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We study the cross section for the photoproduction process γN → hX where the incident photon and
nucleon are longitudinally polarized and a hadron h is observed at high transverse momentum. Specifically,
we address the “direct” part of the cross section, for which the photon interacts in a pointlike way. For this
contribution we perform an all-order resummation of logarithmic threshold corrections generated by soft
or collinear gluon emission to next-to-leading logarithmic accuracy. We present phenomenological results
relevant for the COMPASS experiment and compare to recent COMPASS data.
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I. INTRODUCTION

To obtain information about the nucleon’s gluon helicity
distribution Δg and to explore its contribution to the
proton’s spin is the main focus of several current experi-
ments. One of the probes employed for this purpose at
CERN’s COMPASS experiment is μN → μ0hX, where h
denotes a charged hadron produced at high transverse
momentum. Kinematics for the process are chosen in such
a way that the photons exchanged between the muon and
the nucleon are almost real, so that the process effectively
becomes γN → hX. Its double-longitudinal spin asymme-
try ALL is directly sensitive to Δg, thanks to the presence
of the photon-gluon fusion subprocess γg → qq̄.
COMPASS has recently presented data for the spin-
averaged cross section [1] for the process, as well as for
its spin asymmetry [2,3].
Thanks to the produced hadron’s large transverse

momentum, the process γN → hX may be treated with
perturbative methods. As is well known [4], hard photo-
production cross sections receive contributions from two
sources, the “direct” ones, for which the photon interacts
in the usual pointlike way in the hard scattering, and the
“resolved” ones, for which the photon reveals its own
partonic structure. Both contributions are of the same order
in perturbation theory, starting at OðααsÞ, with the electro-
magnetic and strong coupling constants α and αs. Next-to-
leading order [NLO,Oðαα2sÞ] QCD corrections for the spin
asymmetry for γN → hX have been derived in Refs. [5] and
[6,7] for the direct and resolved cases, respectively.
As discussed in [8], in the kinematic regime accessible

at COMPASS perturbative corrections beyond NLO are
important. This is because typical transverse momenta pT

of the produced hadron are such that the variable xT ¼
2pT=

ffiffiffi
S

p
(with

ffiffiffi
S

p
the muon-proton center-of-mass energy)

is relatively large, xT ≳ 0.2. This means that the partonic

hard-scattering cross sections relevant for γN → hX are
largely probed in the “threshold”-regime, where the initial
photon and parton have just enough energy to produce a
pair of recoiling high-pT partons, one of which sub-
sequently fragments into the observed hadron. The phase
space for radiation of additional gluons then becomes
small, allowing radiation of only soft and/or collinear
gluons. As a result, the cancellation of infrared singularities
between real and virtual diagrams leaves behind large
double- and single-logarithmic corrections to the partonic
cross sections. These logarithms appear for the first time at
NLO and then recur with increasing power at every order of
perturbation theory. Threshold resummation [9,10] allows
to sum the logarithms to all orders to a certain logarithmic
accuracy. It was applied to the spin-averaged cross section
at COMPASS at next-to-leading logarithm (NLL) level in
Ref. [8], where the resummation of both the direct and the
resolved contribution was performed. The resummed result
for the cross section was found to be significantly higher
than the NLO one, by roughly a factor two. Comparison to
the COMPASS data reported in [1] showed that this
enhancement is crucial for achieving good agreement
between data and the perturbative-QCD prediction.
In the light of this result, it is clear that threshold

resummation should also be taken into account in the
theoretical analysis of the spin asymmetry ALL measured at
COMPASS [2]. ALL is the ratio of the spin-dependent cross
section and the spin-averaged one. Since the latter has
already been addressed in [8], we will in this paper examine
threshold resummation for polarized scattering. As a first
step, we will consider the direct contributions to the cross
section, which are simpler to analyze and also formally
dominate over the resolved ones near partonic threshold.
We plan to complete our resummation study for ALL in a
future publication by performing threshold resummation
also for the resolved contribution in the spin-dependent
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case. We note that the resolved contribution to γN → hX is
structurally equivalent to hadronic scattering pp → hX, for
which threshold resummation was performed in the pre-
vious literature even for the polarized case [11]. However,
Ref. [11] only addressed the simplified case when the cross
section is integrated over all rapidities of the produced
hadron, while in the present case we consider an arbitrary
fixed rapidity. The techniques necessary for this were
developed in [8,12] and will be used here as well.
Our paper is organized as follows: In Sec. II we recall the

general framework for the process γN → hX in QCD
perturbation theory. Section III collects all ingredients for
the threshold resummed spin-dependent cross section. In
Sec. IV we present phenomenological results for the spin-
dependent and spin-averaged cross sections at COMPASS,
as well as for the resulting longitudinal double-spin asym-
metry. Finally, we conclude our paper in Sec. V.

II. PHOTOPRODUCTION CROSS SECTION
IN PERTURBATION THEORY

We consider the process

lN → l0hX; ð1Þ

where the lepton l and the nucleon N are both longitu-
dinally polarized and where a charged hadron h is
observed at high transverse momentum pT (see Fig. 1).
Demanding the scattered lepton l0 to have a low scatter-
ing angle with respect to the incoming one, the main
contributions come from almost on-shell photons
exchanged between the lepton and the nucleon. The
scattering may then be treated as a photoproduction
process γN → hX, with the incoming lepton essentially
serving as a source of quasireal photons.
We introduce the spin-averaged and spin-dependent

cross sections for the lepton-nucleon process as

dσlN ≡ 1

2
½dσþþ

lN þ dσþ−
lN �;

dΔσlN ≡ 1

2
½dσþþ

lN − dσþ−
lN �; ð2Þ

where the superscripts ðþþÞ, ðþ−Þ denote the helicities of
the incoming particles. Using factorization, the differential
spin-dependent cross section (as function of the hadron’s
transverse momentum pT and pseudorapidity η) may be
written as [7,8]:

p3
TdΔσ

dpTdη
¼
X
abc

Z
1

xmin
l

dxl

Z
1

xmin
n

dxn

Z
1

x
dz

×
x̂4Tz

2

8v

ŝdΔσ̂ab→cXðv;w;ŝ;μr;μfi;μffÞ
dvdw

×Δfa=lðxl;μfiÞΔfb=Nðxn;μfiÞDh=cðz;μffÞ; ð3Þ

the sum running over all possible partonic channels
ab → cX. The Δfb=Nðxn; μfiÞ are the polarized parton
distribution functions of the nucleon, which depend on
the momentum fraction xn carried by parton b and on an
initial-state factorization scale μfi. They can be written as
differences of distributions for positive or negative helicity
in a parent nucleon of positive helicity,

Δfb=Nðx; μÞ≡ fþb=Nðx; μÞ − f−b=Nðx; μÞ: ð4Þ

In Eq. (3) we have introduced also “effective” parton
distributions in a lepton, Δfa=lðxl; μfiÞ, which we shall
elaborate on further below. For now we just note that in
terms of spin-dependence they are defined exactly as in (4).
The Dh=cðz; μffÞ in (3) are the parton-to-hadron fragmen-
tation functions that describe the hadronization of parton c
into hadron h, with z being the fraction of the parton c’s
momentum taken by the hadron and μff a final-state
factorization scale. Finally, the dΔσ̂ab→cX are the spin-
dependent cross sections for the partonic hard-scattering
processes ab → cX. In analogy with (2) they are defined as

dΔσ̂ab→cX ≡ 1

2
½dσ̂þþ

ab→cX − dσ̂þ−
ab→cX�; ð5Þ

the indices now denoting the helicities of the incoming
partons. The dΔσ̂ab→cX are perturbative and may hence be
expanded in terms of the strong coupling constant αs,

dΔσ̂ab→cX ¼ dΔσ̂ð0Þab→cX þ αs
π
dΔσ̂ð1Þab→cX þ � � � : ð6Þ

Apart from the partonic kinematic variables that will be
introduced shortly, they depend on the factorization scales
and also on a renormalization scale μr. We note that all
formulas presented so far may be easily written for the spin
averaged case by simply summing over helicities in (4), (5)
instead of taking differences. This then gives the unpolar-
ized cross section introduced in Eq. (2) in terms of the usual

FIG. 1. High-pT hadron production in muon-nucleon scattering
via direct photon-parton interaction.
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spin-averaged parton distributions fa=l; fb=N and partonic
cross sections dσ̂ab→cX.
In Eq. (3) we have introduced a number of kinematic

variables. The partonic cross sections have been written
differential in

v≡ 1þ t̂
ŝ

and w≡ −û
ŝþ t̂

; ð7Þ

with the Mandelstam variables

ŝ ¼ ðpa þ pbÞ2 ¼ xlxnS;

t̂ ¼ ðpa − pcÞ2 ¼ −
ŝx̂T
2

e−η̂;

û ¼ ðpb − pcÞ2 ¼ −
ŝx̂T
2

eη̂; ð8Þ

where pa; pb; pc are the four-momenta of the participating
partons and where S ¼ ðpl þ pnÞ2, with the lepton
(nucleon) momentum pl (pn). Furthermore,

x̂T ≡ xT
z

ffiffiffiffiffiffiffiffiffi
xlxn

p ; ð9Þ

where xT ≡ 2pT=
ffiffiffi
S

p
, and the relationship between the

hadron and the parton level center-of-mass system rapid-
ities is

η̂ ¼ ηþ 1

2
ln
xn
xl

: ð10Þ

Finally, the lower integration bounds in Eq. (3) are given by

xmin
l ¼ xTeη

2 − xTe−η
;

xmin
n ¼ xlxTe−η

2xl − xTeη
;

x ¼ xT cosh η̂ffiffiffiffiffiffiffiffiffi
xnxl

p : ð11Þ

An important aspect of photoproduction cross sections is
that the quasireal photon can interact in two ways. For the
direct contributions (see Fig. 1), it participates directly in
the hard-scattering, coupling in the usual pointlike way to
quarks and antiquarks. However, as is well established, the
photon may also itself behave like a hadron, revealing its
own partonic structure in terms of quarks, antiquarks, and
gluons, as shown in Fig. 2. The associated contributions are
known as resolved photon contributions. The physical
cross section is the sum of the direct and the resolved part:

dΔσ ¼ dΔσdir þ dΔσres: ð12Þ

Both contributions are captured by Eq. (3) by introducing
an effective spin-dependent parton distribution for the
lepton:

Δfa=lðxl; μffÞ ¼
Z

1

xl

dy
y
ΔPγlðyÞΔfa=γ

�
xγ ¼

xl
y
; μff

�
;

ð13Þ

where ΔPγlðyÞ is the polarized Weizsäcker-Williams
spectrum and Δfa=γ describes the distribution of parton
a inside the photon. Equation (13) also applies to the direct
case, see Fig. 1, where parton a is an elementary photon
and hence

Δfγ=γ ¼ δð1 − xγÞ: ð14Þ

The Weizsäcker-Williams spectrum is given by [13]:

ΔPγlðyÞ ¼
α

2π

�
1 − ð1 − yÞ2

y
ln

�
Q2

maxð1 − yÞ
m2

ly
2

�

þ2m2
ly

2

�
1

Q2
max

−
1 − y
m2

ly
2

��
; ð15Þ

where α is the fine structure constant. ΔPγl describes the
(nearly) collinear emission of a polarized photon with
momentum fraction y by a polarized lepton with mass ml.
The low virtuality Q2 of the photon is restricted by an
upper limit Q2

max that is determined by the experimental
conditions.
In the direct case, there are three different LO subpro-

cesses,

γq → gðqÞ; γq → qðgÞ; γg → qðq̄Þ; ð16Þ

where the final-state particle in brackets is understood to
remain unobserved, while the other parton fragments into

FIG. 2. High-pT hadron production in muon-nucleon scattering
via a resolved photon.
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the observed hadron. We note that the photon-gluon-fusion
process is symmetric under exchange of q and q̄ in the final
state. The spin-dependent cross sections for the LO sub-
processes are [5]:

ŝdΔσ̂ð0Þγq→gðqÞðv; wÞ
dvdw

¼ 2πααse2qCF
1 − v2

v
δð1 − wÞ;

ŝdΔσ̂ð0Þγq→qðgÞðv; wÞ
dvdw

¼ 2πααse2qCF
1 − ð1 − vÞ2

1 − v
δð1 − wÞ;

ŝdΔσ̂ð0Þγg→qðq̄Þðv; wÞ
dvdw

¼ −2πααse2qTR
v2 þ ð1 − vÞ2

vð1 − vÞ δð1 − wÞ;

ð17Þ

with CF ¼ 4=3, TR ¼ 1=2 and the fractional electromag-
netic charge eq of the quark.
In the resolved case, all 2 → 2 QCD partonic processes

contribute at LO:

qq0 → qq0; qq̄0 → qq̄0; qq̄ → q0q̄0; qq → qq;

qq̄ → qq̄; qq̄ → gg; gq → qg; gg → gq;

gg → gg; gg → qq̄; ð18Þ

where either of the final-state partons may fragment into
the observed hadron. As the photon’s parton distributions
Δfa=γ are of order α=αs, both the direct and the resolved LO
contributions are of order α2αs for the lN cross section (or
of order ααs for the γN one) [4]. Note that theΔfa=γ contain
a perturbative “pointlike” contribution that dominates at
high xγ , but also a nonperturbative “hadronic” piece that is
associated with the photon converting into a vector meson
and is important at low-to-mid xγ.
As shown in Eq. (17), the LO partonic cross sections are

proportional to δð1 − wÞ. From (7) one finds that the
invariant mass squared of the final state that recoils against
the fragmenting parton is given by

ŝ4 ¼ ŝþ t̂þ û ¼ ŝvð1 − wÞ ¼ ŝð1 − x̂T cosh η̂Þ: ð19Þ

The δð1 − wÞ at LO thus reflects the fact that the recoil
consists of a single massless parton. At NLO, the partonic
cross sections contain various types of distributions in
ð1 − wÞ. Analytical expressions have been obtained in
Refs. [5,6,14–17]. For each process the result may be cast
into the form

ŝdΔσ̂ð1Þab→cXðv; wÞ
dvdw

¼ AðvÞδð1 − wÞ þ BðvÞ
�
lnð1 − wÞ
1 − w

�
þ

þ CðvÞ
�

1

1 − w

�
þ
þ Fðv; wÞ; ð20Þ

where the coefficients AðvÞ; BðvÞ; CðvÞ; Fðv; wÞ depend
on the process under consideration, and where the plus-
distributions are defined as usual by

Z
1

0

dwfðwÞ½gðwÞ�þ ≡
Z

1

0

dw½fðwÞ − fð1Þ�gðwÞ: ð21Þ

The function Fðv; wÞ in (20) contains all remaining terms
without distributions in ð1 − wÞ. The terms with plus-
distributions give rise to the large double-logarithmic
corrections that are addressed by threshold resummation.
Their origin lies in soft-gluon radiation, and they recur
with higher power at every higher order of perturbation
theory. For the kth order QCD correction, the leading
terms are proportional to αks ½ln2k−1ð1 − wÞ=ð1 − wÞ�þ (not
counting the overall power of the partonic process in αs).
Subleading terms are down by one or more powers
of lnð1 − wÞ.
Both the direct and the resolved contributions have the

structure shown in (20). In the following we discuss the all-
order resummation of the threshold logarithms in the direct
part of the cross section, which we separate from the
resolved part adopting the MS scheme. We perform the
resummation to next-to-leading logarithm (NLL), which
means that the three “towers” αks ½ln2k−1ð1 − wÞ=ð1 − wÞ�þ,
αks ½ln2k−2ð1 − wÞ=ð1 − wÞ�þ, αks ½ln2k−3ð1 − wÞ=ð1 − wÞ�þ
are taken into account to all orders in the strong coupling.

III. RESUMMED CROSS SECTION

A. Transformation to Mellin moment space

The resummation may be organized in Mellin moment
space. A particularly convenient way developed in [8,12]
is to start from Eq. (3) and write the convolution of the
partonic cross sections with the fragmentation functions as
the Mellin inverse of the corresponding products of Mellin
moments. For the direct contributions we have

p3
Tdσ

dpTdη
¼

X
bc

Z
1

0

dxl

Z
1

0

dxnΔfγ=lðxl; μfiÞΔfb=Nðxn; μfiÞ

×
Z
C

dN
2πi

ðx2Þ−ND2Nþ3
h=c ðμffÞΔ ~w2N

γb→cXðη̂Þ; ð22Þ

where

DN
h=cðμÞ≡

Z
1

0

dzzN−1Dh=cðz; μÞ ð23Þ

and

Δ ~wN
γb→cXðη̂Þ≡ 2

Z
1

0

d
ŝ4
ŝ

�
1 −

ŝ4
ŝ

�
N−1 x̂4Tz

2

8v

ŝdΔσ̂γb→cX

dvdw
;

ð24Þ
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with ŝ4 as defined in (19). For simplicity, we have not
written out the dependence of the Δ ~wN

γb→cX on ŝ and on the
factorization and renormalization scales, which they inherit
from the dΔσ̂γb→cX. As one can see, in writing the cross
section in the form (22) we keep the parton distribution
functions in x-space.
The plus-distributions in ð1 − wÞ in the dΔσ̂γb→cX turn

into logarithms of the Mellin variable N in the Δ ~wN
γb→cX.

Specifically, the terms αks ½ln2k−1ð1 − wÞ=ð1 − wÞ�þ,
αks ½ln2k−2ð1 − wÞ=ð1 − wÞ�þ, αks ½ln2k−3ð1 − wÞ=ð1 − wÞ�þ
mentioned above turn into the NLL towers αks ln2kðNÞ,
αks ln2k−1ðNÞ, αks ln2k−2ðNÞ in moment space. Threshold
resummation provides closed expressions for the
Δ ~wN

γb→cX that contain these logarithms to all orders.
Inserting these expressions into (22) and performing the
inverse Mellin transformation and the convolution with the
parton distribution functions then yields the resummed
hadronic cross section. We note that the presence of the
moments of the fragmentation functions in (22) is impor-
tant for making the Mellin-inverse sufficiently well
behaved that the convolution with the parton distribution
functions can be carried out numerically. The reason is that
the DN

h=c fall off rapidly at large N and thus tame the
logarithms inN and hence the plus-distributions in ð1 − wÞ.

B. NLL-resummed hard-scattering function

The resummed expressions for the Δ ~wN
γb→cX may be

obtained [8] from the corresponding ones for the produc-
tion of photons, ab → γX, which were derived and dis-
cussed in detail in [18–20]. To NLL, one finds:

Δ ~wN;resum
γb→cd ðη̂Þ ¼

�
1þ αs

π
ΔCð1Þ

γb→cd

�
Δσ̂ð0Þγb→cdðN; η̂Þ

× Δð−t̂=ŝÞN
b ðŝ; μfi; μrÞΔN

c ðŝ; μff; μrÞJNd ðŝÞ

× exp

�Z ffiffî
s

p
=N

μr

dμ0

μ0
2ReΓγb→cdðη̂; αsðμ0ÞÞ

�
:

ð25Þ
We now discuss the various functions appearing in this

expression. We first note that among them only Δσ̂ð0Þγb→cd

and ΔCð1Þ
γb→cd depend on the polarizations of the incoming

partons; all other factors are spin-independent. The

Δσ̂ð0Þγb→cd are the Mellin-moments of the Born cross sections
in (17):

Δσ̂ð0Þγb→cdðN; η̂Þ≡ 2

Z
1

0

d
ŝ4
ŝ

�
1 −

ŝ4
ŝ

�
N−1 x̂4Tz

2

8v

ŝdΔσ̂ð0Þγb→cd

dvdw
:

ð26Þ

We can easily compute them in closed form by exploiting
the δð1 − wÞ-function in (17) and the relation ŝ4 ¼
ŝvð1 − wÞ, Eq. (19). The coefficients ΔCð1Þ

γb→cd match the
resummed cross section to the NLO one. They correspond
to hard contributions and primarily originate from the
virtual corrections at NLO and may be extracted by
comparing the exact NLO cross section with the first-order
expansion of the resummed one. We have followed this
procedure; our results are given in Appendix A. We note

that the ΔCð1Þ
γb→cd are functions of v and the ratios μ2=ŝ,

where μ is any of the scales μr; μfi; μff.

The functions Δð−t̂=ŝÞN
b and ΔN

c in (25) account for soft
radiation collinear to the initial-state parton b or to the
fragmenting parton c, respectively. They are exponentials
and given in the MS scheme as [18]

lnΔN
i ðŝ; μf; μrÞ ¼ −

Z
1

0

dz
zN−1 − 1

1 − z

Z
1

ð1−zÞ2
dt
t
AiðαsðtŝÞÞ

− 2

Z ffiffî
s

p

μr

dμ0

μ0
γiðαsðμ02ÞÞ

þ 2

Z ffiffî
s

p

μfi

dμ0

μ0
γiiðN; αsðμ02ÞÞ; ð27Þ

where the functions Ai; γi; γii (i ¼ q; g) are perturbative
series in the strong coupling that are well known. For
convenience, we collect them in Appendix B. The function
JNd describes collinear emission, soft and hard, off the
unobserved recoiling parton d. We have [18]

ln JNd ðŝ; μrÞ ¼
Z

1

0

dz
zN−1 − 1

1 − z

�Z ð1−zÞ

ð1−zÞ2
dt
t
AdðαsðtŝÞÞ − γdðαsðð1 − zÞŝÞÞ

�
þ 2

Z ffiffî
s

p

μr

dμ0

μ0
γdðαsðμ02ÞÞ: ð28Þ

Finally, emission of soft gluons at large angles is
accounted for by the last factor in (25). The soft anomalous
dimension Γγb→cd in its exponent starts at OðαsÞ [18],

Γγb→cdðη̂; αsÞ ¼
αs
π
Γð1Þ
γb→cdðη̂Þ þOðα2sÞ: ð29Þ

As indicated, it explicitly depends on the pseudorapidity η̂.
The first-order terms of the anomalous dimensions for our
various direct subprocesses can be obtained [8] from those
for the prompt-photon production processes, qq̄ → γg and
qg → γq, given in [18]:
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Γð1Þ
γq→qgðη̂Þ ¼ CF ln

�
−û
ŝ

�
þ CA

2

�
ln

�
t̂
û

�
− iπ

�
; ð30Þ

Γð1Þ
γq→gqðη̂Þ ¼ Γð1Þ

γq→qgðη̂Þjt̂↔û; ð31Þ

Γð1Þ
γg→qq̄ðη̂Þ ¼ CFiπ þ CA

2

�
ln

�
t̂ û
ŝ2

�
þ iπ

�
: ð32Þ

We note that the imaginary parts do not contribute since the
real part is taken in the last exponent in (25).
After inserting all factors into Eq. (25), our final

resummed expression is obtained by expanding to NLL.
The techniques for this are standard, and we present the
results of the expansion in Appendix B. We have checked
that upon further expansion of the results to NLO, all
single- and double-logarithmic terms of the exact NLO
partonic cross sections given in [5] are recovered. The
terms constant in N also match provided we use the

coefficients ΔCð1Þ
γb→cd as given in Appendix A.

We finally note that for the direct contributions that we
consider in this paper, the LO hard-scattering cross sections
only possess a single color structure, given by that of the
qq̄g vertex. Due to color conservation, soft-gluon emission
thus cannot lead to color transitions in the hard-scattering
subprocesses. This changes when one considers the
resolved-photon contributions, for which at LO the
2 → 2 QCD scattering processes in (18) contribute. As
is well known [11,12,21–24], in this case a matrix structure
arises in the resummed cross section. We plan to address
the resummation of the resolved-photon contributions in a
future publication. We note that they are formally sup-
pressed by 1=N relative to the direct ones near threshold,
due to the photon’s parton distributions. As a result, they
fall off more rapidly toward higher transverse momenta, as
we shall see below.

C. Inverse Mellin transform and matching procedure

As seen in Eq. (25), we need to perform an inverse
Mellin transform in order to arrive at the resummed
hadronic cross section. In the course of this we need to
deal with singularities appearing in the NLL expanded
exponents, Eqs. (B5), (B6), at λ ¼ 1=2 and λ ¼ 1, where
λ ¼ αsb0 lnðNeγEÞ. These singularities are a consequence
of the Landau pole in the perturbative strong coupling and
lie on the positive real axis in moment space. The left of
these poles is located at NL ¼ exp ð1=ð2αsb0Þ − γEÞ in the
complex-N plane. We will use the minimal prescription
formula introduced in [25], for which one chooses the
integration contour as shown in Fig. 3. The main feature of
the contour is that it intersects the real axis at a value CMP
that lies to the left of NL (but, of course, to the right of all
other poles originating from the fragmentation functions).
It is important to point out that the Mellin-integral in (25)

defined in this way,

Z
CMPþi∞

CMP−i∞

dN
2πi

ðx2Þ−ND2Nþ3
h=c ðμffÞΔ ~w2N;resumðη̂Þ; ð33Þ

has support for both x2 < 1 and x2 ≥ 1. The latter con-
tributions arise only because of the way the Landau poles
are treated in the minimal prescription. They are unphysical
in the sense that the cross section at any finite order of
perturbation theory must not receive any contributions
from x2 ≥ 1. Mathematically, however, the unphysical
contributions are needed to make sure that the expansions
of the resummed cross section to higher orders in αs
converge to the fully resummed result. We note that the
piece with x2 ≥ 1 decreases exponentially with x2, so that
its numerical effect is suppressed. As shown in Fig. 3, we
tilt the contours with respect to the real axis, which helps
to improve the numerical convergence of the Mellin
integral. For x2 < 1 (x2 ≥ 1), we need to choose an angle
ϕ1 > π=2 (ϕ2 < π=2).
We finally note that as usual we match our resummed

cross section to the NLO one by subtracting all NLO
contributions that are present in the resummed result and
adding instead the full NLO cross section:

p3
TΔdσ̂matched

dpTdη
¼ p3

TdΔσNLO

dpTdη
þ
X
bc

Z
1

0

dxl

Z
1

0

dxn

× Δfγ=lðxl; μfiÞΔfb=Nðxn; μfiÞ

×
Z
C

dN
2πi

ðx2Þ−ND2Nþ3
h=c ðμffÞ

×

�
Δ ~w2N;resum

γb→cd ðη̂Þ − Δ ~w2N;resum
γb→cd ðη̂Þj

NLO

�
;

ð34Þ

where “jNLO” denotes the truncation at NLO. This pro-
cedure makes sure that NLO is fully included in the
theoretical predictions, as well as all soft-gluon

FIG. 3 (color online). Our choices for the contours of the
inverse Mellin transform: C1 for x2 < 1 and C2 for x2 ≥ 1.
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contributions beyond NLO to NLL accuracy. It avoids any
double-counting of perturbative terms.

IV. PHENOMENOLOGICAL RESULTS

As discussed in the Introduction, measurements of
cross sections and spin asymmetries for the photoproduc-
tion process μN → hX are carried out in the COMPASS
experiment [1,2] at CERN. We therefore present our
phenomenological results for COMPASS kinematics.
COMPASS uses a longitudinally polarized muon beam
with mean beam energy of Eμ ¼ 160 GeV, resulting inffiffiffi
S

p ¼ 17.4 GeV. Both deuteron and proton targets are
available. COMPASS imposes the cut Q2

max ¼ 1 GeV2 on
the virtuality of the exchanged photon which we use in the
Weizsäcker-Williams spectrum (15). As in COMPASS, we
also implement the cuts 0.2 ≤ y ≤ 0.9 on the fraction of the
lepton’s momentum carried by the photon, and 0.2 ≤ z ≤
0.8 for the fraction of the energy of the virtual photon
carried by the hadron. Finally, charged hadrons are detected
in COMPASS if their scattering angle is between
10 ≤ θ ≤ 120 mrad, corresponding to −0.1 ≤ η ≤ 2.38 in
the hadron’s pseudorapidity. We integrate over this range.
Our default choice for the helicity parton distributions is

the set of [26] (referred to as DSSV2014). We adopt the
fragmentation functions of Ref. [27] (DSS) throughout this
work. In the calculations of the NLL resummed unpolar-
ized cross sections we follow Ref. [8] and use the numerical
code of that work. Unless stated otherwise, we employ the
unpolarized parton distribution functions of Ref. [28]
(referred to as MSTW). For comparisons we will also
present results for the NLO resolved contributions, for
which we will adopt the unpolarized and polarized
photonic parton distributions of Refs. [29] and [30],
respectively. We furthermore choose all factorization/
renormalization scales to be equal, μr ¼ μfi ¼ μff ≡ μ.
We usually choose μ ¼ pT , except when investigating the
scale dependence of the theoretical predictions.

A. Polarized and unpolarized resummed cross sections

Figure 4 shows the direct parts (defined in the MS
scheme) of the spin-averaged and spin-dependent cross
sections for μd → μ0h�X at leading order (LO), next-to-
leading order, and resummed with matching implemented
as described in Eq. (34). The symbols in the figure show
the NLO-expansions of the nonmatched resummed cross
sections, and for comparison the figure also presents the
NLO resolved contributions. We have summed over the
charges of the produced hadrons. As can be seen, in
the unpolarized case the difference between the LO and
NLO results is very large, and resummation adds another
equally sizable correction that increases relative to the NLO
result as one goes to larger pT, that is, closer to threshold.
The NLO expansion of the resummed cross section
shows excellent agreement with the full NLO result,

demonstrating that the threshold terms correctly reproduce
the dominant part of the cross section. These findings are as
reported in [8].
In the polarized case, the higher-order corrections are

overall much more modest. The NLO prediction is slightly
lower than the LO one at pT ≲ 2.5 GeV but higher for
larger values of transverse momentum. The resummation
effects are smaller here, leading to only a modest further
enhancement over NLO as one gets closer to threshold.
This implies that the higher-order resummation effects will
not cancel in the spin asymmetry for the process. Again the
NLO expansion of the resummed cross section reproduces
the full NLO result faithfully, although not quite as well
as in the unpolarized case. These features that we observe
for the direct part of the polarized cross section may be
understood from the fact that the two competing LO
subprocesses γq → qg and γg → qq̄ enter with opposite
sign and thus cancel to some extent. This was already
observed in Ref. [7] in the context of the NLO calculation.
As discussed there, the cancellation is also responsible for
the fact that the resolved contribution to the cross section
computed with the “maximal” set of [30] is relatively much
more important than in the unpolarized case, as is evident
from the curves for the resolved part shown in the figure.
Even though the resolved contributions also have gluon-
initiated subprocesses and hence are sensitive to Δg, they
have significant uncertainty due to the fact that very little
is known about the spin-dependent parton distributions
of the photon. The (possible) dominance of the resolved

FIG. 4 (color online). Direct parts of the spin averaged and spin
dependent LO, NLO and matched resummed differential cross
sections for μd → μ0h�X. We also show the NLO expansions of
the resummed results (symbols), as well as the NLO resolved
contributions.
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contributions in the polarized case thus sets a severe
limitation for extractions of Δg from γN → hX [7].
In Fig. 5 we examine the scale dependence of the

spin-dependent cross section. For the resummed cross
section we include the resolved contributions at NLO level,
so that

dΔσresum ¼ dΔσdir; resum þ dΔσres;NLO: ð35Þ

The LO and NLO cross sections contain as usual their full
direct and resolved contributions. We vary the scales in the
range pT=2 ≤ μ ≤ 2pT . One can observe that the scale
uncertainty is large, especially so at the lower pT. There is a
clear improvement when going from LO to NLO, but no
further improvement when we include resummation. If
anything, the resummed result shows a slightly larger scale
dependence than the NLO one, a feature that will require
further attention in the future.

B. Double-spin asymmetry

We now investigate the double-longitudinal spin asym-
metry for single-inclusive hadron production with a deu-
teron or a proton target. It is given by the ratio of the
spin-dependent and the spin-averaged cross sections
defined in Eq. (2):

ALL ¼ dΔσ
dσ

: ð36Þ

We include the NLO resolved photon contributions, so that
at the present stage the “resummed” spin asymmetry is
given by

ALL;resum ¼ dΔσdir;resum þ dΔσres;NLO
dσdir;resum þ dσres;NLO

; ð37Þ

while the NLO one is as usual

ALL;NLO ¼ dΔσdir;NLO þ dΔσres;NLO
dσdir;NLO þ dσres;NLO

: ð38Þ

Our results are shown in Figs. 6(a) and (b). The different
size of the resummation effects for the polarized and

FIG. 5 (color online). Scale dependence of the spin-dependent
cross section at LO, NLO, and for the resummed case. For the
resummed cross section we include the resolved contributions
at NLO. We vary the scale μ ¼ μr ¼ μfi ¼ μff in the range
pT=2 ≤ μ ≤ 2pT . The upper ends of the bands correspond to
μ ¼ pT=2, the lower ones to μ ¼ 2pT . We show results only
when the scale μ exceeds 1 GeV.

FIG. 6 (color online). Double-longitudinal spin asymmetries
ALL for (a) a deuteron and (b) a proton target for COMPASS
kinematics with the full rapidity range −0.1 ≤ η ≤ 2.38. In both
cases, we show the NLO and matched resummed results for two
different sets of parton distributions (see text). The asymmetries
include the resolved contributions at NLO; for illustration we also
show in (a) the resummed asymmetry without the resolved
contributions. The theoretical results are compared to the recent
COMPASS data [2].
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unpolarized cross sections that we found in Fig. 4 clearly
implies that the resummed threshold logarithm contribu-
tions do not cancel in the double-spin asymmetry. Indeed,
as Fig. 6 shows, for our default sets of parton distributions
the deuteron asymmetry is reduced by almost a factor of
two at high pT , when going from NLO to the resummed
case. For a proton target, there also is a substantial, albeit
somewhat less dramatic, decrease. We also plot in the
figure the corresponding results obtained by using the
unpolarized and polarized parton distributions of Refs. [31]
(CTEQ6.5M) and [32] (DSSV2008), respectively. For
these, the main trends are qualitatively similar, although
the reduction of ALL is slightly less pronounced. This is
likely due to the fact that the DSSV2008 set has a smaller
gluon helicity distribution Δg, so that the Compton process
γq → qg dominates, which has a positive partonic spin
asymmetry and receives similar resummation effects in the
unpolarized and the polarized case. We finally note that
for the case of a deuteron target in Fig. 4 we also show
the asymmetry based on the direct contributions alone.
Evidently, this asymmetry is much smaller, expressing the
fact that resolved contributions are likely very important for
the polarized cross section.
As stated in the Introduction, COMPASS has recently

presented data for the spin asymmetries for deuteron and
proton targets [2]. The data (combined for the full rapidity
range −0.1 ≤ η ≤ 2.38 and summed over hadron charges)
are shown in Fig. 6 in comparison to our theoretical results.
As one can see, while the asymmetries for deuterons are in
marginal agreement, the very small asymmetry seen by
COMPASS for protons is incompatible with any of our
predictions. It is worth mentioning that, as shown in Ref. [2],
this problem appears to be especially pronounced in the
rapidity range −0.1 ≤ η ≤ 0.45 and for positively charged
hadrons. While the higher order resummed corrections that
we have included ameliorate the situation, they are clearly not
sufficient. Given the rather large decrease of the spin
asymmetry generated by resummation of the direct contri-
butions, it is arguably not possible to draw any reliable
conclusions from this observation before also the resumma-
tion for the resolved part of the cross sections has been carried
out. It appears unlikely, however, that the resolved contri-
bution and its resummation will bring the data and theoretical
results into good agreement since they affect the asymmetries
for both targets in similar ways. If, for instance, the polarized
resolved contribution were so large and negative that the
proton data could be accommodated, the description of the
deuteron asymmetry would vastly deteriorate [33].

V. CONCLUSIONS AND OUTLOOK

We have studied the impact of threshold resummation
at next-to-leading logarithmic level on the spin-dependent
cross section for γN → hX at high transverse momentum pT
of the hadron h, and on the resulting double-
longitudinal spin asymmetry ALL. For the present work,

we have implemented the resummation only for the direct
contribution to the cross section. For the kinematics relevant
for the COMPASS experiment we find that the spin-
dependent cross section receives much smaller enhancements
by resummation than the spin-averaged one treated in
Ref. [8]. As a result, threshold effects do not cancel in the
double-spin asymmetry, and the prediction for ALL decreases
when resummation is taken into account. Definite conclu-
sions about the impact of resummation on the spin asym-
metry will become possible only when also the resummation
for the resolved component has been carried out, which we
plan to do in future work. Only then will an extraction of the
proton’s gluon helicity distribution Δg become meaningful.
We also note that the scale dependence of the perturbative
cross section remains uncomfortably large even when
resummation for the direct piece is taken into account. In
order to improve this it may, eventually, be necessary to
extend resummation to next-to-next-to-leading logarithmic
level, following the techniques developed in Ref. [24].
Comparison to the recent COMPASS data [2] shows that

the theoretically predicted spin asymmetries fail to repro-
duce the data well. Especially for the proton target the data
show a nearly vanishing asymmetry, while the theoretical
result appears to be always clearly positive. In fact, it is
worth stressing that each of the theoretical results shown
in Fig. 6 predicts a larger spin asymmetry for the proton
than for the deuteron, in contrast to the trend seen in the
data. This feature of the theoretical predictions is likely no
accident, as a simple study of the LO direct contributions
shows [33]. Clearly, future work is needed in order to
clarify in how far the leading-twist perturbative-QCD
framework can accommodate a larger spin asymmetry
for μd → μ0hX than for μp → μ0hX.
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APPENDIX A: COEFFICIENTS ΔCγb→cX

In order to present our results for the ΔCγb→cX in
compact form, we define

ρðAÞqγ ¼ 4γE þ 4 ln 2;

ρðFÞqγ ¼ −3þ 4γE þ 4 ln ð2ð1 − vÞÞ;
ρðAÞgγ ¼ 4γE þ 4 ln ð2ð1 − vÞÞ;
ρðFÞgγ ¼ −3þ 4γE þ 4 ln 2; ðA1Þ

where γE is the Euler constant. For the Compton process
γq → qg we then have
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ΔCγq→qg ¼ b0π ln
μ2r
ŝ
þ CF

4
ln
μ2ff
ŝ

	
ρðAÞqγ − 3



þ CF

4
ln
μ2fi
ŝ
ρðFÞqγ þ 1

18
ð2CA − 5NfÞ þ

1

4
b0πρ

ðAÞ
qγ

þ C2
A − 2

32CA

	
ρðAÞqγ



2 þ ln v

4CA

	
ρðAÞqγ − ln v



þ π2

4CA

2v − 1

vðv − 2Þ þ
7

4CA
þ π2CF

3

þ ln ð1 − vÞ
2CAvðv − 2Þ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p

v

�
ð4v − v2 − 1Þþ 1

2

�
1 − 3C2

A þ 2vþ ρðAÞqγ ð2v − v2Þ
��

; ðA2Þ

where CF ¼ 4=3, CA ¼ 3. For the process γq → gq with an observed gluon,

ΔCγq→gq ¼ b0π ln
μ2r
ŝ
þ ln

μ2ff
ŝ

�
CA

4
ρðAÞqγ − b0π

�
þ CF

4
ρðFÞqγ ln

μ2fi
ŝ

þ
�
CF

2
þ CA

��
ρðAÞqγ

4

�2

þ π2ðv2 − 6vþ 2Þ
12CAðv2 − 1Þ

þ 1

12

�
3CF

4

	
3ρðAÞqγ − 28



þ π2ð4CA þ CFÞ

�
þ ln v

4

�
CFð2 ln vþ 3Þ − CA

	
2 lnð1 − vÞ þ ρðAÞqγ




−
1

CAðv2 − 1Þ ½−vðv − 2Þ ln vþ 3CACFðv2 þ 1Þ þ 2 lnð1 − vÞð1 − 2vÞ þ 2v�
�

þ CA

4
ln ð1 − vÞ

h
ρðAÞqγ þ ln ð1 − vÞ

i
: ðA3Þ

Finally, for photon-gluon fusion γg → qq̄, we find

ΔCγg→qq̄ ¼ b0π ln
μ2r
μ2fi

þ ln
μ2fi
ŝ
CA

4
ρðAÞgγ þ CF

4
ln
μ2ff
ŝ

ρðFÞgγ þ 1

6

�
CA

�
3

8

	
ρðFÞgγ þ 3



2 þ π2

�
þ CF

�
9

8

	
ρðFÞgγ −

19

3



þ 5

2
π2
��

þ ln v
8CA

�
3C2

Að1 − 2vÞ þ 2vð1þ 2vÞ − 3

v2 þ ð1 − vÞ2 − 2C2
Aρ

ðAÞ
gγ þ 6CACF

�

þ lnð1 − vÞ
�
3C2

Av
2 − vðvþ 2Þ

v2 þ ð1 − vÞ2 þ C2
A

	
ρðFÞgγ þ 3


�
−
ln2v
4CA

�
1þ v2

v2 þ ð1 − vÞ2 − C2
A

�

−
ln2ð1 − vÞ

4CA

�
1þ ð1 − vÞ2
v2 þ ð1 − vÞ2 − C2

A

�
: ðA4Þ

We note that ΔCγg→qq̄ is identical to the corresponding
coefficient Cγg→qq̄ in the unpolarized case, which was given
in [8].

APPENDIX B: RADIATIVE EXPONENTS
AND THEIR EXPANSION TO NLL

The perturbative expansion of the function Ai to the
required order is given by

AiðαsÞ ¼
αs
π
Að1Þ
i þ

�
αs
π

�
2

Að2Þ
i þOðα3sÞ

¼ Ci

�
αs
π
þ 1

2
K

�
αs
π

�
2
�
þOðα3sÞ; ðB1Þ

where Cf ¼ CF ¼ 4=3 for a quark and Cf ¼ CA ¼ 3 for a
gluon, and where

K ¼ CA

�
67

18
−
π2

6

�
−
5

9
Nf; ðB2Þ

with Nf the number of flavors. The quark and gluon field
anomalous dimensions γi and the leading terms γii of the
diagonal splitting functions read to one-loop order [18]:

γqðαsÞ ¼
3

4
CF

αs
π
; γqqðN; αsÞ ¼ −

�
lnN −

3

4

�
CF

αs
π
;

γgðαsÞ ¼ b0αs; γggðN; αsÞ ¼ −ðCA lnN − πb0Þ
αs
π
;

ðB3Þ

where b0 ¼ ð11CA − 4TRNfÞ=ð12πÞ, with TR ¼ 1=2.
We next present the next-to-leading logarithmic expan-

sions of lnΔN
i and ln JNd in Eqs. (27) and (28), respectively.

Defining

λ≡ b0αs lnðNeγEÞ; ðB4Þ

we have [8,19,20]:
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lnΔN
i ðŝ; μfi; μrÞ ¼ lnNhð1Þi ðλÞ þ hð2Þi

�
λ;

ŝ
μ2r

;
ŝ
μ2fi

�
; ðB5Þ

and

ln JNi ðŝ; μrÞ ¼ lnNfð1Þi ðλÞ þ fð2Þi

�
λ;

ŝ
μ2r

�
: ðB6Þ

These exponents are universal in the sense that they depend
only on the parton considered, but not on the overall

subprocess. The functions hð1Þi and fð1Þi collect all leading

logarithmic terms αks lnkþ1N in the exponent, while the hð2Þi

and fð2Þi produce next-to-leading logarithms αks lnkN. They
read [20]

hð1Þi ðλÞ ¼ Að1Þ
i

2πb0λ
½2λþ ð1 − 2λÞ ln ð1 − 2λÞ�; ðB7Þ

hð2Þi

�
λ;
Q2

μ2r
;
Q2

μ2f

�
¼ −

Að2Þ
i

2π2b20
½2λþ ln ð1 − 2λÞ� þ Að1Þ

i b1
2πb30

�
2λþ ln ð1 − 2λÞ þ 1

2
ln2ð1 − 2λÞ

�

−
Að1Þ
i

πb0
λ ln

Q2

μ2f
þ Að1Þ

i

2πb0
½2λþ ln ð1 − 2λÞ� lnQ

2

μ2r
; ðB8Þ

with b1 ¼ ð17C2
A − 5CANf − 3CFNfÞ=ð24π2Þ. Furthermore,

fð1Þi ðλÞ ¼ hð1Þi ðλ=2Þ − hð1Þi ðλÞ

fð2Þi

�
λ;
Q2

μ2r

�
¼ 2hð2Þi

�
λ

2
;
Q2

μ2r
; 1

�
− hð2Þi

�
λ;
Q2

μ2r
; 1

�
þ Bð1Þ

i

2πb0
ln ð1 − λÞ; ðB9Þ

where Bð1Þ
i ¼ −2γð1Þi .
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