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We consider single-diffractive (SD) Higgs production in association with heavy flavor in proton-proton
collisions at the LHC. The main focus of our study is a reliable estimate of SD/inclusive ratio, not a
precision computation of the cross sections. The calculations are performed within the framework of the
phenomenological dipole approach, which includes by default the absorptive corrections, i.e., the gap
survival effects at the amplitude level. The dominant mechanism is the diffractive production of heavy
quarks, which radiate a Higgs boson (Higgsstrahlung). Although diffractive production of t-quarks is
grossly suppressed as 1=m2

t , the large Higgs-top coupling compensates this smallness and the
Higgsstrahlung by t-quarks becomes the dominant contribution at large Higgs boson transverse momenta.
We computed the basic observables such as the transverse momentum and rapidity distributions of the
diffractively produced Higgs boson in association with the bottom and top quark pair. Finally, we discuss a
potential relevance of the diffractive Higgsstrahlung in comparison to the Higgsstrahlung off intrinsic
heavy flavor at forward Higgs boson rapidities.
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I. INTRODUCTION

The Higgs boson recently discovered at the LHC [1,2]
appears to be one of the most prominent standard candles for
physics within and beyond the Standard Model (SM) (for
more details of the Higgs physics highlights at the LHC see
e.g., reviews [3,4] and references therein). Most of the SM
extensions predict stronger or weaker distortions in Higgs
boson Yukawa couplings. In this sense, measurements of the
Higgs-heavy quarks couplings become a very important task
of the ongoing Higgs physics studies at the LHC and serve as
one of the major probes for the signals of New Physics.
Phenomenological tests of a number of New Physics

scenarios at a TeV energy scale relies upon our
understanding of the underlined QCD dynamics and back-
grounds. The QCD-initiated gluon-gluon fusion mecha-
nism is one of the dominant Higgs bosons production
modes in inclusive pp scattering which has contributed to
its discovery at the LHC [1,2]. The hard loop induced
amplitude has been studied in a wealth of theoretical
articles so far. The inclusive cross section has been
calculated at up to next-to-next-to-leading order in QCD
[5–10] and recently up to N3LO level [11]. Also, the QCD
soft-gluon resummation at up to next-to-next-to-leading
logarithm approximation was performed in Ref. [12] and
the next-to-leading order factorized electroweak correc-
tions were incorporated in Ref. [13]. Besides the standard
collinear factorization approach, inclusive Higgs boson

production has been studied in the k⊥-factorization frame-
work in Refs. [14,15]. The inclusive associated production
of the Higgs boson and heavy quarks has been thoroughly
analyzed in the k⊥-factorization in Ref. [16].
The phenomenological studies of inclusive Higgs boson

production channels typically suffer from large Standard
Model backgrounds and theoretical uncertainties, strongly
limiting their potential for tracking possibly small New
Physics effects. As a promising way out, the exclusive and
diffractive Higgs production processes offer new possibilities
to constrain the backgrounds, andopen upmore opportunities
for New Physics searches (see e.g., Refs. [17–20]).
Likewise in inclusive production, the loop-induced gluon-
gluon fusion gg → H mechanism is expected to be an
important Higgs production channel in single diffractive
pp scattering as well, while this is the only possible
mechanism for the central exclusive Higgs production [17].
Once the poorly known nonperturbative elements are

constrained by pure SM-driven data sets, they can also be
applied for a description of other sets of data potentially
sensitive to New Physics contributions. This way, it would be
possible to pin down and to constrain the yet unknown
sources of theoretical uncertainties purely phenomenologi-
cally to a precision sufficient for searches of new phenomena
at the LHC. In particular, diffractive production of heavy
flavored particles at forward rapidities is often considered as
one of the important probes for the QCD dynamics at large
distances, which can be efficiently constrained by data.
The understanding of the mechanisms of inelastic diffrac-

tion came with the pioneering works of Glauber [21],*Roman.Pasechnik@thep.lu.se
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Feinberg and Pomeranchuk [22], Good and Walker [23]
where diffraction is conventionally viewed as shadow of
inelastic processes. This picture is realized, in particular, in the
framework of the dipole approach [24] where a diffractive
process looks like elastic scattering of q̄q dipoles of different
sizes, and of higher Fock states containing more partons.
By construction, the phenomenological color dipole

approach effectively takes into account the major part of
the higher-order and soft QCD corrections [25]. In par-
ticular, the dipole model predictions appear to be very close
to the corresponding predictions of the collinear factori-
zation approach at next-to-leading order (NLO) for the
Drell-Yan production process [26] as well as in heavy
flavor production [27]. In this sense, the dipole approach is
analogical to the k⊥-factorization technique (see e.g.,
Ref. [16] and references therein).
Besides, it provides a prominent way to study the

diffractive factorization breaking effects due to an interplay
between hard and soft interactions. In addition, the gap
survival effects are effectively taken into account at the
amplitude level. Previously, the latter effects have been
successfully studied in the case of forward Abelian radi-
ation of virtual photons (diffractive Drell-Yan reaction) in
Refs. [28,29], as well as for the more general case of
forward gauge bosons production [30], and in the non-
Abelian case of the forward heavy flavor production [31].
The main ingredient of the dipole formalism is the process-
independent universal dipole-target scattering cross sec-
tion. It can thus be determined phenomenologically, for
example, from the deep inelastic scattering (DIS) data [32].
Based on the formalism developed earlier [30,31], in this
paper we employ the color dipole approach specifically for
the inclusive and, for the first time, single diffractive Higgs
boson production in association with a heavy quark pair in
proton-proton collisions at the LHC.
Since the Higgs boson-quark couplings in the SM are

proportional to the quark masses, a significant contribution
to the Higgs production at forward rapidities comes from
the Higgsstrahlung process off heavy quarks (predomi-
nantly, off bottom b and top t quarks) in the proton sea.
Furthermore, in this paper we do not take into consideration
the inclusive and diffractive Higgsstrahlung mechanism
off the intrinsic heavy flavors, which was previously
studied in Refs. [33,34]. Here we consider diffractive
Higgsstrahlung off heavy quarks produced via the pertur-
bative gluon-gluon fusion mechanism which plays a role as
the major background component for the forward diffrac-
tive Higgsstrahlung off intrinsic heavy flavor. A relative
smallness of the production modes over the intrinsic ones at
forward rapidities would be an important message for
future forward diffractive Higgs production studies.
The paper is organized as follows. Section II is devoted to

a discussion of inclusive Higgsstrahlung off heavy quarks in
the dipole framework in the large Higgs boson transverse
momentum limit which is then used in derivation of the

single-diffractive (SD)-to-inclusive ratio. The corresponding
amplitude in momentum space is derived in the Appendix.
The SD Higgsstrahlung process has been thoroughly ana-
lyzed both analytically and numerically within the dipole
picture in Sec. III. In particular, the SD-to-inclusive ratio has
been obtained in analytic form and applied to get an estimate
for the SD Higgsstrahlung cross section. Such a ration has
been verified against the SD-to-inclusive ratio for beauty
production at CDF Tevatron [35] (for more details, see
Ref. [31]). Finally, basic conclusions are made in Sec. IV.

II. INCLUSIVE HIGGSSTRAHLUNG
IN THE DIPOLE PICTURE

Inclusive production of heavy quarks in association with
the Higgs boson at the leading order has been studied
earlier in detail in the framework of the kT-factorization
approach in Refs. [14,16]. In this section, we investigate the
corresponding process in the dipole framework.
The basic strategy here is to derive an approximated

dipole formula for the inclusive cross section valid at large
Higgs boson transverse momenta and then to use it in
derivation of analytic expression for the SD-to-inclusive
ratio. The latter can then be employed beyond the high-pT
approximation and would provide an important answer
about a relative smallness of the SD Higgsstrahlung
component, which is the basic goal of this paper.
The amplitude of the inclusive Higgsstrahlung process in

gluon-proton scattering by means of single gluon exchange
in the t channel,

Ga þ p → QQ̄H þ X; Q ¼ c; b; t; ð2:1Þ

where Ga is the initial gluon in color state a, is described in
Born approximation by the set of eight diagrams shown
in Fig. 1.

FIG. 1. Leading-order gluon-initiated contributions to the in-
clusive Q̄QH system production in the gluon-proton scattering in
the proton rest frame.
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Note, the Born-level diagrams are shown in Fig. 1 only
for illustration. By virtue of the color dipole framework, the
inclusion of the universal dipole cross section phenom-
enologically generalizes the Born diagrams and effectively
resums the lower gluonic ladder diagrams at small x to all
orders, similarly to the k⊥-factorization technique. The
upper partonic ladder will be accounted via Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution of the gluonic
density at the NLO.
The kinematics and a detailed derivation of the corre-

sponding amplitude in impact parameter representation are
presented in the Appendix. In order to derive the dipole

formula for the corresponding process, one should switch
to the impact parameter representation performing 2D
Fourier transform over the relative transverse momentum

between Q and Q̄, ~ϰ, total transverse momentum of the

Q̄QH system, ~k⊥, and the transverse momentum of the
Higgs boson, ~κ, defined in the gluon-target c.m. frame in
the limit κ ≫ k⊥ and α3 ≪ 1. The latter differs from the
standard Higgs boson transverse momentum defined in
proton-target c.m. frame. Corresponding amplitudes in the
impact parameter space are

Aμμ̄
a ≡

Z
d2k⊥
ð2πÞ2

d2ϰ
ð2πÞ2

d2κ
ð2πÞ2 B

μμ̄
a e−i~k⊥~s−i~ϰ ~r−i~κ ~ρ ¼ 3

XN2
c−1

d¼1

ξμQ
†fτaτdT̂ ðdÞ

1 þ τdτaT̂
ðdÞ
2 g~ξμ̄Q̄;

in terms of the impact parameter dependent amplitudes

T̂ ðdÞ
1 ð~s; ~r; ~ρÞ ¼ Ψ̂1ðα; α3; ~r; ~ρÞ

�
γ̂ðdÞð~s − α~rÞ − γ̂ðdÞ

�
~s − α~r −

α3
ᾱ
ð~ρþ α~rÞ

��
;

T̂ ðdÞ
2 ð~s; ~r; ~ρÞ ¼ Ψ̂2ðα; α3; ~r; ~ρÞ

�
γ̂ðdÞð~sþ ᾱ ~rÞ − γ̂ðdÞ

�
~sþ ᾱ ~r−

α3
α
ð~ρ − ᾱ ~rÞ

��
:

Here, we introduced short-hand notations for the respective production of the wave functions for given scales

Ψ̂1ðα; α3; ~r; ~ρÞ≡ α3
ᾱ
Φ̂Q̄Qð~r;mQÞΦ̂QHð~ρþ α~r; τÞ; ð2:2Þ

Ψ̂2ðα; α3; ~r; ~ρÞ≡ α3
α
Φ̂Q̄Hð−~ρþ ᾱ ~r; τÞΦ̂Q̄Qð~r;mQÞ; ð2:3Þ

where τ is the hard scale determined in Eq. (A26), τa are the standard SUðNcÞ generators related to the Gell-Mann matrices
as λa ¼ τa=2, and the gluon-target interaction amplitude γ̂ðdÞð~sÞ is an operator in color and coordinate space of the target
quarks defined as [36]

γ̂ðdÞð~sÞ≡
ffiffiffiffiffi
αs

p ffiffiffi
6

p
Z

d2k⊥
ð2πÞ2

F̂ðdÞ
Gp→Xð~k⊥; fXgÞ
~k2⊥ þm2

g

e−i~k⊥~s ¼
X
j

τðjÞa χð~s − ~bjÞ: ð2:4Þ

Here, χð~s − ~bjÞ is the interaction amplitude of projectile heavy quark with jth constituent valence quark in the target proton,

~s is the transverse distance between projectile heavy quark and the center of gravity of the target, ~bj the transverse distance
between jth constituent valence quark in the target and the center of gravity of the target.
The Ga → QQ̄ and Q=Q̄ → Q=Q̄þH distribution amplitudes in impact parameter representation read

Φ̂Q̄Qð~r; ϵÞ≡
Z

d2ϰ
ð2πÞ2 Θ̂Q̄Qð~ϰ; ϵÞe−i~ϰ ~r

¼
ffiffiffiffiffi
αs

p
ð2πÞ ffiffiffi

2
p fmQð~e · ~σÞ þ ið1 − 2αÞð~σ · ~nÞð~e · ~∇rÞ − ð~e × ~nÞ · ~∇rgK0ðϵrÞ; ð2:5Þ

Φ̂QHð~ρ; εÞ≡
Z

d2κ
ð2πÞ2 Θ̂QHð~κ; εÞe−i~κ ~ρ ¼

mQ

ð2πÞ ffiffiffiffiffiffi
3π

p
v
f2mQ~σ · ~nþ ~σ · ~∇ρgK0ðερÞ; ð2:6Þ
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Θ̂Q̄Qð~ϰ; ϵÞ≡
ffiffiffiffiffi
αs

p ffiffiffi
2

p Ûð~ϰÞ
~ϰ2 þ ϵ2

; Θ̂QHð~κ; εÞ≡ mQffiffiffiffiffiffi
3π

p
v

V̂ðγÞ
~κ2 þ ε2

; ð2:7Þ

respectively, where V̂ðγÞ (γ ¼ α3=ᾱ or α3=α) and Ûð~ϰÞ are defined in Eq. (A20), r≡ j~rj and ρ≡ j~ρj. When taking the
square of the total inclusive Ga þ p → QQ̄H þ X amplitude in impact parameter representation

jAj2ð~r1; ~ρ1; ~r2; ~ρ2Þ≡
Z

d2sdfXg
X

λ�;a;μ;μ̄

hAμμ̄
a ð~r1; ~ρ1ÞðAμμ̄

a Þ†ð~r2; ~ρ2Þij3qi1 ; ð2:8Þ

one implicitly performs an averaging over color indices and polarization λ� of the incoming projectile gluon Ga in the
Ga → QQ̄ and Q=Q̄ → Q=Q̄þH distribution amplitudes as well as over valence quarks and their relative coordinates in
the target proton j3qi1. Besides, one uses the general properties of the 2-spinorsX

μ;μ̄

~ξμ̄Q̄ðξ
μ
Q
†Þ� ¼ 1̂;

X
μ;μ̄

ðξμQ†â~ξμ̄Q̄Þ�ðξ
μ
Q
†b̂~ξμ̄Q̄Þ ¼ Trðâ†b̂Þ: ð2:9Þ

Then, squaring the operator γ̂ðdÞ and then averaging it over quark positions and quantum numbers the initial nucleon wave
function j3qi1 and summing over the final fXg leads toZ

dfXghijγ̂að~skÞγ̂†a0 ð~slÞjiij3qi1 ¼
1

8
δaa0Sð~sk; ~slÞ; ð2:10Þ

where the color averaging procedure

hijτðjÞa · τðj
0Þ

a0 jiij3qi1 ¼
� 1

6
δaa0 ∶ j ¼ j0

− 1
12
δaa0 ∶ j ≠ j0

ð2:11Þ

has been performed, and Sð~sk; ~slÞ is the scalar function given by

Sð~sk; ~slÞ≡ 2

9

Z
dfbg

"X3
j¼1

χð~sk − ~bjÞχð~sl − ~bjÞ −
1

2

X
j≠j0

χð~sk − ~bjÞχð~sl − ~bj0 Þ
#
jΦj3qi1ðf~bgÞj;

in terms of the quark-target scattering amplitude, χð~RÞ, and the proton wave function, Φj3qi1f~bg. This function is directly
related to the universal qq̄ dipole cross section known from phenomenology as follows:

σq̄qð~s1 − ~s2Þ≡
Z

d2s½Sð~sþ ~s1; ~sþ ~s1Þ þ Sð~sþ ~s2; ~sþ ~s2Þ − 2Sð~sþ ~s1; ~sþ ~s2Þ�: ð2:12Þ

The universal dipole cross section σq̄q implicitly
depends on energy. Although being universal, it cannot
be calculated reliably from the first principles, but is known
from phenomenology. A popular simple Golec-Biernat–
Wüsthoff (GBW) ansatz for the saturated shape of the
dipole cross section with x2-dependent parameters fitted
to the HERA hard DIS data at small x [32],

σq̄qð~RÞ ¼ σ̄0½1 − e−~R2=R̄2
0
ðx2Þ�; ð2:13Þ

is sufficient for our purposes here since the typical hard scale
of inclusive Higgsstrahlung is large, i.e., μ ∼M ≫ mg, and
thus all the incident dipole sizes are small compared to the
hadron scale (the latter is not true for diffraction, see below).
In this case, due to the color transparency property it suffices
to use

σq̄qð~RÞ≃ σ̄0
R̄2
0ðx2Þ

~R2; R ≪ R̄0ðx2Þ; ð2:14Þ

to the first approximation. The GBW fits provide

σ̄0 ¼ 23.03 mb; R̄0ðxÞ ¼ 0.4 fm × ðx=x0Þ0.144;
x0 ¼ 3.04 × 10−4: ð2:15Þ

Following to the above scheme one obtains the ampli-
tude squared jAj2 in an analytic form as a linear combi-
nation of the dipole cross sections for different dipole
separations, with coefficients given by color structure and
distribution amplitudes. The dipole formula for the differ-
ential cross section of the Ga þ p → Q̄QH þ X process
then reads
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dσðGp → Q̄QH þ XÞ
dαd ln α3

¼
Z

d2rd2ρjAj2ð~r; ~ρÞ: ð2:16Þ

Here, the amplitude squared in the general form

jAj2ð~r; ~ρÞ ¼ 3

8
ðΨ1Ψ

†
2 þΨ2Ψ

†
1Þσeffð~r; ~R1;−~R2Þ þ 6ðΨ1Ψ

†
1σq̄qð~R1Þ þΨ2Ψ

†
2σq̄qð~R2ÞÞ;

where

σeffð~l1; ~l2; ~l3Þ≡ σq̄qð~l1Þ − σq̄qð~l1 þ ~l3Þ − σq̄qð~l1 þ ~l2Þ þ σq̄qð~l1 þ ~l2 þ ~l3Þ;
~R1 ≡ α3

ᾱ
ð~ρþ α~rÞ; ~R2 ≡ α3

α
ð~ρ − ᾱ ~rÞ: ð2:17Þ

Transition to the hadron level is usually performed as
follows (see e.g., Ref. [36]):

dσincl
dYdαd ln α3

¼ Gðx1; μ2Þ
dσðGp → Q̄QH þ XÞ

dαd ln α3
; ð2:18Þ

where the projectile gluon distribution in the incoming
proton is treated via the collinear factorization technique, Y
is the rapidity of the Q̄QH system, and

Gðx1; μ2Þ≡ x1gðx1; μ2Þ; x1;2 ¼
Mffiffiffi
s

p e�Y ð2:19Þ

are the collinear gluon density at the hard scale μ2 ≃M2

being the invariant mass of the QQ̄H system defined in
Eq. (A24) and the momentum fractions of the projectile and
t-channel gluon, respectively.
In order to obtain the Higgsstrahlung cross section

differential in relative transverse momenta ~κ and ~ϰ, one
can directly use the asymptotic amplitudes (A27) and (A27)
in the limit of small k⊥ ≪ ϰ; κ. At the level of cross section,
this asymptotics is equivalent to taking the first quadratic
term in the dipole cross section (2.14). In this case, we
obtain the fully differential inclusive Higgsstrahlung cross
section which reads

dσincl
dΩ

≃ 1

ð2πÞ4
3σ̄0

4R̄2
0ðx2Þ

gðx1; μ2ÞTr½8 ~̂K1 ·
~̂K
†
1 þ 8

~̂K2 ·
~̂K
†
2 −

~̂K1 ·
~̂K
†
2 −

~̂K2 ·
~̂K
†
1�; ð2:20Þ

where ~̂K1;2 are defined in terms of momentum-space wave
functions (2.7) as

~̂K1 ≡ −
α3
ᾱ
Θ̂Q̄Qð~ϰ − α~κ; mQÞ

∂
∂~z ½Θ̂QHð~z; τÞ�~z¼~κ; ð2:21Þ

~̂K2 ≡ α3
α

∂
∂~z ½Θ̂QHð~z; τÞ�~z¼−~κΘ̂Q̄Qð~ϰ þ ᾱ ~κ; mQÞ; ð2:22Þ

and

dΩ≡ dx1dαd ln α3d2ϰd2κ ð2:23Þ

is the element of the phase space volume associated with
the produced system Q̄QH. The remaining momentum
integrals can then be numerically evaluated over a given
phase space volume specific to a given measurement (see
below).
In Fig. 2 the approximated dipole formula result for the

inclusive Higgsstrahlung cross section differential in Higgs
boson transverse momentum κ (2.20) is compared to the
corresponding exact calculation in the k⊥-factorization

approach of Ref. [16]. Remember, the asymptotic dipole
formula Eq. (2.20) is obtained in the collinear projectile
gluon and soft target gluon k⊥ ≪ ϰ, κ approximations, as
well as for α3 ≪ 1. In this case, the final Higgs boson
transverse momentum is entirely generated by a recoil
against heavy quarks in the final state. Besides, the Higgs
boson is assumed to take only a relatively small fraction of
the quark momenta. A comparison with the exact result of
Ref. [16] shows that the asymptotic Higgs boson spectrum
(2.20) generated by purely final state kinematics dominates
the total cross section at large Higgs boson transverse
momenta κ ≳mH and approaches the exact result both in
shape and normalization. At lower transverse momenta,
however, we notice a missing strength due to the omitted
diagrams as well as a potentially large role of the non-
Gaussian tail in primordial gluon transverse momenta
distribution. The latter should be accounted for by the
use of unintegrated gluon distribution functions as was
done in Ref. [16].
On the other hand, the simplified dipole formula (2.18)

with a collinear starting parton density function (PDF)
(2.19) and the quadratic approximation in the dipole cross

DIFFRACTIVE HIGGSSTRAHLUNG PHYSICAL REVIEW D 92, 094014 (2015)

094014-5



section (2.14) will enable us to calculate the SD-to-
inclusive ratio in a fully analytic form which does not
depend on higher order QCD corrections and on projectile
gluon evolution and is given only in terms of parameters of
the universal dipole cross section (see below). As will be
discussed below, the ratio is not sensitive to the high-pT
approximation we adopted in the analysis of the absolute
cross sections as well as to the short-distance corrections to
the gg → QQ̄H subprocess. It therefore can be applied to
the conventional NNLOþ NNLL QQ̄H inclusive cross
sections and/or those obtained in the k⊥ factorization
approach known from the literature in order to get a good
first estimate of the diffractive Higgsstrahlung cross
section.

III. SINGLE DIFFRACTIVE HIGGSSTRAHLUNG
IN THE DIPOLE PICTURE

When it comes to diffraction, the QCD factorization in
hadronic collisions is severely broken by the interplay of
soft and hard QCD interactions and by the absorptive
effects [28,29]. While the former mechanism, which is the
leading twist, is frequently missed, the latter effect is
modeled by the gap survival probability factor, which is
usually applied to correct the factorization-based results. A
successful alternative to the factorization-based parton
model, the color dipole description [24] goes beyond the
QCD factorization and naturally accounts for the hard-soft
QCD dynamics interplay, and for the absorptive effects at
the amplitude level (see e.g., Refs. [30,31]). The single
diffractive QQ̄þH production (with the leading proton
and a rapidity gap) is not yet available in the literature, and
this section is devoted to the corresponding analysis in the
dipole approach.

A. Diffractive amplitude

In order to derive the single diffractive Higgsstrahlung
amplitude in impact parameter representation we refer to
the corresponding framework previously developed for
diffractive gluon radiation and diffractive DIS processes
in Refs. [26,32,37] and we adopt similar notations in what
follows. Similarly to the inclusive case considered above,
we are interested in single-diffractive Higgsstrahlung at
high energies when the Higgs boson takes a relatively small
fraction of the heavy quark momentum since the well-
known wave functions forG→QQ̄ andQðQ̄Þ→QðQ̄ÞþH
are factorized out in the impact parameter space. The
latter situation thus enables us to employ the dipole
approach in this first study of the diffractive
Higgsstrahlung process.
For illustration, the dominating parton-level gluon-ini-

tiated graphs are shown in Fig. 3 where we account only for
the diagrams where the active gluon is coupled to the hard
QQ̄þH system, while the soft screening gluon couples to
a spectator parton at a large impact distance. Other
diagrams where both active and screening gluons couple
to partons at small relative distances are the higher twist
ones and thus are strongly suppressed by extra powers of
the hard scale μ2 ∼M2 (see e.g., Refs. [30,31]). This
becomes even more obvious in the color dipole framework
due to color transparency [24] making the medium more
transparent for smaller dipoles.
In what follows, we do not explicitly calculate the

Feynman graphs in Fig. 3 but instead adopt the Good-
Walker picture of diffraction [23] where a diffractive
scattering amplitude is proportional to a difference between
elastic scatterings of different Fock states off the target in
the target rest frame. To this end, applying the generalized
optical theorem in the high energy limit with a cut between
the screening and active t-channel gluons as illustrated in
Fig. 3, we write
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G
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QQH production

LHC, 14 TeV
ttH, dipole 

bbH, dipole 
ttH, kT-factorisation
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FIG. 2. The differential Higgs boson transverse momentum κ
distribution of the inclusive Higgsstrahlung obtained via the
asymptotic dipole formula (2.20) valid in the limit of small
k⊥ ≪ ϰ, κ and α3 ≪ 1 in comparison to the exact
result of k⊥-factorization from Ref. [16].

FIG. 3. The dominating gluon-initiated contributions to the
single diffractive Q̄QþH production in pp collisions. The hard
Ga þ p → Q̄QH þ X subprocess via single gluon exchange
where all possible digluon couplings to QQ̄H system are
resummed and denoted by a filled grey circle and explicitly
described in Fig. 1. The unitarity cut between the t-channel
“active” (rightmost gluon) and “screening” (leftmost gluon)
exchanges is shown by vertical dashed line. In actual calculations,
we adopt the Good-Walker picture of diffraction [23] (see the
main text).
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Âa
SDð~r1; ~r2; ~r3Þ

¼ i
2

X
Y�

hinjðAμμ̄
a Þ†jY�ihY�jAscrð~r1; ~r2; ~r3Þjin0i; ð3:1Þ

where Ascr is the “screening gluon” exchange amplitude
between a constituent (valence) projectile quark and the
target, Aμμ̄

a is the “active gluon” exchange amplitude
between color-singlet GaðQ̄QÞH system and the target
found earlier. In the above equation, summation goes
through all the intermediate states fY�g except the projec-
tile gluon Ga, and a is the color index of the projectile
gluonGa. The latter gluon can be assumed to be decoherent
in color with respect to valence quarks in the incoming
proton wave function and thus its color should be summed
up independently of the screening Ascr amplitude at the
level of cross section.
Indeed, the projectile hard gluon before its splitting to

QQ̄H system in the color field of the target undergoes
multiple radiation steps g → gg populating the forward
rapidity domain with gluon radiation with momenta below

the hard scale of the process prad⊥ < μ. The radiated gluons
should then be resummed and can be taken into account by
using the corresponding gluon PDF similarly to the
inclusive case considered above. Since the hard gluon
experiences many splittings on its way (e.g., radiates many
gluons and quarks) before it gives rise to the Q̄QþH
system, naturally its color gets completely uncorrelated
with the color of the parent valence quark, which should be
taken into account in the respective color averaging
procedure. So in the single diffractive amplitude squared
one effectively sums over the projectile gluon color as
follows:

jASDj2 ¼
XN2
c−1

a¼1

hÂa
SDðÂa

SDÞ†ij3qi1 ; ð3:2Þ

where the averaging over the colors of the constituent
quarks in the incoming proton wave function j3qi is
implicitly performed according to the rule

hÂðτð1ÞÞB̂ðτð2ÞÞĈðτð3ÞÞij3qi1 ¼
1

6
fTrÂðτÞTrB̂ðτÞTrĈðτÞ þ Tr½ÂðτÞB̂ðτÞĈðτÞ�

þ Tr½ÂðτÞĈðτÞB̂ðτÞ� − TrÂðτÞ½B̂ðτÞĈðτÞ�
− TrB̂ðτÞ½ÂðτÞĈðτÞ� − TrĈðτÞ½ÂðτÞB̂ðτÞ�g;

where Âðτð1ÞÞ, B̂ðτð2ÞÞ, and Ĉðτð3ÞÞ are arbitrary functions
of τðjÞ matrices corresponding to valence quarks with
j ¼ 1, 2, 3 in the projectile proton, respectively.
It is well known that the gluons in such a gluonic ladder

are predominantly located in a close vicinity of the valence
quarks in the so-called “gluonic spots” which have mean
size of about ∼0.3 fm [38,39]. Thus, to the first approxi-
mation one could neglect the distance between the projec-
tile gluon Ga → Q̄QþH and the closest constituent quark
compared to the typical distances between the constituent
quarks ∼1 fm. Then, the amplitude of the screening gluon
exchange summed over projectile valence quarks j ¼ 1, 2,
3 reads

AðiÞ
scrð~r1; ~r2; ~r3Þ ¼

X
j≠i;d0

τðjÞd0 fγ̂d0 ð~riÞ − γ̂d0 ð~ri þ ~rijÞg; ð3:3Þ

where ~r1 is the impact parameter of the gluon Ga or the
closest constituent quark qi (the gluon Ga is assumed to
belong to one of the three gluonic spots in the projectile
proton), ~rij ≡ ~rj − ~ri is the distances of the other two
constituent quark qj, j ≠ i from the qi quark, and the
matrices γ̂a are the operators in coordinate and color space
for the target quarks defined in Eq. (2.4). Due to the color
transparency, the soft amplitude (3.3) naturally vanishes if

all the distances in the projectile proton disappear, i.e.,
~rij → 0. Finally, one should sum over contributions from
the valence quarks (or the corresponding “spots”), i.e.,

Ascrð~r1; ~r2; ~r3Þ ¼
X3
i¼1

AðiÞ
scr; ð3:4Þ

which is equivalent to accounting for cyclic permutation of
the valence quarks at the amplitude level.
In what follows, it is convenient to choose the following

set of independent variables:

f~r1; ~r2; ~r3g ⇒ f~s; ~r12; ~r13g; ð3:5Þ

where ~s is the impact parameter of the projectile gluon Ga.
In variance with the inclusive case considered above, the
diffractive scattering is very sensitive to the typical hadron
size in the projectile proton, i.e., large hadron-scale dipoles
j~rijj ∼ b ∼ Rp, i ≠ j (Rp is the mean proton size) become
important and control the diffractive Higgsstrahlung. In this
case the Bjorken variable x is ill defined, and a more
appropriate variable is the pp collisions energy. An energy
dependent parametrization of the dipole cross section with
the same saturated shape as in the GBW case (2.13)
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σq̄qð~R; ŝÞ ¼ σ0ðŝÞ½1 − e−~R2=R2
0
ðŝÞ�; ð3:6Þ

with parameters being functions of the gluon-target c.m.
energy squared ŝ ¼ x1s (s is pp c.m. energy squared),

R0ðŝÞ ¼ 0.88 fmðs0=ŝÞ0.14;

σ0ðŝÞ ¼ σπptot ðŝÞ
�
1þ 3R2

0ðŝÞ
8hr2chiπ

�
; ð3:7Þ

was proposed and fitted to the soft hadronic data in
Ref. [38]. Here, the pion-proton total cross section is
parametrized as [40] σπptot ðŝÞ ¼ 23.6ðŝ=s0Þ0.08 mb, s0 ¼
1000 GeV2, the mean pion radius squared is [41]
hr2chiπ ¼ 0.44 fm2.
Following the above scheme one obtains the diffractive

Higgsstrahlung amplitude Âa
SD in analytic form as a linear

combination of the dipole cross sections for different dipole
separations. As was anticipated, the diffractive amplitude

represents the destructive interference effect from scatter-
ing of dipoles of slightly different sizes and vanishes as
Âa
SD ∝ α23 in the limit α3 → 0. Such an interference results

in the interplay between hard and soft fluctuations in the
diffractive pp amplitude, enhancing the breakdown of
diffractive factorization [28,29].

B. The dipole formula for the cross section

Note that initial hinj and intermediate jY�i states are
composite and contain the projectile proton wave function
of the initial proton Ψið~rl; xlÞ and the projectile proton
remnant wave function Ψfð~rl; xlÞ as a function of positions
~ri and momentum fractions xi of all the incident partons.
Using the squaring rule for gluon-target interactions given
by Eq. (2.10), integrating over ~s according to Eq. (2.12),
keeping only the leading (quadratic) terms in small
ρ, r ≪ rij and Fourier-transforming the amplitude back
to momentum space, we obtain explicitly

jASDj2 ≃ 3

256
jΨinj2jΨfinj2

X2
i;j¼1

Ωij
hardΩ

ij
soft;

Ωij
hard ¼ Tr½8K̂1;iK̂

†
1;j þ 8K̂2;iK̂

†
2;j − K̂1;iK̂

†
2;j − K̂2;iK̂

†
1;j�;

Ωij
soft ¼ f½2∇iσq̄qð~r12Þ þ∇iσq̄qð~r12 − ~r13Þ þ∇iσq̄qð~r13Þ�∇jσq̄qð~r12Þ

þ ½∇iσq̄qð~r12Þ þ 2∇iσq̄qð~r12 − ~r13Þ −∇iσq̄qð~r13Þ�∇jσq̄qð~r12 − ~r13Þ
þ ½∇iσq̄qð~r12Þ −∇iσq̄qð~r12 − ~r13Þ þ 2∇iσq̄qð~r13Þ�∇jσq̄qð~r13Þg; ð3:8Þ

where ~̂K1;2 are defined earlier in Eqs. (2.21) and (2.22),

∇iσq̄qð~RÞ ¼
2σ0ðŝÞ
R2
0ðŝÞ

Rie−R
2=R2

0
ðŝÞ; ð3:9Þ

with the saturated form of the dipole cross section in the
KST (energy dependent) form (3.6) and (3.7). Equa-
tion (3.8) corresponds to the single diffractive Q̄QH
production process in the Good-Walker picture [23], by

construction. We notice that the soft (rij-dependent) part of
the SD amplitude squared in Eq. (3.8) has been accumu-
lated in Ωij

soft while all the dependence on the hard scales ρ
and r is contained in Ωij

hard, while the partonic structure of
the projectile proton is concentrated in jΨinj2. The ampli-
tude above is normalized in such a way that the cross
section of the Q̄QþH production in forward single-
diffractive pp scattering reads

dσSD
dαd ln α3d2δ⊥

����
δ⊥→0

¼ 1

ð2πÞ2
Z Y

i;j

d2rid2r0j
Y

k;l;m;n

dxkqdxlgdx0mq dx0ng

Z
d2rd2ρjASDj2; ð3:10Þ

where ~δ⊥ is the transverse momentum of the final proton associated with the t-channel momentum transfer squared,
t ¼ −jδ⊥j2, xiq=g are the fractional light-cone momenta of the valence/sea quarks and gluons. As long as the forward
diffractive cross section (3.10) is known, the total SD cross section can be evaluated as

dσSD
dΩ

≃ 1

BSDðsÞ
dσSD
dΩdδ⊥

����
δ⊥→0

; BSDðsÞ≃ hr2chip=3þ 2α0IP lnðs=s1Þ; s1 ¼ 1 GeV2; ð3:11Þ
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where dΩ is the element of the phase space volume defined in Eq. (2.23), and BSDðsÞ is the Regge-parametrized t-slope of
the differential SD cross section (with α0IP ¼ 0.25 GeV−2), which is expected to be similar to the t-slope measured in
diffractive DIS.
The initial proton Ψin and proton remnant Ψfin wave functions in Eq. (3.8) encode information about kinematics and

probability distributions of individual (incoming and outgoing) partons. In the unobservable part, the completeness relation
to the wave function of the proton remnant Ψfin in the final state reads

X
fin

Ψfinð~r1; ~r2; ~r3; fx1;2;…q g; fx1;2;…g gÞΨ�
finð~r01; ~r02; ~r03; fx01;2;…q g; fx01;2;…g gÞ

¼ δð~r1 − ~r01Þδð~r2 − ~r02Þδð~r3 − ~r03Þ
Y
j

δðxjq=g − x0jq=gÞ: ð3:12Þ

In the above formula, δ-functions reflect momentum
conservation and will simplify the phase space integrations
over the unobservable variables in the single diffractive
Higgsstrahlung cross section considerably (see below).
The light-cone partonic wave function of the initial

protonΨin depends on transverse coordinates and fractional
momenta of all valence and sea quarks and gluons. As was
mentioned above, we assume that the mean transverse
distance between a source valence quark and the sea quarks
or gluons is much smaller than the mean distance between
the valence quarks. Therefore, the transverse positions of
sea quarks and gluons can be identified with the coordi-
nates of the valence quarks, and the proton wave function
squared jΨinj2 can be parametrized as

jΨinj2 ¼
3a2

π2
e−aðr21þr2

2
þr2

3
ÞRðx1; fx1;2;…q g; fx2;3;…g gÞ

× δð~r1 þ ~r2 þ ~r3Þδ
�
1 − x1 −

X
j

xjq=g

�
; ð3:13Þ

where a≡ hr2chi−1p is the inverse proton mean charge radius
squared, the variable x1g ≡ x1 is defined as the light-cone
momentum fraction of the hard gluon related to rapidity Y
of the produced Q̄QþH system in Eq. (2.19); R is a
valence/sea (anti)quark distribution function in the projec-
tile proton. For simplicity, we parametrize the valence part
of the proton wave function in the form of symmetric
Gaussian for the spacial quark distributions. Notice that R
distribution has a low (hadronic) scale, so the constituent
quarks, i.e., the valence quarks together with the sea and
gluons they generate, carry the whole momentum of the
proton, by construction.
In the case of diffractive gluon excitations, after inte-

gration over the fractional momenta of all partons not
participating in the hard interaction, we arrive at a single
gluon distribution in the proton, probed by the heavy
system M,

Z Y
j

dxjq
Y
k≠1

dxkgδ

�
1 − x1 −

X
l

xlq=g

�
Rðx1; fx1;2;…q g; fx2;3;…g gÞ ¼

�
CA

CF

�
2

gðx1; μ2Þ; ð3:14Þ

in terms of the PDF of the hard gluon gðx1; μ2Þ with fractional momentum x1, with a proper color factor being the square of
the Casimir factor CA=CF ¼ 9=4, where for Nc ¼ 3 the factors CA ¼ Nc ¼ 3 and CF ¼ ðN2

c − 1Þ=2Nc ¼ 4=3 are the
strengths of the gluon self-coupling and a gluon coupling to a quark, respectively. While single diffraction with production
of QQ̄ and hence QQ̄H is dominated by the gluon-gluon fusion (“production”), in the corresponding inclusive process the
“bremsstrahlung” contribution can also be important but only at very forward rapidities currently unreachable for
measurements (for more details, see Ref. [31]).
In the single diffractive Q̄QH production cross section the phase space integral of the soft part Ωij

soft over the positions of
the valence quarks ~r1;2;3 in the proton wave function can be taken analytically, i.e.,Z

d2r1d2r2d2r3e−aðr
2
1
þr2

2
þr2

3
Þδð~r1 þ ~r2 þ ~r3ÞΩij

soft ¼
1

9

Z
d2r12d2r13e−

2a
3
ðr2

12
þr2

13
þ~r12~r13ÞΩij

soft ¼ 4π2σ20ðŝÞΛðŝÞδij;

where the inverse proton mean charge radius squared a≃ 1.38 fm−2, the soft factor
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ΛðŝÞ≡ ½aðaR2
0 þ 1Þ2ðaR2

0 þ 3Þ2ðaR2
0 þ 4Þ2ðaR2

0 þ 12Þ2ða2R4
0 þ 8aR2

0 þ 3Þ2�−1
× f5a10R20

0 þ 192a9R18
0 þ 3058a8R16

0 þ 26224a7R14
0 þ 132803a6R12

0 þ 409968a5R10
0

þ 771368a4R8
0 þ 855216a3R6

0 þ 509454a2R4
0 þ 149040aR2

0 þ 18144g ð3:15Þ

and R0 ¼ R0ðŝÞ, σ0 ¼ σ0ðŝÞ are defined in Eq. (3.7), and
ŝ ¼ x1s.
The differential SD Higgsstrahlung cross section appears

to be proportional to the differential inclusive cross section
found earlier in Eq. (2.20), namely,

dσSD
dΩ

≃ 4R̄2
0ðx2Þ
3σ̄0

FSðx1; sÞ
dσincl
dΩ

; ð3:16Þ

where dΩ is the element of the phase space volume defined
in Eq. (2.23),

FSðx1; sÞ≡ 729a2σ0ðx1sÞ2Λðx1sÞ
4096π2BSDðsÞ

; x1 ¼
Mffiffiffi
s

p eþY

ð3:17Þ

is the energy dependent soft factor, Λ ¼ ΛðŝÞ, BSD ¼
BSDðsÞ and τ ¼ τðα3Þ are defined in Eqs. (3.15), (3.11)
and (A26), respectively. Note, the differential cross section
Eq. (3.16) is the full expression, which includes by default
the effects of absorption at the amplitude level via
differences of elastic amplitudes fitted to data, and does
not need any extra survival probability factor. This fact has
been advocated in detail in Ref. [30], and we do not repeat
this discussion here.

C. Diffractive-to-inclusive ratio and diffractive
Higgsstrahlung cross section

The SD-to-inclusive ratio accounting for differences in
respective phase space volumes Ω0 and Ω take the follow-
ing simple form:

RSD=inclðM2; x1; sÞ≡ δðM2Þ dσ
SD=dΩ0

dσincl=dΩ
≃ 4R̄2

0ðx2Þ
3σ̄0

FSðx1; sÞδðM2; sÞ; x2 ¼
M2

x1s
; ð3:18Þ

where dσSD=dΩ and dσincl=dΩ are the diffractive and inclusive Higgsstrahlung cross sections found above,
respectively; R̄0 ¼ R̄0ðx2Þ, σ̄0 and FS ¼ FSðx1; sÞ are defined in Eqs. (2.15) and (3.17), respectively, and
δðM2; sÞ is the suppression factor caused by an experimental cut on ξ≡ 1 − xF variable. The latter factor needs
a more detailed clarification.
Indeed, in order to compare our results for the SD-to-inclusive ratio to experimental data, we have to introduce in our

calculations the proper experimental cuts. For example, in diffractive (Z, W [42], heavy flavor [35], etc.) production
measurements at CDF Tevatron, 0.03 < ξ < 0.1 constraint was adopted (see e.g., Ref. [42]). Since our single-diffractive
cross section formula (3.16) is differential in kinematics of the produced Q̄QH system, but not in kinematics of the entire
diffractive Q̄QH þ X system, and experimental cuts on Y-rapidity (or x1) distribution of a produced system are typically
unavailable, a direct implementation of the ξ cuts into our formalism and direct comparison to the CDF data cannot be
performed immediately.
A way out of this problem has been earlier proposed in Ref. [30]. At small ξ → 0 one can instead write the single

diffractive cross section in the phenomenological triple-Regge form [43],

−
dσppSD
dξdp2

T
¼

ffiffiffiffiffi
s1
s

r
GIPIPIR

ξ3=2
e−BIPIPIRp2

T þ G3IP

ξ
e−B

pp
3IPp

2
T ; BIPIPi ¼ R2

IPIPi − 2α0IP ln ξ;

G3IPð0Þ ¼ GIPIPIRð0Þ ¼ 3.2 mb=GeV2; R2
3IP ¼ 4.2 GeV−2; R2

IPIPIR ¼ 1.7 GeV−2; ð3:19Þ

where i ¼ IP; IR, s1 ¼ 1 GeV2, αIPð0Þ ¼ 1 and α0IP ≈
0.25 GeV−2 is the slope of the Pomeron trajectory (for
more details, see Ref. [30]). Then an effect of the
experimental cuts on ξ in the phenomenological cross
section (3.19) and in our diffractive cross section calculated
above (3.16) should roughly be the same and the suppres-
sion factor δ in Eq. (3.18) valid at CDF environment can be
estimated as [30]

δðM2; sÞ ¼
R
dp2

T

R
0.1
0.03 dξdσ

pp
SD=dp

2
TdξR

dp2
T

R ξmax
ξmin

dξdσppSD=dp
2
Tdξ

;

ξmin ≡M2
X;min

s
∼
M2

s
: ð3:20Þ

Here MX;min ≃M is the minimal produced diffractive
mass containing the Q̄QH system only. The value of

PASECHNIK, KOPELIOVICH, AND POTASHNIKOVA PHYSICAL REVIEW D 92, 094014 (2015)

094014-10



δ ¼ δðM2; sÞ in Eq. (A21) is essentially determined by the
experimental cuts on ξ and is not sensitive to the upper limit
in denominator, so we fix it at a realistic value e.g., ξmax ∼
0.3 [30]. As a result, for the suppression factor due to ξ-cut
we have

ffiffiffi
s

p ¼ 14 TeV; δ≃ 0.18…0.24 for

M ¼ 150…500 GeV; ð3:21Þ

respectively, and weakly depends on c.m. energy.
It turns out that the ratio (3.18) is controlledmainly by soft

interactions, i.e., expressed in terms of the soft parameters
only R̄0ðx2Þ,R0ðŝÞ, σ̄0 andσ0ðŝÞ.A slowdependenceof these
parameters on the collision energy s and the hard scale M2

governs such dependence of the diffractive-to-inclusive

production ratio analogically to the diffractive gauge boson
production case earlier discussed in Ref. [30]. A measure-
ment of theM2 dependence of such a ratio would enable to
constrain the x- and s-dependence of the saturation scale as
an important probe of the soft QCD dynamics.
In Fig. 4 we show the SD-to-inclusive ratio of the cross

sections (3.18) for different c.m. energies
ffiffiffi
s

p ¼ 0.5, 7,
14 TeV and for two distinct rapidities Y ¼ 0 and 3 as
functions of Q̄QH invariantmassM. The effect of additional
ξ-cuts for SD cross section 0.03 < ξ < 0.1 is accounted for
by means of the multiplicative factor δ defined in Eq. (3.20).
The considered ratio is found to be consistent with the
experimentally observed one for diffractive beauty produc-
tion in Ref. [35]. As expected from earlier considerations of
the diffractive Drell-Yan [28,29] and gauge bosons produc-
tion [30] in the dipole framework the diffractive factorization
in the SD Higgsstrahlung is broken by transverse motion of
valence quarks in the projectile proton. The latter effect leads
to such unusual behavior of the SD-to-inclusive ratio as its
growth with the hard scale, M, and decrease with the c.m.
energy,

ffiffiffi
s

p
.

Due to universality of the SD-to-inclusive ratio (3.18)
which depends only on parameters of the dipole cross
section it can be applied to the inclusive QQ̄H production
cross section known in the literature to a rather high
precision. In order to get a reasonable estimate for the SD
Higgsstrahlung cross section one can multiply the corre-
sponding inclusive cross sections obtained e.g., in the k⊥-
factorization approach with Ciafaloni-Catani-Fiorani-
Marchesini–evolved unintegrated gluon density following
Ref. [16]. In Fig. 5 we present the resulting curves for the
single diffractive pp → X þ ðbb̄HÞ þ p (dashed lines)
and pp → X þ ðtt̄HÞ þ p (solid lines) cross sections
differential in Higgs boson rapidity yH (left panel) and
transverse momentum κ (right panel) at the LHC energy
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FIG. 4. The SD-to-inclusive ratio RðMÞ as a function of Q̄QH
invariant massM for different c.m. energies

ffiffiffi
s

p ¼ 0.5, 2, 14 TeV
and Q̄QH rapidities Y ¼ 0, 3.
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FIG. 5. The differential cross sections in Higgs boson rapidity dσ=dyH (left panel) and transverse momentum dσ=dκ (right panel) of
single diffractive Higgsstrahlung off tt̄ (solid lines) and bb̄ (dashed lines) pairs at the LHC (

ffiffiffi
s

p ¼ 14 TeV). The effect of additional ξ-
cuts for SD cross section 0.03 < ξ < 0.1 is accounted for by means of the multiplicative factor δ defined in Eq. (3.20). The
corresponding inclusive cross sections have been obtained in the k⊥-factorization approach with CCFM-evolved unintegrated gluon
density following Ref. [16].
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ffiffiffi
s

p ¼ 14 TeV. At midrapidities, the top and bottom
dσ=dyH cross sections turn out to be rather close
to each other, while top contribution strongly dominates
over the bottom one at large Higgs boson transverse
momenta κ ≳mH. Comparing our results for the produc-
tion gg → QQ̄H mode with the results for the diffractive
Higgsstrahlung off the intrinsic heavy flavor from Ref. [34]
we conclude that the intrinsic contribution to the diffractive
Higgs production becomes important at rapidities yH > 3.5
and should be taken into account. Of course, a relation of
the experimental acceptances for Higgs boson and heavy
quark decay products with actual phase space bounds on
producing Higgs boson and heavy quarks is the matter of a
dedicated Monte-Carlo detector-level simulation (see e.g.,
Refs. [18–20]) which can be done in the future if necessary.

IV. SUMMARY

Here we presented the first calculation of the single
diffractive (SD) Higgsstrahlung process off heavy (top and
bottom) quarks. We compute the SD-to-inclusive ratio
within the light-cone dipole approach. For this purpose,
we estimate the transverse momentum distribution of the
inclusive and SD cross sections in the dipole framework at
large Higgs boson transverse momenta ðκ > mHÞ and
observe that they are proportional to each other. Thus,
the considered high-p⊥ limit enables us to extract the SD-
to-inclusive ratio in a simple analytic form which then
could be used beyond the adopted approximations. The
ratio between them takes a simple analytic form and
depends only on parameters of the dipole cross section.
By using the naive GBW parametrization we estimate the
numerical accuracy of this ratio for not too large QQ̄H
invariant masses to be within a factor of 2. Such a
theoretical uncertainty accounts for typical uncertainties
in the choice of available parametrizations for the dipole
cross section (or unintegrated gluon densities). So by
applying the ratio given by Eq. (3.18) to the inclusive
Higgsstrahlung HQQ̄ cross sections obtained elsewhere
one would get a reasonable estimate for the SD
Higgsstrahlung cross section which can be used in practice.
For the SD case, we numerically evaluated the corre-

sponding differential cross sections in transverse momen-
tum of the Higgs boson and relative transverse momentum
of heavy quarks. Similarly to other hard diffractive proc-
esses [28–31], breakdown of QCD factorization leads to
rather mild scale dependence of the cross section, 1=m2

Q
(compare with 1=m4

Q in diffractive DIS). Such a leading
twist behavior is confirmed by the comparison of data on
diffractive production of charm and beauty [31]. Radiation
of the Higgs boson enhances the relative contribution of
heavy flavors at high transverse momenta. In Eq. (3.16) one
also observes a peculiar feature of similarity of the slopes of
differential in κ inclusive and diffractive cross sections
(while the slope for beauty is larger than for top as is seen in

Fig. 5) (right panel). This could be anticipated, since the
main fraction of the transferred momentum originates from
the short distance interaction, which is the same in inclusive
and diffractive processes.
The same scale dependence, 1=m2

Q, for diffractive and
inclusive cross sections leads to flavor independence of
their ratio. This is an apparent manifestation of dif-
fractive factorization breaking, indeed, such a ratio in
DIS is steeply falling with mQ. The Higgs couplings
cancel in the ratio. The SD-to-inclusive ratio is similar
to that for heavy quark production, which was calcu-
lated in [31] in good agreement with experimental data
from the Tevatron.
Another interesting feature of SD-to-inclusive

Higgsstrahlung ratio, which can be observed in Fig. 5, is
its falling energy and risingM-dependence, whereM is the
invariant mass of the produced Q̄QH system. This is
similar to what was found for the diffractive Drell-Yan
process [28,29] and has the same origin: breakdown of
QCD factorization and the saturated form of the dipole
cross section. Of course, the corresponding SD QQ̄H cross
sections by themselves are rather small and may not be
measurable with the current LHC instrumentation. On the
other hand, these correspond to a background for the SD
Higgsstrahlung off intrinsic heavy flavor [34]. The intrinsic
mode increases relative to the background and becomes
important at large rapidities yH > 3.5.
Within the dipole model the effects of absorption are

included by default in a most natural way, quantum
mechanically. They are contained in the parametrization
of the dipole cross section fitted to experimental data,
and the dipole formula for diffractive scattering is self-
contained and does not require any extra factors. These
corrections are accounted for in our calculations at the
amplitude level, while most of the existing calculations of
the absorption effects have been calculated so far proba-
bilistically. The differences might be large, although are
difficult to quantify at present. Unfortunately, calculation of
the central double-diffractive particle production within the
dipole approach is still a big challenge. Besides, the
probabilistic methods are process and kinematics depen-
dent. Nevertheless, a detailed comparison of dipole model
predictions with probabilistic estimates for the gap
survival is a doable problem which is planned for further
studies.
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APPENDIX A: INCLUSIVE HIGGSSTRAHLUNG
AMPLITUDE IN MOMENTUM SPACE

Explicitly, the inclusive Higgsstrahlung amplitude in
gluon-proton collision is described by the set of eight
diagrams shown in Fig. 1 and reads

Bμμ̄
a ¼ iαsmQffiffiffiffiffiffi

4π
p

v

X8
l¼1

XN2
c−1

d¼1

TðlÞ
ad

F̂ðdÞ
Gp→Xð~k⊥; fXgÞ
~k2⊥ þm2

g

ξμQ
†Γ̂l

~ξμ̄Q̄
Dl

;

ðA1Þ
where v≃ 246 GeV is the standard Higgs vacuum expect-
ation value entering the Yukawa couplings in the Standard
Model [44], αs is the QCD coupling,Dl are the propagators
defined below, Nc ¼ 3 is the number of colors, ξ are the
heavy quark two-component spinors, ~ξμ̄Q̄ ¼ iσyðξμ̄Q̄Þ�, mg is
the effective gluon mass which serves as an infrared
regulator, fXg is the set of variables describing the final

state X, F̂ðdÞ
Gp→Xð~k⊥; fXgÞ is the amplitude of the t-channel

gluon interaction with the proton target p in the target rest
frame which determines the unintegrated gluon density F
as follows [36]:

Z
dfXg

XN2
c−1

d¼1

jFðdÞ
Gp→Xð~k⊥; fXgÞj2 ¼ 4πF ð~k2⊥; x2Þ;

x2 ¼
M2

x1s
; ðA2Þ

M2 ¼ m2
Q þ ~k21
α1

þm2
Q þ ~k22
α2

þm2
H þ ~k23
α3

;

~k⊥ ¼
X3
i¼1

~ki;
X3
i¼1

αi ¼ 1; ðA3Þ

where

αi ¼
kþi
kþ

; kþ ¼
X3
i¼1

kþi ;

M is the invariant mass of the produced Q̄QH system, ~k1;2;3
and α1;2;3 are the transverse momenta and fractions of the
initial light-cone momentum of the projectile gluon carried
by the produced heavy quarks Q̄, Q (with mass mQ) and
Higgs boson H (with mass mH ≃ 126 GeV), respectively,
and s is the Mandelstam variable being the total energy of
the pp collisions in the pp c.m.s. frame. The color matrices

TðlÞ
adðijÞ for lth diagram in Eq. (A1) act in the color space of

theQQ̄ and have indices i, j corresponding to theQ and Q̄,
respectively,

Tð1Þ
ad ¼ Tð3Þ

ad ¼ Tð6Þ
ad ¼ τaτd; Tð2Þ

ad ¼ Tð4Þ
ad ¼ Tð5Þ

ad ¼ τdτa;

Tð7Þ
ad ¼ Tð8Þ

ad ¼ i
XN2
c−1

e

fadeτe ¼ τaτd − τdτa; ðA4Þ

where τa are the standard SUðNcÞ generators related to the
Gell-Mann matrices as λa ¼ τa=2.
In what follows it would be instructive to introduce the

quark momentum fraction relative to the QQ̄ pair

α ¼ kþ1
qþ

; qþ ¼ kþ1 þ kþ2 ; ðA5Þ

such that

α1 ¼ αᾱ3; α2 ¼ ᾱᾱ3: ðA6Þ

Then, the relative transverse momenta between the heavy
quark and antiquark, ϰ, and between the radiated Higgs
boson and QQ̄ pair, κ, are

~ϰ ¼ ᾱ~k1 − α~k2; ~κ ¼ ᾱ3~k3 − α3ð~k1 þ ~k2Þ; ðA7Þ

respectively, serve as convenient phase space variables of
the considering reaction such that the element of the phase
space is

dΩ ∝ dαd ln α3d2ϰd2κ: ðA8Þ

The incident transverse momenta ~ki are then defined as

~k1 ¼ ~ϰ − α½~κ − ᾱ3~k⊥�;
~k2 ¼ −~ϰ − ᾱ½~κ − ᾱ3~k⊥�;
~k3 ¼ ~κ þ α3~k⊥;

such that in the limit of small α3k⊥ ≪ κ, the variable ~κ has
the meaning of the transverse momentum of the Higgs
boson, while the transverse momentum of the QQ̄ pair is
given by

~kQQ̄ ≡ ~k1 þ ~k2 ¼ −~κ þ ~k⊥: ðA9Þ

The set of eight vertex operators Γ̂l corresponding to the
lth diagram in Fig. 1 reads

Γ̂1 ¼ V̂2ð~k13; α1ÞÛ2ð~k2; α2Þ;
Γ̂2 ¼ Û1ð~k1; α1ÞV̂1ð~k23; α2Þ;
Γ̂3 ¼ −α1Û1ð~k1; α1ÞV̂1ð~k23 − α3~k⊥; α2Þ;
Γ̂4 ¼ −α2V̂2ð~k13 − α3~k⊥;α1ÞÛ2ð~k2; α2Þ;
Γ̂5 ¼ −α2α3Û1ð~k1 − ~k⊥; α1ÞV̂1ð~k23; α2Þ;
Γ̂6 ¼ −α1α3V̂2ð~k13; α1ÞÛ2ð~k2 − ~k⊥; α2Þ;
Γ̂7 ¼ −α2α3Û1ð~k1 − α1~k⊥; α1ÞV̂1ð~k23; α2Þ;
Γ̂8 ¼ α1α3V̂2ð~k13; α1ÞÛ2ð~k2 − α2~k⊥; α2Þ; ðA10Þ
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where

~k13 ≡ α3~k1 − α1~k3 ¼ α3~ϰ − α~κ; ðA11Þ
~k23 ≡ α3~k2 − α2~k3 ¼ −α3~ϰ − ᾱ ~κ; ðA12Þ

and the 2 × 2 matrices Û1;2 and V̂1;2 are given by

Û1ð~k1; α1Þ ¼ mQ~σ · ~eþ ð1 − 2α1Þð~σ · ~nÞð~e · ~k1Þ
þ ið~e × ~nÞ · ~k1;

Û2ð~k2; α2Þ ¼ mQ~σ · ~eþ ð1 − 2α2Þð~σ · ~nÞð~e · ~k2Þ
− ið~e × ~nÞ · ~k2;

V̂1;2 ¼ 2mHα2;1ðα2;1 − α3Þ: ðA13Þ

Here, ~e is the initial gluon Ga polarization vector, ~σ ¼
fσ1; σ2; σ3g is the vector of Pauli matrices σa, and ~n is the
unit vector in the direction of the corresponding particle

momentum. The propagator functions Dl which enter the
denominator in Eq. (A1) read

D1 ¼ Δ0ð~k2ÞΔ2ð~k13; α1; α2Þ;
D2 ¼ Δ0ð~k1ÞΔ2ð~k23; α2; α1Þ;
D3 ¼ Δ0ð~k1ÞΔ1ð~k1; ~k23 − α3~k⊥; α1; α2; α3Þ;
D4 ¼ Δ0ð~k2ÞΔ1ð~k2; ~k13 − α3~k⊥; α2; α1; α3Þ;
D5 ¼ Δ1ð~k1 − ~k⊥; ~k23; α1; α2; α3ÞΔ2ð~k23; α2; α1Þ;
D6 ¼ Δ1ð~k2 − ~k⊥; ~k13; α2; α1; α3ÞΔ2ð~k13; α1; α2Þ;
D7 ¼ Δ2ð~k23; α2; α1ÞΔ1ð~k1 − α1~k⊥; ~k23; α1; α2; α3Þ;
D8 ¼ Δ2ð~k13; α1; α2ÞΔ1ð~k2 − α2~k⊥; ~k13; α2; α1; α3Þ;

ðA14Þ

where

Δ0ð~k1Þ ¼ m2
Q þ ~k21;

Δ1ð~k1; ~k23; α1; α2; α3Þ ¼ α2α3~k
2
1 þ α1~k

2
23 þ α1ᾱ1α2m2

H þ α3ðα2 þ α1α3Þm2
Q;

Δ2ð~k13; α1; α2Þ ¼ α23m
2
Q þ α1ᾱ2m2

H þ ~k213; ᾱi ¼ 1 − αi: ðA15Þ

It is worth noticing that D1;2 functions are dependent on others since

½Δ0ð~k1ÞΔ2ð~k23; α2; α1Þ�−1 ¼ α1½Δ0ð~k1ÞΔ1ð~k1; ~k23; α1; α2;α3Þ�−1

þ α2α3½Δ2ð~k23; α2; α1ÞΔ1ð~k1; ~k23; α1; α2; α3Þ�−1

is satisfied. Together with the above relations, the latter one enables us to represent the total Higgsstrahlung amplitude (A1)

Bμμ̄
a ¼ iαsmQffiffiffiffiffiffi

4π
p

v

XN2
c−1

d¼1

FðdÞ
Gp→Xð~k⊥; fXgÞ
~k2⊥ þm2

g

ξμQ
†fτaτdT̂1 þ τdτaT̂2g~ξμ̄Q̄; ðA16Þ

in terms of two independent helicity amplitudes

T̂1 ¼ α1ν̂1ð~k1Þfμ̂1ð~k1; ~k23Þ − μ̂1ð~k1; ~k23 − α3~k⊥Þg þ α2α3fλ̂1ð~k1; ~k23Þ − λ̂1ð~k1 − ~k⊥; ~k23Þgρ̂1ð~k23Þ
− α1α3ρ̂2ð~k13Þfλ̂2ð~k2 − ~k⊥; ~k13Þ − λ̂2ð~k2 − α2~k⊥; ~k13Þg; ðA17Þ

T̂2 ¼ α2fμ̂2ð~k2; ~k13Þ − μ̂2ð~k2; ~k13 − α3~k⊥Þgν̂2ð~k2Þ
þ α1α3ρ̂2ð~k13Þfλ̂2ð~k2; ~k13Þ − λ̂2ð~k2 − ~k⊥; ~k13Þg
− α2α3fλ̂1ð~k1 − ~k⊥; ~k23Þ − λ̂1ð~k1 − α1~k⊥; ~k23Þgρ̂1ð~k23Þ; ðA18Þ
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where

ν̂1ð~k1Þ ¼
Û1ð~k1; α1Þ
Δ0ð~k1Þ

; ν̂2ð~k2Þ ¼
Û2ð~k2; α2Þ
Δ0ð~k2Þ

;

ρ̂1ð~k23Þ ¼
V̂1ð~k23; α2Þ

Δ2ð~k23; α2; α1Þ
; ρ̂2ð~k13Þ ¼

V̂2ð~k13; α1Þ
Δ2ð~k13; α1; α2Þ

;

μ̂1ð~k1; ~k23Þ ¼
V̂1ð~k23; α2Þ

Δ1ð~k1; ~k23; α1; α2; α3Þ
; μ̂2ð~k2; ~k13Þ ¼

V̂2ð~k13; α1Þ
Δ1ð~k2; ~k13; α2;α1; α3Þ

;

λ̂1ð~k1; ~k23Þ ¼
Û1ð~k1; α1Þ

Δ1ð~k1; ~k23; α1; α2; α3Þ
; λ̂2ð~k2; ~k13Þ ¼

Û2ð~k2; α2Þ
Δ1ð~k2; ~k13;α2; α1;α3Þ

: ðA19Þ

Clearly, the amplitudes T̂1;2 are related by a symmetry T̂1 ↔ T̂†
2 with respect to Q and Q̄ interchange, i.e., ~k1 ↔ ~k2 and

α1 ↔ α2. Apparently, T̂1;2 vanish in the forward direction ~k⊥ → 0 which guarantees the infrared stability of the cross
section.
The above expressions significantly simplify, if the longitudinal momentum fraction α3 carried by the emitted Higgs

boson is small, i.e., α3 ≪ 1, corresponding to the dominant configuration for the fluctuation of the projectile gluon,
Ga → QQ̄þH. Then the operators (A13) are

Û1ð~k; αÞ≃ Û2ð−~k; ᾱÞ≡ Ûð~kÞ ¼ mQ~σ · ~eþ ð1 − 2αÞð~σ · ~nÞð~e · ~kÞ þ ið~e × ~nÞ · ~k;
V̂1 ≃ ᾱ2V̂ðα3=ᾱÞ; V̂2 ≃ α2V̂ðα3=αÞ; V̂ðγÞ≡ 2ð1 − γÞmH: ðA20Þ

Incident quark transverse momenta become

~k1 ≃ ~ϰ − αð~κ − ~k⊥Þ; ~k2 ≃ −~ϰ − ᾱð~κ − ~k⊥Þ; ~k3 ≃ ~κ;

and the propagators in Eq. (A15) are

Δ0ð~k1Þ≃D1ð~ϰ − αð~κ − ~k⊥ÞÞ;
Δ0ð~k2Þ≃D1ð~ϰ þ ᾱð~κ − ~k⊥ÞÞ; D1ð~kÞ≡ ~k2 þm2

Q;

Δ2ð~k13; α1; α2Þ≃ α2D2ð~κ − ðα3=αÞ~ϰ; αÞ;
Δ2ð~k23; α2; α1Þ≃ ᾱ2D2ð~κ þ ðα3=ᾱÞ~ϰ; ᾱÞ; D2ð~k; αÞ≡ ~k2 þ ω2ðαÞ;

Δ1ð~k1; ~k23; α1; α2Þ≃ ᾱ½α3D1ð~k1Þ þ αᾱD2ð~k23=ᾱ; ᾱÞ�;
Δ1ð~k2; ~k13; α2; α1Þ≃ α½α3D1ð~k2Þ þ αᾱD2ð~k13=α; αÞ�; ðA21Þ

where

ω2ðαÞ≃m2
H þ

�
α3
α

�
2

m2
Q: ðA22Þ

The typical scales for incident transverse momenta are

j~k⊥j ∼mg ≪ j~κj; j~ϰj; j~κj ∼mH; j~ϰj ∼mQ;

ðA23Þ

such that

M2 ≃M2
Q̄Q þ ~κ2 þM2

−; M2
Q̄Q ≡m2

Q þ ~ϰ2

ᾱα
;

M2
− ≡m2

H þ ~κ2

α3
: ðA24Þ

In the dominating configuration corresponding to α3 ≪
α ∼ ᾱ asymptotics we have

Δ1ð~k1; ~k23; α1; α2Þ≃ αᾱ2ð~κ2 þ τ2Þ;
Δ1ð~k2; ~k13; α2; α1Þ≃ ᾱα2ð~κ2 þ τ2Þ; ðA25Þ
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where

τ2 ≃m2
H þ α3M2

Q̄Q: ðA26Þ

In this asymptotics we finally get

T̂1ð~k⊥; ~ϰ; ~κÞ≃ Ûð~ϰ − αð~κ − ~k⊥ÞÞ
D1ð~ϰ − αð~κ − ~k⊥ÞÞ

�
V̂ðα3=ᾱÞ
τ2 þ ~κ2

−
V̂ðα3=ᾱÞ

τ2 þ ð~κ þ ðα3=ᾱÞ~k⊥Þ2
	
; ðA27Þ

T̂2ð~k⊥; ~ϰ; ~κÞ≃
�
V̂ðα3=αÞ
τ2 þ ~κ2

−
V̂ðα3=αÞ

τ2 þ ð~κ þ ðα3=αÞ~k⊥Þ2
	

Ûð~ϰ þ ᾱð~κ − ~k⊥ÞÞ
D1ð~ϰ þ ᾱð~κ − ~k⊥ÞÞ

: ðA28Þ
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