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The hadroproduction of prompt isolated photon pairs at high energies is studied in the framework of the
parton Reggeization approach. The real part of the NLO corrections is computed (the NLO⋆ approxi-
mation), and the procedure for the subtraction of double counting between real parton emissions in the
hard-scattering matrix element and unintegrated parton distribution function is constructed for the
amplitudes with Reggeized quarks in the initial state. The matrix element of the important next-to-
next-to-leading-order subprocess RR → γγ with full dependence on the transverse momenta of the initial-
state Reggeized gluons is obtained. We compare obtained numerical results with diphoton spectra
measured at the Tevatron and the LHC and find a good agreement of our predictions with experimental data
at the high values of diphoton transverse momentum, pT , and especially at the pT larger than the diphoton
invariant mass, M. In this multi-Regge kinematics region, the NLO correction is strongly suppressed,
demonstrating the self-consistency of the parton Reggeization approach.
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I. INTRODUCTION

Nowadays, the inclusive hadroproduction of pairs of
isolated prompt photons (diphotons) is a subject of intense
experimental and theoretical studies. From the experimen-
tal point of view, this process forms an irreducible back-
ground in the searches of heavy neutral resonances in the
diphoton decay channel, such as the Standard Model Higgs
boson [1] and its beyond the Standard Model counterparts
[2]. As for the process itself, it allows us to define the set of
inclusive differential cross sections over such variables as
the invariant mass of the pair (M), its transverse momentum
(pT), the azimuthal angle between transverse momenta of
the photons (Δϕ), the rapidity of the photon pair (Yγγ), the
Collins–Soper angle in the center-of-mass frame of the
photon pair (θ), and a few others [3]. Most of these spectra
are measured with high precision both at the Tevatron [3]
and the LHC [4].
On the theoretical side, providing the predictions for the

above-mentioned rich set of differential spectra is a
challenging task even for the state-of-the-art techniques
in perturbative QCD (pQCD), while for the inclusive
isolated prompt photon production, the pT-spectra from
CDF [5], ATLAS [6], and CMS [7] are described within
experimental uncertainties in the next-to-leading order
(NLO) of the conventional collinear parton model
(CPM) of QCD [8]. Also, the notably good results were

obtained for these spectra already in the leading order (LO)
of kT factorization in Refs. [9,10]. In contrast, existing
NLO CPM calculations, implemented in the DIPHOX [11]
Monte Carlo event generator, provide a very poor descrip-
tion of pT andΔϕ distributions measured by ATLAS [4]. In
the CPM, the full next-to-next-to-leading-order (NNLO)
accuracy is required to provide a qualitatively reasonable
description of all distributions [12].
Part of these difficulties can be traced back to the

shortcomings of the CPM approximation, where the trans-
verse momentum of initial-state partons is integrated over
in the parton distribution functions (PDFs) but neglected in
the hard-scattering part of the process. Such treatment is
justified for the fully inclusive single-scale observables,
such as deep inelastic scattering structure functions or pT
spectra of single prompt photons and jets, where the
corrections breaking the collinear factorization are shown
to be suppressed by powers of the hard scale [13].
For the multiscale differential observables, there is no

obvious reason why the fixed-order calculation in the CPM
should be a good approximation. Usually, the simple
picture of factorization of the cross section of the hard
process into the convolution of the hard-scattering coef-
ficient and some PDF-like objects is kept, but kinematical
approximations are relaxed. In the treatment of initial-state
radiation (ISR) corrections in the soft collinear effective
theory (SCET) [14] or in the transverse momentum-
dependent (TMD) factorization formalism [13,15,16], the
transverse momentum of the initial-state parton is kept
unintegrated on the kinematical level but neglected in the
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hard-scattering part, which is justified e.g., when the pT of
the exclusive final state is much smaller than its invariant
mass, so that the following hierarchy of the light-cone
momentum components for the initial-state parton is
preserved: q∓ ≪ jqT j ≪ q� ¼ x

ffiffiffi
S

p
.

In the opposite limit, when q∓ ≪ jqT j ∼ q� ¼ x
ffiffiffi
S

p
, the

kT factorization [17] is valid, and the transverse momentum
of the initial-state parton can no longer be neglected in the
hard-scattering amplitudes. To obtain the suitable hard-
scattering matrix element, we will apply the hypothesis of
parton Reggeization, which will be described below. In
what follows, we will refer to the combination of kT
factorization with hard-scattering matrix elements with
Reggeized partons in the initial state as the parton
Reggeization approach (PRA). This approach is mostly
suitable for the study of the production of the final states
with high pT and small invariant mass in the central
rapidity region. At high energies

ffiffiffi
S

p
≫ pT , such final

states are produced by the small-x partons, and the
resummation of logð1=xÞ-enhanced terms into the unin-
tegrated PDF (unPDF) can be implemented [18]. Clearly,
the regions of applicability of the TMD and kT factorization
are overlapping, and they should match when x → 1, so we
propose the hybrid factorization scheme which uses the kT-
factorization formula and interpolates smoothly between
the TMD and kT-factorization momentum regions. The
effects of ISR with small kT or highly separated in rapidity
from the central region are included into unPDFs in PRA,
while the radiation close in rapidity to the central region
should be included order by order in αs.
Turning back to the photon pair production, we can

conclude that neither TMD nor kT factorization covers all
the available range of experimental data, so our hybrid
approach will be especially suitable for this observable.
Most of the cross section comes from the region where the
diphoton has small pT and photons fly nearly back to back
in the transverse plane, so additional QCD radiation is
kinematically constrained to be soft and collinear, and the
approach of SCET factorization will be preferable. On the
contrary, at high pT and small Δϕ, already the LO in PRA
will do a good job, as we will show below.
The previous attempts to study the prompt diphoton

production in kT factorization [19,20] had their own
problems. In Ref. [19], only LO 2 → 2 subprocesses were
taken into account. While, the PRAwas used to obtain the
gauge-invariant expression for the QQ̄ → γγ matrix
element with off-shell initial-state Reggeized quarks (Q),
the matrix element for the RR → γγ with off-shell
Reggeized gluons in the initial state was taken the same
as in the CPM. In fact, this contribution was overestimated
in Ref. [19] due to the erroneous overall factor 4 in the
partonic cross section of the subprocess gg → γγ presented
in Ref. [21], which lead to the accidental agreement with the
early Tevatron data [22]. This factor was carefully checked
against the results presented in the literature [23,24], as well

as by our independent calculations of the exact RR → γγ
amplitude, described in Sec. IV of the present paper.
In Ref. [20], the attempt to take into account the NLO

2 → 3 subprocesses was made, but manifestly nongauge-
invariant matrix elements were used both for 2 → 2 and
2 → 3 subprocesses. Also, the unavoidable double count-
ing of additional real radiations between NLO q⋆g⋆ → qγγ
subprocess and the unPDF was not subtracted, which has
lead to the questionable conclusion that no resummation of
the effects of soft radiation is needed in the small-pT region
to describe the data.
In view of the above-mentioned shortcomings of the

previous calculations, the present study has two main goals.
The first one is to calculate the real part of NLO corrections
to the process under consideration in the PRA, and develop
the technique of subtraction of double counting between real
NLO corrections and unPDF in PRA. By the NLO⋆
approximation in PRA, we mean the combination of the
real part of NLO corrections with the proper double-
counting subtraction technique. The second goal is to
calculate the matrix element of the quark-box subprocess
RR → γγ in PRA, taking into account the exact dependence
on the transverse momenta of initial-state Reggeized gluons.
The present paper has the following structure. In Sec. II,

the relevant basics of thePRA formalismareoutlined, and the
amplitude for the LO subprocess QQ̄ → γγ is derived. In
Sec. III, the NLO 2 → 3 amplitudes are derived, and the
procedure for the subtraction of double counting between
NLO real corrections and unPDF is explained. In Sec. IV, the
computation of the amplitude for the quark-box subprocess
RR → γγ is reviewed, and in Sec. V, we compare our
numerical results with the most recent CDF [3] and
ATLAS [4] data. Our conclusions are summarized in Sec.VI.

II. BASIC FORMALISM AND LO CONTRIBUTION

As collinear factorization is based on the property of
factorization of collinear singularities in QCD [25], the kT
factorization is based on the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) [26] (see Refs. [27,28] for the review)
factorization of QCD amplitudes in the multi-Regge
kinematics (MRK), i.e., in the limit of the high scattering
energy and fixed momentum transfers. For example,
the amplitude for the subprocess qðq1Þ þ qðq2Þ →
qðq3Þ þ gðq4Þ þ qðq5Þ in the limit when

s34 ≫ −t13; s45 ≫ −t25;

where sij ¼ ðqi þ qjÞ2, tij ¼ ðqi − qjÞ2, has the form of
the amplitude with the exchange of the effective Reggeized
particle in the t channel,

Ac;μ ¼ 2sðūðq3Þγr1uðq1ÞÞ ·
1

t13

�
s34
s0

�
ωðt13Þ

· Γc;μ
r1r2ðqt1; qt2Þ

·
1

t25

�
s45
s0

�
ωðt25Þ

· ðūðq5Þγr2uðq2ÞÞ; ð1Þ
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where qt1 ¼ q1 − q3, qt2 ¼ q5 − q2, c, r1, and r2 are the
color indices; γr is the effective qqR vertex; Γc;μ

r1;r2ðqt1; qt2Þ
is the central gluon production vertex RRg; and ωðtÞ is
the gluon Regge trajectory. The Slavnov–Taylor identity
ðqt1 − qt2ÞμΓc;μ

r1r2ðqt1; qt2Þ ¼ 0 holds for the effective pro-
duction vertex, which ensures the gauge invariance of the
amplitude.
The analogous form for the MRK asymptotics of the

amplitude with the quark exchange in the t channel was
shown to hold in the leading logarithmic approximation
(LLA) in Ref. [29]. For the review of the modern status of
the quark Reggeization in QCD, see Ref. [30].
The Regge factor sωðtÞ resums the loop corrections

enhanced by the logðsÞ to all orders in the strong coupling
constant αs, and the dependence on the arbitrary scale s0
should be canceled by the analogous dependence of
the effective vertices, taken in all orders of perturbation
theory. The Reggeized gluon in the t channel is a scalar
particle in the adjoint representation of the SUðNcÞ. In the
MRK limit, when all three particles in the final state are
highly separated in rapidity, the light-cone momentum
components carried by the Reggeons in t channels
obey the hierarchy q∓t ≪ jqt⊥j ∼ q�t , so in the strict
MRK limit, the “small” light-cone component is usually
neglected.
To go beyond the LLA in logðsÞ, one needs to consider

the processes with a few clusters of particles in the final
state, which are highly separated in rapidity, but keeping
the exact kinematics within clusters. This is the so-called
quasi-multi-Regge kinematics(QMRK), and to obtain the
amplitudes in this limit, the gauge-invariant effective action
for high-energy processes in QCD was introduced in
Ref. [31]. Apart from the usual quark and gluon fields
of QCD, which are supposed to live within a fixed rapidity

interval, the fields of Reggeized gluons [31] and Reggeized
quarks [32] are introduced to communicate between the
different rapidity intervals. To keep the t channel factorized
form of the amplitudes in the QMRK limit, the Reggeon
fields have to be gauge invariant, which leads to the specific
form of their nonlocal interaction with the usual QCD
fields, containing the Wilson lines. Gauge invariance of
Reggeon fields also ensures the gauge invariance of the
effective emission vertices, which describe the production
of particles within the given interval of rapidity, as it was
the case in (1). The Feynman rules (FRs) of the effective
theory are collected in Refs. [32,33], but for the reader’s
convenience, we also list the FRs relevant for the purposes
of the present study in Fig. 1. To compute the hard-
scattering matrix elements in PRA, one has to combine the
FRs of Fig. 1 with the usual FRs of QCD and QED and use
the factors for the Reggeons in the initial state of the hard
subprocess, also defined in Fig. 1 to be compatible with the
normalization of the unPDF described below.
Recently, the new scheme to obtain gauge-invariant

matrix elements for kT factorization by exploiting the
spinor-helicity representation and recursion relations for
the tree-level amplitudes was introduced [34,35]. This
technique is equivalent to the PRA for the tree-level
amplitudes without internal Reggeon propagators; how-
ever, the construction of the subtraction terms in Sec. III
requires the usage of the FRs of Refs. [32,33].
Since, the form of the central production vertex, propa-

gators of Reggeized gluons and Regge trajectories, depends
only on the quantum numbers of the Reggeon in the t
channel and do not depend on what particles are in the
initial state, the cross section of the production of particles
to the central rapidity region in the inelastic pp collisions
can be written in the form [17],

FIG. 1. The Feynman rules of the effective theory [31,32], relevant for the present study. The propagators; factors, corresponding to the
Reggeized quarks (dashed lines with arrows); and gluons (dashed lines) in the initial state of the hard subprocess and necessary
interaction vertices are presented. All momenta for the vertices are incoming.
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dσ ¼
X
i;j

Z
dx1
x1

Z
d2qT1

π
Φiðx1; t1; μ2FÞ

×
Z

dx2
x2

Z
d2qT2

π
Φjðx2; t2; μ2FÞdσ̂ijðq1; q2Þ; ð2Þ

where the sums are taken over the parton species, q1;2 ¼
x1;2P1;2 þ qT1;2 are the momenta of the partons, q21;2 ¼
−q2

T1;2 ¼ −t1;2, P1;2 are the 4-momenta of the protons,
2P1P2 ¼ S, and dσ̂ is the partonic cross section with
Reggeized partons in the initial state. In what follows,
we will often use the Sudakov decomposition of the
momenta,

k ¼ 1

2
ðnþk− þ n−kþÞ þ kT;

where k� ¼ k0�k3, P1¼
ffiffiffi
S

p
n−=2, P2¼

ffiffiffi
S

p
nþ=2, ðnþÞ2 ¼

ðn−Þ2 ¼ 0, nþn− ¼ 2.
The unPDF Φiðx;q2

T; μ
2
FÞ is unintegrated over the

transverse momentum q2
T but still integrated over the small

light-cone component of momentum, so this light-cone
component is neglected in the hard-scattering part, which is
hence formally in the QMRK with the ISR and therefore is
gauge invariant. The exact kinematics will be restored by
the higher-order QMRK corrections. The factorization
scale μ2F is introduced to keep track of the position of
the hard process on the axis of rapidity.
The unPDF is normalized on the CPM number density

PDF via

Z
μ2F
dtΦiðx; t; μ2FÞ ¼ xfiðx; μ2FÞ:

In the case of an inelastic scattering of objects with an
intrinsic hard scale, such as photons with a high center-of-
mass energy and virtuality, the evolution of the unPDFs is
governed by the large logð1=xÞ, and they satisfy the BFKL
evolution equation [26]. In proton-proton collisions, the
initial state does not provide us with an intrinsic hard scale,
and therefore the kT-ordered Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) [36] evolution at small kT should
be merged with rapidity-ordered BFKL evolution at high-
kT final steps of the ISR cascade.
The last problem is highly nontrivial and equivalent to

the complete resummation of the logðkTÞ-enchanced terms
in the BFKL kernel. A few phenomenological schemes to
compute unPDFs of a proton were proposed, such as the
Ciafaloni-Catani-Fiorani-Marchesini (CCFM) approach
[18], the Blümlein approach [37], and the Kimber-
Martin-Ryskin (KMR) approach [38]. In the LO calcula-
tions in PRA, the definition of the hard-scattering coef-
ficient dσ̂ is independent on the approximations made in
the unPDF, so any unPDF can be used, and the spread
between them gives the theoretical uncertainty. In fact, the

recent studies [39,40] show that in the realistic kinematical
conditions the LO calculations with KMR and a recent
version of the CCFM unPDFs [41] give very close results.
At the NLO, one should develop the proper matching
scheme between the unPDF and corrections included into
the hard-scattering kernel, which introduces a difference in
the treatment of different unPDFs.
In the present paper, we will work with the version of the

KMR formula for the unPDFs, described in Ref. [42]. The
KMR prescription introduces the simplest possible sce-
nario, where the kT-ordered DGLAP chain of the emissions
is followed by exactly one emission, ordered in rapidity
with the particles produced in the hard subprocess. Because
of the strong kT ordering of the DGLAP evolution, the
transverse momentum of the parton in the initial state of the
hard subprocess is approximated to come completely from
the last step of the evolution. With these approximations,
one can obtain the unPDF from the conventional collinear
PDF as

Φiðx; q2T; μ2Þ ¼
1

q2T

Z
1

x
dzTiðq2; μ2Þ

αsðq2Þ
2π

×
X
j

PijðzÞfj
�
x
z
; q2

�
θðΔijðq2T; μ2Þ − zÞ;

ð3Þ

where PijðzÞ is the DGLAP splitting function, q2 ¼
q2T=ð1 − zÞ is the virtuality of the parton in the t channel,
the Sudakov formfactor Ti is defined as

Tiðq2; μ2Þ ¼ exp
�
−
Z

μ2

q2

dk2

k2
αsðk2Þ
2π

X
i;j

Z
1

0

dξξPijðξÞ

× θðΔijðk2ð1 − ξÞ; μ2Þ − ξÞ
�
; ð4Þ

and the ordering in rapidity between the last parton
emission and the particles produced in the hard subprocess
is implemented via the following infrared cutoff [43]:

Δijðq2T; μ2Þ ¼
μ

μþ qT
δij þ ð1 − δijÞ:

In the present study, we use the version of the KMR
formula (3) with LO DGLAP splitting functions but NLO
PDFs as a collinear input because, as it was shown in
Ref. [42], the usage of the NLO PDFs and the exact scale q2

are the most numerically important effects distinguishing
the LO KMR distribution of Ref. [38] and the NLO
prescription of Ref. [42]. Also, as it will be shown in
Sec. III, the usage of the LO DGLAP splitting functions is
compatible with the PRA, while at the NLO, the splitting
functions should be recalculated using the effective theory
of Refs. [31,32].
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The effects of the Sudakov resummation are known to be
dominant in the doubly asymptotic region, qT ≪ μ and
z → Δ, which is most important in pp collisions; therefore,
we use the Sudakov form factor in (4). The opposite limit,
when z → 0 and qT ≪ μ, is captured by the Regge factor
sωðtÞ, but the proper procedure of matching of the double-
logarithmic corrections, between Sudakov and Regge
factors, is also beyond the scope of the present study.
Now, we move from the general discussion of PRA to the

computation of the LO and NLO contributions to the
prompt photon pair production. In the standard kT factori-
zation, the quark-induced processes are often neglected
because they are power supressed in the LO BFKL
formalism. It is expected that at some very small x the
contribution of valence quarks will become negligible and
all sea quarks will be generated on the last step of the
evolution, so it is better to include this last step into the hard
subprocess and erase quark PDFs completely. However, in
realistic kinematical conditions, this power supression is
compensated by the smallness of αs, DGLAP evolution
effects, and the non-negligible distribution of valence
quarks, so the Reggeized quark induced processes often
play an important phenomenological role. There is only one
LO [Oðα2α0sÞ] subprocess:

Qðq1Þ þ Q̄ðq2Þ → γðq3Þ þ γðq4Þ: ð5Þ

The set of Feynman diagrams for this subprocess is
presented in Fig. 2. The amplitude of the process (5) obeys
the Ward identity of QED, and the amplitude squared and
averaged over the spin and color quantum numbers of the
initial state, which was obtained for the first time in
Ref. [19], has the form

jAðQQ̄ → γγÞj2 ¼ 32

3
π2e4qα2

x1x2
a3a4b3b4St̂ û

× ðw0 þ w1Sþ w2S2 þ w3S3Þ; ð6Þ

where a3 ¼ qþ3 =
ffiffiffi
S

p
, a4 ¼ qþ4 =

ffiffiffi
S

p
, b3 ¼ q−3 =

ffiffiffi
S

p
, b4 ¼

q−4 =
ffiffiffi
S

p
, ŝ ¼ ðq1 þ q2Þ2, t̂ ¼ ðq1 − q3Þ2, û ¼ ðq1 − q4Þ2,

x1 ¼ a3 þ a4, x2 ¼ b3 þ b4, α ¼ e2=ð4πÞ, eq is the electric

charge of the quark in the units of the electron charge, and
the coefficients wi can be represented as follows:

w0 ¼ t1t2ðt1 þ t2Þ − t̂ ûðt̂þ ûÞ;
−w1 ¼ t1t2ða3 − a4Þðb3 − b4Þ þ t2x1ðb4t̂þ b3ûÞ

þ t1x2ða3 t̂þ a4ûÞ
þ t̂ ûða3b3 þ 2a4b3 þ 2a3b4 þ a4b4Þ;

−w2 ¼ b3b4x21t2 þ a3a4x22t1 þ a3b4t̂ðx2a3 þ a4b4Þ
þ a4b3ûða3b3 þ a4x2Þ;

−w3 ¼ a3a4b3b4

�
a3b4

�
t̂
û

�
þ a4b3

�
û
t̂

��
:

Taking the collinear limit t1;2 → 0 of (6), one can reproduce
the standard CPM result for the amplitude qq̄ → γγ:

jAðqq̄ → γγÞj2 ¼ 32

3
π2e4qα2

�
t̂
û
þ û

t̂

�
:

In the next section, we will discuss the tree-level NLO
corrections.

III. REAL NLO CORRECTIONS

The tree-level NLO [Oðα2α1sÞ] subprocesses are

Qðq1Þ þ Rðq2Þ → γðq3Þ þ γðq4Þ þ qðq5Þ; ð7Þ

Qðq1Þ þ Q̄ðq2Þ → γðq3Þ þ γðq4Þ þ gðq5Þ: ð8Þ

The sets of Feynman diagrams for them are presented in
Figs. 3 and 4. The FRs of Fig. 1 were implemented as the
ReggeQuarks [44] model file for the FeynArts [45],
Mathematica based package, and the computation of
the squared matrix elements was performed using the
FeynArts, FeynCalc [46], and FORM programs. It
was checked analytically that the amplitudes for the
NLO subprocesses (7) and (8) obey the Ward (Slavnov–
Taylor) identities with respect to all final-state photons
(gluons) independently of the transverse momentum of the

FIG. 2. The set of Feynman diagrams for the LO subprocess (5).
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FIG. 3. The set of the Feynman diagrams for the NLO subprocess (7).

FIG. 4. The set of the Feynman diagrams for the NLO subprocess (8).

M. A. NEFEDOV AND V. A. SALEEV PHYSICAL REVIEW D 92, 094033 (2015)

094033-6



initial-state Reggeized partons. Unfortunately, the obtained
expressions are too large and noninformative to present
them here.
The squared matrix element of the subprocess (7)

contains the collinear singularity, when the 3-momentum
of the quark becomes collinear to the 3-momentum of one
of the photons. This collinear singularity can be absorbed
into the nonperturbative parton-to-photon fragmentation
function, and then the theoretical cross section is repre-
sented as the sum of the direct contribution, where the
collinear singularity is subtracted, according to e.g., the MS
scheme, and fragmentation contribution, which is equal to
the convolution of the cross section of the parton produc-
tion in pQCD and the parton-to-photon fragmentation
function. The experimental (hard-cone) isolation condition
requires the amount of hadronic energy within the photon
isolation cone of the radius R to be smaller than the fixed

value EðISOÞ
T ∼Oð1Þ GeV,

EðhadÞ
T ðr < RÞ < EðISOÞ

T ; ð9Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
is the distance in the pseudor-

apidity–azimuthal angle plane and EðhadÞ
T ðr < RÞ is the

amount of the hadronic transverse energy within the
isolation cone around the photon. This isolation condition
strongly suppresses the fragmentation component, but at
high energies, fragmentation is still non-negligible, con-
stituting up to 20% of the cross section [11].
The proper treatment of the collinear singularity con-

siderably complicates the analytical computations both in
the NNLO of CPM [12,47] and in the NLO of PRA, since
in the PRA the part of transverse momentum is provided to
the hard subprocess by the unPDFs. To avoid these
difficulties, one can define the direct part of the cross
section in the infrared-safe way, using the smooth-cone
isolation condition [48]

r < R ⇒ EðhadÞ
T ðrÞ < EðISOÞ

T χðrÞ; ð10Þ

where χðrÞ ¼ ð1−cosðrÞ
1−cosðRÞÞn, n ≥ 1=2. The isolation condition

(10) is easy to implement into the process of Monte Carlo
integration, and it makes the cross section of the subprocess
(7) finite because the collinear singularities associated with
the initial state are regularized by the unPDF. Applying the
smooth-cone isolation to our calculation, we are completely
eliminating the need in the fragmentation component
[47,48], but of course this isolation does not match to
the experimental one. However, as it was shown in
Ref. [47], the cross section obtained with the isolation
condition (10) is a lower estimate for the direct plus
fragmentation cross section, obtained with the hard-cone
isolation. Numerically, for n ¼ 1, this estimate is very
good, since it reproduces the NLO results with standard
isolation with the accuracy of Oð1%Þ [47]. Having in mind

that we are going to discuss Oð50% − 100%Þ NLO effects,
we will apply the isolation condition (10) to our present
calculations.
The cross section of the subprocess (8) is also finite

because the Sudakov form factor decreases in the region
q2T ≪ μ2 faster than any positive power of qT and therefore
regularizes the collinear and soft singularities of the matrix
element of the subprocess (8) in the limit of qT5 → 0.
In the factorization formula (2), the part of the ISR,

highly separated in rapidity from the particles produced in
the hard subprocess, is included into unPDFs, and the
effects of the additional radiations close in rapidity to
the hard subprocess should be taken order by order in αs in
the hard-scattering coefficient. Therefore, the correspond-
ing MRK asymptotics should be subtracted from the NLO
QMRK contributions (7) and (8) to avoid the double
counting, when the additional parton is highly separated
in rapidity from the central region. The analogous pro-
cedure of the “localization in rapidity” of the QMRK
contributions was proposed in Refs. [49,50]. To be com-
patible with our definition of the KMR unPDF (3), this
subtraction term should interpolate smoothly between the
strict MRK limit, when an additional parton goes deeply
forward or backward in rapidity with fixed transverse
momentum, and the collinear factorization limit, when
the initial-state partons are nearly on shell and an additional
parton has a small transverse momentum but its rapidity is
arbitrary. Below, such a subtraction term is constructed in
close analogy with the high-energy jets approach [51].
The Feynman diagrams for the subtraction terms,

required for the squared amplitudes of the subprocesses
(7) and (8) are shown in Fig. 5 and can be easily written
according to the FRs of Fig. 1. To extend the applicability
of the subtraction terms outside of the strict MRK limit, one
has to implement the exact 2 → 3 kinematics for the
subtraction terms, taking into account the exact t̂-channel
momentum in the propagator of the Reggeized quark.
In what follows, we will refer to the amplitudes with
the Reggeon propagators and vertices, but without
kinematical approximations, characteristic for the MRK,
as modified MRK (mMRK) amplitudes. As it was
checked explicitly, the implementation of the exact kin-
ematics does not destroy the gauge invariance of the
subtraction terms with the Reggeized quarks in the t̂
channels, presented in Fig. 5, as was the case for the
mMRK amplitudes with the Reggeized gluons in the t̂
channels in Ref. [51].
The last ambiguity, which we have to fix in the definition

of our mMRK amplitudes, is the position of the P̂�-
projector in the numerator of the propagator of the
Reggeized quark. In the MRK limit, the small light-cone
component of the Reggeon momentum can be neglected,
and the projectors P̂� commute with q̂t under the sign of
the trace, but outside of this limit, this is not true anymore.
To fix this ambiguity, let us study the amplitudes of the
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mMRK subprocesses in Fig. 6. Explicitly, they have the
forms

Aab
μνðgQ̄→ q̄gÞ ¼ g2s v̄ðq∥2Þ

�
γν − q̂2

nþν
qþ4

− q̂t
n−ν
q−4

�

× TbP̂þ
q̂t
q2t

�
γμ − q̂t

nþμ
qþ1

�
Tavðq3Þ; ð11Þ

Aab
μνðqQ̄→ ggÞ ¼ g2s v̄ðq∥2Þ

�
γν − q̂2

nþν
qþ4

− q̂t
n−ν
q−4

�

× TbP̂þ
q̂t
q2t

�
γμ þ q̂t

nþμ
qþ3

�
Tauðq1Þ; ð12Þ

Aa
μðQQ̄ → gÞ ¼ gsv̄ðq∥2Þ

�
γν − q̂2

nþμ
qþ4

− q̂t
n−μ
q−4

�

× Tauðq∥t Þ: ð13Þ

Taking the squared modulus of these amplitudes and
averaging them over the initial-state spin and color quan-
tum numbers, we get

jAðgQ̄ → q̄gÞj2 ¼ g2s
ŝþ t2

ŝþ t2 þ t̂

2PqgðzÞ
zt̂

jAðQQ̄ → gÞj2;

ð14Þ

jAðqQ̄ → ggÞj2 ¼ g2s
ŝþ t2

ŝþ t2 þ t̂

2PqqðzÞ
zt̂

jAðQQ̄ → gÞj2;

ð15Þ

jAðQQ̄ → gÞj2 ¼ g2s
CACF

N2
c

ðq2
t⊥ þ t2Þ; ð16Þ

where q22 ¼ −t2, the invariants ŝ, t̂, û are defined after
Eq. (6), qt⊥¼ðqT2−qT4Þ, z¼ 1−qþ3 =q

þ
1 , and PqgðzÞ ¼

1
2
ðz2 þ ð1 − zÞ2Þ, PqqðzÞ ¼ CF

1þz2
1−z are the LO DGLAP

splitting functions. Note that we have taken the limit q21 ¼ 0

to facilitate the study of the collinear singularity.
When z ≪ 1 and t̂ is fixed, the partons 3 and 4 are in the

MRK. In the opposite (collinear) limit t̂ → 0, the squared
amplitudes (14), and (15) factorize into the collinear
singularity with the corresponding DGLAP splitting func-
tion and the squared amplitude (16). From this example,
one can conclude that the factor q̂t should be taken together
with the vertex of the MRK emission to correctly reproduce
the collinear singularity of the amplitude. This prescription
is denoted by the crosses on the quark propagators in
Figs. 1, 5, and 6.
The squared amplitudes (14), (15) can also be used to

explain the structure of the factorization formula (2) and the
unPDF (3). The presence of the exact DGLAP splitting
functions in (14) and (15) corresponds to the usage of the
exact splitting functions in the unPDF (3). Factor z in the
denominators of (14) and (15) is nothing but a flux factor of
the t̂-channel partons, which tells us that for the Reggeized
partons one should use the same flux factor I ¼ 2Sx1x2 as
for the CPM partons. After the integration over the small
light-cone component in the definition of the unPDF, the
additional factor 1=ð1 − zÞ appears, which converts t̂ into

FIG. 6. The Feynman diagrams for the mMRK subprocesses
gðq1ÞþQ̄ðq2Þ→ q̄ðq3Þþgðq4Þ (left panel) and qðq1Þ þ Q̄ðq2Þ →
gðq3Þ þ gðq4Þ (right panel).

FIG. 5. Upper panel: the diagrammatic representation for the squared amplitude of the subprocess (7) and the corresponding mMRK
subtraction term. Lower panel:- the same for the subprocess (8).
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t̂ð1 − zÞ ¼ q2
t⊥, which is why the q2T and not q2 stands in

the denominator of (3).
The rapidity ordering conditions are imposed in the

subtraction terms for the subprocess (8) (see Fig. 5, lower
panel), while for the case of the subprocess (7), the rapidity
of the quark in the final state is unconstrained (Fig. 5, upper
panel). This corresponds to the fact that in the KMR unPDF
the radiation of the gluon is ordered in rapidity with the
particles, produced in the hard subprocess, while for the
quark, it is not the case. So, the mMRK terms constructed
according to the Feynman diagrams in Fig. 5 are com-
pletely well defined and correspond to the definition of the
unPDF (3).

IV. QUARK-BOX CONTRIBUTION

The subprocess

Rðq1Þ þ Rðq2Þ → γðq3Þ þ γðq4Þ ð17Þ

is described by the quark-box amplitude and is formally
NNLO [Oðα2α2sÞ], but its contribution to the total cross
section is expected to be comparable with NLO contribu-
tions, due to the enhancement by two gluon unPDFs. The
RR → qq̄þ γγ subprocess is also enhanced by two gluon
PDFs. But it is reasonable to expect that its contribution
will be negligible after the subtraction of double-counting
contributions with LO and NLO because the leftover of
such subtraction will be dominated by the RR →
qðq → γÞ þ q̄ðq̄ → γÞ double-fragmentation contribution.
The latter is highly suppressed by the smallness of the
double-fragmentation phase space and photon isolation
conditions. In the present paper, we do not intend to do the
complete NNLO computation in PRA, and in fact we
include the box subprocess to our calculations, following
the previous studies in kT factorization [19,20] and the
current experimental literature [3,4], where it is included
together with the NLO contributions. It is of calculational
and phenomenological interest to study the exact depend-
ence of this contribution on the virtualities of initial-state
partons.
The helicity amplitudes for the subprocess (17) could be

written as

AðRR; λ3λ4Þ ¼
qþ1 q

−
2

4
ffiffiffiffiffiffiffi
t1t2

p n−μ1n
þ
μ2ε

⋆
μ3ðλ3Þε⋆μ4ð−λ4ÞMμ1μ2μ3μ4 ;

ð18Þ

where λ3, λ4 are the helicities of the photons in the final
state and the fourth-rank vacuum polarization tensor has the
form

Mμ1μ2μ3μ4

¼ 2

Z
d4q

�
tr½ðq̂− q̂1Þγμ3ðq̂þ q̂2− q̂4Þγμ4ðq̂þ q̂2Þγμ2 q̂γμ1 �

ðq−q1Þ2ðqþq2−q4Þ2ðqþq2Þ2q2

þðq3↔q4;μ3↔μ4Þþðq2↔−q4;μ2↔μ4Þ
�
; ð19Þ

where the factor 2 takes into account the diagrams with
the opposite direction of the fermion number flow.
The following overall factor is taken out from the
amplitude (18):

e2g2s
ð2πÞ4

δab
2

�X
q

e2q

�
:

We take the polarization vectors for the final-state photons
in the form

εμðλÞ ¼ 1ffiffiffi
2

p ðnμx þ iλnμyÞ;

where

nμx ¼ 1

Δ
ððq3q4Þqμ2 − ðq2q4Þqμ3 − ðq2q3Þqμ4Þ;

nμy ¼ −
1

Δ
ϵμq2q3q4 ;

and Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ t̂ û−ŝt1t2

p
=2.

In Ref. [52], we managed to obtain the compact result for
the helicity amplitudes of the process γR → γg and explic-
itly demonstrate the cancellation of the spurious collinear
singularity 1=ðt1t2Þ in the squared amplitude. For the
process (17), it turns out to be impossible to obtain the
reasonably compact results, and the actual task is to obtain
the representation for the helicity amplitudes which will be
useful for the numerical evaluation of the cross-section. To
do this, we observe that, exploiting the Ward identity
qμ1;21;2Mμ1μ2μ3μ4 ¼ 0 for the tensor (19), one can make the
following substitutions in Eq. (17):

qþ1 q
−
2

4
ffiffiffiffiffiffiffi
t1t2

p ðn−Þμ1ðnþÞμ2 → nμ1T1n
μ2
T2;

where nT1;2 ¼ qT1;2=
ffiffiffiffiffiffiffi
t1;2

p
.

To get rid of the ϵ tensors and directly pass to the
Passarino–Veltman reduction for the Feynman integrals
with the scalar products in the numerator, we exploit the
same trick as in Ref. [52]. We decompose the 4-vectors
nT1;2 as

nT1 ¼ βð1Þ0 q1 þ βð1Þ3 q3 þ βð1Þ4 q4 þ γ1ny; ð20Þ

nT2 ¼ βð2Þ0 q2 þ βð2Þ3 q3 þ βð2Þ4 q4 þ γ2ny; ð21Þ
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and the vector ny is introduced via its scalar products:
n2y ¼ −1, nyq2 ¼ nyq3 ¼ nyq4 ¼ 0. The coefficients of
this decomposition can be straightforwardly expressed
through the Mandelstam invariants, transverse momenta
of particles, and azimuthal angles. After the Passarino–
Veltman reduction, the helicity amplitudes were repre-
sented as linear combinations of two, three, and four-point
scalar one-loop integrals, and the cancellation of the UV
and IR divergences was checked both analytically and
numerically. The coefficients of this decomposition depend

on five invariants, ŝ, t̂, û, t1, t2, and eight coefficients, βðjÞi ,
γ1;2, i.e., 13 parameters in total. They can be represented as
rational functions with tens of thousands of terms in the
numerators. It turns out that just to reliably check the
cancellation of the UVand IR divergences numerically one
has to compute these coefficients with 30 digits of accuracy
at least.
Also, it was checked, both analytically and numerically,

that the collinear limit for the squared helicity amplitudes
(18), defined as

Z
2π

0

dϕ1dϕ2

ð2πÞ2 lim
t1;2→0

jAðRR; λ3λ4Þj2

¼ 1

4

X
λ1;2¼�

jACPMðλ1λ2; λ3λ4Þj2;

holds, where the jACPMðλ1λ2; λ3λ4Þj2 is the squared helicity
amplitude of the process gg → γγ in the CPM. The
numerical check of the collinear limit was performed by
the technique described in Ref. [52]. The numerical results
for the subprocess (17) will be presented in the next section,
and the FORTRAN code for the calculation of the helicity
amplitudes and differential cross sections of the process
(17), as well as for the 2 → 2 subprocess (5) and 2 → 3
subprocesses (7) and (8), is available from the authors on
request.

V. NUMERICAL RESULTS

The differential cross section of the 2 → 2 subprocesses
(5), (17) can be represented as

dσ
dqT3dqT4dΔϕdy3dy4

¼ 1

2!

Z
dt1

Z
2π

0

dϕ1

X
ij

Φiðx1; t1; μ2FÞΦjðx2; t2; μ2FÞ
qT3qT4jAijj2

2ð2πÞ3ðSx1x2Þ2
; ð22Þ

where the factor 1=2! takes into account the identical nature of the photons, qTi ¼ jqTij, yi are the rapidities of the final-state
particles,Δϕ is the azimuthal angle between transverse momenta of the photons, ϕ1 is the azimuthal angle between qT3 and
qT1, t2 ¼ ðqT3 þ qT4 − qT1Þ2, and x1;2 ¼ ðqT3e�y3 þ qT4e�y4Þ= ffiffiffi

S
p

. The spectra differential in the diphoton invariant mass
(M) and diphoton transverse momentum pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2T3 þ q2T4

p
could be obtained using the substitutions

dM ¼ qT3C
M

dqT4; ð23Þ

dpT ¼ D
pT

dqT4; ð24Þ

where C ¼ coshðy3 − y4Þ − cosðΔϕÞ, D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T − q2T3 sin

2ðΔϕÞp
, qT4 ¼ M2=ð2qT3CÞ for the case of (23), and qT4 ¼

D − qT3 cosðΔϕÞ for the (24).
For the 2 → 3 subprocesses (7), (8), the formula for the differential cross section reads

dσ
dqT3dqT4dΔϕdy3dy4dy5

¼ 1

2!

Z
dt1

Z
2π

0

dϕ1

Z
dt2

Z
2π

0

dϕ2

×
X
ij

Φiðx1; t1; μ2FÞΦjðx2; t2; μ2FÞ
qT3qT4jAijj2

16ð2πÞ6ðSx1x2Þ2
; ð25Þ

and the differential cross sections over the pT and M could
be obtained using the substitutions (23) and (24) as in the
2 → 2 case.
For the numerical computations, we use the modified

KMR unPDF (3) with the MSTW-2008 NLO PDFs [53] as
the collinear input. Also, the value for the fine-structure
constant α ¼ 1=137.036 was used in the calculations

together with the NLO formula for the αs with αsðMZÞ ¼
0.12018 and flavor thresholds at mc ¼ 1.4 GeV and
mb ¼ 4.75 GeV. The choice of the factorization and
renormalization scales μR ¼ μF ¼ ξM commonly used in
the literature [3,4,11,12] was adopted, where the default
value for ξ ¼ 1 and the values ξ ¼ 2�1 were used to
estimate the scale uncertainty of the calculation, which
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is indicated in Figs. 8–12 as the gray band. The numerical
computations were performed mostly using the Suave
adaptive Monte Carlo integration algorithm with the cross-
checks against the results of Vegas and Divonne
algorithms implemented in the CUBA library [54].
Before the presentation of the comparison of our

calculations with experimental data, let us discuss the
contribution of 2 → 3 subprocesses (7), (8) after the
subtraction of double counting, discussed in Sec. III. In
the left panel of Fig. 7, the pT spectra for the NLO
contributions (7), (8) in the ATLAS-2013 kinematical
conditions (see the second column of Table I) is presented
together with the corresponding mMRK subtraction

contribution. For the CDF-2012 kinematics of Ref. [3]
(first column of Table I), the qualitative picture is the same.
From Fig. 7, one can observe that the mMRK subtraction

term reproduces the exact contribution of the NLO sub-
process (8) with the 10% accuracy and constitutes more
than 50% of the cross section of the subprocess (7) for the
pT > 50 GeV. As the right panel of Fig. 7 shows, for the
subprocess (7), the significant deviation from the mMRK
asymptotics starts only for Δy ¼ y5 − Yγγ < 2.0, while for
the larger values of Δy, the QMRK 2 → 3 cross section is
well described by the mMRK asymptotics. For the sub-
process (8), the 2 → 3 cross section is reproduced by the
mMRK approximation for all values of Δy. Consequently,
more than 50% of the cross section of the subprocess (7)
and almost all the contribution of the subprocess (8) will be
canceled by the subtraction term. Having this in mind, we
do not include the contribution of the subprocess (8) in the
further calculations.
The squared amplitude for the subprocess (7) can be

safely integrated from qT5 ¼ 0 in (25). The cross section
for the subprocess (8) is also finite, but for the small
values of qT5, most of the cross section is accumulated at
t1;2 ∼ 1 GeV2, which is nothing other than the manifestation

FIG. 7 (color online). The comparison of the pT (left column) and Δy (right column) spectra for the NLO QMRK contributions (solid
lines) with the corresponding mMRK subtraction terms (dashed lines). Upper panels: subprocess (7); lower panels: subprocess (8).

TABLE I. Kinematical conditions for the CDF and ATLAS data
sets.

pp̄, CDF-2012 [3] pp, ATLAS-2013 [4]ffiffiffi
S

p ¼ 1960 GeV
ffiffiffi
S

p ¼ 7000 GeV
qT3;4 ≥ 15, 17 GeV qT3;4 ≥ 22, 25 GeV
jy3;4j ≤ 1.0 jy3;4j ≤ 1.37, 1.52 ≤ jy3;4j ≤ 2.37

R ¼ 0.4, EðISOÞ
T ¼ 2 GeV R ¼ 0.4, EðISOÞ

T ¼ 4 GeV
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of the usual infrared singularity for the radiation of the soft
gluon. For this reason, the cutoff qT5 > 2 GeV was imposed
to produce the lower panel of Fig. 7. The dependence of
the cross section on the small-t behavior of the unPDF is
unphysical and will be canceled away by the NLO real-
virtual interference contribution.
Now, we are in a position to compare the predictions of

our model with the experimental data of Refs. [3,4]. In the
present study we concentrate on three main observables:
dσ=dpT , dσ=dΔϕ and dσ=dM. The fixed-order calcula-
tions in the CPM are experiencing the greatest difficulties
for dσ=dpT and dσ=dΔϕ, while dσ=dM is the benchmark
CPM observable, for which the multiscale nature of
the process under consideration is less important. The
comparison for the other observables will be discussed
elsewhere.
In Fig. 8, the pT spectra of the photon pair, measured by

the CDF Collaboration, is presented. For this data set, three
data samples are provided, the inclusive one and two data
samples with the additional kinematical constraint pT < M
or pT > M imposed. One can note that the inclusive data
and data for the pT < M are well described for the pT >
25 GeV by the sum of the LO contribution (5) and NLO
contribution (7) after the mMRK subtraction. For the

pT > M, data are well described by our prediction for
all values of pT , and the NLO contribution is, in fact,
negligible. The contribution of the box subprocess (17) is
only about 15% of the cross section predicted at small pT
and decreases with pT very quickly, contributing signifi-
cantly only for the pT < 30 GeV.
For pT < 25 GeV, one can observe the deficit of the

predicted cross section which reaches up to a factor of 5 at
the pT ¼ 7 GeV. The region of small pT corresponds to the
kinematics of CPM, where the radiation of soft gluons and
virtual corrections are dominating. We expect that the
computation of the NLO real-virtual interference correction
in the PRA will significantly reduce this gap. One of the
advantages of PRA is that at NLO this correction is finite
and can be considered separately from the real NLO
corrections, which are the subject of the present study.
The good description of the data for the pT > M region

supports the self-consistency of our approach, since the
NLO correction in this region is almost canceled by the
mMRK subtraction terms and the contribution of the real-
virtual NLO correction is expected to be small here.
For the reader’s convinience, in Figs. 8–12, we also have

plotted the corresponding NLO CPM predictions. Data for
these plots correspond to the Diphox predictions [11],

FIG. 8 (color online). The pT spectra for the CDF-2012 data set. The thick solid curve is the sum of the contributions (5), (7) with
mMRK subtraction and (17). The thick dashed curve is the sum of the first two. The thin dash-dotted curve is the contribution of
the subprocess (5) only. The thin dash-double-dotted curve is the corresponding Diphox (NLO CPM) prediction, taken from Ref. [3];
see the text for details.
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FIG. 9 (color online). The pT spectra (left panel) and Δϕ spectra (right panel) for the ATLAS-2013 data set. The notation for the
curves is the same as in Fig. 8, except the thin dash-double-dotted curve, which is the Diphox (NLO CPM) prediction, taken from
Ref. [4]; see the text for details.

FIG. 10 (color online). The Δϕ spectra for the CDF-2012 data set. The notation for the curves is the same as in Fig. 8.
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presented in the CDF [3] and ATLAS [4] experimental
papers. The contribution of the gg → γγ subprocess is also
included into these predictions, via the GAMMA2MC pro-
gram [24]. Comparing the NLO CPM and NLO⋆ PRA
predictions in Figs. 8–12, one can conclude that the NLO⋆
approximation in PRA cannot describe the data on the
dσ=dM distribution due to the absence of the loop
correction, which contributes mostly in the back-to-back
CPM-like kinematics. But for the configurations far away
from the CPM kinematics, the NLO⋆ PRA describes the
data substantially better than the NLO CPM, especially at
the LHC. Moreover, in this region, the NLO⋆ PRA
prediction is dominated by the LO term, which demon-
strates the better stability of PRA predictions for the
kinematics far away from the CPM one. The inclusion
of full NLO corrections should also improve the agreement
in the CPM region.
In the left panel of Fig. 9, one can observe the same

qualitative features as in the left panel of Fig. 8, despite the
fact that we have moved from the Tevatron to the LHC with
its 3.6 times larger energy and switched to pp collisions
instead of pp̄ ones. The NLO subprocess (7) is more
important at the LHC than at the Tevatron, contributing
significantly up to pT ¼ 200 GeV.
In Fig. 10 and right panel of Fig. 9, theΔϕ spectra for the

Tevatron and LHC are presented. In both figures, one can
observe a good agreement of our predictions with data for

FIG. 11 (color online). Diphoton invariant mass spectra for the CDF-2012 data set. The notation for the curves is the same as in Fig. 8.

FIG. 12 (color online). Diphoton invariant mass spectrum for
the ATLAS-2013 data set. The notation for the curves is the same
as in Fig. 8.
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Δϕ < 1.5which corresponds to the high deviation from the
back-to-back kinematics for the photons. In this region,
the NLO correction is manifestly subleading, as it was for
the pT spectrum. The good description of the Tevatron data
for the pT > M case is also there, as well, as the deficit of
the predicted cross section for the back-to-back kinematics.
As for the M spectra of Figs. 11 and 12, one certainly

expects the deficit of the calculated cross section for the
most values of M due to the deficit of the cross section for
the CPM kinematics, observed earlier, since most of the
total cross section is accumulated near the CPM configu-
rations. However, in the region of M below the peak, the
data are well described, demonstrating that the PRA is
suitable for the description of the effects of kinematical
cuts. Once again, we observe the good description of theM
spectrum for the pT > M subset of the Tevatron data.
The contribution of the quark-box subprocess (17) to the

M spectra is found to be only about 8% of the observed
cross section in the peak and 18% of the predicted cross
section, both for the CDF-2012 and ATLAS-2013 kin-
ematics. This result is 20%–30% smaller than the usual
CPM estimate [12], which is in accordance with the
findings of Ref. [52], where it was shown that the spacelike
virtuality of the initial-state partons suppresses the γR → γg
contribution with respect to the CPM expectation.

VI. CONCLUSIONS

In the present study, the pair hadroproduction of prompt
photons is considered in the framework of the PRA with
tree-level NLO corrections (7), (8) and the NNLO quark-
box subprocess (17) taken into account. The procedure
of localization in the rapidity of the tree-level NLO

corrections to avoid double counting the real emissions
between the hard-scattering part of the cross section and
unPDF is proposed in Sec. III. As a consequence of this
procedure, the real NLO corrections were put under
quantitative control, and their contribution was found to
be numerically small at high pT or in the kinematical region
pT > M. The kinematical region pT > M is interesting for
the further theoretical and experimental study, as an ideal
testing site for the PRA, where the MRK between the ISR
and the hard subprocess is dominating. The contribution of
the quark-box subprocess (17) was found to be about 8% of
the observed cross section in the peak of the dσ=dM
distribution, which is a bit smaller than the CPM estimate
[12] due to the spacelike virtuality of the initial-state
partons, similarly to the results of Ref. [52].

ACKNOWLEDGMENTS

This work was supported by Russian Foundation for
Basic Research through the Grant No. 14-02-00021 and by
the Ministry of Education and Science of Russia under
Competitiveness Enhancement Program of SSAU for 2013-
2020. The work of M. A. N. was also supported by the
Graduate Students Scholarship Program of the Dynasty
Foundation. The authors would like to thank M. G. Ryskin,
G. Watt, and E. de Oliveira for providing to us their
numerical codes for the calculation of the KMR unPDF of
Ref. [42]. M. A. N. would like to thank the Department of
the Phenomenology of the Elementary Particles of the II
Institute for Theoretical Physics of Hamburg University
and personally B. A. Kniehl for their kind hospitality
during the initial stage of this work and the computational
resources provided.

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012); S. Chatrchyan et al. (CMS Collaboration), Phys.
Lett. B 716, 30 (2012).

[2] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 113,
171801 (2014).

[3] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 84,
052006 (2011); Phys. Rev. Lett. 110, 101801 (2013).

[4] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
01 (2013) 086.

[5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 80,
111106 (2009).

[6] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 89,
052004 (2014).

[7] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 84,
052011 (2011).

[8] S. Catani, M. Fontannaz, J. P. Guillet, and E. Pilon, J. High
Energy Phys. 05 (2002) 028; P. Aurenche, M. Fontannaz, J.

P. Guillet, E. Pilon, and M.Werlen, Phys. Rev. D 73, 094007
(2006).

[9] V. A. Saleev, Phys. Rev. D 78, 034033 (2008).
[10] B. A. Kniehl, V. A. Saleev, A. V. Shipilova, and E. V.

Yatsenko, Phys. Rev. D 84, 074017 (2011).
[11] T. Binoth, J. P. Guillet, E. Pilon, and M. Werlen, Eur. Phys.

J. C 16, 311 (2000).
[12] S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M.

Grazzini, Phys. Rev. Lett. 108, 072001 (2012).
[13] J. C. Collins, Foundations of Perturbative QCD

(Cambridge University Press, Cambridge, England, 2011).
[14] T. Becher, M. Neubert, and D. Wilhelm, J. High Energy

Phys. 02 (2012) 124.
[15] M. Anselmino, M. Boglione, J. O. Gonzalez Hernandez, S.

Melis, and A. Pokudin, J. High Energy Phys. 04 (2014) 005.
[16] F. Landry, R. Brock, P. M. Nadolsky, and C. P. Yuan, Phys.

Rev. D 67, 073016 (2003).

DIPHOTON PRODUCTION AT THE TEVATRON AND THE … PHYSICAL REVIEW D 92, 094033 (2015)

094033-15

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1103/PhysRevLett.113.171801
http://dx.doi.org/10.1103/PhysRevLett.113.171801
http://dx.doi.org/10.1103/PhysRevD.84.052006
http://dx.doi.org/10.1103/PhysRevD.84.052006
http://dx.doi.org/10.1103/PhysRevLett.110.101801
http://dx.doi.org/10.1007/JHEP01(2013)086
http://dx.doi.org/10.1007/JHEP01(2013)086
http://dx.doi.org/10.1103/PhysRevD.80.111106
http://dx.doi.org/10.1103/PhysRevD.80.111106
http://dx.doi.org/10.1103/PhysRevD.89.052004
http://dx.doi.org/10.1103/PhysRevD.89.052004
http://dx.doi.org/10.1103/PhysRevD.84.052011
http://dx.doi.org/10.1103/PhysRevD.84.052011
http://dx.doi.org/10.1088/1126-6708/2002/05/028
http://dx.doi.org/10.1088/1126-6708/2002/05/028
http://dx.doi.org/10.1103/PhysRevD.73.094007
http://dx.doi.org/10.1103/PhysRevD.73.094007
http://dx.doi.org/10.1103/PhysRevD.78.034033
http://dx.doi.org/10.1103/PhysRevD.84.074017
http://dx.doi.org/10.1007/s100520050024
http://dx.doi.org/10.1007/s100520050024
http://dx.doi.org/10.1103/PhysRevLett.108.072001
http://dx.doi.org/10.1007/JHEP02(2012)124
http://dx.doi.org/10.1007/JHEP02(2012)124
http://dx.doi.org/10.1007/JHEP04(2014)005
http://dx.doi.org/10.1103/PhysRevD.67.073016
http://dx.doi.org/10.1103/PhysRevD.67.073016


[17] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.
100, 1 (1983); J. C. Collins and R. K. Ellis, Nucl. Phys.
B360, 3 (1991); S. Catani, M. Ciafaloni, and F. Hautmann,
Nucl. Phys. B366, 135 (1991).

[18] M. Ciafaloni, Nucl. Phys. B296, 49 (1988); S. Catani, F.
Fiorani, and G. Marchesini, Nucl. Phys. B336, 18 (1990);
Phys. Lett. B 234, 339 (1990); G. Marchesini, Nucl. Phys.
B445, 49 (1995).

[19] V. A. Saleev, Phys. Rev. D 80, 114016 (2009).
[20] A. V. Lipatov, J. High Energy Phys. 02 (2013) 009; 02

(2013) 009.
[21] E. L. Berger, E. Braaten, and R. D. Field, Nucl. Phys. B239,

52 (1984).
[22] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 95,

022003 (2005).
[23] V. Costantini, B. De Tollis, and G. Pistoni, Nuovo Cimento

A 2, 733 (1971); V. N. Baier, V. S. Fadin, V. M. Katkov, and
E. A. Kuraev, Phys. Lett. B 49, 385 (1974).

[24] Z. Bern, L. J. Dixon, and C. Schmidt, Phys. Rev. D 66,
074018 (2002).

[25] J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys.
B261, 104 (1985); G. T. Bodwin, Phys. Rev. D 31, 2616
(1985); 34, 3932 (1986); 34, 3932(E) (1986).

[26] L. N. Lipatov, Yad. Fiz. 23, 642 (1976) [Sov. J. Nucl. Phys.
23, 338 (1976)]; E. A. Kuraev, L. N. Lipatov, and V. S.
Fadin, Zh. Eksp. Teor. Fiz. 71, 840 (1976) [Sov. Phys. JETP
44, 443 (1976)]; Zh. Eksp. Teor. Fiz. 72, 377 (1977) [Sov.
Phys. JETP 45, 199 (1977)]; I. I. Balitsky and L. N. Lipatov,
Yad. Fiz. 28, 1597 (1978) [Sov. J. Nucl. Phys. 28, 822
(1978)]; Zh. Eksp. Teor. Fiz. 90, 1536 (1986) [Sov. Phys.
JETP 63, 904 (1986)].

[27] L. N. Lipatov, Phys. Rep. 286, 131 (1997).
[28] B. L. Ioffe,V. S. Fadin, andL. N. Lipatov,QuantumChromo-

dynamics: Perturbative and Nonperturbative Aspects
(Cambridge University Press, Cambridge, England, 2010).

[29] V. S. Fadin and V. E. Sherman, JETP Lett. 23, 599 (1976);
JETP Lett. 45, 861 (1977).

[30] A. V. Bogdan and V. S. Fadin, Nucl. Phys. B740, 36 (2006).
[31] L. N. Lipatov, Nucl. Phys. B452, 369 (1995).
[32] L. N. Lipatov and M. I. Vyazovsky, Nucl. Phys. B597, 399

(2001).
[33] E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O.

Cherednikov, Nucl. Phys. B721, 111 (2005).
[34] A. van Hameren, K. Kutak, and T. Salwa, Phys. Lett. B 727,

226 (2013).
[35] A. van Hameren, J. High Energy Phys. 07 (2014) 138.

[36] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972)
[Sov. J. Nucl. Phys. 15, 438 (1972)]; Yu. L. Dokshitzer, Zh.
Eksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641
(1977)]; G. Altarelli and G. Parisi, Nucl. Phys. 126, 298
(1977).

[37] J. Blümlein, DESY Report No. 95-121 (1995).
[38] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J.

C 12, 655 (2000); Phys. Rev. D 63, 114027 (2001); G. Watt,
A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 31, 73
(2003); Phys. Rev. D 70, 014012 (2004); 70, 079902(E)
(2004).

[39] A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, and A. V.
Shipilova, Phys. Rev. D 91, 054009 (2015).

[40] A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, and A. V.
Shipilova, Int. J. Mod. Phys. A 30, 1550023 (2015).

[41] F. Hautmann, H. Jung, M. Krämer, P. J. Mulders, E. R.
Nocera, T. C. Rogers, and A. Signori, Eur. Phys. J. C 74,
3220 (2014).

[42] A. D. Martin, M. G. Ryskin, and G. Watt, Eur. Phys. J. C 66,
163 (2010).

[43] The singularity of the PggðzÞ splitting function at z → 0 is
also regularized by the cutoff θðz − 1þ ΔggÞ in (3) and (4),
which is not shown there for brevity. See Ref. [42] for the
details.

[44] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.92.094033 to obtain the
ReggeQuarks model file, its usage instructions, and
examples, including the 2 → 2 and 2 → 3 tree-level ampli-
tudes used in this paper.

[45] T. Hahn, Comput. Phys. Commun. 140, 418 (2001).
[46] R. Mertig, M. Bohm, and A. Denner, Comput. Phys.

Commun. 64, 345 (1991).
[47] L. Cieri and D. de Florian, arXiv:1405.1067.
[48] S. Frixione, Phys. Lett. B 429, 369 (1998).
[49] J. Bartels, A. Sabio Vera, and F. Schwennsen, J. High

Energy Phys. 11 (2006) 051.
[50] M. Hentschinski and A. S. Vera, Phys. Rev. D 85, 056006

(2012).
[51] J. R. Andersen, V. Del Duca, and C. D. White, J. High

Energy Phys. 02 (2009) 015; J. R. Andersen and J. M.
Smillie, J. High Energy Phys. 01 (2010) 039.

[52] B. A. Kniehl, M. A. Nefedov, and V. A. Saleev, Phys. Rev. D
89, 114016 (2014).

[53] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur.
Phys. J. C 63, 189 (2009).

[54] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).

M. A. NEFEDOV AND V. A. SALEEV PHYSICAL REVIEW D 92, 094033 (2015)

094033-16

http://dx.doi.org/10.1016/0370-1573(83)90022-4
http://dx.doi.org/10.1016/0370-1573(83)90022-4
http://dx.doi.org/10.1016/0550-3213(91)90288-9
http://dx.doi.org/10.1016/0550-3213(91)90288-9
http://dx.doi.org/10.1016/0550-3213(91)90055-3
http://dx.doi.org/10.1016/0550-3213(88)90380-X
http://dx.doi.org/10.1016/0550-3213(90)90342-B
http://dx.doi.org/10.1016/0370-2693(90)91938-8
http://dx.doi.org/10.1016/0550-3213(95)00149-M
http://dx.doi.org/10.1016/0550-3213(95)00149-M
http://dx.doi.org/10.1103/PhysRevD.80.114016
http://dx.doi.org/10.1007/JHEP02(2013)009
http://dx.doi.org/10.1007/JHEP02(2013)009
http://dx.doi.org/10.1007/JHEP02(2013)009
http://dx.doi.org/10.1016/0550-3213(84)90084-1
http://dx.doi.org/10.1016/0550-3213(84)90084-1
http://dx.doi.org/10.1103/PhysRevLett.95.022003
http://dx.doi.org/10.1103/PhysRevLett.95.022003
http://dx.doi.org/10.1007/BF02736745
http://dx.doi.org/10.1007/BF02736745
http://dx.doi.org/10.1016/0370-2693(74)90187-7
http://dx.doi.org/10.1103/PhysRevD.66.074018
http://dx.doi.org/10.1103/PhysRevD.66.074018
http://dx.doi.org/10.1016/0550-3213(85)90565-6
http://dx.doi.org/10.1016/0550-3213(85)90565-6
http://dx.doi.org/10.1103/PhysRevD.31.2616
http://dx.doi.org/10.1103/PhysRevD.31.2616
http://dx.doi.org/10.1103/PhysRevD.34.3932
http://dx.doi.org/10.1103/PhysRevD.34.3932
http://dx.doi.org/10.1016/S0370-1573(96)00045-2
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.033
http://dx.doi.org/10.1016/0550-3213(95)00390-E
http://dx.doi.org/10.1016/S0550-3213(00)00709-4
http://dx.doi.org/10.1016/S0550-3213(00)00709-4
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.013
http://dx.doi.org/10.1016/j.physletb.2013.10.039
http://dx.doi.org/10.1016/j.physletb.2013.10.039
http://dx.doi.org/10.1007/JHEP07(2014)138
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1007/s100520000326
http://dx.doi.org/10.1007/s100520000326
http://dx.doi.org/10.1103/PhysRevD.63.114027
http://dx.doi.org/10.1140/epjc/s2003-01320-4
http://dx.doi.org/10.1140/epjc/s2003-01320-4
http://dx.doi.org/10.1103/PhysRevD.70.014012
http://dx.doi.org/10.1103/PhysRevD.70.079902
http://dx.doi.org/10.1103/PhysRevD.70.079902
http://dx.doi.org/10.1103/PhysRevD.91.054009
http://dx.doi.org/10.1142/S0217751X15500232
http://dx.doi.org/10.1140/epjc/s10052-014-3220-9
http://dx.doi.org/10.1140/epjc/s10052-014-3220-9
http://dx.doi.org/10.1140/epjc/s10052-010-1242-5
http://dx.doi.org/10.1140/epjc/s10052-010-1242-5
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://link.aps.org/supplemental/10.1103/PhysRevD.92.094033
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://arXiv.org/abs/1405.1067
http://dx.doi.org/10.1016/S0370-2693(98)00454-7
http://dx.doi.org/10.1088/1126-6708/2006/11/051
http://dx.doi.org/10.1088/1126-6708/2006/11/051
http://dx.doi.org/10.1103/PhysRevD.85.056006
http://dx.doi.org/10.1103/PhysRevD.85.056006
http://dx.doi.org/10.1088/1126-6708/2009/02/015
http://dx.doi.org/10.1088/1126-6708/2009/02/015
http://dx.doi.org/10.1007/JHEP01(2010)039
http://dx.doi.org/10.1103/PhysRevD.89.114016
http://dx.doi.org/10.1103/PhysRevD.89.114016
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://dx.doi.org/10.1016/j.cpc.2005.01.010

