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We consider the Standard Model with right-handed neutrinos to explain the masses of active neutrinos
by the seesaw mechanism. Since active neutrinos as well as heavy neutral leptons are Majorana fermions in
this case, the lepton number violating process can be induced. We discuss the inverse neutrinoless double
beta decay e−e− → W−W− in the framework of the seesaw mechanism and its detectability at future
colliders. It is shown that the cross section can be 17 fb for

ffiffiffi
s

p ¼ 3 TeV even with the stringent constraint
from the neutrinoless double beta decays if three (or more) right-handed neutrinos exist. In such a case, the
future e−e− colliders can test lepton number violation mediated by a right-handed neutrino lighter than
about 10 TeV.
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I. INTRODUCTION

The origin of neutrino masses is one of the most
important questions in particle physics at present.
Various oscillation experiments have provided the mass
squared differences and mixing angles of active neutrinos
very precisely [1]; however, the mass ordering, violation
of CP symmetry, and fundamental property of massive
neutrinos (i.e., Majorana or Dirac particles) are still
unknown. The simplest way to explain the neutrino masses
is to add right-handed neutrinos to the Standard Model
(SM). The smallness of active neutrino masses can be
explained by the large Majorana masses of right-handed
neutrinos thanks to the seesaw mechanism [2–8].
In the seesaw mechanism, the mass eigenstates of

neutrinos are three active neutrinos which have tiny masses
observed in oscillation experiments, and heavy neutral
leptons (HNLs) which are almost identical to the right-
handed states. The HNL masses are determined by
Majorana masses and independent from the electroweak
Higgs mechanism. They can take arbitrary values as long as
they are sufficiently heavy to realize the seesaw mecha-
nism. This is the reason why such HNLs can cause
interesting phenomena in various aspects of particle phys-
ics and cosmology.
Right-handed neutrinos can explain the baryon asym-

metry of the Universe. The well-known scenario is the
canonical leptogenesis [9] in which they need to be heavier
than Oð109Þ GeV [10] (or Oð106Þ GeV when the non-
thermal production is realized [11]). The resonant lepto-
genesis with quasidegenerate right-handed neutrinos [12]
can be effective with much smaller masses. Moreover, if we

use the flavor oscillation of right-handed neutrinos, the
required mass can be as small as Oð1Þ MeV [13–15].
In addition, a right-handed neutrino can play an important

role in astrophysics. It can be the dark matter candidate with
Oð1Þ keV mass [16]. This particle can also explain other
phenomena, such as the pulsar kick [17] (for a review, see
Ref. [18]). Further, right-handed neutrinos withOð0.1Þ GeV
may be important for the supernova explosion [19].
Right-handed neutrinos are required by grand unified

theories based on SO(10) [20,21] or larger symmetry
groups. These particles can also accomplish the bottom-
tau Yukawa unification [22] which is necessary for realistic
grand unified theories. It has been discussed that they are
favored to be lighter thanOð107Þ GeV due to the argument
of the electroweak naturalness [23].
In this way, right-handed neutrinos in the seesaw

mechanism are well-motivated particles beyond the SM.
The direct test of HNLs is possible if they are light and
their mixings are large. So far various experiments have
been performed to search for HNLs (for example, see
reviews [24–27]).
The noble consequence of the seesaw mechanism is that

active neutrinos and HNLs are Majorana particles, and
hence the lepton number violating processes can appear. A
well-known example is the neutrinoless double beta (0νββ)
decay ðZ; AÞ → ðZ þ 2; AÞ þ 2e−, which violates the lep-
ton number by two units [28].
In this paper, we consider another example of such

processes,

e−e− → W−W−; ð1Þ
which is called the “inverse neutrinoless double beta
decay” [29] (see Fig. 1), which cannot also happen in
the SM. The e−e− collision at high energy is one attractive
option of the future lepton colliders such as the
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International Linear Collider (ILC [30]) and the Compact
Linear Collider (CLIC [31]). Various aspects of the process
(1) have been studied so far [29,32–40].
The advantages of the process (1) over the 0νββ decay for

the test of the lepton number violation are (i) the signal event
is clean and (ii) the prediction is free from the uncertainty in
the nuclearmatrix element. Furthermore,we shouldmention
that these processes are complementary tests for the lepton
number violation. As we will show, HNLs can give a
destructive contribution to the 0νββ decay so that no signal
could be observed. Even in this case, the inverse 0νββ decay
could be observed since the energy scales of these processes
are different.
In this paper, we shall revisit the inverse 0νββ decay,

paying special attention to the following points: (i) We
study the process in the concrete model, i.e., the SM
extended by N right-handed neutrinos with the seesaw
mechanism, and try to derive the theoretical prediction
being specific to the model. (ii) We take fully into account
the interference effects between active neutrinos and HNLs
for both the 0νββ and the inverse 0νββ processes. (iii) We
estimate the upper bounds on the cross section depending
on the number of right-handed neutrinos. We use a
corrected cross section (for the difference from previous
studies, see the Appendix). In addition, we take into
account the possibilities of the fine-tuning in parameters
of the model, which have not been studied thoroughly.
We find that the maximal cross section can be 0.47 fb

(17 fb) for the center-of-mass energy
ffiffiffi
s

p ¼ 500 GeV
(3 TeV), avoiding the stringent constraint from the 0νββ
decay if there are three right-handed neutrinos. This is a
contrast to the previous results. Therefore, the process (1)
can be a good target of the future lepton colliders.
The rest of this paper is organized as follows. In Sec. II, we

define the model parameters and list existing constraints on
them. In Sec III, we derive upper bounds on the cross sections
of the process (1) in the cases with one, two, and three
right-handed neutrinos in turn. Finally, Sec. IV is devoted to
conclusions. We add an Appendix to present the definitions
of variables in the cross section of e−e− → W−W−.

II. STANDARD MODEL WITH
RIGHT-HANDED NEUTRINOS

Let us first explain the framework of the present analysis.
We consider the SM extended by right-handed neutrinos νR
with Lagrangian

L ¼ LSM þ ν̄RIi∂μγ
μνRI

− FαIL̄αΦνRI −
MI

2
ν̄RIν

c
RI þ H:c:: ð2Þ

Here, we shall assume jMDαIj≡ jFαIjhΦi ≪ MIðα ¼
e; μ; τ; I ¼ 1;…;N Þ in order to realize the seesaw mecha-
nism. In this case, the mass eigenstates of neutrinos are
three active neutrinos νi (i ¼ 1, 2, 3) with massesmi andN
HNLs NI with masses ≃MI . The mass ordering of HNLs
can be chosen as M1 ≤ M2 ≤ � � � ≤ MN without loss of
generality. The mixing of neutrinos in the charged current
interactions is then written as

νLα ¼
X3
i¼1

Uαiνi þ
XN
I¼1

ΘαINc
I ; ð3Þ

where U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix of active neutrinos, while ΘαI
represent the mixings of HNLs obtained by the diagonal-
ization of the ð3þN Þ × ð3þN Þ neutrino mass matrix
including radiative corrections.
In this model, the masses and mixings of active neutrinos

and HNLs must satisfy the following relations:

0 ¼
X3
i

UαiUβimi þ
XN
I¼1

ΘαIΘβIMI: ð4Þ

These relations hold if the Majorana mass terms for the left-
handed neutrinos are absent at the tree level in the canonical
seesaw mechanism discussed here. We should note that
such Majorana masses are induced by radiative corrections
[41,42] and would alter the relation (4) desperately. We
assume that such corrections are sufficiently suppressed by
artificial fine-tuning.
For the inverse 0νββ decay (1), only the component with

α ¼ β ¼ e,

0 ¼ mν
eff þ

X
I

Θ2
eIMI; ð5Þ

is relevant. We call this equation “the seesaw relation” from
now on. We define mν

eff by

mν
eff ≡

X3
i¼1

U2
eimi: ð6Þ

In the considered model, both active neutrinos and HNLs
are Majorana fermions, and then they induce 0νββ decay.
The half-life of the decay is expressed as

T−1
1=2 ¼ A

m2
p

hp2i2 jmeff j2: ð7Þ

Here and hereafter, we use the notation and the results for
the 0νββ decay given in Ref. [43]. The effective neutrino
mass in the considered model is given by

FIG. 1. Feynman diagrams for e−e− → W−W−.
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meff ¼ mν
eff þ

XN
I¼1

Θ2
eIMIfI: ð8Þ

Here, the first term represents the contribution from
the active neutrinos, which is given by Eq. (6), and the
second term denotes the contributions from HNLs, in
which the suppression of the nuclear matrix element for
MI ≫

ffiffiffiffiffiffiffiffiffi
hp2i

p ≃ 200 MeV is taken into account by the
function fI [43],

fI ≃ hp2i
hp2i þM2

I
: ð9Þ

As for the 0νββ decay of 136Xe, the lower bound on the
half-life is T1=2 > 3.4 × 1025 yr at 90% C.L. [44], which
can be translated into the upper bound on the effective
neutrino mass as

jmeff j < mUB
eff ¼ ð0.185–0.276Þ eV; ð10Þ

where we have taken into account the uncertainties esti-
mated in Ref. [43]. On the other hand, the half-life bound of
76Ge is T1=2 > 3.0 × 1025 yr at 90% C.L. [45]. In this case,
the bound on jmeff j is

jmeff j < mUB
eff ¼ ð0.213–0.308Þ eV: ð11Þ

We then apply the bound (10) throughout this analysis in
order to make the conservative analysis.
Furthermore, the mixings of HNLs are constrained by

various experiments [24–27]. In the following analysis, we
consider the case when the mass of the lightest HNL is
M1 ≳ 3 GeV in order to avoid the stringent constraints
from the search experiments by using the decays of π, K,
and D mesons. Even in this case, there is an upper limit on
jΘeIj2 in the region MI < mZ from the search for HNLs at
the Large Electron-Positron collider (LEP) experiment by
the decay of the Z boson [46]. In the mass range MI≃
6–50 GeV, the bound is given as jΘeIj2 < 2.1 × 10−5 at
95% C.L. There is also an upper bound on the mixing angle
which comes from the electroweak precision tests. The
recent bound at 90% C.L. [47] is

jΘej2 ≡
X
I

jΘeIj2 < jΘej2EW ¼ 2.1 × 10−3: ð12Þ

These are the upper bounds on the mixings which are
important for the analysis below.1

III. INVERSE NEUTRINOLESS DOUBLE BETA
DECAY e−e− → W−W−

Now, we are in the position to discuss the inverse
neutrinoless double beta decay (1). The cross section of
the process in the model with N right-handed neutrinos is
given by

dσN
d cos θ

¼ G2
FβW
32π

½jAtj2Bt þ jAuj2Bu

þ ðAtA�
u þ H:c:ÞBtu�: ð13Þ

Here, the definitions of variables in this equation are
presented in the Appendix. Notice that only At and Au
depend on the parameters of HNLs, namely, MI and ΘeI .
In the following analysis, we consider the detectability of

e−e− → W−W− by taking the center-of-mass energy asffiffiffi
s

p ¼ 0.5, 1, and 3 TeV. We assume the integrated
luminosity of 100 fb−1, which can be achieved by
Oð107Þ s run of the ILC or CLIC [49] (the luminosities
of the e−e− colliders are expected to be the same order as
eþe− colliders [31]).
Before discussing the realistic cases, we shall consider

the two extreme cases. The first one is the limit when all
HNLs are sufficiently heavy (i.e.,MI ≫

ffiffiffi
s

p
) and only three

active neutrinos effectively take part in the process. In this
case, the cross section is given by [34]2

σ0 ¼
3G2

Fjmν
eff j2

4π
¼ 0.96 × 10−18 fb

� jmν
eff j

0.28 eV

�
2

: ð14Þ

The cross section is determined solely by the effective
neutrino mass mν

eff of active neutrinos in the 0νββ decay.
It is seen that σ0 is too small to be accessible by future
colliders.
The other limit is that all HNLs are sufficiently light (i.e.,

MI ≪ mW ≪
ffiffiffi
s

p
). In this case, it is found from the seesaw

relation (5) that

At ¼
1

t

�
mν

eff þ
XN
I¼1

Θ2
eIMI

�
¼ 0; ð15Þ

and then Au ¼ 0, which results in the vanishing cross
section. In other words, the seesaw relation (5) ensures the
unitarity of the process (1) at high energies

ffiffiffi
s

p
≫ MI [34].

From now on, we will study the cross section of e−e− →
W−W− in the framework of the seesaw model withN ¼ 1,
2, and 3 right-handed neutrino(s). Especially, we shall
discuss the impacts of various constraints on the masses
and mixings of HNLs discussed in the previous section.1Our analysis can also be applied to processes μ−μ− → W−W−

and e−μ− → W−W− as in Ref. [39]. The latter process is,
however, strongly constrained by the μ → eγ experiment
[47,48], jPIΘ�

eIΘμI j < 10−5 (90% C.L.).

2The prefactor of σ0 in Eq. (14) is three times larger than the
estimations in Refs. [34,39] (see the discussion in the Appendix).

SEESAW MECHANISM AT ELECTRON-ELECTRON COLLIDERS PHYSICAL REVIEW D 92, 094012 (2015)

094012-3



A. Case with one right-handed neutrino

Let us first consider the SM with only one right-handed
neutrino. In this case, there is one HNL N1 with mass M1

and mixing Θα1 in addition to active neutrinos. This model
is incompatible with the oscillation data since there appear
two massless states among active neutrinos. We shall,
however, discuss it in order to make our point clear.
One might think that N1 with a relatively large mixing

allowed by Eq. (12) may give rise to a significant
contribution to e−e− → W−W−. This is, however, not true
in the considered case. The seesaw relation (5) tells that the
mixing cannot be large butΘ2

e1 ¼ −mν
eff=M1, and then At is

suppressed as

At ¼ mν
eff

�
1

t
−

1

t −M2
1

�
: ð16Þ

This shows that the cross section becomes independent
on the mixing of N1 but is determined from the effective
mass mν

eff and M1. In Fig. 2, we show the cross section
e−e− → W−W− with jmν

eff j ¼ 0.276 eV.
It is seen that the cross section approaches to σ0 (14)

for M1 ≫
ffiffiffi
s

p
due to the decoupling of N1 as mentioned

before. On the other hand, when M1 ≪ mW , the cross
section behaves as

σ1 ¼
1

6π

G2
Fjmν

eff j2M4
1s

2

m8
W

; ð17Þ

and it vanishes for M1 → 0 as expected.

In the model with N ¼ 1, therefore, the cross section is
too small to be observed at future colliders. This is the
direct consequence of the seesaw mechanism; namely,
the mixing Θe1 is determined by mν

eff from the seesaw
relation (5).

B. Case with two right-handed neutrinos

Next, we discuss the case with two right-handed neu-
trinos, where there appear two HNLs N1 and N2. Notice
that the lightest active neutrino in this case is massless
(i.e., m1 ¼ 0 for the normal hierarchy and m3 ¼ 0 for the
inverted hierarchy).
In this case, by using the seesaw relation (5) and jΘej2

(12), the mixing angles of N1 and N2 are given by3

Θ2
e1 ¼ þ M2

M1 þM2

jΘej2 −
mν

eff

M1 þM2

; ð18Þ

Θ2
e2 ¼ −

M1

M1 þM2

jΘej2 −
mν

eff

M1 þM2

: ð19Þ

We find that, when M1 ≪ M2 and jmν
eff j=M1 ≪ jΘej2, the

large mixing of N1, Θ2
e1 ≃ jΘej2EW, can be realized. This is

because of the cancellation between the contributions of N1

andN2 in the seesaw relation (5) [33,34]. Some mechanism
is desirable to stabilize such a fine-tuning, for example, by a
discrete flavor symmetry. This issue is, however, beyond
the scope of our analysis (similar situations have been
discussed in Refs. [50,51]).
The function At is now

At ¼ −
ðM2 −M1ÞM1M2

ðt −M2
2Þðt −M2

1Þ
jΘej2

−
mν

eff ½ðM2
2 −M1M2 þM2

1Þt −M2
1M

2
2�

tðt −M2
1Þðt −M2

2Þ
: ð20Þ

It is then seen that, by neglecting the second term sup-
pressed by mν

eff, the hierarchical mass pattern M1 ≪ M2

enhances the matrix element of the process. In this limit, At
is dominated by the contribution of N1 as

At ≃M1jΘej2
t −M2

1

; ð21Þ

which leads to the cross section

σ2 ≃G2
FsjΘej4
8π

Hðr1Þ; ð22Þ

where r1 ¼ M2
1=s and Hðr1Þ is H ≃ 6r1 for M1 ≪ mW,

H ≃ 2r1 for mW ≪ M1 ≪
ffiffiffi
s

p
, and H ≃ 1=ð2r1Þ for

10 -20

10 -19

10 -18

10 -17

10 0 10 1 10 2 10 3 10 4 10 5 10 6

σ 
[f

b]

M1 [GeV]

3TeV
1TeV

0.5TeV

FIG. 2 (color online). Cross section of e−e− → W−W− in the
model with one right-handed neutrino (N ¼ 1) for

ffiffiffi
s

p ¼ 3 TeV
(the red solid line), 1 TeV (the green dashed line), and 0.5 TeV
(the blue dotted-dashed line). The horizontal line (the
black dotted line) represents σ0 in (14). Here we take
jmν

eff j ¼ 0.276 eV.

3Θ2
e1 can be taken to be real and positive without loss of

generality. Here, we consider the case when Θ2
e2 is real and

negative. The importance of the relative phases between the
mixings has been discussed in Refs. [36,37].
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M1 ≫
ffiffiffi
s

p
. By taking mW=

ffiffiffi
s

p
→ 0, it is approximately

given by

HðrÞ ¼ rð2þ 3rÞ
�

1

1þ r
−

2r
1þ 2r

ln

�
1þ 1

r

��
: ð23Þ

It is then found that Hðr1Þ takes its maximal value

Hðr1ÞjMAX ¼ 0.206 ð24Þ

at r1 ¼ 0.542 (i.e., M1 ¼ 0.736
ffiffiffi
s

p
). If we applied the

upper bound on jΘej2 given in Eq. (12), the maximal cross
section σ2 ¼ 17 fb could be obtained for

ffiffiffi
s

p ¼ 3 TeV.
Unfortunately, such a large cross section cannot be realized
for the case with N ¼ 2 because we have to take into
account the severe constraint from the 0νββ decay.
The effective neutrino mass in this case is estimated as

meff ¼ ðf1 − f2Þ
M1M2

M1 þM2

jΘej2

þ
�
1 −

f1M1 þ f2M2

M1 þM2

�
mν

eff : ð25Þ

The upper bound on jΘej2 is then given by Eq. (12) for
M1 > M�, while the more stringent bound from the 0νββ
decay,4

jΘej2 <
ðmUB

eff þ jmν
eff jÞM1M2

hp2iðM2 −M1Þ
; ð26Þ

is imposed for M1 < M� where M� is determined from the
ratio M1=M2 as

M� ¼
�
1 −

M1

M2

� jΘej2EWhp2i
mUB

eff þ jmν
eff j

: ð27Þ

Here, we have assumed that M2
1;M

2
2 ≫ hp2i.

By using the upper bound on the mixing angle listed
above, we can estimate the maximal value of the cross
section of e−e− → W−W−. In Fig. 3, we show how this
maximal value depends on the mass ratio whenffiffiffi
s

p ¼ 3 TeV. Here, we choose M2=M1 ¼ 1.01, 1.1, and
100. It can be seen that the largest cross section is obtained
by taking M2=M1 → ∞. (Note that the difference in the
cross section betweenM2=M1 ¼ ∞ and 100 is very small.)
We then show in Fig. 4 the upper bound on the cross

section by taking
ffiffiffi
s

p ¼ 0.5, 1, and 3 TeV. Notice that,
whenM1 < M� ¼ Oð105Þ GeV, the maximal cross section
is given by

σ2 ¼
G2

FðmUB
eff þ jmν

eff jÞ2
8π

s2

hp2i2 r1Hðr1Þ: ð28Þ

The function r1Hðr1Þ becomes constant for r1 ≫ 1. For
M1 > M�, the cross section falls as r−11 . The maximal cross
section is then given by

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 2 10 3 10 4 10 5 10 6 10 7

σ 
[f

b]

M1 [GeV]

M
2 /M

1 =1.01
1.1

100

FIG. 3 (color online). Cross section of e−e− → W−W− in the
model with two right-handed neutrinos (N ¼ 2) forffiffiffi
s

p ¼ 3 TeV. We take M2 ¼ 1.1M1 (the blue dotted-dashed
line), M2 ¼ 2M2 (the green dashed line), and M2 ¼ 100M2

(the red solid line). Here, we consider the inverted hierarchy
case with mUB

eff ¼ 0.276 eV and jmν
eff j ¼ 4.79 × 10−3 eV.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10 2 10 3 10 4 10 5 10 6 10 7

σ 
[f

b]

M1 [GeV]

3TeV
1TeV

0.5TeV

FIG. 4 (color online). Cross section of e−e− → W−W− in the
model with two right-handed neutrinos withM1 ≪ M2 for

ffiffiffi
s

p ¼
3 TeV (the red solid lines), 1 TeV (the green dashed lines),
and 0.5 TeV (the blue dotted-dashed lines). In each set of
lines, the upper one is for the inverted hierarchy case with
jmν

eff j ¼ 4.79 × 10−3 eV, and the lower one is for the normal
hierarchy case with jmν

eff j ¼ 3.66 × 10−3 eV. We use mUB
eff ¼

0.276 and 0.185 eV for the thick and thin lines.

4When the masses ofN1 andN2 are sufficiently degenerate, we
can avoid the constraint from the 0νββ decay. In this case,
however, At in Eq. (20) approaches to (16), which leads to the
suppression of the cross section (see also Fig. 3).

SEESAW MECHANISM AT ELECTRON-ELECTRON COLLIDERS PHYSICAL REVIEW D 92, 094012 (2015)

094012-5



σ2 < 8.9 × 10−3 fb

�
mUB

eff þ jmν
eff j

ð0.276þ 0.048Þ eV
�

2

×

�
0.178 GeVffiffiffiffiffiffiffiffiffi

hp2i
p

�
4
� ffiffiffi

s
p

3 TeV

�
4

: ð29Þ

The maximal value changes depending on the mass
hierarchy of active neutrinos. The cross section in the
inverted hierarchy can be larger than that in the normal
hierarchy since jmν

eff j can be larger: jmν
eff j < 3.66 ×

10−3 eV for the normal hierarchy and jmν
eff j <

4.79 × 10−2 eV for the inverted hierarchy. Here, we have
estimated these values by using the central values of the
mass squared differences and the mixing angles of active
neutrinos in Ref. [1] and by varying the possible values of
the CP violating phases in the PMNS matrix. Notice that,
as shown in Fig. 4, there exists an uncertainty in the upper
bound on the cross section from the nuclear matrix element
shown in Eq. (10).
The upper bound on the cross section scales as s2, and

hence the collisions of electrons with higher energies are
desired. In fact, the possible way to observe the inverse
0νββ decay is to realize

ffiffiffi
s

p ¼ 3 TeV at CLIC with the
integrated luminosity larger thanOð102Þ fb. In such a case,
the number of the signal event can be larger than unity.

C. Case with three right-handed neutrinos

Finally, let us discuss the case with three right-handed
neutrinos (N ¼ 3). We will show that this case allows the
larger cross section than the previous cases. Our basic idea
is the following: Let us consider three HNLs with hierar-
chical masses M1 ≪ M2 ≪ M3. Then, the large cross
section of e−e− → W−W− can be induced by N2 with
mass M2 ∼

ffiffiffi
s

p
and mixing jΘe2j2 ≃ jΘej2EW (12). The

seesaw relation can be realized even with the large mixing
jΘe2j2 because of the cancellation between N2 and N3,
which is similar to the case with N ¼ 2. In addition, the
constraint from the 0νββ decay can be avoided by the
cancellation in meff between N2 and N1. This is the reason
whyN ≥ 3 is required for having the large cross section of
the inverse 0νββ decay in the framework of the seesaw
mechanism.
Now, we discuss this point in detail. By using the seesaw

relation (5) and the effective mass (8), we may express the
mixing angles of N1 and N3 in terms of that of N2:

Θ2
e1 ¼

−1
ðf1 − f3ÞM1

½ðf2 − f3ÞM2Θ2
e2

−meff þ ð1 − f3Þmν
eff �; ð30Þ

Θ2
e3 ¼

þ1

ðf1 − f3ÞM1

½ðf1 − f2ÞM2Θ2
e2

þmeff − ð1 − f1Þmν
eff �: ð31Þ

It is then found that At is

At ¼ −
M2ðM2

2 −M2
1ÞðM2

3 −M2
2Þðtþ hp2iÞΘ2

e2

ðM2
2 þ hp2iÞðt −M2

1Þðt −M2
2Þðt −M2

3Þ

−
meffðM2

1 þ hp2iÞðM2
3 þ hp2iÞ

hp2iðt −M2
1Þðt −M2

3Þ

þ mν
effM

2
1M

2
3ðtþ hp2iÞ

hp2itðt −M2
1Þðt −M2

3Þ
: ð32Þ

By neglecting the second and third terms suppressed by
meff and mν

eff , the matrix element can be maximal when
the masses of three HNLs are hierarchical, namely,
M1 ≪ M2 ≪ M3. In this case, the mixing angles become

Θ2
e1 ≃ −

M1

M2

Θ2
e2; ð33Þ

Θ2
e3 ≃ −

M2

M3

Θ2
e2; ð34Þ

and hence jΘe1j2, jΘe3j2 ≪ jΘe2j2, so jΘe2j2 ≃ jΘej2,
which results in

At ≃M2jΘej2
t −M2

2

: ð35Þ

In this limit, the cross section is given by

σ3 ≃G2
FsjΘej4
8π

Hðr2Þ; ð36Þ

where r2 ¼ M2
2=s. The result is similar to Eq. (22)

for N ¼ 2.
Thus, the upper bound on the cross section can be

obtained by the maximal value of the mixing angle, which
is shown in Fig. 5. Here, we take M1 ¼ 3 GeV to avoid
the stringent constraint on jΘe1j2 from the direct search
experiments. Notice that the bound on jΘej2 comes from
the search at LEP [46] for M2 ≲mZ and comes from the
electroweak precision test (12) for M2 ≳mZ. Since the
former bound is stringent, the cross section is too small to
be observed for that mass range. The maximal cross section
is obtained when M2 ≃ 0.736

ffiffiffi
s

p
as

σ3 < 17 fb

� ffiffiffi
s

p
3 TeV

�
2
� jΘej2
jΘej2EW

�
2

: ð37Þ

Compared with Eq. (29), the maximal value of the cross
section in the N ¼ 3 case can be much larger than the
previous cases.
In Fig. 6, we show the sensitivity limit of jΘe2j2 together

with the current upper limits (for the perturbativity bound
jΘe2j2 < 4πhΦi2=ðM2M3Þ, see Ref. [52]). Interestingly, the
inverse 0νββ decay process can probe HNL (N2 in this
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case) of which the mass is much heavier than the center-of-
mass energy (M2 ≫

ffiffiffi
s

p
) because it is induced as the virtual

effect of HNLs. This is one of the most important
advantages of e−e− → W−W− in searching HNLs [34,38].
It should be noted that the process (1) is induced by the

collision of two electrons with negative helicity. Thus, this
reaction will be turned off simply by using one of the
electron beams with positive helicity [32]. This can offer

the important test for this process by using the polarized
beam which is specific to the linear colliders.
We should note that the large cross section shown in

Eq. (37) is possible when the HNL N1 with M1 ≪ M2 and
Θ2

e1 ≃ −ðM1=M2ÞΘ2
e2 exists in order to avoid the stringent

constraint from the 0νββ decay. If this is the case, such a
light HNL N1 is also a good target for the future experi-
ments. The searches by using charmed meson decay
[53,54], eþe− → νN1 [40,55], and Z → νN1 [56] may
provide the complementary test for the model discussed
in this analysis.
Here, we have derived the sensitivity limit of the mixing

by just counting the numbers of the signal event assuming
no background event. The possible background processes
have been studied in Refs. [32,38,40], which may reduce
the sensitivity. However, the usage of the polarized beam
can make the cross section four times larger, and the longer
duration of the experiment can increase the number of
events. These issues must be studied in detail to have the
precise sensitivity limit; however, they are beyond the
scope of this analysis.
So far, we have discussed the case with the hierarchical

mass pattern M1 ≪ M2 ≪ M3 with M2 ∼
ffiffiffi
s

p
. When

M2 ≫
ffiffiffi
s

p
, N2 decouples from the process, and the cross

section becomes small. Even in this case, when
M1 ∼

ffiffiffi
s

p
≪ M2 ≪ M3, the situation becomes the same

as the case withN ¼ 2. Then, the maximal cross section is
given by Eq. (29).
Note that Eq. (36) is independent from meff . This means

that the inverse 0νββ decay can happen even if the 0νββ
decay could not be observed. This is because the energy
scales of the former process (

ffiffiffi
s

p
∼ 1 TeV) and the latter

one (
ffiffiffiffiffiffiffiffiffi
hp2i

p
∼ 0.1 GeV) are much different. Therefore, the

0νββ decay and the inverse one are regarded as comple-
mentary tests for the violation of lepton number in nature.
Finally, we comment on the case with N > 3. The

maximal cross section is the same as that withN ¼ 3. This
is because the severe constraints from the seesaw relation
and the 0νββ decay can be avoided as described above, but
the inevitable upper bound (12) on jΘej2, which is just the
sum of jΘeIj2, gives the cross section as shown in Eq. (37).

IV. CONCLUSIONS

We have discussed the inverse 0νββ decay process
e−e− → W−W− in the SM with N right-handed neutrinos.
We have estimated for the first time the maximal cross
sections of this process depending on N by taking into
account the seesaw relation on the mixings of active
neutrinos and HNLs as well as the severe constraints from
direct search experiments, electroweak precision measure-
ments, and 0νββ decay. The maximal cross sections are
realized in limited regions of the parameter space, and the
cross sections are orders of magnitude smaller if there is no
fine-tuning.
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FIG. 5 (color online). Cross section of e−e− → W−W− in the
model with three right-handed neutrinos (N ¼ 3) with M1 ≪
M2 ≪ M3 for

ffiffiffi
s

p ¼ 3 TeV (the red solid line), 1 TeV (the green
dashed line), and 0.5 TeV (the blue dotted-dashed line).
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FIG. 6 (color online). Sensitivity limit of jΘe2j2 from e−e− →
W−W− in the model with three right-handed neutrinos (N ¼ 3)
for

ffiffiffi
s

p ¼ 3 TeV (the red solid line), 1 TeV (the green dashed
line), and 0.5 TeV (the blue dotted-dashed line). The black dotted
lines show the upper bounds from Refs. [46] and [47]. The black
long-dashed line shows the upper bound from the perturbativity
of Yukawa couplings when M3 ¼ 105 GeV.

SEESAW MECHANISM AT ELECTRON-ELECTRON COLLIDERS PHYSICAL REVIEW D 92, 094012 (2015)

094012-7



For the N ¼ 1 case, the seesaw relation restricts the
cross section to be smaller thanOð10−18Þ fb, so it cannot be
seen at future experiments. For the N ¼ 2 case, the cross
section can be σ2 ∼ 10−2 fb for

ffiffiffi
s

p ¼ 3 TeV. It may then
be observable at CLIC, but it is impossible at ILC. For the
N ¼ 3 case, the larger cross section as σ3 ¼ 0.47 (17) fb
for

ffiffiffi
s

p ¼ 0.5 (3) TeV can be obtained. In this case, both
ILC and CLIC can search the inverse 0νββ decay, which
would reveal the fate of the lepton number and the origin of
the neutrino masses.
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APPENDIX: DEFINITION OF VARIABLES

In this Appendix, we define the variables used in the
cross section of e−e− → W−W− in Eq. (13). Here, we work
in the center-of-mass frame, and θ is a scattering angle of
one of the outgoingW−s. Mandelstam variables are defined
as usual,

t ¼ −
s
2
ð1 − βW cos θÞ þm2

W; ðA1Þ

u ¼ −
s
2
ð1þ βW cos θÞ þm2

W; ðA2Þ

where βW ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4rW

p
with rW ≡m2

W=s. The variables At
and Au are given by

At ¼
X3
i¼1

U2
eimi

t −m2
i
þ
XN
I¼1

Θ2
eIMI

t −M2
I
; ðA3Þ

Au ¼ Atjt→u: ðA4Þ

We have found a difference in the definition of At from
Refs. [36,37]. Here, we have corrected the errors in the
denominators of At as 2t → t.
The range of jtj is given by ð1 − 2rW þ βWÞs=2 ≥ jtj ≥

ð1 − 2rW − βWÞs=2 and then jtj ≥ m2
W ½rW þOðr2WÞ�.

Therefore, m2
i =jtj ≪ 1 for the realistic range of

ffiffiffi
s

p
. In

this case, At is

At ¼
mν

eff

t
þ
XN
I¼1

Θ2
eIMI

t −M2
I
: ðA5Þ

On the other hand, the variables Bt, Bu, and Btu are given
by

Bt ¼ ð1 − 4rWÞt2 − 4rWð1 − 2rWÞst
þ 4ð1 − rWÞr2Ws2; ðA6Þ

Bu ¼ Btjt→u; ðA7Þ

Btu ¼ ð1 − 4rWÞtuþ 4r3Ws
2: ðA8Þ

A typo in Ref. [39] is corrected in Eq. (A6).
Since we are considering

ffiffiffi
s

p
≥ 500 GeV, we can

approximate m2
W ≪ s. We cannot, however, approximate

m2
W ≪ jtj, since jtj≃m4

W=s < m2
W at θ≃ 0. Indeed,

Z
1

−1
d cos θ

m4
W

t2
¼ 2þOðrWÞ; ðA9Þ

so we have to take the limit m2
W=s → 0 after integration

when we consider the contribution of light neutrinos. This
is the reason that the cross section in Eq. (14) is three times
larger than that in previous studies [34,39].
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