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Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of
the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of
interacting dyons for the SU(2) pure gauge theory, using standard Metropolis Monte Carlo and integration
over parameter methods. We calculate the free energy as a function of the holonomy (logarithm of the
Polyakov line), the dyon densities, and the Debye mass, and find its minima as a function of those
parameters. We show that the backreaction on the holonomy potential does generate confinement, provided
the density is sufficiently high (or the temperature sufficiently low). We then report various properties of the
self-consistent ensembles as a function of temperature.
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I. INTRODUCTION

QCD description of strongly interacting matter at finite
temperature T has originated from the 1970s. At first, its
high temperature phase—known as quark-gluon plasma,
QGP—has been studied using weak coupling methods, see
e.g. reviews [1,2]. The interest then switched to nonpertur-
bative phenomena, related with the topological solitons of
various dimensionality and two basic nonperturbative
phenomena: confinement and chiral symmetry breaking.
Instantons [3], the Euclidean 4-dimensional topological
solitons, have at high T the sizes ρ ∼ 1=T and appear with
the probability

ninstantons
T4

∼ exp½−8π2=g2ðTÞ� ∼
�
Λ
T

�
b
; ð1Þ

where the power is the one loop beta function coefficient,
b ¼ 11Nc=3 for SUðNcÞ gauge theory. So, at high T the
density is small and the topological solitons are unim-
portant. Conversely, as T decreases, the instanton density
rapidly grows, till they become an important ingredient of
the gauge fields in the QCD vacuum. Index theorems
ensure existence of the fermionic zero modes of topo-
logical solitons. Those generate the so-called ’t Hooft
effective interaction of 2Nf fermions, which explicitly
violates the UAð1Þ chiral symmetry. Furthermore, collec-
tivization of the zero modes create the so-called zero mode
zone of quasizero eigenstates, which break spontaneously
the SUðNfÞ chiral symmetry. Although those states
include only a tiny subset of all fermionic states in lattice
numerical simulations, they are the key elements of the
chiral symmetry breaking and the hadronic spectroscopy.
The so-called interacting instanton liquid model (IILM)
has been developed, including ’t Hooft interaction to all
orders, for a review see [4].

The presence of the topological solitons in the vacuum
has been related with the issue of confinement. In particu-
lar, in [5,6] it has been noted that superposition of regular
gauge instantons, or merons, can disorder the Wilson loop
to an area law. These effects are due to accumulated
contributions of distant solitons, which are assumed to have
long-range (1/r) tails of the gauge fields. However, already
using more appropriate configurations of singular gauge
instantons,with fields decaying as 1=r3, one finds only finite
and nonconfining heavy-quark potential [7]. Similar con-
fining effect can be generated by the instanton-dyons [8]: in
this case most components of the gauge field obtain a mass
due to nonzero holonomy, but the diagonal (Abelian) gluons
do not and remain massless. So again, there are 1=r tails of
the solitons, also disordering the Wilson loop.
Some IR effects can be argued to be artifacts since all

physical correlators in the vacuum are exponentially
decaying with distance. In particular, the holonomy vac-
uum expectation value (VEV) has a certain effective
potential, and its second derivative at the minimum
provides a nonzero Debye screening mass MD. If included
consistently, it leads to exponentially decaying tails and
eliminates infrared artifacts. However, Wilson lines can
also be disordered by magnetic (center) vortices [9] not
related to the IR effects: in this paper we will not discuss
this aspect of confinement.
In this paper we focus instead on derivation of the (local

and average) effective holonomy potential. By “confine-
ment” we will below imply its modification with temper-
ature, such that at T < Tc the minimum corresponds to the
“confining” value of the holonomy. More specifically, the
holonomy potential contains two terms. One is the well
known Gross-Pisarski-Yaffe one-loop effective potential,
coming from QGP effects on holonomy. The second term
—the main object discussed below—is due to backreac-
tion of the instanton-dyons. As we show below, together
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they produce a holonomy potential with minimum shifting
with the dyon density, eventually to its confining value.
The second derivative—the Debye mass—is in general
nonzero. This means there is always exponential screen-
ing, and thus the long-range problem discussed in the
papers mentioned is in principle solved. For the same
reason long-distance effects are relatively small in the
simulations.
As the temperature decreases from the high-T regime,

another important phenomenon is the appearance of non-
trivial expectation value of the Polyakov line. For the
simplest SU(2) gauge theory we will be discussing in this
work, it is related to the so-called holonomy parameter by
hPi ¼ cosðπνÞ (for explicit notations see Appendix A).
While at high T it vanishes ν → 0 and the Polyakov line
vacuum expectation value is hPi ¼ 1, at temperatures at
and below the critical value Tc it reaches the so called
“confining value” ν ¼ 1=2 at which the Polyakov line
vanishes itself. This leads to switching out quark and gluon
degrees of freedom, and transition from QGP to hadronic
matter. Study of the instantons at nonzero holonomy has
lead Lee,Lu,van Baal and Kraan [10,11] to the so-called
KvBLL caloron solution, which revealed that at ν ≠ 0 the
instantons get split into Nc (number of colors) (anti)dyons,
(anti)self-dual 3d solitons with nonzero (Euclidean) electric
and magnetic charges. (Details are in Appendix B.)
Because of the long-range nature of forces between these
objects, we will thus refer to the instanton-dyon ensemble
as the “dyonic plasma.”
Unlike instantons, protected by topology, the instanton-

dyons interact directly with the holonomy. Diakonov [12]
suggested that backreaction of the dyon free energy on
holonomy is responsible for confinement phase transition
but was unable to show it.
Poppitz, Schaefer and Unsal [13] had shown that

instanon-dyon confinement does occur in a very specific
“controlled setting,” a supersymmetric theory compactified
on R3 ⊗ S1 with a small spatial circle and periodic
fermions. The smallness of the circle, like high T, makes
the coupling weak. The periodic fermions preserve super-
symmetry and cancel the Gross-Pisarski-Yaffe (GPY)
holonomy potential VGPYðνÞ, which allows confinement
to be induced even by an exponentially small density of the
dyons. These authors have been able to trace the crucial
effect to the repulsive dyon-antidyon interaction inside the
dyon-antidyon pairs (which they call “bions”).
Simple phenomenological model showing that repulsive

interaction between them, modeled by an excluded volume,
has been proposed for QCD-like theories by Shuryak and
Sulejmanpasic [14], which reached qualitative description
of the deconfinement phase transition and other properties
of the thermal SUð2Þ pure gauge system above Tc, in
qualitative agreement with available lattice data. We will
discuss a similar model in Sec. II, before we embark on
numerical simulations.

Although the interaction between the instanton-dyons
has been studied for a long time, the leading-order effect—
classical dyon-antidyon interaction has been missing. The
corresponding studies, deriving the so-called “streamline”
set of configurations via the gradient flow method, has been
done in our previous work [15]. While it turns out to be
weak in relative terms δS ≪ S but, it is still parametrically
enhanced δS ∼ 1=g2 because of being classical. What
matters for the present work is that interaction δS ¼
Oð1Þ is large enough to induce significant correlations
in the ensemble.
Liu, Shuryak and Zahed [16] have recently shown that

one can incorporate this classical interaction by the mean
field techniques, provided the ensemble is dense enough
to generate sufficient screening. In terms of the temper-
ature, their treatment applies only for some interval of
temperatures T < Tc.
The goal of our present work is to study the instanton-

dyon ensemble by the direct Monte-Carlo simulation,
without the mean field or any other approximations.
As we will show, this will allow us to cover any
density regimes, from dilute to dense, and follow the
transformation of the holonomy potential in details. We
thus can discuss both sides of the deconfinement phase
transition. To complement [16], we will mainly focus on
temperatures T ≥ Tc.
Technically, the details of the setting to a large extent

follow the first Monte-Carlo simulations of the instanton-
dyon plasma by Faccioli and Shuryak [17]. One major
difference is the inclusion of the classical “streamline”
interaction which were not known at the time of that work.
The other is that paper focused on the role of fermions and
chiral symmetry breaking rather than confinement. (We
expect to report on our next paper, with fermions, soon.)
The paper is structured as follows: standard informa-

tion about our notations, the holonomy potential and the
instanton-dyons are delegated to sections of the Appendix.
We start in Sec. II by introducing a simple model which
illustrates the main physics under discussion. Then in
Sec. III we explain the setting of the simulations, the
interaction between the instanton-dyons and the moduli
spaces which provides the measure in the partition function.
In Sec. IV we describe how we make the actual simulations
and evaluate the free energy. The backreaction of the
ensemble on the holonomy potential is described in
Sec. V, which is followed by “self-consistency” study of
the parameters in the Sec. VI. The physical results are
summarized in the Sec. VII: those include the holonomy
potential and the screeningmasses, aswell as the densities of
all types of dyons.

II. AN EXCLUDED VOLUME MODEL

To understand the main physics involved and the
qualitative behavior of the ensemble, including the con-
finement phase transition, we start by a discussion of a

RASMUS LARSEN AND EDWARD SHURYAK PHYSICAL REVIEW D 92, 094022 (2015)

094022-2



simplified model in which the only interaction is the
repulsive core, making the volume occupied by each
particle unavailable to others. It is similar in spirit to that
proposed by Shuryak and Sulejmanpasic [14], but is
somewhat closer technically to the simulations to follow.
We work with dimensionless quantities, defining the 3-

volume as ~V3 ¼ T3V3, the density ni ¼ Ni
~V3

, and the free
energy density as F

T ~V3

¼ f. More information on units and

notations can be found in Appendix.
The effect of the excluded volume is accounted for in a

very schematic way, by cutting off the partition function
when the amount of available volume vanishes. The volume
of the M and L dyons scale by 1=ν3 and 1=ν̄3, respectively,
with ν̄ ¼ 1 − ν. We thus define the partition function as a
sum limited from above by some “close packing” condition

Z ¼
X~V3=ð ~V0Þ<M=ν3þL=ν̄3

M;L

exp

�
− ~V3

4π2

3
ν2ν̄2

�

×

�
1

M!L!
ð ~V3dνÞMð ~V3dν̄ÞL

�
2

ð2Þ

dν ¼ Λν8ν=3S2 expð−SνÞ ð3Þ

S ¼ 8π2

g2
: ð4Þ

Without the upper limit, the free energy density is simply
logðZÞ= ~V3 → − 4π2

3
ν2ν̄2 þ 2ðdν þ dν̄Þ, the perturbative

Gross-Pisarski-Yaffe (GPY) potential plus the contribution
of the noninteracting dyons. In this noninteracting limit,
the parameter dν—the semiclassical dyon amplitude—
coincides with their density. The parameter S is in fact
the classical action of the caloron, or LþM system. The
square comes from assuming the same amount of dyons
and antidyons.
In the confining phase, ν ¼ ν̄ ¼ 1=2, all dyons have the

same sizes, and it is easy to introduce the excluded volume,
for N dyons via

~VN
3 → ~V3ð ~V3 − VexcludedÞ…ð ~V3 − ðN − 1ÞVexcludedÞ:

However, in general L, M dyons have different sizes, the
analogous expression becomes cumbersome. Experimenting
with those, we observe that similar results are obtained by
simply cutting out the sum at “closed packing,”when there is
no volume left, ~V3 < ~V0ðM=ν3 þ L=ν̄3Þ, where ~V0 is the
excluded volume normalized for a dyon at ν ¼ 1.
Using Sterlings formula n! ≈

ffiffiffiffiffiffiffiffi
2πn

p ðneÞn for a large
volume, we rewrite the sum as

Z ¼
X~V3=ð ~V0Þ<M=ν3þL=ν̄3

M;L

exp

�
− ~V3

�
4π2

3
ν2ν̄2 − 2nM ln

�
dνe
nM

�

− 2nL ln

�
dν̄e
nL

���
: ð5Þ

The free energy given by FðνÞ ¼ −T logZ depends on ν,
located in the cutoff, in the dyon parameter dν, and in the
GPY potential VGPY. If dominant, the GPY term would
select trivial holonomy ν ¼ 0 or ν̄ ¼ 0, so to push for a
nontrivial ν ∼ 1=2 needed for confinement, the dyon
densities should be large enough.
The expression (5) is put into Mathematica and the

maximum is found, for large enough volume, say V ¼ 900.
One finds a sharp peak in N distribution, defining the
density. Finding the maximum as we vary ν, we get fðνÞ ¼
− logZ= ~V3 plotted in Fig. 1. At smaller g (larger S and
higher T) the dyons are more suppressed and the free
energy density f has a minimum at smaller ν. For
increasing coupling g (decreasing S and T), the minimum
shifts from zero, eventually to its confining value ν ¼ 1=2.
For twice larger excluded volume the density may get too
small to have confinement with physically meaningful—
negative—f.

FIG. 1 (color online). Free energy density f as function of
holonomy ν, for Λ ¼ 0.5 and ~V0 ¼ 0.3, for upper and ~V0 ¼ 0.6
for the lower plot. Three curves correspond to g ¼ 4, 3.5, 3,
bottom to top, in the upper figure and g ¼ 4, 3.5, 3.25 in the
bottom one. It is seen how the maximum as a function of g goes
further and further toward the confining value of 1=2 as g goes
up, and S and T go down.
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Amore familiar plot is obtained if, instead of plotting ν one
plots the averagePolyakov loop hPi ¼ cosðπνÞ, versusS, see
Fig. 2. The parameter S growsmonotonouslywithT and thus
can be mapped to it (see details in Appendix A). So, in this
model the Polyakov loop continuously goes to 0—the con-
finement regime—at some critical Sc, slightly smaller than 6.
In Fig. 3 we show the densities of different type (M and

L) dyons, different at above the deconfinement transition.
Direct evidences for nM > nL in the deconfined phase have
been found on the lattice. We will see similar plots from the
numerical simulations below: those of course would
include the dyon interactions.

III. THE INSTANTON-DYON INTERACTIONS

The leading order classical dyon-antidyon interaction,
recently studied in our previous paper [15] are the central
new elements of this paper. We use a slightly different
parametrization of it

ΔSDD̄ ¼ −2
8π2ν

g2

�
1

x
− 1.632e−0.704x

�

x ¼ 2πνrT; ð6Þ

for distances larger than x > 4, the repulsive core size. At
distance x ¼ 4 the streamline terminates a metastable con-
figuration, followed by annihilation of the magnetic charges.
If dyons are put at smaller distances, they repel till

distance 4, before annihilation. Those configurations were
not yet studied in detail, and thus our potential for x < 4
constitutes a reasonable guess. Below distance x0 ¼
r0Tð2πνÞ the potential is described by

ΔSDD̄ ¼ νV0

1þ exp ½σðx − x0Þ�
; ð7Þ

referred to as a “core.” Its scale by ν is due to general
scaling behavior of the dyon sizes.
Let us also recall the long-distance behavior of the

potentials. Self-dual soliton interacting with anti-self-dual
one has Abelian electric and magnetic forces canceling
each other. Another long-range interaction comes via A4

and the nonlinearity of the field strength tensor. Its
coefficient is fixed in another channel, LþM (calorons)
where both electric and magnetic Abelian effects are
attractive, and yet the total interaction is zero due to
PBS protection

VLM ¼ ðe1e2 þm1m2 − 2h1h2Þ
4π

g2
1

r
¼ 0: ð8Þ

Returning toML̄,LM̄ channel, one expects the non-Abelian
term simply to change sign. This conclusion that has been
checked by us numerically, see latest version of [15].
The volume element of the metric in the space of

collective variables is used in the form of the so-called
Diakonov determinant

ffiffiffi
g

p ¼ detG ð9Þ

G ¼ δmnδij

�
4πνm − 2

X
k≠i

1

Tjxi;m − xk;mj

þ 2
X
k

1

Tjxi;m − xk;p≠mj
�

þ 2δmn
1

Tjxi;m − xj;nj
− 2δm≠n

1

Tjxi;m − xj;nj
; ð10Þ

where xi;m denote the position of the ith dyon of type m.
This form is an interpolation of the exact metric between a
M and L dyon, true at any distance, with the metric of the
two dyons of same type at large distances. We introduce a
cutoff on the separation via r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ cutoff2

p
, such that

for one pair of dyons of same type, the diagonal goes to 0
for ν ¼ 0.5, instead of minus infinity. We use the same
metric for the antidyons also.
When the density of M and L dyons are different, the

total electric charge is nonzero. We therefore regularize all
the Coulombic terms by certain screening r → reMDrT ,

FIG. 2 (color online). Polyakov loop P as a function of action
parameter S for Λ ¼ 0.5 and ~V0 ¼ 0.3.

FIG. 3 (color online). Densities ni of i ¼ M or i ¼ L dyons as a
function of the action parameter S, for Λ ¼ 0.5 and ~V0 ¼ 0.3.
Note that the two densities are different at S > 6.
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referred to as the Debye mass. With this the interaction is
given by

ΔSDD̄ ¼ 8π2ν

g2

�
ðe1e2 − 2h1h2Þ

1

x
þm1m2

1

x

�
e−MDrT

x ¼ 2πνrT; ð11Þ

for r larger than the core of size x0=ð2πνTÞ for all
combinations except between dyons and their antidyon.
For the dyon antidyon potential we have

ΔSDD̄ ¼ −2
8π2ν

g2

�
1

x
− 1.632e−0.704x

�
e−MDrT

x ¼ 2πνrT: ð12Þ

We include the core for both dyon antidyon interactions,
but also for dyon dyon interactions as it is necessary for
stability of the simulations. We hope that such an inter-
action can be found due to corrections to the metric
between dyons of the same type.

ΔSDD̄ ¼ νV0

1þ exp ½σTðx − x0Þ�
x ¼ 2πνrT: ð13Þ

IV. THE SETUP

Like in [17], instead of the usual toroidal box with
periodic boundary conditions in all coordinates, our sim-
ulations have been done on a S3 sphere (in four dimen-
sions), to simplify treatment of the long range Coulombic
forces. In this pilot study we fix the total number of dyons
to 64. We do not use supercomputers or clusters, relying
instead on multiple cores of standard GPU’s of one
standard computer.
The radius of the sphere together with the ratio of M

dyons to L dyons have been used to change their density.
Iteration of the system is defined as a loop in which each

dyon has had its position changed and the new action has
then been accepted with the probability of expð−ΔSÞ via
the Metropolis algorithm. The typical number of iterations,
for equilibration is 400 and productive runs after equili-
bration are typically 1600 iterations.
In order to get the free energy we also use a standard

method. One can differentiate with respect to an auxiliary
parameter λ introduced in front of the action and get

e−FðλÞ=T ¼
Z

Dx expð−λSðxÞÞ ð14Þ

∂F
∂λ ¼ ThSi: ð15Þ

Since the free energy at λ ¼ 0 is known analytically, one
can integrate up to get the free energy at λ ¼ 1. When we do

this we of course need to be careful about regions with a
quick change in the action.
For the calculation of detG it has been observed by

Bruckmann et al. [18] that it only make sense if all
eigenvalues are positive. It was observed [18] that, for
randomly placed dyons this is typically not the case, unless
density is very low. In [16] this issue has been discussed
further, with a conclusion that the Diakonov determinant
can remain positive definite at higher densities needed, but
only provided certain correlations in the dyon locations are
enforced. We have therefore used the householder QR
algorithm together with tri-diagolization of the matrix G
[19] to find the eigenvalues. We also redefine the potential
as follows:
If all eigenvalues are positive

VD ¼ − log½DetðGÞ�∶ VD < Vmax ð16Þ
VD ¼ Vmax∶ VD > Vmax ð17Þ

and for one or more negative eigenvalues

VD ¼ Vmax: ð18Þ
The excluded volume from the regions of negative eigen-
values are there, yet at the same time we do not create a
region where the configuration can be trapped inside the
region of negative eigenvalues. Excluded volume induces
strong variation of the free energy at small λ: so we found it
necessary to integrate the free energy up to λ ¼ 0.1 finely
with 10 points. From λ ¼ 0.1 to λ ¼ 1 we use 9 points.
Vmax ¼ 100 was used.
In the simulation, all interactions are assumed to have

Yukawa-like large distance behavior with certain Debye
screening massMD. Since our “box size” can be defined as
the distance between poles of our sphere, π � r. In the
smallest box we have a box size of about 4 units. The
smallest Debye mass employed is, in the same units, 2.
Thus the exponential tails are e−MDr ¼ e−8, and all IR
artifacts are well suppressed.
That finite volume effects are not important was tested on

a few configurations as shown in Fig. 4, since it is not
possible to do it for all configurations due to the computa-
tional power needed. We find that the configurations do
indeed give the same results for double the volume in the
area of interest, and only at densities higher than explored
in this paper do we see a difference. The difference at
higher densities is due to the sharpened behavior of hSðλÞi,
and should be fixed in case one wants to do higher total
number of dyons, by increasing the density of points in the
integration to obtain the free energy F.

V. THE DYON BACK REACTION:
HOLONOMY POTENTIAL

Lattice gauge simulations had shown how the peak of the
holonomy distribution shifts to its confining value at
T < Tc. The corresponding effective potential Vðν; TÞ
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has been numerically studies and parametrized, used in
various models such as the so called Polyakov-Nambu-
Jona-Lasinio model (PNJL).
Now our task is to derive this potential, stemming from

the backreaction of the instanton-dyons. We add the
perturbative GPY potential VGPY eq. (A2) to the dyon free
energy obtained from our simulations and determine the
total free energy of the system (obviously, assuming that
there are no other relevant nonperturbative contributions).
The dyon-induced partition function is further split into
two factors: one containing all factors which depend on
parameters unchanged in the simulations, and the second
one related to dyons’s collective variables.

Z ¼ ZunchangedZchanged: ð19Þ
The weight for one caloron (LþM pair) was explicitly
calculated in [20]: at zero holonomy it agrees with the
instanton result by ’t Hooft. Part of the answer is the factor
coming from the metric volume element

ffiffiffi
g

p
in the space of

L, M collective variables. Later Diakonov [12] combined
this result with the previously known answer for the metric
of two monopoles of the same kind (e.g.M,M pair) into an
elegant expression for any number of L, M dyons now
called Diakonov determinant detG.
Taking the dilute limit r12 → ∞ in both cases both

formulas reduce to the same r12 dependence and one finds
that the caloron weight from [20] needs to be divided by the
factor ð4πνÞð4πν̄Þ (see Appendix C)

Zunchanged ¼
Λ2

ð4πÞ2
�
8π2

g2

�
4

e
−8π2

g2 ν
8ν
3
−1ν̄

8ν̄
3
−1

× exp

�
− ~V3

4π2

3
ν2ν̄2

�
: ð20Þ

Note that at the trivial holonomy ν → 0 limit, Zunchanged is
∼1=ν: it is to be canceled by the diagonal part of the detðGÞ
in the second part.
We need to do the simulation for different amounts ofM

and L dyons. We divide the weight into a M part and a L
part, and sum over all number of particles

Zunchanged ¼
X
NM;NL

exp

�
− ~V3

4π2

3
ν2ν̄2

�

×

�
1

NM!

�
Λ ~V3

�
8π2

g2

�
2

e
−ν8π2

g2 ν
8ν
3
−1=ð4πÞ

�
NM

�
2

×

�
1

NL!

�
Λ ~V3

�
8π2

g2

�
2

e
−ν̄8π2

g2 ν̄
8ν̄
3
−1=ð4πÞ

�
NL
�
2

;

ð21Þ
where we use that the amount of dyons and antidyons is the
same. We simplify this as

Zunchanged ¼
X
NM;NL

exp

�
− ~V3

4π2

3
ν2ν̄2

�

×

�
1

NM!
ð ~V3dνÞNM

�
2
�

1

NL!
ð ~V3dν̄ÞNL

�
2

dν ¼ Λ

�
8π2

g2

�
2

e
−ν8π2

g2 ν
8ν
3
−1=ð4πÞ: ð22Þ

Zchanged is the interactions explained in Sec. III and thus
also depends on the number of particles

Zchanged ¼
1

~V2ðNLþNMÞ
3

Z
D3x detðGÞ expð−ΔDDD̄ðxÞÞ

Δf ≡ − logðZchangedÞ= ~V3; ð23Þ

normalized such that Zchanged ¼ 1 for no interactions
included. Combining Zchanged with Zunchanged we get in

the limit ~V3 → ∞

Z ¼
X
NM;NL

exp
�
− ~V3

�
4π2

3
ν2ν̄2 − 2nM ln

�
dνe
nM

�

− 2nL ln

�
dν̄e
nL

�
þ Δf

��
: ð24Þ

For ~V3 → ∞ the partition function is completely domi-
nated by the maximum of the exponent. Finding the free
energy corresponds to finding the minimum of

f ¼ 4π2

3
ν2ν̄2 − 2nM ln

�
dνe
nM

�
− 2nL ln

�
dν̄e
nL

�
þ Δf: ð25Þ

Note that as the dyon density increases, the potential
changes its shape, as shown in Fig. 5, producing a

FIG. 4 (color online). Free energy density f as a function of
density n for NTotal ¼ 64 (filled blue circle) and NTotal ¼ 128
(yellow square) at ν ¼ 0.5, MD ¼ 2, S ¼ 6 and n ¼ nM ¼ nL.
Volume effects are seen to not be important in the region of
interest around n ¼ 0.3 and difference is expected to come from
the sharper shape of hSðλÞi in the case of NTotal ¼ 128, which
require a higher amount of points to obtain the free energy F.
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nontrivial minimum at ν ≠ 0. Furthermore, at high density
this minimum moves to ν ¼ 1=2, the confining value.

VI. SELF-CONSISTENCY

The partition function we simulate depends on several
parameters, changed from one simulation set to another.
Those include (i) the number of the dyons NM, NL; (ii) the
radius of the S3 sphere r; (iii) the action parameter S;
(iv) the value of the holonomy ν, (v) the value of the Debye
mass MD; (vi) the auxiliary factor λ, which is then
integrated over as explained in Sec. IV.
In principle, the aim of our study is to obtain the

dependence of the free energy on all of those parameters
(i–v). While the practical cost of the simulations restricts
the number of points one can study, we still had generated
more than hundred thousand runs and multiple plots.
However, most of it neither can nor should be included
in the paper. Since our physics goal is to understand the
backreaction of the dyon ensemble on the holonomy, we
study the range of holonomies, from ν ¼ 0 to ν ¼ 1=2, and
only then locate its minimum. As for the Debye mass, we
will find it from the potential minimum and then show only
the “self-consistent” input set.
What we actually need to describe at the end is not the

free energy in the whole multidimensional space of all
parameters, but the location of the free energy minima. The
resulting set should be of codimension 1, since the original
physical setting of the problem—the gauge theory at finite
temperature—has only one input parameter, T.

Using the definition of the Debye mass g2

2V
∂2F
∂2v ¼ M2

D for
fixed density we get the configurations response to chang-
ing the holonomy which is the Debye mass. We require that
the used value for the Debye mass is the same as the one
found from the derivative of F, or at least not more than 0.4
below the used value.

The results shows that as the Debye mass goes toward
zero around the phase transition the only configura-
tion that is consistent with this is that of equal M and
L dyons.

VII. THE PHYSICAL RESULTS

We now show only the results which fulfill the self-
consistency requirement. Without fermions the results are
symmetric in ν → 1 − ν and are therefore shown only for
ν ≤ 1=2. We have included the Diakonov determinant,
though its impact is not too great due to the not so small
Debye mass which has been calculated using 3 points. The
results here are shown for a wall of x0 ¼ 2, which was
chosen in order to have a large enough density of dyons to
overcome the perturbative potential, without completely
making the GPY potential irrelevant. We used Λ ¼ 1.5 to
obtain a phase shift around S ¼ 6. Action is related to
temperature as explained in Appendix A. This should of
course be fitted to numerical data, but the present data on
dyons does not have a high enough efficiency of detection
to do this. The action goes up to S ¼ 13, beyond this value
the number of L dyons becomes too close to 1, and we
would need a higher total number of dyons to proceed.
Due to the repulsive Coulomb term between dyons and

antidyons of different type, the free energy preferred to
have a large Debye mass due to cutting off this repulsion.
This meant that when the free energy spectrum as a
function of holonomy for a fixed density becomes flat,
the small Debye mass created a rise in energy. This resulted
in a small jump in holonomy, since the configurations with
holonomy ν ¼ 0.5 but with slightly higher density than the
flat ones, would end up with a smaller free energy. As a
result we do not get a completely smooth transition, though
that is hidden by the size of the errors as seen in Fig. 6. It
also means that at S ¼ 6 the Debye mass never goes
completely to zero, as shown in Fig. 7, and the density goes
slightly more up also as shown in Fig. 8. In Fig. 9 we show
S-dependence of the free energy itself.
When we are in the confined region we observe the free

energy for a fixed density as a single minimum in the
middle at ν ¼ 0.5. As the action S increases, the density of
dyons decrease and it becomes more favorable to have
some bigger, but lighter dyons, thus shifting the minimum
away from the confining value of the Polyakov loop,
P ¼ 0, as can be seen in Fig. 10 for S ¼ 6, 7, 9. This,
at the same time, makes the lighterM dyons more abundant
than the more heavy L dyons.
Due to the size of the Debye mass, the correlation

functions behaves as that in a liquid, with a cutoff at small
range. We show the case for S ¼ 6 in Fig. 11 for MM and
ML. Note the correlation function CMM vanishes at small
distances due to the core. The other correlation function
CML for ML, displays attraction even at small distances,
tripling the density at r ¼ 0. The integrated number of
particles in the region in which the correlation function

FIG. 5 (color online). Free energy density f as a function of ν at
S ¼ 6, MD ¼ 2 and NM ¼ NL ¼ 16. The different curves cor-
responds to different densities. Filled circle n ¼ 0.53, square
n ¼ 0.37, diagonal n ¼ 0.27, upward triangle n ¼ 0.20, down-
ward triangle n ¼ 0.15, open circle n ¼ 0.12. Not all densities
are shown.
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CMLðrÞ > 1 is 0.50 particles, while for CMM it corresponds
to 0.34 particles: thus the difference is not that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to
describe how the deconfinement phase transition happens.
We were reaching for a self-consistent description of the
system, in which all parameters being at the values
corresponding to the free energy minima.
Yet the self-consistency of the calculation remains in a

way incomplete. In this section we make one more step
toward it, but, as we will soon see, further ones may
perhaps be needed.

FIG. 7 (color online). Self-consistent value of the Debye Mass
MD as a function of action S (lower scale) which is related to
T=Tc (upper scale). The error bars are estimates based on the
fluctuations of the numerical data. Points represent lattice data
from [21] as a function of T=Tc.

FIG. 8 (color online). Density n (of an individual kind of
dyons) as a function of action S (lower scale) which is related to
T=Tc (upper scale) for M dyons(higher line) and L dyons (lower
line). The error bars are estimates based on the density of points
and the fluctuations of the numerical data.

FIG. 6 (color online). Self-consistent value of the holonomy ν
(upper plot) and Polyakov line (lower plot) as a function of action
S (lower scales), which is related to T=Tc (upper scales). The
error bars are estimates based on the fluctuations of the
numerical data.

FIG. 9 (color online). Self-consistent value of the Free energy
density f as a function of action S (lower scale) which is related to
T=Tc (upper scale).
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We start this work with an idealized classical solution
minimizing classical Yang-Mills action, the BPS soliton,
with zero holonomy potential. Quantum fluctuations in
one-loop order generate the GPY potential. Furthermore,
our ensemble of many dyons also contribute, resulting in a
potential displaying confinement. The calculated Debye
mass is of the right magnitude.

One may now wonder how the presence of the holonomy
potential affects the dyon solution itself. Let us add a
(simplified) potential

VMD
¼ M2

D

2
ðv − Trðτ3U4ÞÞ2 ð26Þ

and look for the action minimum. For technical reasons,
instead of solving nonlinear differential equations, we
minimized the action using the gradient flow for a single
dyon on the lattice. The resulting action as a function of the
Debye mass is shown in Fig. 12 and the shape of the
solutions in Fig. 13. One can see, that the role of a nonzero
Debye mass is to suppress the tails of the fields. This, in
turn, somewhat increases the action.
To illustrate the effect of the increased dyon action on the

ensemble, consider an example. For the confined holonomy
ν ¼ 0.5 at Tc with MD ¼ 2.2 we get an action of 35 per
dyon, compared to 28 for MD ¼ 0. As a result the free
density of dyons becomes 1.7 times smaller.

FIG. 11 (color online). Correlation function Cij for MM and
ML for S ¼ 6 (upper) and S ¼ 9 (lower). In the MM case the
correlation function vanishes at small distances due to the core.

FIG. 12 (color online). Action S3 of a single dyon as a function
of Debye mass over holonomy MD=v in the potential described
by Eq. (26) normalized by the action S0 for MD ¼ 0.

FIG. 10 (color online). (Not-self-consistent in holonomy ν) free
energy density f, here shown as a function of the value of the
holonomy (in form of the Polyakov loop P) at S ¼ 6, 7, 9. The
lower the action the lower the minimum of the free energy.

FIG. 13 (color online). Higgs field A3
4 of a single dyon,

along the z-axis, through the center of the dyon for different
Debye masses. From top to bottom:MD=v¼0,MD=v ¼ 0.45 and
MD=v ¼ 1.41.
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Further improvements may be done including higher
order quantum corrections. We have just demonstrated that
the action and size of a dyon are modified by the holonomy
potential. Obviously, other ingredients, such as the zero
mode metric and the nonzero mode determinant, are
modified as well. In principle, it is known how to approach
this problem: since our configurations are already defined
on the lattice, one can switch in quantum fluctuations,
following standard lattice definition. A variant of the
lambda-trick can produce the value of quantum corrections
to the deformed non-BPS dyons as well. At this point this
calculation is not yet done.
The reason we mention it here is related with the

following comment. For the pure holonomy field,
A4 ≠ 0, in the bulk, the field strengths and thus classical
action are zero. The GPY potential is nonzero as a result of
a one loop calculation [2]. Two-loop correction has been
calculated recently [22] and the result is proportional to the
first order result, with the factor 1 − 5=Sþ � � �, where
S ¼ 8π2=g2. One finds therefore that for the values of
the parameter S ∼ 6–10 we work with, this two-loop
correction is not small: so the holonomy itself is not
classical, it is subject to strong quantum fluctuations.
Two-loop and three-loop corrections to instantons are

only calculated so far in quantum mechanical models, and
similar calculations for gauge theory instants and dyons are
of interest. We do not expect those to be as large as for the
holonomy potential: in quantum mechanics it is of the type
1 − 1=S instead.

IX. SUMMARY AND DISCUSSION

As emphasized in the Introduction, an idea that it should
be possible to understand confinement (as well as chiral
symmetry breaking) via statistical mechanics in terms of
collective coordinates of certain topological solitons goes
back to the 1970s. Four decades later we now are able to
calculate the contribution of the topology to the holonomy
potential and explain why its minimum shifts to the
confining value at T < Tc.
In particular, by identifying classical interaction between

instanton-dyons [15] and including them in direct Monte-
Carlo simulation of the ensemble, together with one-loop
effects in the measure, we calculated the free energy as a
function of all parameters of the model, such as the value of
the holonomy, dyon densities, and the Debye mass. We
then proceed to one-parameter set of its minimum, corre-
sponding to dependence on the only left variable, the
temperature. The results display the deconfinement tran-
sition at a certain density of the dyons. The key to this is the
volumes of the dyon repulsive cores, which scale as an
inverse cube of the holonomy.
One of the key questions is whether the objects we study

are sufficiently semiclassical. The action per M dyon, Sν,
varies in the region studied in this work in the range from
2.5 to 3.3. Its exponent expð−SνÞ varies between 0.082 and

0.037. The input formula we use include classical and one-
loop effects. By selecting specially tuned Λ parameter, one
basically includes the two-loop effects as well. So, we think
that the accuracy of these expressions Oð1=SÞ is sufficient
for our purposes.
Direct simulations of the ensemble have no general

approximations, and the accuracy of the results is limited
by size of the system and the statistical errors of the
Monte Carlo sampling. We demonstrated in this work that
the ensemble of instanton-dyons, coupled to holonomy,
does undergo a deconfinement phase transition at a certain
value of their density. It is physically driven by repulsive
interactions, which enforce “equality” between M and L
dyons, broken in the dilute regime by their different actions.
We see how it happens in detail: first by performing
multiple simulations as a function of all parameters of
the model—dyon densities, holonomy, the value of the
Debye mass—and then identifying a codimension 1 set of
the free energy minima, corresponding to physical dyon
ensemble as a function of the temperature T. All these
results—the holonomy potential and the mean Polyakov
line hPðTÞi, the dyon densities nMðTÞ, nLðTÞ can and
should be compared to the lattice data.
This approach can straightforwardly be generalized to

the QCD-like theories with an arbitrary number of colors
and quark flavors. We plan to do larger scale simulations of
those in subsequent publications.
Finally, let us address a very general question often

asked: why should one study statistical mechanics of some
solitons, rather than directly simulate gauge fields on the
lattice, from the first principles?
Quantum field theories have infinitely many degrees of

freedom, and an understanding of which ones are respon-
sible for a particular phenomenon is very important. Using
an analogy to condense matter physics: One can in
principle do direct simulations of all electrons in a piece
of metal. And yet, understanding the zone structure,
location and shape of the Fermi surfaces offers much
simpler and more intuitive approaches to metal thermody-
namics and kinetics. To a large extent, the same is true for
quarks in the “zero mode zone” of the topological solitons.
Now we see that instanton-dyons generate confinement as
well as chiral symmetry breaking. The model we use has
only few variables per fm3 volume, 5–6 orders of magni-
tude less than current lattice simulations.
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APPENDIX A: UNITS AND HOLONOMY

The main physical quantity of the problem is
the temperature T: it defines the magnitude of the
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A3
4 ¼ 2πνT (holonomy), the physical size of the dyons and

every other dimensional parameter of the problem. Yet,
precisely because of its omnipresence in the theory at its
classical level, dealing only with the dimensionless quan-
tities—e.g. the dyon density normalized as n=T3—one can
in zeroth approximation cancel all powers of T. At this
level, our theory has only dimensionless input parameters.
Most of them—the dimensionless dyon densities, holon-
omy and the Debye screening mass—will be defined self-
consistently, from the minimum of the free energy. The
remaining input will be the instanton action parameter S,
used in many plots in the text.
Standard Euclidean formulation of the gauge theory at

finite temperature T introduces periodic (Matsubara) time τ
defined on a circle with a period equal to the inverse
temperature 1=T. The exponential of the gauge invariant
integral over this circle, known as the Polyakov line

P ¼ 1

Nc
TrP exp

�
i
I

A3
4ðσ3=2Þdτ

�
; ðA1Þ

which is gauge invariant due to periodicity. Here σ3 is the
3rd Pauli matrix.
As a function of temperature its expectation value hPi

changes from 1 at high T to (near) zero at the deconfine-
ment temperature Tc. In the simplest SU(2) gauge theory
we will discuss in this work hPi ¼ cosðνπÞ, and the
holonomy parameter (or just holonomy, for short) ν
changes from 0 to 1=2. What remains unknown is the
physical origin of this potential.
Perturbatively, the effect of the holonomy is the appear-

ance of nonzero masses of quarks and (nondiagonal)
gluons, and the corresponding Gross-Pisarski-Yaffe hol-
onomy potential [2]

VGPYðνÞ
T4V3

¼ ð2πÞ2ν2ν̄2
3

; ðA2Þ

where V3 is the 3-volume of the box and

ν̄ ¼ 1 − ν ðA3Þ

is “dual holonomy.” We proceed in the text to use
dimensionless units for volume ~V3 ¼ T3V3, densities
nM ¼ NM

~V3
, nL ¼ NL

~V3
, distances rT ¼ x and free energy

density F
T ~V3

¼ f. Potential VGPY has a minimum at trivial

holonomy ν ¼ 0 and a maximum at confining holonomy
ν ¼ 1=2, thus disfavoring confinement.
In the next approximation the so-called quantum loop

effects are incorporated. As is well known, they lead to a
running coupling constant. Thus the action parameter (and
all others, of course) become a function of the basic
physical scale given by the temperature T. For example,
recalling classical instanton action and the asymptotic
freedom formula

SðTÞ ¼ 8π2

g2ðTÞ ¼ b · ln

�
T
Λ

�
; b ¼ 11

3
Nc; ðA4Þ

with the power given by the one-loop beta function. If so,
the semiclassical factors defining the caloron density now
depend on T, basically as a power

ncaloronsðTÞ
T4

∼ e−S ∼
�
Λ
T

�
b
: ðA5Þ

Since the caloron density has been measured on the lattice
at different T, one can test this expression against the lattice
data. In fact it does work, see Fig. 1 of Ref. [14], which
confirms that the topological solitons remain semiclassical
at the temperatures we discuss.
The next question is the value of the parameter Λ in the

expression for S above. Note, that our parameter Λ is
proportional to that in multiple other definitions, such as
Λlattice or ΛM̄S, but is not equal to them. In principle, the
relation between them is known, and the reader may thus
ask why we do not use such relations, obtained from the
first principles. The answer is pragmatic: we believe that
the current accuracy of them raised in high power, e.g. Λb

M̄S
,

is still lower than what was found from the fit to the caloron
data just mentioned. In other words, the measurements of
the caloron density is basically the measurements of the
high power of Λ, and they thus provide more accurate
values than what can possibly be done by (much more
accurate) measurements but of quantities depending on this
parameter logarithmically.
Not surprisingly, in practice the meaning (and the value)

of Λ depends on the context in which it is used. The fit
shown in Fig. 1 of Ref. [14] corresponds to noninteracting
gas of calorons, and it gives

Λcalorons ¼ 0.36Tc; ðA6Þ

where Tc is the deconfinement transition temperature,
defined in the same lattice work. If so, the (instanton
action) parameter is S ≈ 7.5 at Tc.
In our work we worked out a much more sophisticated

model of the interacting dyon plasma. In this model the
deconfinement transition happens at a somewhat different
value of the (instanton action) parameter S ≈ 6. In other
words,

Λdyonic plasma ¼ 0.44Tc: ðA7Þ

This value is assumed in all plots in Sec. VII in
which our input parameter S is mapped to the temper-
ature T.
The reader should however keep in mind, that this

mapping between the input parameter of the model S
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and physical T is provisional, it depends on the model
itself. No doubt it should be subject to future improve-
ments, both in the lattice data quality used for such fits, or
the fit itself. In particular, one should include measurements
of the instanton-dyons, including the effects of their
interaction as discussed in the bulk of our paper.

APPENDIX B: INSTANTON-DYONS

We do not present here extensive introduction on the
configurations and their history, which can be found in
literature such as [12].
“Higgsing” the SU(2) gauge theory bynonzeroVEVofA4

called v leads to two massive and one massless gluons. The
simplest gauge is the so called regular (hedgehog) gauge, in
which the color direction of the “Higgs” field is at large r
along the unit radial vector Am

4 → vr̂m. The solutions are

Aa
4 ¼ �r̂a

�
1

r
− v cothðvrÞ

�

Aa
i ¼ ϵaijr̂j

�
1

r
−

v
sinhðvrÞ

�
: ðB1Þ

þ corresponds to the M dyon and − corresponds to the M̄
dyon. r is the length in position space. TheL and L̄ dyon are
obtained by a replacement v → 2πT − v. To study the
classical interaction of the dyons, a gauge transformation
is done to make A4 field point in a specific direction
(normally this is chosen to be A3

4), which introduced a time
dependence in the L dyons in order to compensate for the
extra 2πT. The classical interaction between the dyons can at
long range be described by the same formula for all

VðrÞ ¼ 8π2ν

g2

�
ðe1e2 − 2h1h2Þ

1

x
þm1m2

1

x

�

x ¼ 2πνr: ðB2Þ

e, m, h are listed in the Table I.
As a result sectors that are completely self-dual or anti-

self-dual have no interaction, while dyons and antidyons of
same type attract and dyons and antidyons of different
type repel.

APPENDIX C: THE DYON WEIGHTS
IN THE PARTITION FUNCTION

The KvBLL caloron partition function [20] has
the form

ZKvBLL ¼
Z

d3z1d3z2T6C

�
8π2

g2

�
ðe−8π2

g2 Þ
�

1

Tr12

�5
3

× ð2π þ 4π2νν̄Tr12Þð2πνTr12 þ 1Þ8ν3−1

× ð2πν̄Tr12 þ 1Þ8ν̄3−1 exp
�
−V3T3

4π2

3
ν2ν̄2

�
:

ðC1Þ
Taking the limit to a very dilute situation we find that all
powers of Tr12 not in the exponential cancel, and we end
with

ZKvBLL ¼
Z

d3z1d3z2T6C

�
8π2

g2

�
ðe−8π2

g2 Þ

× ð2πνÞ8ν3 ð2πν̄Þ8ν̄3

× exp

�
−V3T3

4π2

3
ν2ν̄2

�
: ðC2Þ

The term in the exponential corresponds to the GPY
holonomy potential in Eq. (A2). The Diakonov determi-
nant, which we have included, is seen to return to a product
of the holonomies in the dilute limit

lim
Tr12→∞

detG ¼
Y
i

4πνi: ðC3Þ

By comparison we see that we have to take Eq. (C2) and
divide by Eq. (C3) in order to get the correct weight for our
partition function. We thus end up with the partition
function for a M and L dyon given by

ZKvBLL ¼
Z

d3z1d3z2T6C
�
8π2

g2

�
ðe−8π2

g2 Þ

×
ð2πÞ8=3
ð4πÞ2 ν

8ν
3
−1ν̄

8ν̄
3
−1

× exp

�
−V3T3

4π2

3
ν2ν̄2

�
: ðC4Þ

We redefine the constant Λ so the equation is easier to work
with

ZKvBLL ¼
Z

d3z1d3z2T6
Λ2

ð4πÞ2
�
8π2

g2

�
4

e
−8π2

g2

× ν
8ν
3
−1ν̄

8ν̄
3
−1 exp

�
−V3T3

4π2

3
ν2ν̄2

�
: ðC5Þ

TABLE I. Quantum numbers of the four different kinds of the
instanton-dyons of the SU(2) gauge theory. The first two rows are
electric and magnetic charges, while by h we mean the con-
tribution from nonlinear terms including the holonomy field.

M M̄ L L̄

e 1 1 -1 -1
m 1 -1 -1 1
h 1 1 -1 -1
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