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We study the strangeness and charm productions induced by the pion beam, i.e., the π−p → K�0Λ and
π−p → D�−Λþ

c reactions, based on two different theoretical frameworks: an effective Lagrangian method
and a Regge approach. In order to estimate the magnitude of the charm production relative to that of the
strangeness production, we assume that the coupling constants for the charmed meson and baryon vertices
are the same as those for the strangeness channel. We found that the total cross section for the charm
production was about 103–106 times smaller than that for the strangeness production, depending on
theoretical approaches and kinematical regions. We also discuss each contribution to observables for both
reactions. In general, the Regge approach explains the experimental data very well over the whole energy
region.

DOI: 10.1103/PhysRevD.92.094021 PACS numbers: 13.75.Gx, 14.20.Jn, 14.20.Lq, 14.40.Lb

I. INTRODUCTION

Charm-quark physics becomes one of the most important
issues in hadron physics, as experimental facilities report
new hadrons containing one or two heavy quarks, either
charm quarks or bottom ones, with unprecedented preci-
sion. For example, the Belle Collaboration, BABAR
Collaboration, and BESIII Collaboration have announced
new mesons [1–9], some of which were also confirmed by
the LHCb Collaboration [10,11] (see Refs. [12,13] for
reviews). While the mesons with charm have been exten-
sively studied theoretically as well as experimentally,
charmed baryons have been investigated less often.
However, the charmed baryons are equally or even more
important, since they provide a good opportunity to
examine the role of both chiral symmetry and heavy quark
symmetry in heavy-light quark systems. Moreover, the
structure and the production mechanism of the charmed
baryons are much less known than those of light-quark
baryons. Recently, a new proposal was submitted at the
J-PARC (Japan Proton Accelerator Research Complex)
facility for the study of charmed baryons via the pion
induced reactions at a high-momentum beam line [14].
There has been only one earlier work at Brookhaven
National Laboratory (BNL) almost 30 years ago to search
for the charm productions associated with the mechanism
π−p → D�−Bc, where Bc denotes a charmed baryon in
ground or excited states [15].

In Ref. [16], the differential cross sections dσ=dt for the
strangeness and charm productions, i.e., π−p → K�0Λ and
π−p → D�−Λþ

c , were investigated by using a simple Regge
model. As expected, the differential cross section for the
charm production was found to be much less than that for
the strangeness production. In the present work, we want to
further elaborate the previous investigation of these two
processes, employing both an effective Lagrangian method
and a Regge approach, while putting emphasis on the latter.
The effective Lagrangian method has been successfully
used to study the production of strangeness hadrons. There
are two important ingredients in this method: coupling
constants and form factors. The coupling constants are
easily determined by using well-known baryon-baryon
potentials such as the Nijmegen potential or by considering
the experimental data for hadron decays. However, the
cutoff masses of the form factors cause ambiguity in
describing reactions. In the Regge approach, we also have
parameters to fix. In order to determine them, we utilize
the quark-gluon string model (QGSM) introduced by
Kaidalov et al. [17–20]. In particular, Ref. [18] studied
the π−p → D−Λþ

c reaction within this model, relying only
on theD� Reggeon. However, in this work, we consider the
contributions of theD and Σc Reggeons as well as of theD�
Reggeon. Before we proceed, we want to shortly mention
why we first start with the D�Λc production rather than the
DΛc one. The reason lies in the fact that there exists a
technical problem in experiment: the background can be
reduced more efficiently in reconstructing D�− than in
D−. The decay chain D�− → D0 þ π− → Kþ þ π− þ π−

allows one to reduce a combinatorial background more
effectively.
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The present work is organized as follows: In Sec. II, we
briefly explain the formalism of the effective Lagrangian
method and then present the numerical results of the total
cross sections and differential cross sections for pion
induced K�0Λ and D�−Λþ

c productions. In Sec. III, we
derive the transition amplitudes within the Regge approach.
We also discuss in this section the results for both the
π−p → K�0Λ and π−p → D�−Λþ

c reactions, based on the
Regge approach. In Sec. IV, we compare the results from
the Regge approach with those from the effective
Lagrangian method. We discuss the comparison in detail.
The final section is devoted to the summary and the
conclusion of the present work.

II. EFFECTIVE LAGRANGIAN APPROACH

In this section, we employ an effective Lagrangian
approach to study both the π−p → K�0Λ and π−p →
D�−Λþ

c reactions. Starting from the effective Lagrangians
describing the interactions between hadrons, we are able to
construct the diagrams of t-, s-, and u-channels at the tree
level. This effective Lagrangian method has been known
to be successful in describing hadron productions near
threshold.

A. Lagrangians and Feynman amplitudes

We first begin with the π−p → K�0Λ reaction. The
relevant Feynman diagrams are displayed in Fig. 1 in
which k1 and p1 denote the initial momenta of the π and the
proton, respectively. k2 and p2 stand for those of the final
K� and Λ, respectively. In this model, we include (a) K and
K� exchanges in the t-channel, (b) the nucleon exchange
in the s-channel, and (c) the hyperon (Σ) exchange in the
u-channel.
To obtain the invariant Feynman amplitudes, we use the

following Lagrangians:

LπKK� ¼ −igπKK�ðK̄∂μτ · πK�
μ − K̄�

μ∂μτ · πKÞ;
LπK�K� ¼ gπK�K�εμναβ∂μK̄�

ντ · π∂αK�
β; ð1Þ

for the K� meson and pseudoscalar-octet-meson inter-
actions, where π, K, and K� designate the fields of
πð140; 0−Þ, Kð494; 0−Þ, and K�ð892; 1−Þ mesons, respec-
tively. The coupling constant gπKK� is determined by the
experimental data of the decay width ΓðK� → KπÞ [21].

The decay width is expressed in terms of the coupling
constant

ΓðK� → KπÞ ¼ g2K�Kπ
k3π

8πM2
K�

; ð2Þ

where kπ is the three-momentum of the decaying particle

kπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

K� − ðMK þMπÞ2�½M2
K� − ðMK −MπÞ2�

p
2MK�

; ð3Þ

so that one finds gπKK� ¼ 6.56. To determine the πK�K�
coupling constant gπK�K� , we use the hidden local
gauge symmetry [22] and flavor SU(3) symmetry. The
value of the πK�K� coupling constant is obtained as
gπK�K� ¼ 7.45 GeV−1.
The effective Lagrangians for the pseudoscalar meson

and baryon octet vertices are written as

LπNN ¼ gπNN

2MN
N̄γμγ5∂μτ · πN;

LπΣΛ ¼ gπΣΛ
MΛ þMΣ

Λ̄γμγ5∂μπ · Σþ H:c:;

LKNΛ ¼ gKNΛ

MN þMΛ
N̄γμγ5Λ∂μK þ H:c:; ð4Þ

where N, Λ, and Σ denote the nucleon, Λð1116Þ, and
Σð1190Þ baryon fields, respectively. The values of the
coupling constants gπNN ¼ 13.3, gπΣΛ ¼ 11.9, and gKNΛ ¼
−13.4 are taken from the Nijmegen soft-core model
(NSC97a) [23].
The interaction between the K� vector meson and the

baryon octet is described by the following effective
Lagrangian,

LK�NY ¼ −gK�NYN̄
h
γμY −

κK�NY

MN þMY
σμνY∂ν

i
K�μ

þ H:c:; ð5Þ

where Y generically stands for Λ or τ · Σ. We again take the
values of the coupling constants gK�NY and κK�NY from the
Nijmegen potential [23]:

gK�NΛ ¼ −4.26; κK�NΛ ¼ 2.91;

gK�NΣ ¼ −2.46; κK�NΣ ¼ −0.529: ð6Þ

The scattering amplitude for the πN → K�Λ process can
be written as

M ¼ ε�μūΛMμuN; ð7Þ

where uN and uΛ denote the Dirac spinors for the incoming
nucleon and for the outgoing Λ, respectively, and εμ stands
for the polarization vector of the outgoing K� meson.

(a) (c)(b)

FIG. 1. Tree-level diagrams for π−p → K�0Λ.
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The corresponding amplitude to each channel is obtained as
follows:

Mμ
K ¼ IK

igπKK�

t−M2
K

gKNΛ

MN þMΛ
γνγ5k

μ
1ðk2 − k1Þν;

Mμ
K� ¼ IK�

gπK�K�gK�NΛ

t−M2
K�

ϵμναβ
�
γν −

iκK�NΛ

MN þMΛ
σνλðk2 − k1Þλ

�

× k2αk1β;

Mμ
N ¼ IN

igK�NΛ

s−M2
N

gπNN

2MN

�
γμ −

iκK�NΛ

MN þMΛ
σμνk2ν

�

× ðk1 þp1 þMNÞγαγ5k1α;

Mμ
Σ ¼ IΣ

igK�NΣ

u−M2
Σ

gπΣΛ
MΣ þMΛ

γαγ5ðp2 − k1 þMΣÞ

×

�
γμ −

iκK�NΣ

MN þMΣ
σμνk2ν

�
k1α: ð8Þ

The isospin factors are given as IK ¼ IK� ¼ IN ¼ IΣ ¼
ffiffiffi
2

p
.

With the form factors taken into account, the total result for
the invariant amplitude is written as

Mðπ−p → K�0ΛÞ
¼ MK · FK þMK� · FK� þMN · FN þMΣ · FΣ: ð9Þ

We choose the following form of the form factors,

Fexðp2Þ ¼ Λ4

Λ4 þ ðp2 −M2
exÞ2

; ð10Þ

where p and Mex designate generically the transfer
momentum and the mass of the exchanged particle,
respectively. The cutoff mass Λ is usually fitted to
reproduce the experimental data and depends on the
reaction channel, K, K�, N, and Σ-exchanges. However,
to minimize the number of parameters for a rough
estimation of the production rate, we employ two differ-
ent cutoff parameters for the meson exchanges and
baryon exchanges, separately, which are chosen to be
ΛK;K� ¼ 0.55 GeV and ΛN;Σ ¼ 0.60 GeV.
The Feynman amplitude M is related to the differential

cross section as

dσ
dt

¼ 1

64πðpcmÞ2s
1

2

X
si;sf;λf

jMj2; ð11Þ

where si and sf stand for the spins of the nucleon and theΛ,
respectively. λf denotes the polarization label of the K�
meson and pcm the momentum of the pion in the center-of-
mass frame.
Now we turn to the charm production reaction

π−p → D�−Λþ
c . The relevant Feynman diagrams are

depicted in Fig. 2. The amplitude for this charm production

reaction is obtained just by replacing the strange mesons
and hyperons with the charmed ones. In principle, the
coupling constants for the charmed hadrons should be
different from those for the strange hadrons. In the
present calculation, however, we use the same strengths
for the corresponding vertices when the coupling con-
stants are dimensionless. This might be considered to be
a good assumption if strange and charm quarks are
sufficiently heavy. On the other hand, for the coupling
constant gπK�K� which carries the dimension of the
inverse mass, we introduce the scaling as gπD�D� ¼
MK�=MD� · gπK�K� . In practice, it is known that the
coupling constant gπDD� is about twice as large as the
gπKK� . This difference of the strengths between gπDD� and
gπKK� could be the source of the ambiguity in the present
calculation, which would influence the magnitude of
amplitudes. As for the form factors, we will use the
same form as Eq. (10) with the equal cutoff masses. By
doing that, we can directly compare the magnitude of the
total cross section for the πN → D�Λc reaction with that
for the πN → K�Λ.

B. Results for K�0Λ production

Let us first show contributions of each channel to the
total cross section for the reaction π−p → K�0Λ. In Fig. 3,
they are drawn as a function of s=sth, where sth is the value
of s at threshold, i.e., sth ¼ ðmK� þmΛÞ2 ¼ 4.05 GeV2. As
shown in Fig. 3, the t-channel process makes the most
dominant contribution to the total cross section. K
exchange plays a crucial role in describing the total cross
section in the low-energy region, whereas K� exchange
governs its behavior in the high-energy region. The reason
lies in the fact that the contribution of K exchange
decreases as s increases, while the effect of K� exchange
becomes larger than that ofK exchange as the value of s=sth
becomes greater than around 3. Though the contribution of
K� exchange seems to increase as s increases, it turns out to
be almost constant as s becomes very large. In fact, one can
show analytically that when s is very large, the total cross
section is proportional to sJ−1, where J stands for the spin
of an exchange particle in the t-channel. This is the reason
why K exchange contributes mainly to the low-energy
region, whereas K� exchange comes into play when s=sth
gets large. On the other hand, the contribution of baryon
exchanges is almost negligible over the whole energy
region.

(a) (c)(b)

FIG. 2. Tree-level diagrams for π−p → D�−Λþ
c .
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The result of the total cross section is in good agreement
with the experimental data [24,25] in the relatively low-
energy region (s=sth ≲ 2.1). However, the present result
starts to deviate from the experimental data when s=sth
reaches the value of around 2.5. Generally, the effective
Lagrangian method for the Born approximation at the tree
level is a good approximation for the lower-energy regions
near threshold, which, however, may not be used at high
energies as it often violates the unitarity.
Each contribution to the differential cross section dσ=dΩ

for the π−p → K�0Λ reaction is illustrated in Fig. 4 as a
function of cos θ at three different momenta, i.e.,
Plab ¼ 3.0 GeV=c, 4.5 GeV=c, and 6.0 GeV=c. Note that
the experimental data exist only for Plab ¼ 4.5 GeV=c. The
θ is the scattering angle between the incoming π and the
outgoing K� meson in the center-of-mass frame. As shown
in Fig. 4, K and K� exchanges make similar contributions
to dσ=dΩ: Their effects diminish as cos θ decreases except
that the contribution of K� exchange is sharply reduced at
the very forward angle. While N exchange makes only a

minor contribution, Σ exchange in the u-channel becomes
dominant at the very backward angles. As Plab increases,
the K-exchange contribution diminishes faster with cos θ
decreased. On the other hand, the u-channel contribution
reveals behavior opposite to the t-channel ones. Because of
these different characters of each contribution, the dip
structure appearing in the differential cross section becomes
deeper as Plab increases.
The t-channel contribution explains the experimental

data [25] very well in the forward direction at Plab ¼
4.5 GeV=c, while they start to deviate from the data as
cos θ decreases. The result is underestimated at the back-
ward angles. Moreover, if one takes a close look at the
experimental data, one finds that dσ=dΩ turns flat between
cos θ ¼ 0.3 and cos θ ¼ −0.7. The dip structure that the
effective Lagrangian method produces is not enough to
describe this flatness at intermediate angles. We will
discuss this structure in more detail later within the
Regge approach.
Figure 5 shows the results of the differential cross

sections dσ=dt for the π−p → K�0Λ reaction at four
different momenta, Plab ¼ 3.93 GeV=c, 3.95 GeV=c,
4.5 GeV=c, and 6.0 GeV=c, compared with the experi-
mental data. They are drawn as functions of −t0 ¼ tmax − t,
where the minimum and maximum values of t are given
kinematically as

tmax
min ¼M2

π þM2
K� −

1

2s

h
½s− ðM2

N −M2
πÞ�½s− ðM2

Λ −M2
K� Þ�

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðMN þMπÞ2�½s− ðMN −MπÞ2�

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðMΛ þMK�Þ2�½s− ðMΛ −MK� Þ2�

q i
; ð12Þ

respectively. For each of the fixed energies, t varies
between tmin and tmax (or −t0 varies between 0 and
tmax − tmin). The contributions of the t-channel decrease
as −t0 increases, as expected. K exchange governs dσ=dt
near −t0 ≈ 0, whereas K� exchange becomes the main
contribution to dσ=dt. This feature does not change in
general, even though Plab increases. The s- and u-channels
are negligible. The results from the effective Lagrangian
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FIG. 4 (color online). Differential cross sections for the π−p → K�0Λ reaction as functions of cos θ at three different pion momenta
(Plab), based on an effective Lagrangian approach. The experimental data are taken from Ref. [25]. The notations are the same as Fig. 3.
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K
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total

[Effective Lagrangian]
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FIG. 3 (color online). Each contribution to the total cross
sections for the π−p → K�0Λ reaction given as a function of
s=sth, based on an effective Lagrangian approach. The dotted and
dashed curves show the contributions of K exchange and K�
exchange, respectively. The dot-dashed and dot-dot-dashed ones
draw the effects of N and Σ exchanges, respectively. The solid
curve represents the total result. The experimental data are taken
from Ref. [24] (triangles) and from Ref. [25] (circles).
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approach are in good agreement with the experimental data
between −t0 ¼ 0 and −t0 ¼ 1.2 GeV2, but start to deviate
from the data as −t0 increases. Note that the effective
Lagrangian method can only explain the data in the smaller
−t0 region when Plab ¼ 6.0 GeV=c.

C. Results for D�−Λþ
c production

We now turn to the charm production. In the left panel of
Fig. 6, the results of the total cross section as well as various

contributions for the π−p → D�−Λþ
c reaction are drawn as a

function of s=sth. Note that sth is different from the case
of strangeness production, i.e., sth ¼ ðmD� þmΛc

Þ2 ¼
18.4 GeV2. In contrast with the K�Λ production, the effect
of D exchange is very much suppressed in the D�Λc

production, while D� exchange dominates the process, as
shown in the left panel of Fig. 6. As mentioned in the case
of the strangeness production, the total cross section for the
πN → D�Λc reaction is proportional to sJ−1 when s is

0 0.5 1 1.5 2
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FIG. 5 (color online). Differential cross sections for the π−p → K�0Λ reaction as functions of −t0 at four different pion momenta (Plab),
based on an effective Lagrangian approach. The experimental data denoted by the squares are taken from Ref. [26], and those denoted by
the stars are from Ref. [27]. Those designated by the circles are taken from Ref. [25]. The notations are the same as Fig. 3.
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FIG. 6 (color online). In the left panel, each contribution to the total cross sections for the π−p → D�−Λþ
c reaction is drawn as a

function of s=sth from an effective Lagrangian approach. The dotted and dashed curves show t-channel contributions, i.e., those of D
exchange and D� exchange, respectively. The dot-dashed and dot-dot-dashed ones depict the contributions of baryon exchange (N and
Σc), respectively. The solid curve represents the full result of the total cross section. In the right panel, the total cross section for the
π−p → D�−Λþ

c reaction (solid curve) is compared with that for the π−p → K�0Λ one (dashed one). The experimental data for the
π−p → K�0Λ reaction are taken from Ref. [24] (triangles) and from Ref. [25] (circles).
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large, so that D� exchange dictates the total cross section at
higher energies. All other contributions including D
exchange have some effects on it only in the vicinity of
threshold. The result of the total cross section for the
π−p → D�−Λþ

c reaction is compared with that for the
π−p → K�0Λ in the right panel of Fig. 6. The total cross
section for the charm production is about 104 times smaller
than that for the strangeness one near the threshold region
and is about 103 times smaller at around s=sth ¼ 10. It turns
out that, in the effective Lagrangian method, this suppres-
sion is mostly caused by the effect of form factors.
The difference in the differential cross section dσ=dΩ is

also analyzed in Fig. 7. As expected from the result of the
total cross section,D� exchange is dominant, particularly in
the range of 0 ≤ cos θ ≤ 1. In the backward region, Σc
exchange governs the charm process.

III. REGGE APPROACH

Spurred on by the finding that the effective Lagrangian
method describes experimental data mainly in lower-
energy regions in the previous section, we will introduce
in this section a Regge approach, which is known to explain
very well high-energy scattering with unitarity preserved.
The relevant diagrams for the strangeness production can
be schematically depicted in Fig. 8 by the quark lines.
There are two different classes of diagrams: a planar
diagram [Fig. 8(a)] and a nonplanar diagram [Fig. 8(b)].
In the Regge theory, the planar diagram is described by
Reggeon exchange in the t-channel, whereas the nonplanar
one corresponds to Reggeon exchange in the u-channel.

A. Regge amplitudes

We first consider the π−p → K�0Λ reaction. The
Reggeons in the t-channel are dictated by the K and K�
trajectories, while the Σ-baryon trajectory leads to the
Reggeon in the u-channel, as displayed in Fig. 8. In the
present Regge approach, the Regge amplitudes are derived

by replacing the Feynman propagator PF contained in
Eq. (8) by the Regge propagator PR [28],

PR
Kðs; tÞ ¼

�
1

e−iπαKðtÞ

��
s
sK

�
αKðtÞ

Γ½−αKðtÞ�α0K;

PR
K� ðs; tÞ ¼

�
1

e−iπαK� ðtÞ

��
s
sK�

�
αK� ðtÞ−1

Γ½1 − αK� ðtÞ�α0K� ;

PR
Σðs; uÞ ¼

�
1

e−iπαΣðuÞ

��
s
sΣ

�
αΣðuÞ−1

2

Γ
�
1

2
− αΣðuÞ

�
α0Σ;

ð13Þ

where αKðtÞ, αK� ðtÞ, and αΣðuÞ denote the Regge trajecto-
ries for the K and K� mesons, and the Σ baryon,
respectively. sK , sK� , and sΣ stand for the energy scale
parameters for the corresponding Reggeons. Thus the
Regge amplitudes are represented by

TKðs; tÞ ¼ MKðs; tÞPR
Kðs; tÞ=PF

KðtÞ;
TK� ðs; tÞ ¼ MK�ðs; tÞPR

K�ðs; tÞ=PF
K� ðtÞ;

TΣðs; uÞ ¼ MΣðs; uÞPR
Σðs; uÞ=PF

ΣðuÞ; ð14Þ

where MK , MK� , and MΣ are the invariant Feynman
amplitudes for the K, K�, and Σ exchanges, respectively, as
in Eq. (8) (and form factors are not included here).
The Regge trajectories for K and K� are taken from

Ref. [29], respectively, as αKðtÞ ¼ −0.151þ 0.617t,
αK� ðtÞ ¼ 0.414þ 0.707t. The energy scale parameters
are determined by using the QGSM [17–20]: sK ¼ 1.752
and sK� ¼ 1.662. In general, a Regge propagator is
expressed in terms of a linear combination of the two
different signatures. However, when a Regge trajectory for
a hadron with even spins is approximately the same as that
for a hadron with odd spins, that is, the two trajectories are
almost degenerate, one of the signatures is canceled out. As
displayed in the left panel of Fig. 9, which is taken from
Ref. [29], both the K trajectory and the K� one are almost
degenerate. Thus the Regge propagator can have either the
signature 1 or e−iπαKðK�Þ as shown in Eq. (13) [30,31].
As for the Σ trajectory, it is not easy to find some

tendency like theK andK� trajectories. In the right panel of
Fig. 9, we depict two trajectories for Σ’s, assuming that the
quantum numbers for some unknown resonances are fixed
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[32]. In the present calculation, the solid trajectory is taken
into account, for which αΣðuÞ ¼ −0.79þ 0.87u [32], since
it contains the lowest-lying Σð1190Þ. Based on this tra-
jectory, we are able to determine the scale parameter to be
sΣ ¼ 1.569 by using the QSGM. We also assume that the Σ
trajectory is degenerated and two different signatures 1 and
e−iπαΣðuÞ are considered as we did in the mesonic cases.
Since two different signatures are possible for each of

Reggeon exchanges, there are eight different ways of
selecting the signatures for the K, K�, and Σ Regge
propagators. We have examined all the cases and have
found that only the low-energy region (1 ≤ s=sth ≤ 2) is
affected by the change in the phases by about 20%. In the
present calculation, we choose the signature factor 1 in
common for all the Regge propagators.
A unique feature of the Regge amplitudes is that they can

reproduce the diffractive pattern both at forward and
backward scatterings as well as the asymptotic behavior
consistently with the unitarity. Within the framework of a
Regge approach, the differential cross sections, dσ=dt
and dσ=du, must comply with the following forms
asymptotically:

dσ
dt

ðs → ∞; t → 0Þ ∝ s2αðtÞ−2;

dσ
du

ðs → ∞; u → 0Þ ∝ s2αðuÞ−2: ð15Þ

Moreover, the present Regge amplitudes interpolate the
low-energy behavior near the threshold region and the
high-energy (asymptotic) behavior.

B. Normalization of Regge amplitudes

In many high-energy processes, the absolute values of
cross sections are determined empirically. For the effective
Lagrangian method, this can be done by employing a form
factor. In the case of the Regge approach, this may be done
by considering an overall normalization factor. In addition,
some residual t dependence is also included. To fix the
undetermined parameters, let us first examine the s
dependence of the total cross section and then the t
dependence of the differential cross section when taking

into account each of the Reggeon exchanges separately in
comparison with the experimental data for the K�Λ
production.
In the left panel of Fig. 10, the total cross section given in

Eq. (14) is shown, with each Reggeon contribution sepa-
rately drawn. To start with, let us take a look at the energy
dependence while the absolute values will be fixed later. We
observe that the K� Reggeon term is in better agreement
with the data. The contributions of the K and Σ Reggeons
fall off faster than theK� one, because of their smaller values
of the intercept αð0Þ. This implies that the K� Reggeon
may play a dominant role among the three Reggeon
contributions. Shown in the right panel of Fig. 10 is the
differential cross section dσ=dt as a function of −t0 at
Plab ¼ 6.0 GeV=c. At first glance, as −t0 is increased, both
the K� and K Reggeon terms seem to fall off more slowly
than the data. However, if we look at the small jt0j region, to
reproduce the sharp decrease at the forward angle, the K�
Reggeon seems more important, though some contribution
of the K Reggeon is also required.
To improve the s and t dependence simultaneously, we

introduce an additional factor

Cexðp2Þ ¼ a
ð1 − p2=Λ2Þ2 ; ð16Þ

which reflects a finite hadron size. Here p stands for the
transfer momentum of the exchanged particle. The param-
eters a and Λ denote a dimensionless constant and a cutoff
mass in units of GeV, respectively. The parameter a is
introduced to fit the magnitude of the amplitude. This
residual factor Cexðp2Þ plays the role of the form factor we
have introduced in the effective Lagrangian method.
As will be shown in the next section, it greatly improves
the t dependence of the differential cross section dσ=dt.
Finally, we express the total result for the invariant Regge
amplitude as

Tðπ−p → K�0ΛÞ ¼ TK · CK þ TK� · CK� þ TΣ · CΣ: ð17Þ

In the literature [33], a normalization factor N ðs; tÞ has
been introduced to reproduce the large s behavior by
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removing the extra s and t dependence possibly coming
from the interaction Lagrangian. The normalization factor
is defined by

N ðs; tÞ ¼ A∞ðsÞ
Aðs; tÞ ; A2ðs; tÞ ¼

X
si;sf;λf

jMðs; tÞj2; ð18Þ

where A∞ðsÞ is the dominant term when s → ∞. In the
present case, however, such a factor is not needed, because
the amplitude (17) already satisfies the desired large s-
behavior, and moreover the normalization factor (18)
removes the favorable t dependence of the differential
cross section in the small −t region. In fact, the decreasing
behavior of dσ=dt for small −t arises from the t-dependent
structure of the effective Lagrangian amplitude that is
incorporated in the amplitudes (14) and (17).
We can derive the Regge amplitudes for the charm

production in a similar way. Replacing the s quarks in
Fig. 7 with c quarks, we can draw the quark diagrams for
the π−p → D�−Λþ

c process similar to Fig. 7. The relevant
amplitudes are written as

TDðs; tÞ ¼MDðs; tÞ
�

s
sD

�
αDðtÞ

Γ½−αDðtÞ�
α0D

PF
DðtÞ

;

TD� ðs; tÞ ¼MD�ðs; tÞ
�

s
sD�

�
αD� ðtÞ−1

Γ½1− αD�ðtÞ� α0D�

PF
D� ðtÞ ;

TΣc
ðs;uÞ ¼MΣc

ðs; uÞ
�

s
sΣc

�
αΣc ðuÞ−1

2

Γ
�
1

2
− αΣc

ðuÞ
�

α0Σc

PF
Σc
ðuÞ :

ð19Þ

C. Results for K�0Λ production

Having established the strategy above, we fix the
strengths of the free parameters a and Λ in Cexðp2Þ in
Eq. (16) by the following procedures:

(i) The cutoff masses Λ are chosen to be the typical
values: ΛK;K�;Σ ¼ 1.0 GeV.

(ii) The K� Reggeon dominance being known, its
strength is determined by the global s and t
dependence of the observed K�Λ production cross
sections: aK� ¼ 0.8.

(iii) The strength of the K Reggeon amplitude is chosen
to reproduce the small jtj behavior of dσ=dt together
with the dominant K� Reggeon contribution:
aK ¼ 0.6.

(iv) The Σ Reggeon is determined to reproduce the
backward peak behavior: aΣ ¼ 1.5.

In Fig. 11, the total cross section is illustrated, together
with each contribution. K� Reggeon exchange governs its
dependence on s. The contribution of K Reggeon exchange
is smaller than that of K� Reggeon exchange, which
becomes clear as s increases. The reason is obvious from
the value of αKðtÞmentioned previously: the corresponding
intercept is smaller than that for the K� trajectory and its
slope is steeper than that of the K� one. We have seen in
Fig. 3 that the contribution of K� exchange in the effective
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Lagrangian method rises slowly as s increases, which
results in deviation from the experimental data. On the
other hand, K� Reggeon exchange exhibits the s depend-
ence of the total cross section correctly, so that it describes
the experimental data much better than K� exchange in the
effective Lagrangian method at higher values of s. It is
interesting to see that Σ Reggeon exchange in the u-channel
contributes to the total cross section approximately by 20%
in the vicinity of threshold whereas its effect becomes much
smaller as s increases. This can be understood from the
behavior of the u-channel Regge amplitude: TΣ ∼ s−0.79.
Note that this feature of Σ Reggeon exchange is signifi-
cantly different from that of Σ exchange in the effective
Lagrangian method, where the u-channel makes a negli-
gibly small contribution (see Fig. 3 for comparison).
Figure 12 depicts the results of the differential cross

section dσ=dΩ for the π−p → K�0Λ reaction. The K�
Reggeon in the t-channel makes a dominant contribution
to the differential cross section in the forward region,
whereas the Σ Reggeon in the u-channel enhances it at the
backward angles. The effect of K Reggeon exchange is
important to describe the experimental data at the very
forward angle. We already have found that the results from
the effective Lagrangian method deviate from the exper-
imental data except for the forward region. This is to a great
extent due to the fact that the u-channel contribution is
underestimated in the effective Lagrangian method.
However, the Regge approach correctly describes the
experimental data at Plab ¼ 4.5 GeV=c over the entire
angles. Moreover, on the whole, it elucidates the flatness
of the differential cross section between cos θ ¼ 0.3 and
cos θ ¼ −0.7, which was never explained in the effective
Lagrangian method.
In Fig. 13, we draw the results of the π−p → K�0Λ

differential cross section dσ=dt as functions of −t0 at four
different values of Plab. The most dominant contribution
comes from K� Reggeon exchange. K Reggeon exchange
plays a crucial role in explaining the data at the very
forward angle together with K� Reggeon exchange. A
similar feature can also be found in the case of KΛ
photoproduction [30]. The effect of Σ Reggeon exchange
turns out to be tiny. Though the general feature of the

results from the Regge approach looks apparently similar to
that of the effective Lagrangian ones, they are in fact
different from each other. The results from the Regge
approach fall off faster than those from the effective
Lagrangian method, as −t0 increases. As a result, the
Regge approach reproduces the experimental data better
in comparison with the effective Lagrangian method.

D. Results for D�−Λþ
c production

We now discuss the results of the charm production. In
the left panel of Fig. 14, we draw the total cross section
together with each contribution for the π−p → D�−Λþ

c
reaction. D� Reggeon exchange dictates the s dependence
of the total cross section. The contributions of K Reggeon
and Σc Reggeon exchanges are more suppressed than that
of K� Reggeon exchange. In the right panel of Fig. 14, we
compare theD�Λc production with the K�Λ one. It is found
that the total cross section for the charm production is
approximately 104–106 times smaller than that for the
strangeness production depending on the energy range of
s=sth. The resulting production rate for D�Λc at s=sth ∼ 2,
which is the energy that can excite charmed baryons up to
∼1 GeV, is suppressed by about a factor of 104 in
comparison with the strangeness production. This implies
that the production cross section of D�Λc is around 2 nb at
that energy.
In fact, one of the present authors carried out a similar

study [34] based on a Regge method from Ref. [35], where
a phenomenological form factor was included in the Regge
expression for the total cross section. As illustrated in Fig. 3
in Ref. [34], the total cross section for theD�Λc production
was shown to be approximately 104 times smaller than that
for the K�Λ production at s=sth ∼ 2, which is of almost the
same order compared with the present result. However, one
has to keep in mind that the form factor introduced by
Ref. [35] bears no relation to the effective Lagrangian
method. This is understood from the observation that near
the threshold the result of this model is too underestimated
compared with that of the effective Lagrangian method.
In Fig. 15, the results of the differential cross section

dσ=dΩ for both strangeness and charm productions are also
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compared to each other. D� Reggeon exchange plays a
crucial role throughout the whole angle region. However,
its contribution is diminished as cos θ decreases, compared
with effective Lagrangian method (see Fig. 7).

IV. COMPARISON OF THE TWO MODELS

To analyze what causes the large difference in the cross
sections between the strange and charmed productions, we

first calculated the cross section without considering form
factors. In the effective Lagrangian method, it is interesting
that, when excluding the Feynman propagators in Eq. (8) as
well as the form factors, each contribution for the charm
production is even larger than that for the strangeness one
within a factor of 10 except for the N exchange. In the case
of N exchange, the difference is between the factors of 10
and 100. Since the energy scale for the charm production is
larger than the strangeness one, the Feynman propagator
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suppresses the charm production much more than
the strangeness one. The form factor also contains the
(p2 −M2

ex) term in the denominator which suppresses the
amplitude more because it is a second power. However, in
the case of the Regge approach, the result of the cross
section when excluding form factors is quite different from
that of the effective Lagrangian method. The form factors
barely affect the difference in the cross sections.
Considering the fact that Ref. [15] has experimentally

measured only an upper limit σ ∼ 7 nb at the pion
momentum Plab ¼ 13 GeV=c for the charm production,
we find that the results derived from our models are within
a factor of 2 from this upper limit: σ ¼ 14ð9Þ nb when
employing the effective Lagrangian method (Regge
approach). However, some ambiguity lies in the selection
of cutoff masses. If we apply slightly smaller cutoff masses,
for example, 0.5(0.9) GeV for the effective Lagrangian
method (Regge approach), our results will underestimate
the upper limit 7 nb without influencing the general results
for the strangeness productions. The slope of the differ-
ential cross section also mildly changes with the cutoff
masses varied.

V. SUMMARY AND CONCLUSION

In the present work, we aimed at describing both the
strangeness and charm productions by the pion beam,
based on both an effective Lagrangian method and a Regge
approach. We started with the effective Lagrangian method
to describe the πN → K�Λ and πN → D�Λc reactions. The
coupling constants were determined either by using the
experimental data or by employing those from a nucleon-
nucleon potential and flavor SU(3) symmetry. The cutoff
masses of the form factors were fixed to reproduce the
experimental data. However, in order to reduce the ambi-
guity in the effective Lagrangian method, we used the equal
values of the cutoff masses for each case of meson
exchange and baryon exchange.

We were able to explain the total cross section for the
π−p → K�0Λ in lower-energy regions within the frame-
work of the effective Lagrangian method. However, the
results from the effective Lagrangian method start to
deviate from the data, as the square of the total energy s
increases. The magnitude of the total cross section for the
π−p → D�−Λþ

c was approximately 103 times smaller than
that for the πN → K�Λ. The t-channel contributes to the
differential cross section in the forward direction, whereas
the u-channel contributes to that in the backward direction.
The differential cross section dσ=dt for the π−p → K�0Λ
tends to decrease as −t0 increases. The results of dσ=dt
were in good agreement with the experimental data at
lower Plab.
We constructed the Regge propagators for K and K�

Reggeons. Since the corresponding trajectories are degen-
erate, we were able to consider the signature either to be 1
or to be a complex phase. The Σ Reggeon was also
considered for the description of the backward angle
region. We selected 1 as the signatures for all the
Reggeon propagators. Our Regge model satisfies the
asymptotic behavior of the total cross section to a great
extent as s becomes very large. The difference between the
strange and charmed total cross sections turns out to be
104–106, depending on the energy range. Compared with
the results from the effective Lagrangian method, the Regge
approach describes the experimental data better, in par-
ticular, in higher-energy regions.
In the present paper, our estimation corresponds to the

production rates of the ground state Λc associated with a
charmed meson D�. On the other hand, production rates of
various excited states together with their decays are related
to their structures formed by the heavy- and light-quark
contents. The relevance of production rates to different
structures of excited states has been addressed previously
[16]. The identification of spin doublets, e.g., JP ¼ 1=2−

and 3=2− states, will clarify the nature of heavy-quark spin
symmetry. The identification of different internal modes,
the so-called λ and ρmodes [36], can address how two light
quarks (diquarks) are excited inside a baryon. The excited
diquark may couple to the pion to decay, carrying basic
information of chiral symmetry. In future experiments, we
hope to see such fundamental issues of the physics of the
strong interaction.
We want to mention that N� resonances [37,38] were not

considered, because we are mainly interested in higher-
energy regions, where the experimental data are available to
date. However, it is of great interest to take into account N�
resonances, when one wants to understand the mechanism
of the K�Λ production near threshold in detail. In addition,
since the K� meson in the final state is a vector meson,
it is very important to understand polarization observables
and density matrix elements. Furthermore, we can
extend the present work to the reaction π−p →
K�0Σ0ðK�þΣ−Þ and the corresponding charm production
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π−p → D�−Σþ
c ðD̄�0Σ0

cÞ. The corresponding results will
appear elsewhere soon.
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