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We put forward a functional renormalization group approach for the direct computation of real time
correlation functions, also applicable at finite temperature and density. We construct a general class of
regulators that preserve the space-time symmetries, and allows the computation of correlation functions at
complex frequencies. This includes both imaginary time and real time, and allows in particular the use of
the plethora of imaginary time results for the computation of real time correlation functions. We also
discuss real time computation on the Keldysh contour with general spatial momentum regulators. Both
setups give access to the general momentum and frequency dependence of correlation functions.
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I. INTRODUCTION

Real time correlation functions and most importantly real
time propagators are the key ingredient to gain access to
dynamical observables in strongly interacting quantum
field theories. One prominent example is the single particle
spectral function that is defined via the imaginary part of
the retarded two-point function. It comprises information
about the spectrum of the theory and in particular about
resonances, and their fate at finite temperature and density.
Single particle spectral functions also serve as an input for
the calculation of transport coefficients via Kubo formulas
in an approach put forward recently in [1,2].
In strongly correlated regimes of the theory at hand

already imaginary time computations are quite involved.
A prominent example is QCD, where first principle
approaches, both in the continuum and on the lattice, only
provide numerical access to the low-energy hadronic
regime with confinement and chiral symmetry breaking.
For example, in continuum QCD elaborated approxima-
tions, including the implementation of symmetry con-
straints, and solving techniques have been developed for
the qualitative and quantitative access to QCD correlation
functions [3,4]. Moreover, in most cases correlation func-
tions can only be computed numerically. Then, an analytic
continuation from Euclidean (imaginary) space-time to
Minkowski space-time has to be carried out based on
numerical Euclidean data. This reconstruction of real
time correlation functions such as spectral functions using
given numerical Euclidean data is usually done with
maximum entropy methods, Padé approximants or similar
reconstruction methods. However, these approaches imply
a certain bias about the continuation, require very accurate
Euclidean data, and hence represent a challenging con-
ceptual and numerical problem.
The above reconstruction problem can only be overcome

within a direct numerical real time computation. The most

direct approach is a computation within a real time
formulation of the theory. This entails that the nontrivial
strongly correlated dynamics of the theory has to be
accessed within such a real time approach. Even though
possible in principle, this does not allow us to utilize
directly the plethora of results obtained in Euclidean space
for example in the form of numerical input data. An
alternative approach that naturally extends and utilizes
the Euclidean computation to real time correlation func-
tions is the extension of the former to complex frequencies.
In a functional approach this is, loosely speaking, based on
the computation of Euclidean momentum loops at complex
external frequencies. This includes both imaginary frequen-
cies or Euclidean space-time and real frequencies or
Minkowski space-time. Such an approach was put forward
in the functional renormalization group (FRG) [5–10]; for
recent work with Dyson-Schwinger equations see [11–15].
Here we put forward a general FRG framework appli-

cable in the presence of general regulators and for full
frequency and momentum dependencies of the correlation
functions. This is indispensable in situations with nontrivial
quantum, thermal and medium corrections to the dispersion
relations of the theory at hand. The latter includes a wide
range of applications from condensed matter, heavy ion
collisions to quantum gravity.
More specifically we aim at calculations of the hadron

spectrum and real time observables in general within the
framework of the fQCD Collaboration [16]. The fQCD
Collaboration works on a quantitative first-principles
approach to continuum QCD within the FRG framework;
see [3,4] for first publications. On the one hand, the
application to quark and gluon spectral functions requires
an extension which goes beyond the widely used spatial
regulator functions. On the other hand, we aim at a fully
numerical procedure which is not tailored to specific
regulator classes. It has to work for generalizations of
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standard regulators with exponential decay properties in
order to make the problem numerically tractable.
A further long-term goal is the extension of imaginary

time results, such as those obtained in the fQCD frame-
work, to nonequilibrium situations. There, the dynamics
singles out the time direction in the first place. This asks for
approximation schemes and regulators that take into
account the causality constraints and conservation laws
at nonequilibrium. Related approximation schemes on the
basis of the two-particle irreducible (2PI) approach have
e.g. been discussed in [17–19]; causal (time) regulators
have been introduced in [20] on the Keldysh contour. In
higher dimensions the latter can be amended by a regulator
in spatial momenta in a mixed representation. In the present
work we discuss the properties of such generic spatial
momentum regularization and results for the single particle
spectral functions.
The setup for our approach is discussed in detail in the

first section of the paper and demonstrated using the
spectral functions in the OðNÞ model as an illustrative
example. The complementary second part addresses differ-
ent approaches towards direct real time calculations,
where the complications of Euclidean or semi-Euclidean
approaches as the ones from above due to the necessity of
performing an analytic continuation are absent. Here we put
forward the formalism for the calculation of spectral
functions in a closed time path (CTP) framework.

II. PROPAGATORS AND SINGLE PARTICLE
SPECTRAL FUNCTIONS

Real and imaginary time propagators are limiting cases
of the two-point correlation function or propagator with
complex frequency ω ∈ C. The current framework is based
on the Euclidean imaginary time quantum field theory and
we denote ω ¼ ωE þ iωM with Euclidean frequency ωE
and Minkowski frequency ωM. In this section we discuss
the numerical computation of correlation functions at
complex frequencies from Euclidean loop integrals. In
the present work, we concentrate on the important example
of the single-particle spectral function, but the formulation
also applies to higher correlation functions.

A. Spectral functions from Euclidean correlation
functions at complex frequencies

In the following we put forward an approach for the
analytical continuation of Euclidean correlation functions
to complex frequencies. The continuation is chosen such
that they reduce to the corresponding real time correlation
functions at purely imaginary frequency. The appropriate
continuation is discussed at the example of the propagator.
We start by defining a propagator Gðω; ~pÞ for complex

frequencies ω ¼ ωE þ iωM as the uniquely defined analytic
continuation of the real time Feynman propagator GF to
complex frequencies ωM ∈ C, i.e.

GðiωM; ~pÞ ≔ −GFðωM; ~pÞ

¼ i
Z

d4xhT ϕðxÞϕð0Þice−iωMx0þi~x ~p; ð1Þ

where T denotes time ordering and the subscript indicates
the connected two-point correlation function. Equation (1)
also holds true at finite temperature and density. Then the
real time retarded propagator can be obtained from

GRðp0; ~pÞ ¼ −lim
ϵ→0

Gð−iðp0 þ iϵÞ; ~pÞ; ð2Þ

that is from the propagator evaluated at the complex
momentum ϵ − ip0 with ωE ¼ ϵ and ωM ¼ −p0. The
imaginary part of the retarded propagator relates directly
to the spectral function,

ρðpÞ ¼ −2ImGRðpÞ; ð3Þ
see (B6). Evaluated at Euclidean frequencies ω ¼ 2πnT
with n ∈ Z the continuationG defined in (1) coincides with
the Euclidean Feynman propagator, Gðω; ~pÞ ¼ GEðω; ~pÞ,
which is defined via

GEðω; ~pÞ ≔
Z

β

0

dx0
Z

d3xhT ϕðxÞϕð0Þiceiðωx0þ~p ~xÞ: ð4Þ

Note that at finite temperature the Euclidean propagator (4)
is only defined for discrete values ω ¼ 2πnT with n ∈ Z.
Therefore, there is no unique analytic continuation to
ω ∈ C. A perfectly well-defined continuation is defined
by taking (4) for ω ∈ R on the whole real axis which has a
unique continuation to ω ∈ C. The continuation defined in
this way is a straightforward one in a Euclidean framework,
and can be applied to lattice correlation functions in
position space.
However, this continuation does not coincide with the

real time propagator at complex momenta. Moreover, in
continuum frameworks quantum corrections to correlation
functions are computed from loop representations in
frequency and momentum space, e.g. in perturbation theory
and in particular in the method used in the present work, the
FRG. Then, the frequency routing is nonunique for
ω ≠ 2πnT. This ambiguity can be used to our advantage
in order to define the continuation to complex frequencies
in such a way, that the difference to real time correlation
functions is easily tracked down. Indeed, for any loop
representation in frequency space the difference can be
written as a sum over residues of the poles that depend on
the external frequency, as well as potential cuts. For the
Feynman propagator this reads

GFðωMÞ ¼ −GE;contðiωMÞ þ
X
poles

Resþ Cuts; ð5Þ

see (10) for an explicit one-loop example. Note that the
frequency routing can be chosen separately for each loop
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in order to facilitate the computation. To sum up, the
only necessary properties for a given analytic continu-
ation of Euclidean correlation functions are (i) the
equivalence on the Matsubara frequencies ω ¼ 2πnT,
and (ii) the difference to the real time correlation
function is accessible; see (5). Hence, as (i) is trivially
satisfied, the relation (5) is at the heart of a numerical
computation of the real time propagators, and in par-
ticular the spectral function.
Thus, the key step is the computation of Gð−iω; ~pÞ at

complex frequencies ω ∈ C from the Euclidean propagator
GE;contðω; ~pÞ. The latter is directly accessible in the present
FRG framework. The difference is entailed in (5), and the
pole positions and the corresponding residues can also be
computed numerically.
The numerical FRG computation of the propagator

GE;contðω; ~pÞ is facilitated by the fact that all FRG relations
for correlation functions are one-loop exact. This is very
amiable for computations at complex external frequency,
as one only has to numerically follow poles and cuts at one
loop. It also allows us to discuss the important properties
of such a procedure already at the perturbative one-loop
example with classical propagators and vertices. The
additional pole and cut structures arising from the intro-
duction of momentum- and frequency-dependent regulators
are then discussed in a second step.
Hence, we first consider the one-loop correction to the

Euclidean propagator ΔΓð2Þ that arises from a loop
diagram with three-point vertices Γð3Þ. The latter are
assumed to be momentum independent, and we allow for
two different propagators G1 and G2, corresponding to
masses m1 and m2 respectively. This already encom-
passes the important case of loops with radial modes σ
and (pseudo-) Goldstone modes ~π. In low-energy effec-
tive theories of QCD these stand for the lowest scalar-
pseudo-scalar meson multiplet, the sigma meson and the
pions. The corresponding one-loop contribution for
Euclidean external frequencies reads

ΔΓð2Þ
E;contðpÞ ¼ ½Γð3Þ�2

XZ
q

G1ðqÞG2ðpþ qÞ

¼ ½Γð3Þ�2
XZ
q

1

q20 þ ðϵ1qÞ2
1

ðq0 þ p0Þ2 þ ðϵ2qþpÞ2
;

ð6Þ

with constant classical vertex Γð3Þ and the quasiparticle
energies

ϵiq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

i

q
: ð7Þ

In (6) and in the following we use the shorthand
notations

Z
q
≡

Z
d4q
ð2πÞ4 ;XZ

q

≡ T
X
q0

Z
d3q
ð2πÞ3 ;

Z
~q
≡

Z
d3q
ð2πÞ3 : ð8Þ

In (6) we have chosen the frequency routing in the
diagram such that one of the propagators, G1, only
depends on the loop frequency q0 ¼ 2πnT with n ∈ Z.
For external Matsubara frequencies p0 ¼ 2πnT this agrees
with the routing G1ðq − pÞG2ðqÞ and other routings that
are obtained by shifts with Matsubara frequencies. For
p0 ≠ 2πnT all these choices are different. Moreover, the
analytic continuation specified with the frequency routing
in (6) does not coincide with (4) for p0 ≠ 2πnT with
n ∈ Z. This also holds for any other frequency routing.
In the present perturbative one-loop example the above

frequency routing is very ad hoc as there is not even a
selection criterion for choosingG1ðqÞ instead ofG2ðqÞ. In the
functional renormalization group approach diagrams such as
(6) are hit by derivatives with respect to the infrared cutoff
scale that only act on the propagators; see (18). For diagrams
withn propagators this leads ton diagrams instead of one, and
singles out exactly one propagator in each of these diagrams.
This provides the selection criterion which makes the above
frequency routing uniquely defined. Importantly, this specific
routing also simplifies the numerics.
Evidently (6) satisfies the first of the two properties of an

analytic continuation defined below (5); it agrees with the
Euclidean result for external Matsubara frequencies. As
argued above, it is also uniquely defined, at least in the
functional renormalization group approach. This is an
important prerequisite for the second property, access to
the difference between the real time correlation functions
and the specific analytic continuation of the Euclidean
ones. This requires a discussion of the pole structure of (6).
With the bosonic thermal distribution

nðωMÞ ¼
1

eω − 1
; ð9Þ

for Minkowski frequencies we can rewrite (6) in terms of a
contour integral surrounding the Euclidean axis. The
Matsubara frequencies are then the positions of the poles
at ω E ¼ 2πnT with n ∈ Z. For Euclidean frequencies
p0 ∈ R the integral is easily performed and we arrive at

ΔΓð2Þ
E;contðpÞ ¼

½Γð3Þ�2
2i

X
�

Z
~q
ðRes
�iϵ1q

½G1G2� · ½1þ 2nð∓ϵ1qÞ�

þ Res
−p0�iϵ2qþp

½G1G2� · ½1þ 2nð−ip0∓ϵ2qþpÞ�Þ:

ð10Þ
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The expression Resr0 ½G1G2� in (10) denotes the residue of
the integrand G1ðqÞG2ðpþ qÞ at q0 ¼ r0. Coming back to
the discussion which leads to (5), to obtain the contribution
one requires the proper analytic continuation of (10) to
imaginary momenta, which is not uniquely defined at finite
temperatures, where the propagator is only given at discrete
Matsubara frequencies. Then, the additional requirement of
appropriate analyticity conditions [21] singles out a unique
continuation. This ambiguity is already visible in (10),
where the omission of the external momentum in the
argument of the second distribution function leads to a
different continuation which coincides with (10) for
p0 ∈ 2πZ. The desired continuation to obtain the retarded
correlation function can be determined within a real time
formalism such as the closed time path formalism discussed
below. Here the real time result is given by (10) omitting the
external momentum in the argument of the distribution
function. This result coincides with that obtained from the
standard continuation procedure in the imaginary time
formalism [22,23], where the periodicity of the distribution
functions for Euclidean external momenta is exploited
before the analytic continuation is performed.
In the present example the difference between the two

continuation procedures only consists of residues of poles,
and not cut. Explicitly it is given by

ΔΓð2Þ
res ðω; ~p;ϵÞ≡ΔΓð2Þ

E;contðω; ~p;ϵÞ−ΔΓð2Þ
R ðω; ~p;ϵÞ

¼ ð−iÞ½Γð3Þ�2
Z
~q

X
�

Res
−p0�iϵ2qþp

G1G2jp0→−iðωþiϵÞ

× ðnð−ω− iϵ∓ϵ2qþpÞ−nð∓ϵ2qþpÞÞ: ð11Þ

In particular, for vanishing temperature, T → 0, where
nðzÞ → Θð−RezÞ, we have

nð−ω − iϵ∓ϵqþpÞ − nð∓ϵqþpÞ → �Θð∓ω − ϵqþpÞ: ð12Þ

This implies in particular that at vanishing temperature
both results agree for small Minkowski external momenta
jωj < m2. This is simple to understand from the pole
structure shown in Fig. 1. At zero temperature the differ-
ence between the two results is just given by the contri-
bution of the circled pole in Fig. 1, which enters the
upper/lower half plane for jωj > m2. However, even at

nonvanishing temperature the desired Γð2Þ
R ðω; ~pÞ can be

computed entirely numerically via

Γð2Þ
R ðω; ~pÞ¼−lim

ϵ→0
ðΓð2Þ

E;contðω; ~p;ϵÞ−ΔΓð2Þ
res ðω; ~p;ϵÞÞ: ð13Þ

The calculation of Γð2Þ
E;cont involves a straightforward

Euclidean integration/Matsubara sum. The difference

ΔΓð2Þ
res ðω; ~p; ϵÞ is calculable given the residues of the

integrand, that can be determined numerically. The advan-
tage of such a procedure is that given appropriate regulator

functions such as the ones discussed in the next section, the
momentum integration/Matsubara summation can be car-
ried out as before; it only remains to trace poles of the
propagators and calculate corresponding residues in order
to obtain the full real time result.

B. General-purpose regulators for complex momenta

The previous section gave us a very clear picture of how
to treat the poles of the Euclidean propagator in order to
obtain the retarded real time correlation function. In the
present work we aim at evaluating spectral functions in
the framework of the FRG. There, an infrared cutoff is
introduced by means of a momentum- and/or frequency-
dependent modification of the classical kinetic term. For
the simple example of a real scalar theory this entails

Z
p
ϕðpÞp2ϕð−pÞ →

Z
p
ϕðpÞðp2 þ Rkðp0; ~pÞÞϕð−pÞ:

ð14Þ

For low spatial momenta/frequencies the cutoff
function Rkðp=k → 0Þ ≈ k2 acts as a mass term. In turn,
Rkðp=k → ∞Þ → 0 ensures that the ultraviolet is
unchanged. Lowering the infrared cutoff scale k leads to
a successive integration of the momentum and/or frequency
fluctuations at about the cutoff scale. The scale dependence
of the effective action Γk½ϕ� of the theory at hand is
governed by the Wetterich equation [24],

∂tΓk½ϕ̄� ¼
1

2
TrG½ϕ̄�∂tRk; t ¼ log k=Λ; ð15Þ

with the propagator G½ϕ̄� defined in (4) in the presence of a
general background. In terms of the effective action it reads

G½ϕ̄� ¼ 1

Γð2Þ
k ½ϕ̄� þ Rk

: ð16Þ

FIG. 1 (color online). Pole structure for the one-loop calcu-
lation at T ¼ 0.
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In (15) we have also introduced some reference scale Λ,
usually being the UV scale, where the flow is initialized.
In the present work we shall discuss the case of general

correlation functions at the example of the propagator. Its

flow, or rather that of Γð2Þ
k is derived from (15) by taking the

second derivative with respect to ϕ. The corresponding
diagrams are directly linked to the one-loop diagrams in the
last section. This is seen by rewriting (15) as

∂tΓk½ϕ̄� ¼
1

2
Tr∂tjΓðnÞ

k
ln ðΓð2Þ

k ½ϕ̄� þ RkÞ: ð17Þ

ϕ derivatives commute with the partial t derivatives and
hence the flows of n-point functions take the form of partial
t derivatives of the corresponding one-loop diagrams with
full propagators and vertices. The partial t derivative only
hits the Rk dependence of the propagators with

∂tjΓðnÞ
k
G ¼ ~∂tG ¼ −G _RkG; with _Rk ¼ ∂tRk; ð18Þ

where we have introduced the notation ~∂t for the partial t

derivatives at fixed ΓðnÞ
k . The flow of correlation functions

∂tΓðnÞ is derived from (15) by taking the nth derivative with
respect to the fields. With

δ

δϕ
G ¼ −GΓð3ÞG;

δ

δϕ
ΓðmÞ ¼ Γðmþ1Þ; ð19Þ

this leads to a sum of general one-loop diagrams in full
vertices and propagators for the flows ∂tΓðnÞ. However, in
each diagram one of the lines is given byG _RkG. As already
discussed in the last section, this allows us to define a
unique analytic continuation procedure in frequency space
as follows: In each diagram contributing to the flow of a

given correlation function ΓðnÞ
k we choose the frequency

routing such that G _RkGðqÞ has the Euclidean loop fre-
quency q0. This entails that we only have to discuss the
poles of the propagatorGðqþP

piÞ itself as the frequency
argument of G _RkGðqÞ is Euclidean. It even only takes
values on the Matsubara frequencies. Here pi are the
external four-momenta with possibly complex frequencies
ðp0Þi. Note that the general analysis also includes the poles
of the vertices, the analysis of which will be published
elsewhere.
Accordingly, the pole analysis of the propagator poles of

the previous Sec. II A carries over to the present case.
However, the infrared regulator function changes the pole
(and cut) structure discussed above in Sec. II A.
First of all, the regulator necessarily triggers cutoff-

dependent shifts of the location of the poles evaluated in
Sec. II A. This also extends to possible cuts in the complex
plane (see [11,13–15] for an extensive discussion) that
have not been discussed in Sec. II A. However, if these
k-dependent cuts are present for the one-loop diagrams in

full propagators and vertices, the partial t derivative
converts them into poles. The cuts are reinstated within
the k integration due to the k propagation of the poles. The
propagation of the latter has to be followed anyway, and
cuts pose no further problem. Second, in the case of
frequency-dependent regulators further, unphysical poles
are generated by the regulator itself.
In summary this leaves us with two options: We avoid

the unphysical regulator poles with a regulator that only
depends on spatial momenta. However, this comes at
the price of a breaking Euclidean and Minkowski sym-
metry. The second option is to use space-time symmetry-
preserving regulator functions, that are functions of the
four-momentum squared. Then, the regulator poles cannot
be avoided.
Here, we are particularly interested in the case of a

symmetry-preserving regulator function in contradistinc-
tion to the predominantly used spatial regulator functions in
first applications towards a direct computation of real time
correlation functions. Such symmetry-preserving regulator
functions are an indispensable prerequisite for studies of
complex systems involving nontrivial momentum and
frequency dependencies; see e.g. [3] for a possible appli-
cation in QCD. Moreover, most approximation schemes in
use within FRG applications are built on momentum
locality: they do not take into account the full momentum
dependence of all correlation functions at finite order of the
expansion scheme. This applies in particular to the local
potential approximation (LPA)-type expansion used here.
Such expansions asks for regulators that minimize the
momentum transfer in the flow diagrams; see [25].
Regulators that minimize the momentum transfer in the

diagrams necessarily need a rapid decay with frequency
and spatial momenta. Such a rapid decay is directly linked
to the occurrence of a large number of unphysical poles;
in the case of the numerically well-tractable exponential
decay one has to deal with a whole series of poles in the
complex plane. In Fig. 2 we show the propagator (16) in the
presence of a double exponential regulator,

Rkðp2Þ ¼ p2rðp2=k2Þ; rðxÞ ¼ x

ex
2 − 1

; ð20Þ

and Γð2Þ
k → p2 for the sake of simplicity. Equation (20) is a

specific case of a general class of regulators with expo-
nential decay introduced later; see (23). Figure 2 shows an
infinite number of additional regulator poles. Note that in
the present massless case the poles remain fixed in the
dimensionless x ¼ ðp2

0 þ ~p2Þ=k2 plane; for the general
analysis see Appendix A 3.
As additional regulator poles at finite k turn out to be

unavoidable, the following observation is helpful: The
calculation of spectral functions ρðω; ~pÞ with external
frequencies jωj < p0;max utilizes propagators in a strip
Sp0;max with jImq0j < p0;max around the real axis in the
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complex q0 plane as input. Therefore one requires regulator
functions which vanish in the strip as k → 0,

lim
k→0

Rkðqþ ipÞ → 0 for q ∈ R and jp0j < p0;max;

ð21Þ

where here and in the following we use the shorthand
notation qþ ip for ðq0 þ ip0; ~qþ ~pÞ. Note that the most
desirable regulator function would preserve space-time
symmetries but show at most physical poles at finite RG
scales k. The restriction to external frequencies in Sp0;max

restricts the accessible momenta to a parabola in the
complex x ¼ ðp2

0 þ ~p2Þ=k2 plane; see Fig. 2.
The calculation of Minkowski correlation functions from

the Euclidean ones requires the integration along deformed
contours in the complex q0 plane. Hence, on the one hand
we need analytic regulator functions in order to be able to
apply analyticity arguments. On the other hand we aim for
regulator functions which at finite RG scales k introduce as
few additional poles in the strip as possible.
Here, we construct regulator functions that do not lead to

any additional regulator poles in addition to the physical
poles in the strip Sp0;max at finite k. There are various ways
of implementing these constraints, and we have evaluated
many of them. Some of them, including the ensuing
symmetry and analyticity constraints are discussed in
Appendix A for the benefit of the reader.
Here we put forward a specific construction that has

turned out to be the most flexible and stable one for our
purposes. The central idea is to introduce an artificial mass
term Δm2

r also in the regulator shape function r, which
moves the additional regulator poles outside the strip.
Explicitly, we only discuss the very convenient class of
regulators that are also used in the subsequent numerical
implementation,

Rk;Δm2
r
ðp2Þ ¼ ðΔΓð2Þ

k ðp2Þjϕ¼ϕ0
þ Δm2

rÞr
�
p2 þ Δm2

r

k2

�
:

ð22Þ

The regulator introduced in (22) is proportional to the

momentum-dependent part ΔΓð2Þ
k ðp2Þ¼Γð2Þ

k ðp2Þ−Γð2Þ
k ð0Þ

of the inverse propagator. Wewant to stress at this point that
the described procedure to avoid artificial regulator poles is
of general nature and can be applied not only to regulators
of the form (22) with general shape functions but to
arbitrary regulators that work for real momenta.
Figure 3 shows the pole structure of the propagator in the

presence of a finite Δmr parameter and different mass
parameters m2; see Appendix A 3 for a detailed discussion.
The main effect of the latter is to shift the parabolic region
of accessible momenta to the right whereas the location of
the poles is only shifted slightly. This analysis implies that
it is always possible to avoid regulator poles in Sp0;max by
choosing an appropriately large Δm2

r at every scale. This
implies in particular that one can start with a vanishingΔm2

r
in the UV for k → ΛUV with ΛUV ≫ physical scales, where
the regulator poles are still far outside the strip.
For our explicit computations we further restrict (22) to a

general class of exponential decay regulators with

rðxÞ ¼ xm−1

ex
m − 1

: ð23Þ

Figure 4 shows the constraints arising from avoiding the
first few propagator poles in the complex plane for the
regulator with m ¼ 2 in (23) in units of ΛUV. These poles
can obviously be avoided by a k dependence of Δm2

r in the
form of a smooth theta function with appropriately chosen
parameters; see Appendix A 3 for details.
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FIG. 2. Poles of the regularized propagator in the complex x ¼
ðp2

0 þ ~p2Þ=k2 plane for m2 ¼ 0 and a double exponential
regulator. The parabola represents the boundary of accessible
momenta for p0;max=k ¼ 1=2.
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rÞ=k2; see Appendix A 3
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The inclusion of Δm2
r leads to a substantial modification

of the regulator’s effective cutoff scale [25,26] compared to
the RG scale k. In particular there is an exponential drop of
the physical cutoff scale keff with Δm2

r in the regime
k2 ≲ Δm2

r ; see Fig. 5 and Appendix A 5 for a detailed
discussion. We concludeΔm2

rðkÞ should be chosen as small
as possible for several reasons.
First we would like to keep the comparability to the

standard regulator case with Δm2
r ¼ 0; hence allowing for

direct access to the plethora of results obtained there. While
this merely is convenient, we encounter a more severe
constraint in theories with several different field modes
with different mass scales. There, the exponential drop of
the physical cutoff scales keff relative to the cutoff param-
eter k causes the momentum fluctuations of the respective
fields to quickly disentangle in the regime Δm2

r ≲ k2 for at

least one of the modes. In other words, in this regime, the
flow integrates out momentum and frequency modes of the
different fields at potentially vastly different momentum
scales. This either asks for approximation schemes that are
amiable for a large momentum transfer or a very accurate
determination of the relative physical cutoff scales keff .
In principle, both properties can be adjusted for. For

example, a vertex expansion keeping the full momentum
dependence of the correlation functions has been put
forward in [3] for QCD. However, the computational effort
is relatively large and we aim at an approach working for
general approximation schemes. Appropriately defined
effective cutoff scales can be used to adjust relative cutoff
scales to keep the momentum transfer small in the first
place. This allows using simpler truncations without con-
sidering the full momentum dependence.
The accurate determination of the relative physical cutoff

scale is the subject of Appendix A 5 and of ongoing work.
In any case, the problem of a potential momentum transfer
is minimized by minimizing Δm2

r . Therefore, one should
for example refrain from using a divergent Δm2

rðkÞ as
k → 0, that would in principle allow for arbitrarily large
Minkowski frequencies.

C. Application to the OðNÞ model

The approach to FRG computations of correlation
functions at complex frequencies can now readily be
applied to general theories including fermionic fields.
No further conceptual or technical problems have to be
solved. Note also that the current setup is also applicable at
finite chemical potential. In a Euclidean approach the latter
technically is nothing but an imaginary frequency in all
correlation functions. Applications to single spectral func-
tions in QCD and low-energy effective models of QCD at
vanishing and finite temperature and density are under way.
Apart from providing interesting physics information about
the decay and formation of resonances, they serve as input
in the direct real time computation of transport coefficients
within the approach put forward in [1,2]; see also [27–30]
for recent effective model calculations. Respective results
will be presented elsewhere.
Here we illustrate the power of the present approach for

numerical computations with the calculation of spectral
functions in the OðNÞ model at vanishing temperature in
the LPA. The OðNÞ model is a simple model for the
mesonic low-energy dynamics. It is well known that,
despite its formal simplicity, the solution of the OðNÞ
model in LPA is numerically far more involved than related
quark-meson or NJL-type models in LPA-type approxima-
tions. This is related to the dominance of fermionic short-
range fluctuations in the latter class of models, as compared
to the dominance of pion long-range fluctuations in the
former. Note that in advanced approximations beyond LPA
all models have to face the numerical subtleties mentioned
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above. It is this fact which makes the OðNÞ model in LPA
the ideal test case.
In LPA we take into account the full, scale dependence

in the effective potential, the effective action evaluated
at constant background fields, divided by the four-
dimensional volume V,

VkðϕÞ ¼
1

V
Γk½ϕ�; with V ¼

Z
d4x: ð24Þ

In the LPA, the effective potential is computed from its flow
with the ansatz

Γk½ϕ� ¼
Z
x

�
1

2
ð∂xϕiÞ2 þ Vkðϕ2Þ

�
; ð25Þ

which gives a closed flow equation for Vk. Then the
momentum- and complex-frequency-dependent flow of

the propagator is computed with the vertices Vð3Þ
k , Vð4Þ

k
taken from the scale-dependent effective potential in the
LPA approximation; see Appendix A 4. This can be seen as
the first iterative step in the computation of the fully self-
consistent computation of effective potential and propaga-
tor as put forward in [31]. It has been shown there that
the procedure converges rapidly and that in particular the
momentum and frequency dependence of the propagator
is already well approximated by the first iteration. The
implementation follows Appendix A 4 and represents a
generalization of [8] to the case of symmetry-preserving 4D
regulator functions. Here we employ a Taylor expansion at
a fixed expansion point [32] at a UV cutoff scale ΛUV ¼
900 MeV using an exponential regulator with m ¼ 2 with
parameters α ¼ 2.38, β ¼ 0.47 and n ¼ 20 in Eq. (A7) and
map out the pion and the sigma meson spectral functions up
to external real frequencies ω ≤ p0;max ¼ 300 MeV, keep-
ing a small but finite imaginary frequency ϵ ¼ 0.1 MeV.
The UV parameters were tuned to yield physical param-
eters fπ ¼ 93.6MeV, mπ ¼ 137 MeV and mσ ¼ 425MeV
in the IR.
As a first step we demonstrate the independence of the

results of the chosen maximal value of Δm2
r . This is

illustrated in Fig. 6, where we show the impact of
increasing Δm2

r on the minimum of the effective potential,
which was tuned to physical values for a standard regulator
with Δm2

r ¼ 0. Here the crucial question is in how far the
UV propagator is modified by the Δm2

r regulator compared
to the standard regulator. This can be quantified by
considering effective initial cutoff scales Λeff ¼
keffðΛUVÞ as a function Δmr=ΛUV. As soon as Λeff starts
to deviate significantly from ΛUV the results at k ¼ 0 are
changed. As shown in Fig. 6 for Δmr=ΛUV ≳ :65 this
deviation exceeds 1%. The larger deviations in the mini-
mum of the effective potential beyond this value can be
understood on the level of the effective cutoff scale. For
Δmr=ΛUV ≳ :65 the effective initial scale Λeff is lowered.

In other words, then we initialize the flow at an effective
lower scale Λeff < ΛUV with the same amount of symmetry
breaking as initialized at ΛUV for the reference flow at
mr ¼ 0. On the other hand, the effective cutoff scale does
not capture all effects of Δm2

r on the momentum-dependent
propagator at the UV scale. For example at Δmr=ΛUV ¼
0.61, the respective propagator deviates by 1% from its
counterpart at Δm2

r ¼ 0 in the intermediate momentum
regime, whereas the effective initial scales differ only
by 0.3%.
The expansion of the effective potential about the IR

minimum of the effective potential similar to the expansion
on a grid in field space, allows a direct computation of the
two-point function at the minimum of the potential where
exactly these couplings enter, which avoids having to
expand both the potential and the two-point function about
a scale-dependent minimum [8]. The flow equations for the
two-point functions are then subsequently solved applying
Eq. (13) by tracking the physical poles of the propagators in
every k step. The resulting spectral function is shown as a
function of frequency in Fig. 7 for frequencies ωþ iϵ and
ϵ ¼ 0.1 MeV. The clear peak in the pion spectral function
singles out the pole mass of the pionmπ;pol, while the sigma
shows the threshold of the σ → ππ decay. Both structures
get sharp in the limit ϵ → 0; more details and a quantitative
comparison to earlier results obtained using a spatial flat
regulator function [8] are provided in Sec. III B.
In Fig. 7 the spectral functions are evaluated at vanishing

spatial momentum p ¼ j~pj ¼ 0. In our fully numerical
procedure the extension to finite external spatial momen-
tum represents only a minor complication as it only
requires us to evaluate an additional angular integration.
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The additional numerical costs are negligible, and the
resulting spectral functions are shown in Fig. 8. For the
pion spectral function the ridge follows the mass shell
relation ω2 ¼ m2

π;pol þ ~p2, while the σ → ππ threshold
follows the relation ω2 ¼ 4m2

π þ ~p2. The appearance of
the curvature mass mπ in the threshold relates to the
missing completion of the iteration defined in [31] that
yields the full frequency and momentum dependence of
the propagators. In the fully iterated result we have
m2

π → m2
π;pol. For similar results within the quark-meson

model and a spatial regulator function see [10].
We emphasize that 4D regulators are particularly ben-

eficial for imaginary time computations with full frequency
and momentum dependencies at finite temperature; see
[33,34]. To see this it is illustrative to consider standard
one-loop Matsubara sums. These can be performed ana-
lytically and give rise to the well-known thermal suppres-
sion factors expf−mgapðpÞ=ð2TÞg in the presence of a mass
gapmgapðpÞ. This has the additional benefit of a further UV
regularization of the spatial momentum integrations. In

turn, a numerical computation of the corresponding
Matsubara sums and spatial momentum integrals faces a
combined numerical accuracy problem. First, the exponen-
tial decay may involve large explicit sums of Matsubara
frequencies before the spatial integration is performed.
Reversing the order of numerical sum and integration leads
to the requirement of an exponential accuracy of the
momentum integration. In either way the numerical costs
rise drastically in comparison to the vanishing temperature
case. This applies in particular to the interesting transition
region of mgapðpÞ ≈ T.
With 4D regulators with rapid decay the above finite

temperature problem is cured, and we only have to
explicitly sum over a relatively small number of
Matsubara frequencies. Related results on finite temper-
ature spectral functions will be presented elsewhere. This is
particularly relevant when considering the high accuracy
requirements to obtain the imaginary part of the propagator
when using a spatial regulator, which leads to significantly
larger numerical costs.

III. SPECTRAL FUNCTION FROM THE
REAL TIME FORMALISM

As a complementary second approach we discuss the
direct calculation of spectral functions in a real time
formalism [22,23,35,36]. Real time applications of the
functional RG were considered e.g. in [20,37–52]; for a
recent review see also [53]. Recent practical applications
use spatial regulator functions [48,52]. Here we present the
formalism required for the application of the real time
formalism to the calculation of spectral function as a
starting point for future studies. This is not only interesting
for the equilibrium case discussed here but, as mentioned in
the Introduction, also the appropriate formalism for appli-
cations in nonequilibrium [53,54].
In order to preserve Lorentz invariance one would

like to consider regulator functions which just depend on
the Lorentz scalar p2 ¼ −p2

0 þ ~p2. In this case the
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integrand is just a function of p2 and we can rewrite the
momentum integration as a three-dimensional integration
perpendicular to the mass shell which is regularized and a
one-dimensional integration along the mass shell which is
not regularized as the Lorentz-invariant regulator functions
remain constant there. In order to achieve a regularization
on the mass shell one is led to consider regulator functions
that break Lorentz invariance, to wit

Rkðp0; ~pÞ ¼ Rkðp2Þðr0ðp2
0=k

2Þ þ rsð~p2=k2ÞÞ: ð26Þ

The regulator in (26) is proportional to a Lorentz-invariant
part Rkðp2Þ, which provides a regularization of off-shell
fluctuations. A further factor is an energy or spatial
momentum cutoff function which provides a regularization
on the mass shell. Alternatively one can employ just a
Lorentz-invariant regulator Rkðp2Þ but then one has to carry
out principle value integrations on the mass shell which
requires knowledge about the position of the poles.
Moreover, an accurate treatment of poles close to the
Minkowski axis is required. This will be discussed
elsewhere.
Regulators that also regularize frequencies and allow for

straightforward real time computations, in the sense of no
poles close to the real frequency axis, are necessarily
complex, for example

Rkðp0; ~p; aÞ ¼ ð1þ iaÞRkðp0; ~pÞ: ð27Þ

The regulators in (27) have the additional advantage that
for a > 0 and Rkðp0; ~pÞ > 0, ∀ p0, ~p they automatically
define Feynman propagators. Such regulators have a very
clear physical interpretation as they introduce a finite width
for all propagators. However, they lead to complex flows
and introduce the necessity of an (additional) fine-tuning in
order to remove unwanted complex parts of the effective
action at k ¼ 0. Note also that they necessarily introduce
additional poles that do not permit for simple analytic
continuations of imaginary time results.
As a specific and simplest example we will focus in the

following on applications involving purely spatial and in
particular spatial flat regulator functions. In the classifica-
tion from Eq. (26) spatial regulator functions correspond to
the choice Rkðp2Þ≡ k2, r0 ≡ 0 and rsðxÞ ¼ xrðxÞ for some
generic shape function r. Such regulators also do not
introduce additional poles to the complex plane of real
and imaginary frequencies, and hence allow for a straight-
forward analytic continuation. For the calculation of
spectral functions in the LPA, the real time procedure
can be shown to be equivalent to the imaginary time
procedure, but leads to a particularly convenient represen-
tation for numerical applications. With regard to the
inclusion of general frequency dependencies the real time
formalism is however the more flexible choice.

A. Closed time path FRG approach

The CTP approach is based on the formulation of the
theory on the Keldysh contour; see Fig. 9. For a scalar
OðNÞ theory, the field content is then doubled in ϕþ and
ϕ−, living on the forward Cþ and backward part C− of the
contour respectively. The action reads

S½ϕþ;ϕ−�¼S½ϕþ�−S½ϕ−�; S½ϕ��¼
Z
C�
Lðϕ�Þ; ð28Þ

where x� live on the forward/backward time contour
respectively,

R
C�

¼ R
d4x�, and the relative minus sign

accounts for the direction of x� on the contour shown in
Fig. 9. Naturally, also the regulator term has two parts
regularizing the ϕþ and ϕ− terms,

i
2

Z
xþ
ϕþRþ

k ϕþ þ i
2

Z
x−

ϕ−R−
kϕ−: ð29Þ

Equation (29) can be generalized to regulators with mixed
terms connecting ϕþ and ϕ−. Though potentially advanta-
geous for technical reasons, such a procedure potentially
spoils causality. The CTP flow equation then takes the
form [20,40,42,53]

∂tΓk½ϕþ;ϕ−� ¼
i
2
TrGþþ∂tR

þ
k þ i

2
TrG−−∂tR−

k ; ð30Þ

where iGþþ and iG−− are the þþ and −− components of
the propagator. In thermal equilibrium the propagators
can be parametrized solely in terms of the spectral
function; see Appendixes B 1 and B 2 for details.
In order to make use of the plethora of explicit

resummations and structural results in perturbative thermal
field theory, it is advantageous to rewrite the flow equation

in terms of partial t derivatives at fixed ΓðnÞ
k of the

corresponding one-loop diagrams (with full propagators
and vertices) as already done in Sec. II B for the imaginary
time formulation.
Moreover, the flow equation (30) includes the flow of

both parts of the contour. Hence it vanishes identically
for ϕþ ¼ ϕ− ¼ ϕ, Rþ

k ¼ −R−
k , and �-symmetric initial

conditions ΓΛ½ϕþ;ϕ−� ¼ −ΓΛ½ϕ−;ϕþ�. A specific subclass
of �-symmetric initial conditions is given by

FIG. 9 (color online). Keldysh contour with forward and
backward directions. The fields ϕþ live on the forward part of
the contour Cþ, the fields ϕ− live on the backward part C−.

JAN M. PAWLOWSKI AND NILS STRODTHOFF PHYSICAL REVIEW D 92, 094009 (2015)

094009-10



ΓΛ½ϕþ;ϕ−� ¼ ΓΛ½ϕþ� − ΓΛ½ϕ−�; ð31Þ

and includes the classical action (28). Taking a ϕþ or ϕ−
derivative breaks the � symmetry and gives access to all
correlation functions. This procedure yields for a ϕþ
derivative

∂ϕþ∂tΓk ¼
i
2
~∂tTrðGabΓ

ð3Þ
baþÞ; ð32Þ

for the canonical choice Rþ
k ¼ −R−

k ¼ Rk and a; b ¼ �.

The t derivative at fixed ΓðnÞ
k , ~∂t, only hits the propagator;

see (18). For the LPA-based computation of spectral
functions as discussed in the previous Sec. II C we have
to solve the flow equation for the effective potential. In
analogy to (24) it is defined as

Vkðϕþ;ϕ−Þ ¼
1

V
Γk½ϕþ;ϕ−�; ð33Þ

with the space-time volume V. The LPA approximation at
imaginary time (25) trivially extends to the CPT formu-
lation at real time as

Γk½ϕ� ¼
X
�
ð�Þ

Z
x�

�
1

2
ð∂xϕ�Þ2 þ Vkðϕ�Þ

�
; ð34Þ

with the single field effective potential VkðϕÞ with
Vkðϕþ;ϕ−Þ ¼ VkðϕþÞ − Vkðϕ−Þ. Then, the flow equation
for the effective potential VkðϕÞ reads

∂ϕ
_VkðϕÞ ¼ ∂ϕþ

_Vkðϕþ;ϕ−Þjϕ�¼ϕ

¼ −
1

2
~∂tTrðImGþþΓ

ð3Þ
þþþÞ: ð35Þ

In the LPA the spectral function is given by a delta function.
In the simplest case of a spatial regulator function, i.e. for
Rkðp2Þ≡ k2, r0 ≡ 0 and rsðxÞ ¼ xrðxÞ in (26), which we
will consider in the following, the frequency integration can
be trivially performed. As expected, the flow equation for a
spatial regulator function in the CTP formalism coincides
with the flow equation for the effective potential derived in
the imaginary time formalism; see Appendix B 3 for
details.
To determine the spectral function or correspondingly

real and imaginary parts of the retarded propagator, it is
sufficient to derive flow equations for particular compo-

nents, ReΓð2Þ
þþ and Γð2Þ

þ−, of the inverse propagator; see
Appendix B 1 for details. Again we consider the OðNÞ
model as the simplest application where the flow equations
for the real and imaginary parts of the retarded two-point
functions are given explicitly by (B35) together with (B4).
For the case of momentum-independent vertices, these

equations are formulated in terms of ~t derivatives of the
loop integrals

J̄Reji ðpÞ ¼
1

2

Z
q
ImGj

þþðqþ pÞReGiþþðqÞ

þ 1

2

Z
q
ReGj

þþðqþ pÞImGiþþðqÞ;

J̄Imji ðpÞ ¼ −
1

2

signðp0Þ
2nðp0Þ

Z
q
Gj

þ−ðqþ pÞGi
−þðqÞ: ð36Þ

In the LPA approximation, i.e. inserting delta functions for
the spectral functions in the involved propagators, these
take the form of the well-known one-loop expressions in
the real time formalism [23] and are given explicitly in
(B32) and (B34).
As discussed in detail in Appendix B 5, the simplest way

towards deriving explicit flow equations for a spatial flat
regulator function is to insert the regulator at this point and
to evaluate the ~t derivative afterwards by exploiting the
fact that it only acts on the explicit k dependence in ϵiq but
not on mass term. In this way one derives explicit flow
equations, which have a particularly simple structure for
the imaginary part; see (B40). The corresponding flow
equation shows delta functions in k. Therefore no numeri-
cal integration has to be carried out to evaluate the flow (see
Appendix B 5), which is particularly convenient for
numerical purposes.
Despite its different appearance the flow equations for

the retarded correlation functions can be shown to be
formally equivalent to those derived starting from an
imaginary time formalism [6–10]; see Appendix B 6.
This reflects nothing but the equivalence of real time
and imaginary time formalisms for the specific example
of the evaluation of one-loop diagrams [23,55]. Here the
real time formalism leads to a representation where the
ϵ → 0 limit in the transition from the Euclidean two-point
function evaluated at complex external momentum and the
retarded two-point function [see (2)] is already taken. Such
a formulation avoids high numerical costs for the evalu-
ation of the flow equation in particular at finite temperature
and density; see the discussion from above. From our point
of view the real time approach is the preferable formalism
to use for applications with the spatial regulator function, in
particular with regard to the inclusion of further frequency
dependencies in the flow.
We close with the remark that the above strategy can also

be applied to covariant regulators. They have the advantage
of full Lorentz invariance but additional care has to be taken
concerning regulator poles close to the Minkowski axis as
well as the numerical investigation of principle value
integrals. While the former problem is resolved within
the class of regulators defined in Sec. II B, the practical
implementation of the latter requires special attention and
will be discussed elsewhere.
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B. Application to the OðNÞ model

Figure 10 shows the numerical result obtained by
integrating the flow equations (B35) using a setup similar
to the one described in Appendix A 4. To ensure compa-
rability of both results the UV parameters were chosen to
yield the same physical parameters in the IR as in Sec. II C.
In particular we compare the result from keeping a finite
imaginary part in the external momentum, implemented in
the same way as in Sec. II C and in the original works [8,9],
to the real time result where the limit ϵ → 0 has already
implicitly been taken. As clearly visible from the σ-meson
spectral function at large momenta both results agree once a
genuine imaginary part in the retarded two-point function
builds up. The finite imaginary external momentum ϵ leads
to an artificial broadening of the spectral functions below
the thresholds where the imaginary part has to vanish
identically at zero temperature. In this case the calculations
can even be corrected by hand in order to obtain the full
result with ϵ extrapolated to zero. The pion pole mass
corresponding to the peak in the pion spectral function
agrees in all cases as it is determined by the zero of the real
part of the inverse retarded correlator which depends only
weakly on ϵ.
Coming to a comparison of the spatial regulator results

from this section to the calculation using a 4D regulator
from Sec. II C, the most meaningful comparison is that of
two calculations with a fixed imaginary external frequency
ϵ ¼ 0.1 MeV keeping in mind the effects of the extrapo-
lation ϵ → 0 as discussed above. Figure 11 shows a striking
agreement between the spectral functions from both cal-
culations which is a highly nontrivial statement. In both
cases the pion pole mass is given by mpole

π ¼ 131 MeV
compared to a curvature mass of mπ ¼ 137 MeV. This
difference of 5% in the LPAwas shown to decrease with the

inclusion of the full momentum dependence of the propa-
gators; see [31].

IV. SUMMARY AND CONCLUSIONS

In this work we put forward different ways for a direct
computation of real time correlation functions in the
framework of the FRG. Such approaches avoid the large
systematic errors of carrying out a numerical analytic
continuation of given Euclidean data by a direct compu-
tation of two-point correlation functions for Minkowski
external momenta.
In the first part of the work we put forward a general

FRG framework that allows us to compute Euclidean
correlation functions at complex momenta for general
regulators. Then, retarded correlation functions were
obtained from these correlation functions in a fully numeri-
cal procedure. In particular, this involved the construction
of general space-time symmetry-preserving regulator func-
tions, which avoid the occurrence of artificial regulator
poles in the momentum region of interest. Such regulator
functions have a broad range of possible applications not
only for real time applications but also for the closely
related problem of the inclusion of a finite chemical
potential with 4D regulator functions. They also allow
us to use the plethora of existing Euclidean results for real
time physics. The procedure was put into practice at the
example of the computation of spectral functions in the
OðNÞ model.
The second part of the work was devoted to a comple-

mentary approach starting directly within the real time
formalism on the Keldysh contour. Here we focused on the
formalism for the calculation of spectral functions in the
closed time path formalism. Note that for a spatial flat
regulator function the resulting flow equations formally
agreed with those derived in the imaginary time formalism.
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FIG. 10 (color online). Spectral functions of theOðNÞmodel at
vanishing temperature comparing the result from the real time
formalism to an implementation keeping finite imaginary parts
ϵ ¼ 0.1 MeV and ϵ ¼ 0.01 MeV in the external momentum.
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FIG. 11 (color online). Spectral functions of theOðNÞmodel at
vanishing temperature comparing the result using a spatial 3D
regulator and a 4D exponential regulator in both cases for a finite
external momentum ϵ ¼ 0.1 MeV.
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We confirmed this formal equivalence, the real time
representation of the flow, however, was shown to be
particularly amiable towards numerical applications. The
discussion focused on the formalism and applications were
restricted to the OðNÞ model as a simple, illustrative
example. The extension towards general theories, and in
particular the inclusion of quarks is straightforward.
Furthermore, the formalism put forward in this work is
directly applicable to nontrivial frequency dependencies.
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APPENDIX A: GENERAL-PURPOSE
REGULATORS FOR COMPLEX MOMENTA

We consider regulators of the form

Rk;Δm2
r
ðp2Þ ¼ Γð2Þ

k ðp2Þjϕ¼ϕ0
r

�
p2 þ Δm2

r

k2

�
; ðA1Þ

with shape function r, which are proportional to Γð2Þ
k at

some specific field value ϕ0. Hence at least at this particular

field value ϕ0 regularized inverse propagator Γð2Þ
k þ Rkjϕ0

shares the zeros of Γð2Þ
k . Such regulators are obviously

well suited to be used in connection with Taylor
expansions (at ϕ0). In this paper we will consider
exponential regulator functions as given in (23).
The above regulator functions are perfectly suited for

applications where the squared mass parameter stays
positive, e.g. for a Taylor expansion at the scale-dependent
minimum. However, both in grid implementations as well
as for Taylor expansions at a fixed expansion point [32] the
requirement of a positive squared mass parameter is not
always satisfied. This is obviously problematic for regu-
lators of the form (A1) as it leads to a pole in G. Therefore
we also consider slight generalizations of Eq. (A1) i.e.
modified regulators of the form

Rk;Δm2
r
ðp2Þ ¼ ðΔΓð2Þ

k ðp2Þjϕ¼ϕ0
þ Δm2

rÞr
�
p2 þ Δm2

r

k2

�
;

ðA2Þ
that depend only on the momentum-dependent part,

ΔΓð2Þ
k ðpÞ ¼ Γð2Þ

k ðpÞ − Γð2Þ
k ð0Þ, to circumvent problems

for m2 < 0, and introduces an additional Δm2
r · r term

which avoids the dropping of the effective cutoff scale to
zero for Δm2

r ≫ k2; see Appendix A 5. This choice of
regulator obviously implies that even at ϕ0 the physical
poles of G and those of the regularized propagator

ðΓð2Þ
k þ Rk;Δm2

rðkÞÞ−1 no longer coincide. This is however
not an important requirement as long as we assure that no
regulator poles occur inside Sp0;max.
Independent of the chosen implementation, the overall

picture is the same in both cases. One introduces an
additional mass term in the regulator shape function in
order to shift the additional regulator poles outside the
momentum region of interest, here given by Sp0;max. For
large RG scales these will be outside the strip but it requires
a finite Δm2

r at least towards the IR to ensure that this
remains the case during the full RG flow. The detailed
discussion of the constraints on the Δm2

r term can be found
in Appendix A 3.

1. Constant Δm2
r

The simplest way of implementing the pole constraints
discussed in the previous section is to use a sufficiently
large constant Δm2

r . As the Δm2
r term is already present at

the UV cutoff scale ΛUV one has to take into account the
change in the initial conditions in the UV in order to
directly compare to results with Δm2

r ¼ 0. In the following
we describe two procedures for obtaining two-point func-
tions at real time momenta starting from given initial
conditions at Δm2

r ¼ 0. The first possibility is to use a
two-step procedure: Given initial conditions at Λ for
Δm2

r ¼ 0, the proper initial condition for Δm2
r ≠ 0 is

obtained by integrating a flow equation in Δm2
r ,

Γð2Þ
Λ;Δm2

r
ðqþ ipÞ

¼Γð2Þ
Λ;0ðqþ ipÞ

þ1

2

δ2

ðδϕÞ2
�Z

Δm2
r

0

dΔm20
r ð∂Δm20

r
RΛ;Δm20

r
ÞGΛ;Δm20

r

�
ðqþ ipÞ;

ðA3Þ

where the first term is obtained by a trivial continuation of

Γð2Þ
Λ;0. This procedure has to be carried out for the effective

potential and the two-point function for every value of p0.
Note that for the two-point function the diagrams in (A3)
have to be evaluated with the same frequency routing as the
flow itself: G∂Δm20

r
RΛ;Δm20

r
GðqÞ only depends on the loop

frequency. As a second step, having integrated this equation
to sufficiently large Δm2

r ∼ p2
0;max, one can now solve the

flow equation in k,

Γð2Þ
k;Δm2

r
ðpÞ ¼ Γð2Þ

Λ;Δm2
r
þ
Z

0

Λ
dk∂kΓ

ð2Þ
k;Δm2

r
: ðA4Þ

As an alternative to the direct integration in (A4) one can

make use of an equation for ∂pΓ
ð2Þ
k;Δm2

r
ðpÞ in order to

successively enter the complex plane starting from the
real axis. Therefore we assume a momentum-independent
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Δm2
r , ∂qΔm2

r ¼ 0. Then we can write the flow equation for

∂pΓ
ð2Þ
k;Δm2

r
ðpÞ as

∂t∂pΓ
ð2Þ
k ðpÞ ¼ TrqG∂tRGðqÞ∂pGðqþ ipÞ

¼ −TrqG∂tRGðqÞ½Gð∂pG−1ÞG�ðqþ ipÞ;
ðA5Þ

where we suppressed the dependence on Δm2
r in order to

simplify the notation. At a given step p, this evolution
equation involves only known objects, namely ðG∂tRGÞðqÞ,
∂pG−1ðqþ ipÞ ¼ ð∂pΓ

ð2Þ
k þ ∂pRÞðqþ ipÞ andGðqþ ipÞ.

This is a very clear demonstration of how one can gradually
enter the complex momentum plane starting from data on
the real axis.

2. Scale-dependent Δm2
r ðkÞ

The second approach towards satisfying the pole con-
straints is to introduce a scale-dependent Δm2

r term which
only sets in later during the RG flow. At the same time this
circumvents the necessity of calculating modified initial
conditions in order to connect to calculations at Δm2

r ¼ 0
as the first part of two-step procedure introduced in the
previous section as the Δm2

r term vanishes at the UV cutoff
scale. An appropriate scale-dependent Δm2

r term can be
modeled by means of a smooth theta function, i.e. using the
ansatz

Δm2
rðkÞ ¼ jp0;maxj2θα;βðjp0;maxj=kÞ; ðA6Þ

where

θα;βðxÞ ¼
α

1þ ðβxÞn
ðA7Þ

denotes a smooth approximation to a step function with
appropriately chosen constants α, β and n ∈ N; see
Appendix A 3 for further details.

3. Pole constraints on Δm2
r

In this appendix we analyze the poles of the regularized

propagator Gðp2Þ ¼ ðΓð2Þ
k ðp2Þ þ RkÞ−1 in more detail. In

the following we consider regulators of the general form
(A2). A similar analysis goes through for regulators of the
form (A1).
We are interested in the poles of the regularized

propagator or equivalently in the zeros of

ðp2 þ Δm2
rÞð1þ rÞ − Δm2

r þm2 ¼ 0; ðA8Þ

which reduces for the exponential shape function (23) and
x ≠ 0 to the condition

ðexm − 1ÞðxþM2Þ þ xm ¼ 0; ðA9Þ

for x ¼ ðp2 þ Δm2
rÞ=k2 and M2 ¼ ðm2 − Δm2

rÞ=k2. It
remains to analyze the solutions of Eq. (A9) for fixed
M2. Leaving aside the case m ¼ 1, for M2 > −1 the
equation admits a negative solution and for M2 < −1
two purely imaginary complex conjugate physical solutions
xphys. In addition there is an infinite sequence of poles
introduced by the regulator. As shown exemplarily for the
double exponential regulatorm ¼ 2 in Fig. 3 for fixed finite
M2 these can be determined numerically. For asymptoti-
cally large values M2 → �∞ they converge towards the
poles of the function xð1þ rðxÞÞ i.e. where xm ¼ 2πiN for
N ∈ N. This gives us access the solutions xreg of (A9). On
the other hand the restriction of the external momenta to the
domain Sp0;max

, i.e. p ¼ ðp0;R þ ip0;I ; ~pÞ for jp0;Ij < p0;max

and p0;R ∈ R, corresponds to a parabola in the complex x
plane bounded by

ft2 − p2
0;max þ ~p2 þ Δm2

r þ 2itp0;maxjt ∈ Rg: ðA10Þ

Here we already included a Δm2
r term which adds to the

real part and shifts the parabola in the direction of the
positive real axis. Given a regulator pole at xreg ¼ xR þ ixI
it is then simple to evaluate the condition

Δm2
rðkÞ ≥ p2

0;max − ~p2 þ k2xR −
k4

4

x2I
p2
0;max

; ðA11Þ

which is obtained by equating the real and imaginary parts
of (A10) to xR or xI respectively. This condition keeps the
given pole outside the integration domain by shifting the
parabola to the right. Putting together the constraints from
the different poles it remains to parametrize an appropriate
function which satisfies all of them, using the simple ansatz
(A6) for a scale-dependent Δm2

rðkÞ or alternatively using a
constant Δm2

r as discussed in Appendix A 1. This pro-
cedure is illustrated exemplarily for the double exponential
regulator, m ¼ 2, and p0;max ¼ 0.33ΛUV in Fig. 4. The
parameter M2 serves as an external parameter in this
analysis and one has to select the value for M2 which
constrains Δm2

r most strongly.
Summarizing the discussion of this appendix, it is always

possible to prevent regulator poles from entering the
domain Sp0;max

at a given scale k by introducing a
sufficiently large term Δm2

rðkÞ.

4. Application to the OðNÞ model: Flow equations
and numerical procedure

In this appendix we discuss the flow equations and the
numerical solution procedure that lead to the numerical
results on the mesonic spectral functions presented in
Sec. II C. In the truncation presented here the momentum-
and complex-frequency-dependent two-point functions are
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solved for on the basis of a given solution for the effective
potential that serves as input for the three-point vertices
occurring in the flow equation for the two-point function. In
the LPA the flow equation for the effective potential takes
the form

∂tVkðϕ2Þ ¼ 1

2
Ið1Þðm2

σÞ þ
N − 1

2
Ið1Þðm2

πÞ; ðA12Þ

where m2
π ¼ 2V 0

k, m
2
σ ¼ 2V 0

k þ 4ϕ2V 00
k and

IðnÞðm2Þ ¼
XZ
q

∂tRk;Δm2
r
ðq2Þ

ðq2 þm2 þ Rk;Δm2
r
ðq2ÞÞn ; ðA13Þ

which was evaluated numerically for the regulator (22).
The flow equation for the Euclidean two-point functions
(see Fig. 12) is given by [8]

∂tΓ
ð2Þ
π ðpÞ ¼ ðΓð3Þ

σππÞ2ðJσπðpÞ þ JπσðpÞÞ
þ tadpole terms;

∂tΓ
ð2Þ
σ ðpÞ ¼ ðN − 1ÞðΓð3Þ

σππÞ2JππðpÞ þ ðΓð3Þ
σσσÞ2JσσðpÞ

þ tadpole terms; ðA14Þ

with Γð3Þ
σππ and Γð3Þ

σσσ given in (B36) and

JijðpÞ¼
XZ
q

∂tRk;Δm2
r
ðq2Þðq2þm2

j þRk;Δm2
r
ðq2ÞÞ−2

×ððqþpÞ2þm2
i þRk;Δm2

r
ððqþpÞ2ÞÞ−1: ðA15Þ

The frequency routing is chosen such that the cutoff line
only depends on the loop frequency q0, that is G _RGðqÞ. As
in [31] we only resolve the genuine momentum dependence
of the propagator ΔΓð2Þ, i.e. we solve flow equations
∂tΔΓð2ÞðpÞ≡ ∂tΓð2ÞðpÞ − ∂tΓð2Þð0Þ, for which the tadpole
terms, which are momentum independent in our truncation,
cancel. The full propagator is then obtained via

Γð2Þ
i ðpÞ ¼ ΔΓð2Þ

i ðpÞ þ ∂2

ð∂ϕiÞ2
Vðϕ2Þ: ðA16Þ

We use (2) in (A14) to set up flow equations for the real and
imaginary parts of the retarded propagator, keeping a fixed
finite parameter ϵ. Note that in addition to this contribution

it remains to track the positions of the physical poles and to
add the corresponding contributions involving residues at
their positions; see the extensive discussion in Sec. II A.

5. Effective cutoff scales

The inclusion of Δm2
rðkÞ in the regulator’s shape

function, as discussed in Appendix A 2, leads to a modi-
fication of the effective cutoff scale with important physical
consequences. One way of defining such an effective cutoff
scale is to consider the gap in the propagator, i.e.

k2eff;minðkÞ ¼ min
p
ðΓð2Þ

k ðp2Þ þ Rkðp2ÞÞ: ðA17Þ

Note that (A17) defines a physical cutoff scale which does
not go to zero in a massive theory. In the massless limit for
regularized propagators that depend monotonously on
momentum (A17) coincides with the effective cutoff scale
keff;Rð0Þ defined via

k2eff;Rð0ÞðkÞ ¼ lim
p2→0

Rk;Δm2
r
ðp2Þ ¼ Δm2

rrðΔm2
r=k2Þ; ðA18Þ

which can be easily evaluated for a given Δm2
rðkÞ. k2eff;Rð0Þ

tends to k2 for Δm̂2
r ≡ Δm2

r=k2 ≪ 1 and it drops exponen-
tially with Δm̂2

r in the regime where Δm̂2
r ≫ 1. An

alternative definition is given by keff;R¼ΔΓð2Þ which defines
the effective cutoff scale as the momentum scale where the
regulator gets of the order of the propagator itself, i.e.

Rk;Δm2
rðkÞðp2Þ ¼ ΔΓð2Þ

k ðp2Þjp2¼k2
eff;R¼ΔΓð2Þ

ðkÞ; ðA19Þ

where ΔΓð2Þ
k ðp2Þ ¼ Γð2Þ

k ðp2Þ − Γð2Þ
k ð0Þ. For Δm2

r ¼ 0 and
the double exponential regulator, m ¼ 2, keff;R¼ΔΓð2Þ ≈
0.86k. As visible from Fig. 5 both definitions show the

FIG. 12. Flow equation for the momentum-dependent part of
the inverse propagator.
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FIG. 13 (color online). Regularized pion propagator at different
cutoff scales in a calculation with (solid) and without (dashed)
Δm2

r term using the same parameter set as in Fig. 4 in comparison
to the result at k ¼ 0.
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exponential drop of the effective cutoff scale in the regime
where Δm̂2

r ≫ 1.
The relation kðkeffÞ can now be inverted at least numeri-

cally in order to yield a relation kðkeffÞ, which in turn could
be used to rewrite the flow equation in terms of keff for
numerical convenience. Effective cutoff scales as defined in
this appendix can be used to adjust relative cutoff scales for
fermions and bosons and theories with bosonic and
fermionic species.
We illustrate the different effective cutoff scales at the

example of the scale dependence of the regularized pion
propagator shown in Fig. 13 comparing the results of a
calculation with and without the Δm2

r term. For large cutoff
scales Δm2

r is practically zero, the effective cutoff scale
coincides with the cutoff scale k and both propagators
agree. At smaller cutoff scales where Δm2

r takes a non-
vanishing value, the propagators start to deviate. Note in
particular that the Δm2

r propagator reaches its IR value
already at a finite value of the cutoff scale as a result of the
exponential drop of the effective cutoff scale with Δm̂2

r ;
see Fig. 5.

APPENDIX B: FLOW EQUATIONS
IN THE CTP FORMALISM

In this appendix we discuss the derivation of the flow
equations for the effective potential and the spectral
functions in the CTP formalism in detail.

1. CTP formalism

Before discussing the CTP flow equations we start by
fixing the formalism and conventions used in this work.
The main object in the following is the matrix-valued two-
point function with components defined by

Gþ−ðx; yÞ ¼ −ihϕðxÞϕðyÞi;
G−þðx; yÞ ¼ −ihϕðyÞϕðxÞi;
Gþþðx; yÞ ¼ −ihT ϕðxÞϕðyÞi;
G−−ðx; yÞ ¼ −ih ~T ϕðyÞϕðxÞi; ðB1Þ

where T ð ~T Þ denotes (anti-)time ordering. In thermal
equilibrium and in momentum space the propagators are
given solely in terms of the spectral function (c.f. [36] for
the free case),

G��ðpÞ ¼ � P
Z

∞

−∞

dω
2π

ρðω; ~pÞ
p0 − ω

− i

�
nðp0Þ þ

1

2

�
ρðp0; ~pÞ;

Gþ−ðpÞ ¼ − inðp0ÞρðpÞ;
G−þðpÞ ¼ − iðnðp0Þ þ 1ÞρðpÞ; ðB2Þ

where P denotes the Cauchy principal value and n the
bosonic thermal distribution function.
In order to calculate spectral functions we require flow

equations for the real and imaginary parts of the inverse
diagonal propagator Γ̄ð2ÞðpÞ [56]. These are related to

Γð2Þ
þþðpÞ and Γð2Þ

þ−ðpÞ via relations obtained in analogy to
[23] using [57] to diagonalize the CTP propagator and self-
energy

ReΓð2Þ
þþðpÞ ¼ ReΓ̄ð2ÞðpÞ;

ImΓð2Þ
þþðpÞ ¼ signðp0Þð1þ 2nðp0ÞÞImΓ̄ð2ÞðpÞ;

Γð2Þ
þ−ðpÞ ¼ −isignðp0Þ2nðp0ÞImΓ̄ð2ÞðpÞ: ðB3Þ

The real and imaginary parts of the diagonalized real time
two-point function are related to the retarded correlation
function via [23,57]

ReΓð2Þ
R ðpÞ ¼ ReΓ̄ð2ÞðpÞ;

ImΓð2Þ
R ðpÞ ¼ signðp0ÞImΓ̄ð2ÞðpÞ: ðB4Þ

Now consider the retarded propagator that, following (B2),
is given by

GRðpÞ ¼ GþþðpÞ −Gþ−ðpÞ

¼
Z

∞

−∞

dω
2π

ρðω; ~pÞ
p0 − ωþ iϵ

¼ P
Z

∞

−∞

dω
2π

ρðω; ~pÞ
p0 − ω

−
i
2
ρðp0; ~pÞ: ðB5Þ

This immediately implies that

ρðpÞ ¼ −2ImGRðpÞ ¼ −2Im½Γð2Þ
R �−1

¼ 2ImΓð2Þ
R ðpÞ

ðImΓð2Þ
R ðpÞÞ2 þ ðReΓð2Þ

R ðpÞÞ2
; ðB6Þ

and leaves us with the determination of flow equations for

ReΓð2Þ
þþ and for example Γð2Þ

þ− in order to obtain the spectral
function.

2. CTP flow equation

In this appendix we fix the conventions that are required
to derive the CTP flow equation. These are chosen such that
the functional relations between the different generating
functionals stay as close to the Euclidean relations as
possible. We start by defining a generating functional
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Zk½Jþ;J−�¼
Z

DφþDφ−exp

�
iS½φþ;φ−�

þ iΔSk½φþ;φ−�− i
Z
x
φaðxÞηabJbðxÞ

�
;

ΔSk½φþ;φ−�¼
1

2

Z
x;y

φaðxÞηabðRkÞbcðx;yÞηcdφdðyÞ; ðB7Þ

where η ¼ diagð1;−1Þ and a; b; c; d ∈ fþ;−g. Defining
the generating functional for connected Greens functions
Wk and the effective action Γk via

Wk½Jþ; J−� ¼ i logZk½Jþ; J−�;
Γk½ϕþ;ϕ−� ¼ Jaηabϕb −Wk − ΔSk½ϕþ;ϕ−�; ðB8Þ

leads to the relations

δWk

δJa
¼ ηabϕb;

δðΓk þ ΔSkÞ
δϕa

¼ ηabJb; ðB9Þ

and finally to the flow equation

∂tΓk ¼
i
2
Tr

�
1

Γð2Þ
k þ Rk

�
ab

ð∂tRkÞba

¼ i
2
TrGabð∂tRkÞba: ðB10Þ

3. Flow equation for the effective potential

As a first step we consider the flow equation for the
effective potential in the CTP formalism. Note that evalu-
ating Γ for constant fields ϕþ ¼ ϕ− ¼ ϕ yields a contri-
bution with a vanishing real part. In order to project onto
the effective potential we take the real part after taking a
single ϕþ derivative and setting fields ϕþ ¼ ϕ− ¼ ϕ to
constant afterwards. We find

∂ϕþ∂tΓk ¼ ~∂t
i
2
TrGabΓbaþ; ðB11Þ

with the partial t derivative at fixed ΓðnÞ
k ,

~∂t ¼ ∂tjΓðnÞ
k

¼ Tr _Rk
δ

δRk
¼

X
a¼�

Tr _Ra
k

δ

δRa
k
: ðB12Þ

In the following we resort to the canonical choice Rþ
k ¼

−R−
k ¼ Rk and restrict ourselves to the effective potential.

Now we have

∂t∂ϕVkðϕ2Þ ¼ −
1

2
_Rk∂Rk

TrðImGabΓ
ð3Þ
baþÞ; ðB13Þ

with a; b ¼ �. The LPA as simplest approximation
involves inserting free spectral functions

ρðp0; ~pÞ ¼ ð2πÞsignðp0Þδð−p2
0 þ ~p2 þm2Þ

¼ 2π

2ϵp
ðδðp0 − ϵpÞ − δðp0 þ ϵpÞÞ; ðB14Þ

with ϵp from (7). In the LPA approximation we have a
deformed classical dispersion with a field-dependent mass
as given by

m2
kðϕ2Þ ¼ 2V 0

kðϕ2Þ þ 4ϕ2V 00
kðϕ2Þ; ðB15Þ

for a single field mode, where primes denote derivatives
with respect to ϕ2. Correspondingly for the regulator (26),
the spectral function (B14) generalizes to

ρðω; ~pÞ ¼ð2πÞsignðp0Þ
× δð−p2

0 þ ~p2 þm2
kðϕ2Þ

þ Rkð−p2
0 þ ~p2Þðr0ðp2

0=k
2Þ þ rsð~p2=k2ÞÞÞ:

ðB16Þ

Here, we restrict ourselves to spatial regulators. In the
simplest case of a spatial regulator function, i.e. for
Rkðp2Þ≡ k2, r0 ≡ 0 and rsðxÞ ¼ xrðxÞ in (26), we can
trivially perform the frequency integration and the flow
equation for the effective potential now takes the simple
form

∂t∂ϕVkðϕÞ ¼
1

2

Z
~q
_r∂r

1þ 2nðϵqÞ
2ϵq

Γð3Þ
ϕϕϕ

¼ 1

2

Z
~q
~q2 _r∂ϵq

�
1þ 2nðϵqÞ

2ϵq

� ∂ϵq
∂ϕ

¼ ∂ϕ
1

2

Z
~q

~q2 _r
2ϵq

ð1þ 2nðϵqÞÞ; ðB17Þ

with

ϵqðϕ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2ð1þ rð~q2=k2ÞÞ þm2

kðϕ2Þ
q

: ðB18Þ

The flow equation (B17) is nothing but the derivative of the
standard flow equation for the effective action/potential for
a three-dimensional spatial regulator. In particular, for the
flat regulator, the 3D analogue of the LPA-optimized
regulator [58], where rðxÞ ¼ ð−1þ 1=xÞθð1 − xÞ, we
arrive at

∂t∂ϕVkðϕ2Þ ¼ ∂ϕ

0
B@ k5

6π2

coth
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þm2
kðϕ2Þ

p
2T

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

kðϕ2Þ
q

1
CA; ðB19Þ
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the well-known flow for the spatial flat regulator as derived
in the imaginary time formalism.

4. Flow equations for spectral functions

In the CTP formalism with spatial regulator functions the
direct computation of real time momentum and frequency
dependence is straightforward. Note however, that the
regulator explicitly breaks Lorentz invariance and fre-
quency integrations only have polynomially decaying
integrands.
For Rþ

k ¼ −R−
k ¼ Rk again, we find the symbolic flow

equations for the different components of the two-point
function

∂tΓ
ð2Þ
þþðpÞ ¼ −

i
2
~∂tTrðΓð3Þ

þ GþþΓ
ð3Þ
þ GþþÞ

þ i
2
~∂tTrðΓð4Þ

þ GþþÞ; ðB20Þ

∂tΓ
ð2Þ
þ−ðpÞ ¼ −

i
2
~∂tTrðΓð3Þ

þ Gþ−Γð3Þ
− G−þÞ: ðB21Þ

Evaluating (B21) and neglecting the tadpole terms leads to

∂tReΓ
ð2Þ
þþðpÞ

¼ þ 1

2
~∂t

Z
q
Γð3Þ
þ ImGþþðqþ pÞΓð3Þ

þ ReGþþðqÞ

þ 1

2
~∂t

Z
q
Γð3Þ
þ ReGþþðqþ pÞΓð3Þ

þ ImGþþðqÞ

¼ −
1

2
~∂t

Z
~q

Γð3Þ
þ Γð3Þ

þ
4ϵqϵqþp

�
ðnðϵqþpÞ − nðϵqÞÞ

× P
�

1

p0 − ϵq þ ϵqþp
−

1

p0 þ ϵq − ϵqþp

�

þ ð1þ nðϵqþpÞ þ nðϵqÞÞ

× P
�

1

p0 − ϵq − ϵqþp
−

1

p0 þ ϵq þ ϵqþp

��
: ðB22Þ

Evaluating (B21) using the identity ð1þnðq0ÞÞnðq0þp0Þ¼
nðp0Þðnðq0Þ−nðq0þp0ÞÞ we find

∂tΓ
ð2Þ
þ−ðpÞ

¼ −
i
2
~∂t

Z
q
Γð3Þ
þ Gþ−ðqþ pÞΓð3Þ

− G−þðqÞ

¼ i
2
nðp0Þ ~∂t

Z
q
Γð3Þ
þ Γð3Þ

− ðnðq0Þ − nðp0 þ q0ÞÞ

× ρðqþ pÞρðqÞ ðB23Þ

leading to

∂tΓ
ð2Þ
þ−ðpÞ ¼

i
2
nðp0Þ ~∂t

Z
~q

2π

4ϵqþpϵq
Γð3Þ
þ Γð3Þ

−

× ½ðnðϵqÞ − nðϵqþpÞÞ
× ðδðp0 þ ϵq − ϵqþpÞ − δðp0 − ϵq þ ϵqþpÞÞ
þ ð1þ nðϵqÞ þ nðϵqþpÞÞ
× ðδðp0 − ϵq − ϵqþpÞ − δðp0 þ ϵq þ ϵqþpÞÞ�:

ðB24Þ

If one now exploits the fact that the regulator enters the flow
only via ϵs one may rewrite ~∂t asZ

~s

_Rð~sÞ δ

δRð~sÞ ¼
Z
~s

_Rð~sÞ
2ϵs

δ

δϵs
: ðB25Þ

For general regulators one now can perform the ϵ derivative
and then resolve the δ, δ0 functions. Here we restrict
ourselves again to the three-dimensional flat regulator

Rflat
k ð~p2Þ ¼ ðk2 − ~p2Þθðk2 − ~p2Þ: ðB26Þ

This allows us to analytically resolve the δ functions before

taking the ~t derivative with ~∂tΓ
ðnÞ
k ¼ 0 for all n ∈ Nþ, i.e.

which acts only on the explicit k dependence of the
propagators. The δ functions in (B24) read

δðϵq þ p0 � ϵqþpÞ
¼ δðp0 þ ϵk � ϵkÞθðk2 − ~q2Þθðk2 − ð~qþ ~pÞ2Þ

þ δðp0 þ ϵq � ϵkÞθð~q2 − k2Þθðk2 − ð~qþ ~pÞ2Þ
þ δðp0 þ ϵk � ϵqþpÞθðk2 − ~q2Þθðð~qþ ~pÞ2Þ
þ δðp0 þ ϵq � ϵqþpÞθð~q2 − k2Þθðð~qþ ~pÞ2Þ: ðB27Þ

The δ function in the first term on the right-hand side does
not depend on the loop momentum ~q; however, the
integration can readily be performed. The other three δ
functions in (B27) depend on the loop momentum q. They
can be rewritten in terms of δ functions with respect to qwith
the help of

δðp0 þ ϵq � ϵkÞ ¼
ϵqδðq − qð1Þ� Þ

q
;

δðp0 þ ϵk � ϵqþpÞ ¼
ϵqþpδðq − qð2Þ� Þ

jqþ pxj ;

δðp0 þ ϵq � ϵqþpÞ ¼
X2
i¼1

δðq − qð3Þi Þ
j qϵq �

ðqþpxÞ
ϵqþp

j
; ðB28Þ

where x ¼ ~q · ~p=ðj~qjj~pjÞ. Note that qðiÞ depend on p0, j~pj,
x,m2

k, k. The ~t derivative only hits the explicit k dependence
and not m2

k. The qðiÞ are given analytically, to wit
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qð1Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 � ϵkÞ2 −m2

q
;

qð2Þ� ¼ −j~pjxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2ðx2 − 1Þ þ ðp0 � ϵkÞ2 −m2

q
;

qð3Þi ¼ 1

2ð−p2
0 þ ~p2x2Þ

n
−j~pj3xþ j~pjp2

0x

þ ð−1Þip0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~p2 − p2

0Þ2 þ 4m2ð−p2
0 þ ~p2x2Þ

q o
;

ðB29Þ

where the set of the two roots of qð3Þ agree.

5. Application to the OðNÞ model

As nontrivial example we discuss the computation of
spectral functions in theOðNÞmodel on the basis of a given
solution for the effective potential. As demonstrated above
for a single scalar field the real time flow equation for the
effective potential coincides with that derived in the
imaginary time formalism. Turning to two-point functions,
the application to the OðNÞ model requires more general
expressions with different particles in the loop diagrams.
Therefore we consider

J̄Reji ðpÞ ¼ þ 1

2

Z
q
ImGj

þþðqþ pÞReGiþþðqÞ ðB30Þ

þ 1

2

Z
q
ReGj

þþðqþ pÞImGiþþðqÞ; ðB31Þ

leading to

J̄Reji ðpÞ ¼ −
1

2

Z
~q

1

4ϵiqϵ
j
qþp

�
ðnðϵiqÞ − nðϵjqþpÞÞ

× P
�

1

p0 þ ϵiq − ϵjqþp

−
1

p0 − ϵiq þ ϵjqþp

�

þ ð1þ nðϵiqÞ þ nðϵjqþpÞÞ

× P
�

1

p0 − ϵiq − ϵjqþp

−
1

p0 þ ϵiq þ ϵjqþp

��
;

ðB32Þ

and similarly for the imaginary part, following (B3),

J̄Imji ðpÞ ¼ −
1

2

signðp0Þ
2nðp0Þ

Z
q
Gj

þ−ðqþ pÞGi
−þðqÞ

¼ 1

4
signðp0Þ

Z
q
ðnðq0Þ − nðq0 þ p0ÞÞ

× ρjðqþ pÞρiðqÞ; ðB33Þ

leading to

J̄Imji ðpÞ ¼ πsignðp0Þ
Z
~q

1

8ϵjqþpϵ
i
q

½ðnðϵiqÞ − nðϵjqþpÞÞ

× ðδðp0 þ ϵiq − ϵjqþpÞ − δðp0 − ϵiq þ ϵjqþpÞÞ
þ ð1þ nðϵiqÞ þ nðϵjqþpÞÞ
× ðδðp0 − ϵiq − ϵjqþpÞ − δðp0 þ ϵiq þ ϵjqþpÞÞ�;

ðB34Þ

where the subscripts iðjÞ refer to masses m2
i ðm2

jÞ in the
respective propagators Gi, spectral functions ρi and quasi-
particle energies ϵi. Using these definitions we can write the
flow equations for the real and imaginary parts of the
respective inverse propagators as

∂tImΓ̄ð2Þ
ππ ðpÞ¼ ðΓð3Þ

σππÞ2 ~∂tðJ̄ImσπðpÞþ J̄ImπσðpÞÞ;
∂tReΓ̄

ð2Þ
ππ ðpÞ¼ ðΓð3Þ

σππÞ2 ~∂tðJ̄ReσπðpÞþ J̄ReπσðpÞÞþ const;

∂tImΓ̄ð2Þ
σσ ðpÞ¼ ðN−1ÞðΓð3Þ

σππÞ2 ~∂tJ̄ImππðpÞþðΓð3Þ
σσσÞ2 ~∂tJ̄ImσσðpÞ;

∂tReΓ̄
ð2Þ
σσ ðpÞ¼ ðN−1ÞðΓð3Þ

σππÞ2 ~∂tJ̄ReππðpÞþðΓð3Þ
σσσÞ2 ~∂tJ̄ReσσðpÞ

þ const; ðB35Þ

identifying σ ≡ 0 and π ∈ Nþ in the subscripts. As above
we only resolve the genuine momentum dependence of the
real part of the propagator by considering the flow
equations ∂tΔΓð2ÞðpÞ ¼ ∂tΓð2ÞðpÞ − ∂tΓð2Þð0Þ, for which
the momentum-independent tadpole terms cancel, to which
the corresponding contribution from the effective potential
is added in order to obtain the full propagator. Here we aim
to evaluate the spectral functions on the basis of a given
solution for the effective potential. Therefore we approxi-
mate three-point functions momentum independently from
the corresponding vertices extracted from the effective
potential, i.e. explicitly via

Γð3Þ
σππ ≡ Γð3Þ

þ;σππ ¼ −Γð3Þ
−;σππ ¼ 4V 00

kϕ;

Γð3Þ
σππ ≡ Γð3Þ

þ;σσσ ¼ −Γð3Þ
−;σσσ ¼ 12V 00

kϕþ 8Vð3Þ
k ϕ3; ðB36Þ

where derivatives denote derivatives with respect to ϕ2. As
the simplest nontrivial application we are interested in
zero temperature spectral functions at vanishing external

three-momentum ~p ¼ ~0. In this case we find

J̄Reji ðp0Þ ¼ −
Z
~q

1

4ϵjqϵiq
P
�

ϵiq þ ϵjq

p2
0 − ðϵiq þ ϵjqÞ2

�
;

J̄Imji ðp0Þ ¼ − πsignðp0Þ
X
�

Z
~q

∓δðϵiq þ ϵjq∓p0Þ
8ϵjqϵiq

: ðB37Þ

For j~qj < k we have δðϵiq þ ϵjq − p0Þ ¼ δðϵik þ ϵjk − p0Þ,
where ϵik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
, whereas for j~qj > k we find
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δðϵiq þ ϵjq − p0Þ ¼
δðq − qfðp0; mi; mjÞÞ

j q
ϵiq
þ q

ϵjq
j ; ðB38Þ

where

qfðp0; mi; mjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððmi −mjÞ2 − p2

0Þððmi þmjÞ2 − p2
0Þ

4p2
0

s
:

ðB39Þ

It remains to evaluate the ~t derivative, which acts only on
the explicit k dependence. Here only j~qj < k contributes
and we find, restricting ourselves without loss of generality
to p0 > 0,

~∂tJ̄Reji ðp0Þ

¼ −
k3

24π2
~∂t

�
1

ϵikϵ
j
k

P
�

ϵik þ ϵjk
p2
0 − ðϵik þ ϵjkÞ2

��

¼ −
k5

24π2
P
ðϵik þ ϵjkÞ3ðϵik2 þ ϵikϵ

j
k þ ϵjk

2Þ − ðϵik3 þ ϵjk
3Þp2

0

ϵik
3ϵjk

3ððϵik þ ϵjkÞ2 − p2
0Þ2

;

~∂tJ̄Imji ðp0Þ

¼ k3

48π
~∂t

�
δðϵik þ ϵjk − p0Þ

ϵikϵ
j
k

�

¼ k3

48π

1

ϵik þ ϵjk

�
δ0ðk − kijs ðp0ÞÞ −

k

ϵikϵ
j
k

δðk − kijs ðp0ÞÞ
�
:

ðB40Þ

For the imaginary part we rewrote the occurring delta
functions as delta functions in k via

δðϵik þ ϵjk − p0Þ ¼
δðk − kijs ðp0ÞÞ

k
ϵik
þ k

ϵjk

; ðB41Þ

where kijs ðp0Þ is the solution of the equation

ϵi
kijs ðp0Þ

þ ϵj
kijs ðp0Þ

¼ p0: ðB42Þ

In particular, for ϵik ≥ mi
k¼0 this entails that no imaginary

part can build up below the threshold i.e. p0 ≥ mπ þmσ for
the pion or p0 ≥ 2mπ for the sigma meson spectral function
respectively. Correspondingly the spectral functions have
to vanish below these thresholds. The only exception
occurs for momenta where ReΓ̄ð2ÞðpÞ ¼ ImΓ̄ð2ÞðpÞ ¼ 0;
see (3). For ~p ¼ 0 this occurs at the pole mass where
p2
0 ¼ m2

pole; see [31] for a discussion of different mass

definitions. Here the spectral function shows a delta
function. As it is obvious from (B40), the imaginary part
can be computed without even explicitly carrying out an
integration in k.

6. Equivalence of real and imaginary time flows

These results can be compared to spectral functions
obtained from Euclidean calculations with complex exter-
nal momenta using spatial regulator functions [8] in an
otherwise identical truncation. In fact, the flow equations
put forward here turn out to be formally equivalent to the
ones put forward in [6–10] starting from an imaginary time
formalism. This equivalence is nothing but the equivalence
of using the real time or the imaginary time formalism for
the evaluation of one-loop diagrams [23,55]. It is however
worthwhile to illustrate the formal equivalence again for
this particular example, restricting ourselves for simplicity
to the case of zero temperature and vanishing spatial
external momentum. We consider the expression for the
loop diagram for Euclidean external momentum, which
reads

J̄euclji ðp0Þ ¼−
1

2

Z
q
GjðqþpÞGiðqÞ

¼−
Z
~q

1

4ϵiqϵ
j
q

ϵiqþ ϵjq

p2
0þðϵiqþ ϵjqÞ2

¼−
Z
~q

1

8ϵiqϵ
j
q

�
1

ip0þ ϵiqþ ϵjq
þ 1

−ip0þ ϵiqþ ϵjq

�
:

ðB43Þ

Performing the analytic continuation we find using (2) and
the Sokhotski-Plemelj formula

J̄R;ITji ðp0Þ ¼ −lim
ϵ→0

J̄euclij ð−iðp0 þ iϵÞÞ

¼ P
Z
~q

1

4ϵiqϵ
j
q

ϵiq þ ϵjq

−p2
0 þ ðϵiq þ ϵjqÞ2

þ iπ
X
�

Z
~q

�δð∓p0 þ ϵiq þ ϵjqÞ
8ϵiqϵ

j
q

: ðB44Þ

By comparison to (B37) one finds

ReJ̄R;ITji ðp0Þ ¼ J̄Reji ðp0Þ;
ImJ̄R;ITji ðp0Þ ¼ signðp0ÞJ̄Imji ðp0Þ; ðB45Þ

which is completely consistent with (B4).
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