ðxÞΓ ~ψθ1ðxÞ, which gives rise to the two-
point correlator

C2ptðθ1 − θ2 þ p; tÞ
¼

X
x

e−iðθ1−θ2þpÞ·x

× Tr½ðΓi
~Sθ2ð0; 0jx; tÞÞðΓf

~Sθ1ðx; tj0; 0ÞÞ�; ðB1Þ

where ~Sθð0; 0jx; tÞ is a quark propagator found by
inverting the Dirac matrix, ~Dθðx; yÞ, defined via S½ ~ψθ� ¼P

x;y ~̄ψθðxÞ ~Dθðx; yÞ ~ψθðyÞ. As a consequence of ~ψθ satisfy-

ing θBC, the Dirac matrix ~Dθðx; yÞ also satisfies the same
boundary conditions. This is an inconvenience as typical
inverters are built with PBC. However, it is possible to use a
trick in order to use the PBC invertors yet still get access to
the θBC correlator data in (B1).
To do this, one notices that a second quark field, defined

via the scaling ψθðxÞ ¼ e−2πiθ·x=L ~ψθðxÞ, satisfies PBC yet
still includes information on the twist. Since

~SθðxjyÞ ¼ eiθ·ðx−yÞSθðxjyÞ ðB2Þ

SθðxjyÞ is a quark propagator found by inverting the Dirac
matrix, Dθðx;yÞ, where Dθðx;yÞ¼e−iθ·x ~Dθðx;yÞeiθ·y .
DθðxjyÞ satisfies PBC by construction and the two exponen-
tials only alter the derivative in the Dirac action and can be
implemented by scaling the gluonic fields (before inverting)
as UμðxÞ → Uθ

μðxÞ ¼ ei2π=LθμUμðxÞ with θμ ¼ ð0; θÞ [22].
The final step is to rewrite the twisted correlator in (B1)

in terms of the propagator we actually compute using (B2)

C2ptðθ1 − θ2 þ p; tÞ
¼

X
x

e−iðθ1−θ2þpÞ·x

× Tr½ðΓie−iθ2·xSθ2ð0; 0jx; tÞÞððΓfeiθ1·xSθ1ðx; tj0; 0ÞÞ�:
ðB3Þ

If Γ ¼ ∇, then

C2ptðθ1 − θ2 þ p; tÞ
¼

X
x

e−ip·xTr½ðeiθ2·x∇ke−iθ2·xSθ2ð0; 0jx; tÞÞ

× ðe−iθ1·x∇keiθ1·xSθ1ðx; tj0; 0ÞÞ�: ðB4Þ

This can be implemented in the same way as the twist
in the Dirac invertor, by using Uθ

μðxÞ in the construction

10With twisted boundary conditions, the momenta are still
discretized but just shifted by an arbitrary value. As such, the little
group of momentum with a twist is the same as the little group of
momentum without a twist.
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of the covariant derivative operator. This “changing the
derivatives” issue does not occur in our two-point corre-
lators, but does occur in the (more complicated) three-point
correlators with currents JW1, JS, JS1 from (16). To give an
explicit example of the three-point correlator using the
current JW1, by keeping the initial state at rest, and twisting
only one propagator in the final state with θf, we have

Cnm
3ptðpθ

f ¼ pf þ θf;qθ ¼ q − θf; t; TÞ

¼ −i
X
x;y

e−ipf·xTr

�
Sθfðx; Tjy; tÞ

×

�
e−iθf·y

8m3
b

fD2; ðσ × qθf Þne−iðq−θfÞ·ygSðy; tj0; 0Þ
�

× σmSð0; 0jx; TÞ
�
; ðB5Þ

where we can clearly see that D2 does not commute with
e−iθf·y , but not all derivatives are twisted due to the
commutation. Since there are no derivatives in the JF
current, the θf terms cancel and this issue is avoided.
Smearing the twisted fields leads to a similar issue as
presented above with the derivative, and so we do not smear
the twisted fields. Analogous complications arisewhen using
point-split operators with twisted momentum in staggered
quark formalisms [58]. If done correctly, and any smearings
are applied appropriately, the correlator data from using θBC
and PBC should agree on a configuration basis to machine
precision (if the total momentum is identical for all states).

APPENDIX C: ERROR ANALYSIS USING
A SIMPLE POTENTIAL MODEL

First, we want to find the sensitivity of the matrix
element to c4 using a potential from the exchange of a
single gluon between two vertices involving the chromo-
magentic operator [20]. We find (assuming the wave
functions at the origin for the ηb and ϒ are the same)

Vηb
nm ¼ −

6c24g
2

9m2
b

ψ�
nð0Þψmð0Þ

Vϒ
nm ¼ 2c24g

2

9m2
b

ψ�
nð0Þψmð0Þ: ðC1Þ

Putting this back into (22) with the JF current yields

ð1Þhηbð1SÞjJFjϒð2SÞið1Þ
¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ

þ c24g
2

9m2
b

�X
m≠1

6ψ�
1ð0Þψmð0Þ
Em1

ð0ÞhηbðmSÞjJFjϒð2SÞið0Þ

−
X
n≠2

2ψ�
nð0Þψ2ð0Þ
En2

ð0Þhηbð1SÞjJFjϒðnSÞið0Þ
�
:

ðC2Þ

In getting to (C2) we have used the fact that Eϒ
nm ¼ Eηb

nm as
the unperturbed Hamiltonian has no spin terms. We have
neglected the ϒðpSÞ → ηbð1SÞ transitions for p ≥ 2 in the
sum due to the fact that the radial overlap, (20), is
suppressed by at least Oðv2Þ. In fact, they will be sup-
pressed more due to the radial difference getting larger and
the wave function at the origin getting smaller for higher
radial excitations. Equation (23) can be found straightfor-
wardly by factoring the spin part of the matrix element from
the radial part, i.e., using (20).
If we now consider a potential from the exchange of a

single gluon involving the Darwin term at one of the
vertices, we find [20]

Vηb
nm ¼ Vϒ

nm ¼ −
c2g2

3m2
b

ψ�
nð0Þψmð0Þ: ðC3Þ

Then substituting this back into (22) we find

ð1Þhηbð1SÞjJFjϒð2SÞið1Þ
¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ

−
c2g2

3m2
b

�X
m≠1

ψ�
1ð0Þψmð0Þ
Em1

ð0ÞhηbðmSÞjJFjϒð2SÞið0Þ

þ
X
n≠2

ψ�
nð0Þψ2ð0Þ
En2

ð0Þhηbð1SÞjJFjϒðnSÞið0Þ
�

ðC4Þ

¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ

−
c2g2

3m2
bE21

�
ψ�
1ð0Þψ2ð0Þðð0Þhηbð2SÞjJFjϒð2SÞið0Þ

− ð0Þhηbð1SÞjJFjϒðnSÞið0Þ þOðv2ÞÞ
�
: ðC5Þ

Using (20), we see the leading order terms in the second
piece of (C5) cancel and we are left with Oðαsv2Þ
corrections to the unperturbed matrix element.
The four-quark potential is (assuming the wave functions

at the origin of the two states are the same) [20]

Vηb
nm ¼ 9d1α2s

2

4

3m2
b

ψ�
nð0Þψmð0Þ

Vϒ
nm ¼ 9d2α2s

2

4

3m2
b

ψ�
nð0Þψmð0Þ: ðC6Þ

Putting this into (22) and performing an identical analysis
as done above gives
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ð1Þhηbð1SÞjJFjϒð2SÞið1Þ ¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ −
9d1α2s
2

4

3m2
b

X
m≠1

ψ�
1ð0Þψmð0Þ
Em1

ð0ÞhηbðmSÞjJFjϒð2SÞið0Þ

−
9d2α2s
2

4

3m2
b

X
n≠2

ψ�
nð0Þψ2ð0Þ
En2

ð0Þhηbð1SÞjJFjϒðnSÞið0Þ

¼ ð0Þhηbð1SÞjJFjϒð2SÞið0Þ þ
9

2

4

3m2
b

ψ�
1ð0Þψ2ð0Þ
E21

Sifðd2α2s − d1α2s þOðð2d2α2s − d1α2sÞv2ÞÞ:
ðC7Þ

The error in the last line was introduced by expanding out the radial overlap (20) and noting that the two matrix elements do
not have to be identical to first order in jqγj2. Even if we did include the four-fermion operators in the calculation, since only
the combination d1 − d2 is currently known perturbatively, and not d1 and d2 individually, we would still need to introduce
the Oðv2Þ error in our calculation.
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