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Studies of D and B meson decays into hadrons have been used to test the standard model in the last
15 years. A heavy meson decay involves the combined effects of a primary weak vertex and subsequent
hadronic final-state interactions, which determine the shapes of Dalitz plots. The fact that final products
involve light mesons indicates that the QCD vacuum is an active part of the problem. This makes the
description of these processes rather involved and, in spite of its importance, phenomenological analyses
tend to rely on crude models. Our group produced, some time ago, a schematic calculation of the decay
Dþ → K−πþπþ, which provided a reasonable description of data. Its main assumption was the dominance
of the weak vector current, which yields a nonfactorizable interaction. Here we refine that calculation by
including the correct momentum dependence of the weak vertex and extending the energy ranges of ππ and
Kπ subamplitudes present into the problem. These new features make the present treatment more realistic
and bring theory closer to data.
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I. MOTIVATION

Nonperturbative QCD calculations are difficult and can
only be performed in approximate frameworks. The group-
ing of quarks into two sets, according to their masses,
provides a convenient point of departure for approxima-
tions. Quarks u, d, and s can be considered as light and
quarks c, b, and t as heavy, even though the s-quark is not
too light and the c-quark is not too heavy. This approach is
useful because light quark condensates are active close to
the ground state of QCD and give rise to highly collective
interactions.
Pions and kaons are the most prominent light quark

systems, but data available for elastic Kπ scattering are
scarce and decades old. They were obtained from the LASS
spectrometer at SLAC [1,2], in the range 0.825 <

ffiffiffi
s

p
<

1.960 GeV, by isolating one-pion exchanges in the reaction
KN → πKN. In the last ten years, information about Kπ
interactions was also produced by hadronic decays of D
mesons. In particular, data from the E791 and FOCUS
collaborations [3,4] for the reaction Dþ → K−πþπþ
allowed the S-wave Kπ subamplitude to be extracted
continuously from threshold up to the high-energy border
of the Dalitz plot. Hope was then raised that these data
could improve the description of elastic Kπ scattering.
However, decay data differ significantly from those given
by the LASS experiment and this discrepancy motivates
our interest in this problem.
The description of the decay Dþ → K−πþπþ must

include both the weak c → s vertex and hadronic final-
state interactions (FSIs), which correspond to strong
processes occurring between primary decay and detection.
The study of weak vertices departs from the topological

structures given by Chau [5], which implement Cabbibo-
Kobayashi-Maskawa quark mixing for processes involving
a singleW. As primary decays occur in the presence of light
quark condensates, the direct incorporation of Chau’s
scheme into calculations is not trivial and one is forced
into hadronic descriptions. Dominant contributions to D
decay may be accounted for by the effective Lagrangian
proposed by Bauer et al. [6], which reads

Leff ¼
GFffiffiffi
2

p fa1ðūd0ÞHðs̄0cÞH þ a2ðs̄0d0ÞHðūcÞHg; ð1Þ

where ai are the Wilson coefficients and ðūd0ÞH and ðs̄0cÞH
are the factorized quark currents, related, respectively, to
the matrix hHðūdÞjðA − VÞμj0i and hHðsÞjðA − VÞμjDi.
This factorization technique was employed in the Dþ →
K−πþπþ study by Boito and Escribano [7] with a quasi-
two-body model for the FSI. Concerning the treatment
of relativistic final-state interactions, high-energy few-body
calculations have begun to be available now [8–10] and
several works have already employed field theory to FSIs in
heavy meson decays [7,11–17].
In this work, the decay Dþ → K−πþπþ is treated by

means of chiral effective Lagrangians, supplemented by
phenomenological form factors. This framework is
motivated by the smallness of the u, d, and s masses,
when compared with the QCD scale Λ ∼ 1 GeV. The
light sector of the theory is therefore not far from the
massless limit, which is symmetric under the chiral
SUð3Þ × SUð3Þ flavor group. In this approach, light
condensates arise naturally and pseudoscalar mesons
are described as Goldstone bosons. Quark masses are
incorporated perturbatively into effective Lagrangians
[18,19], whereas weak interactions are treated as*patricia@if.usp.br
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external sources. Chiral perturbation theory was origi-
nally designed to describe low-energy interactions,
where it yields the most reliable representation of
QCD available at present. Its scope was later enlarged,
with the inclusion of resonances as chiral corrections
[20], and the unitary resummation of diagrams [21].
Suitable coupling schemes also allow the incorporation
of heavy mesons [22] and the final effective Lagrangians
are able to describe both energy sectors.
A similar theoretical framework has already been

employed by our group [16], in an exploratory study of
FSIs in Dþ → K−πþπþ. With the purpose of taming an
involved calculation, in that work we made a number of
simplifying assumptions. Among them, the weak vertices
were taken to be constants, isospin 3=2 and P waves were
not included in intermediate Kπ amplitudes, and couplings
to either vector mesons or inelastic channels were
neglected. In spite of these limitations, that work allowed
the identification of leading dynamical mechanisms and
gave rise to results which are reasonable for the modulus
and good for the phase of the S-wave Kπ subamplitude
[3,4]. In this work, we focus on the vector weak amplitude
and improve the description of the weak vertex, by
including both the correct momentum dependence and
better phenomenology for an intermediate ππ subampli-
tude, and the description of a Kπ subamplitude at higher
energies. These new features tend to reduce the gap
between theory and experiment.

II. DYNAMICS

We denote by ½K−πþ�S the S-wave K−πþ subamplitude
in the decay Dþ → K−πþπþ, which has been extracted by
the E791 [3] and FOCUS [4] collaborations. The decay
begins with the primary quark transition c → sWþ, which
is subsequently dressed into hadrons, owing to the sur-
rounding light quark condensate. In the absence of form
factors, this structure gives rise to the color allowed process
shown in Fig. 1, where (a) and (b) involve an axial current
and (c) contains a vector current. As one of the pions in
diagram (c) is neutral, it does not contribute at tree level.
Inclusion of final-state interactions, due to successive

elastic Kπ scatterings [16], yields three families of dia-
grams, as in Fig. 2. It is worth noting that these series do not
represent a loop expansion, because loops are also present
within the Kπ amplitude. The Wþ is shown explicitly, just
to indicate the various topologies, and becomes pointlike in
calculations. A family of FSIs endows the forward propa-
gating resonance in Fig. 1(b) with a dynamical width
[23]. Processes involving resonances in Dþ → K−πþπþ
axial current decay have already been considered in
Refs. [14,15,17], whereas quasi-two-body axial FSIs were
discussed in Ref. [7]. The general form of the vertex
hK−πþjAμjDþi was defined by Kuhn and Mirkes [24].
When multiplied by hπþjAμj0i, the corresponding ampli-
tude becomes proportional to M2

πF4, where F4 is a form
factor. As the pion mass is very small and effective theories

(a) (b) (c)

+= +W

FIG. 1 (color online). Topologies for the weak vertex. The dotted line is a scalar resonance and the wavy line is the Wþ, which is
contracted to a point in calculations.
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FIG. 2 (color online). Final-state interactions starting from the axial weak vertex (axial series) and from the vector weak vertex (vector
series). In the former, the pion plugged in to theWþ is always positive, whereas the K̄ inside the loop can be either positive or neutral in
the latter, the tree diagram does not contribute, since one of the pions plugged in to the Wþ is neutral.
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cannot give rise to a large F4, this contribution is expected
to be small, as stressed in Ref. [25].
An important lesson drawn from our previous study [16]

is that, for some yet unknown reason, the vector weak
amplitude, represented by diagram ðcÞ of Fig. 1, seems to
be favored by data [4]. This amplitude receives no con-
tribution at tree level, since the Wþ emitted by the c-quark
decays into a πþπ0 pair. Therefore, leading terms in this
process necessarily involve loops, which bring imaginary
components into the amplitude.
The first nonvanishing contribution to the vector series

is given in Fig. 3. As the W is very heavy, one keeps
just hadronic propagators, which render loop integrals
finite. Denoting by A0 the amplitude for the process Dþ→
K0π0πþ without FSIs and by TKπ that for π0K̄0 → πþK−,
the amplitude A1 of Fig. 3 can be schematically written as

A1 ¼ −i
Z

d4l
ð2πÞ4 T

S
KπΔπΔKA0; ð2Þ

where l is the loop variable, Δπ and ΔK are pion and kaon
propagators, and A0 is the tree level amplitude, given by

A0 ¼ −
1ffiffiffi
2

p ½GFcos2θCFDKð0Þ�hπþπ0jVμj0ihK̄0jVμjDþi;
ð3Þ

derived in Appendix B, Eq. (B17). It is worth noting that
this amplitude has the same structure as those based on
factorization techniques [6], presented in Eq. (1). The
matrix element hK̄0jVμjDþi describes theD → WK̄ vertex,
Eq. (B13), including D�

s intermediate states [26], and
corresponds to form factors parametrized in terms of vector
and scalar nearest poles, Eq. (B14). The factor hπþπ0jVμj0i
is associated with the process W → ππ, shown in Fig. 4,
and includes the ρ with a dynamical width, Eq. (B10). The
bare resonance is treated by employing the formalism
developed in Ref. [20] and its width is constructed using
the P-wave elastic ππ amplitude.
The W → ππ form factor is timelike and its inclusion

into the vector series of Fig. 2 can, in principle, give rise
to final-state interactions depending on both ππ and Kπ
amplitudes. With the purpose of keeping complications to
a minimum, we consider just ππ interactions that occur
before the first Kπ scattering.
The evaluation of Fig. 3 requires the Kπ amplitude in the

interval 0.401 GeV2 ≤ s ≤ 2.993 GeV2. As LASS data [1]
begin only at s ¼ 0.681 GeV2, one covers the low-energy
regionbymeansof theoretical amplitudes, basedonunitarized
chiral symmetry[20].Our intermediateS-waveKπ amplitude,
denoted by TS

Kπ, is thoroughly discussed in Appendix C.
Using the results of (B17) in Eq. (2), one finds

AS
1ðm2

12Þ ¼ −i½GFcos2θCFDK
1 ð0Þ�

� ffiffiffi
2

p

3
TS
Kπðm2

12Þ
� Z

d4l
ð2πÞ4

1

DπDK

m2
ρ

Dρ

×
�
½M2

D þ 2M2
π þM2

K − 2m2
12 − l2 þDπ þDK�

m2
V

DV
þDπðM2

D −M2
KÞ
�
1

DV
−

1

DS

��
; ð4Þ

where GF is the Fermi constant θC is the Cabibbo angle
FDK
1 ð0Þ is a coupling constant [26] and the factor

ffiffiffi
2

p
=3

is associated with the transition K0π0 → K−πþ, where-
as Dπ ¼ ½ðl − p3Þ2 −M2

π�, DK ¼ ½ðl − PÞ2 −M2
K�,

DV ¼ ½l2 −m2
V �, DS ¼ ½l2 −m2

S�, in which the subscripts
V and S stand for the D�

sð2112Þ and D�
s0ð2317Þ states.

Finally, Dρ is a complex function defined by Eqs. (B15)
and (B16). This structure yields

_
K0

π+

π+

π 0

Ds*
(2)

(1)

(3)

K−

W

T

FIG. 3 (color online). Leading vector current contribution,
dressed by form factors and ππ interactions (in the small green
blob).
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FIG. 4 (color online). Structure of the W → ππ form factor. The blue blob is the elastic ππ amplitude.
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AS
1ðm2

12Þ ¼ −iα
ffiffiffi
2

p

3

�
TS
Kπðm2

12Þ
16π2

�

× fβISπKρV − ISπKV þ ISπρV þ ISKρV − γISKρVSg;
ð5Þ

with

α ¼ ½GFcos2θCFDK
1 ð0Þ�m2

ρm2
V; ð6Þ

β ¼ M2
D þ 2M2

π þM2
K −m2

ρ − 2m2
12; ð7Þ

γ ¼ −ðM2
D −M2

KÞðm2
V −m2

SÞ=m2
V; ð8Þ

and ISabcd, I
S
abcd are the loop integrals

ISabc ¼
Z

d4l
ð2πÞ4

16π2

DaDbDc
;

ISabcd ¼
Z

d4l
ð2πÞ4

16π2

DaDbDcDd
: ð9Þ

The form of these integrals are discussed in Appendix D.

III. VECTOR FSI SERIES

In the decay Dþ → K−πþπþ, there is no tree contri-
bution to the vector FSI series, as in Fig. 2. However,
before moving into this reaction, it is instructive to assess
the relative importance of allowed tree and one-loop
contributions in the decay Dþ → K̄0π0πþ, indicated in
Fig. 5. The amplitude describing the left diagram is
denoted by A0, the tree amplitude defined in Eq. (3)
and with final form given in Eq. (B17). Projecting out the
S-wave, we find

AS
0 ¼ −½GFcos2θCF1ð0Þ�

X
i

�
m2

VNi

m2
V − θi

× ½ðM2
D þ 2M2

π þM2
K − 2m2

12 −m2
VÞΠV

− ðM2
D þ 2M2

π þM2
K − 2m2

12 − θiÞΠθi �
�
; ð10Þ

Π½V;θi� ¼
1

2β
ln
½m2

V ; θi� − α213 − β

½m2
V ; θ� − α213 þ β

; ð11Þ

where θi and Ni are complex parameters given in Table I
(Appendix B) and mV ¼ mD�ð2112Þ. The first order ampli-

tude is obtained by replacing the isospin factor
ffiffiffi
2

p
=3with

−1=3 in Eq. (5).
Results for the moduli from tree and one-loop contri-

butions, displayed in Fig. 6, indicate a clear dominance of
the former. The main structural difference between both
terms is the factor fTS

Kπ=48π
2g in the latter, associated with

a final-state scattering. Its scale can be understood by
noting that chiral symmetry predicts this amplitude to be
TS
Kπ ¼ 2MπMK=F2 ∼ 13 at threshold whereas LASS data

[1] indicate that it reaches a maximum of TS
Kπ ∼ 50 around

m12 ∼ 1.33 GeV. Therefore the factor fTS
Kπ=48π

2g is
always smaller than 1=10 and pushes down the loop
contribution. This result can be taken as an indication that
the vector series, as given in Fig. 2, converges rapidly. The
confirmation of this hint depends, of course, on the explicit
calculation of next terms in the series.
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FIG. 5 (color online). Vector current diagrams contributing to the decay Dþ → K̄0π0πþ.

FIG. 6 (color online). Modulus of theDþ → K̄0π0πþ amplitude
(full line) and partial contributions from tree [Eq. (10)] (dashed
line) and one loop (dotted line).
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IV. RESULTS: S-WAVE

One of the purposes of this work is to understand the
role played by the high-energy components of intermediate
ππ and Kπ subamplitudes in the description of data.
Predictions from Eq. (5) for the phase and modulus of
½K−πþ�S, the S-wave K−πþ subamplitude in Dþ →
K−πþπþ, are given in Figs. 7 and 8.
As far as the ππ subsystem is concerned, the data ofHyams

et al. [27] are used in a parametrized form, in thewhole region
of interest, as discussed in Appendix B. For the sake of
producing a contrast, we also show curves corresponding to

the low-energy vector-meson-dominance approximation, in
which the P-wave amplitude is described by just an inter-
mediate ρ-meson, which amounts to using just the first term
in Eq. (B16). In the case of the Kπ amplitude, data are not
available for energies below 0.825 GeV [1] and two alter-
native extensions are given in Appendix C. One of them is
based on a two-resonance fit, which encompasses both low-
and high-energy sectors, whereas in the other one LASS data
[1] are used directly, when available, and extrapolated to the
threshold region bymeans of a fit, based on a unitarized chiral
symmetry structure. In the sequencewe refer to theseversions
as fitted and hybrid, respectively. The main difference
between them is that the former excludes data points around
E ∼ 1.7 GeV, shown in Fig. 10, where two-body unitarity is
violated.
Inspecting the figures, one learns that the improvement

in ππ phenomenology is more important for the modulus,
where it influences considerably the curve behavior and
increases significantly the range in energy where the
theoretical description proves to be reasonable. In the case
of the phase, effects associated with ππ phenomenology are
small and visible only above m12 > 1.2 GeV. On the other
hand, the use of either the fitted or hybrid Kπ amplitudes
produces equivalent results, except at the high-energy end,
where none of them is satisfactory. This seems to indicate
missing structures that could be associated with other
topologies in Dþ → K−πþπþ decay.
As experimental results for the FOCUS phase [4] include

an arbitrary constant, in Fig. 7 we also show our main result
displaced by −55°. One notices an overall good agreement
with data, from threshold up to m12 ∼ 1.4 GeV. As our
results were based on the vector series shown in Fig. 2,
which does not contain a tree contribution, there are two
sources of complex phases in this problem. One of them is
that associated with the Kπ amplitude, whereas the other
one is less usual and due to the loop including the weak
vertex. Our results indicate that the latter is rather important
over the whole energy range considered. This shows the
relevance of proper three-body interactions, which share
the initial momentum with all final particles at once.

V. CONCLUSIONS

In this work we calculate the weak vector current
contribution to the process Dþ → K−πþπþ, employing
intermediate ππ and Kπ intermediate subamplitudes valid
within most of the Dalitz plot. Together with the use of a
proper P-wave weak vertex, this extends a previous study
made on the subject [16]. We still concentrate on ½K−πþ�S,
the S-waveK−πþ subamplitude, and present predictions for
both the phase and modulus, given by the blue curves in
Figs. 7 and 8, that are quite satisfactory from threshold to
1.4 GeV. Results for the modulus, in particular, improve
considerably from our previous findings, showing that
intermediate ππ subamplitudes are important and need to
be treated carefully. As far as the phase is concerned, the

FIG. 7 (color online). Predictions for theDþ → K−πþπþ phase
(full blue curve), based on the parametrized ππ and Kπ
amplitudes given in Appendixes B and C, compared with FOCUS
data [4]. The blue dotted curve is the previous one shifted
by −55° the dashed blue curve is based on the one-ρ pole
approximation for the ππ amplitude in the red symbol continuous
curve the hybrid model was used for the Kπ amplitude.

FIG. 8 (color online). Predictions for Dþ → K−πþπþ modulus
(full blue curve), based on the parametrized ππ and Kπ
amplitudes given in Appendixes B and C, compared with FOCUS
data [4], using arbitrary normalization. The dashed blue curve is
based on the one-ρ pole approximation for the ππ amplitude in
the red symbol continuous curve the hybrid model was used for
the Kπ amplitude.
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most prominent feature is the fact that it has a large negative
value at threshold. In QCD, loops are the only source of
complex amplitudes and, in this problem, the energy
available in the loop of Fig. 3 can be larger than both Kπ
and Kρ thresholds. This yields a rich complex structure for
the loop containing theW,with a phaseΘLwhich adds to the
phaseΘKπ already present in the intermediateKπ amplitude.
ThereforeΘL represents the gap between the two- and three-
body phases, which depends on bothm12 andm23, showing
that Watson’s theorem does not apply to this case.
On general grounds, the weak process in the Dþ →

K−πþπþ decay is known to include both axial and vector
contributions. In this work we concentrated on the latter,
leaving the evaluation of the axial vertex to a future work,
even expecting it to give a small contribution, proportional to
M2

π . Nevertheless, our present results both confirm the
importance of weak vector currents in this branch of Dþ
decays and indicate that proper three-body final-state
interactions, in which the initial four-momentum of the
Dþ is shared among all final particles, are rather visible over
the whole energy range considered. This is consistent with
the dominance of weak vector currents observed experi-
mentally in the Dþ → K̄0π0πþ decay [28]. In a parallel
study, to be presented elsewhere,we found that this feature is
also present in the P-wave projection of final-state Kπ
subamplitude, which has a nonvanishing phase at threshold.
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APPENDIX A: KINEMATICS

The momentum of the D-meson is P, whereas those
of the outgoing kaon and pions are p2, p1, and p3,
respectively. The invariant masses read

m2
12 ¼ ðp1 þ p2Þ2 ¼ M2

π þM2
K þ 2p1 · p2; ðA1Þ

m2
13 ¼ ðp1 þ p3Þ2 ¼ 2M2

π þ 2p1 · p3; ðA2Þ

m2
23 ¼ ðp2 þ p3Þ2 ¼ M2

π þM2
K þ 2p2 · p3; ðA3Þ

and satisfy the constraint

M2
D ¼ m2

12 þm2
13 þm2

23 − 2M2
π −M2

K: ðA4Þ
The projection into partial waves for subsystem (12) is
performed by going to its center of mass and writing

m2
13 ¼ α213 − β12 cos θ; ðA5Þ

m2
23 ¼ α223 þ β12 cos θ; ðA6Þ

α213 ¼ ½M2
D þ 2M2

π þM2
K −m2

12

−ðM2
D −M2

πÞðM2
K −M2

πÞ=m2
12�=2; ðA7Þ

α223 ¼ ½M2
D þ 2M2

π þM2
K −m2

12

þðM2
D −M2

πÞðM2
K −M2

πÞ=m2
12�=2; ðA8Þ

β12 ¼ 2Q0q0; ðA9Þ

q0 ¼ 1

2
ffiffiffiffiffiffiffiffi
m2

12

p ½m4
12 − 2ðM2

π þM2
KÞm2

12 þ ðM2
π −M2

KÞ2�1=2;

ðA10Þ

Q0 ¼ 1

2
ffiffiffiffiffiffiffiffi
m2

12

p ½m4
12 − 2ðM2

π þM2
DÞm2

12 þ ðM2
π −M2

DÞ2�1=2;

ðA11Þ

where θ is the angle between the momenta of the pions.

APPENDIX B: BASIC Dþ → K̄0π0πþ AMPLITUDE

Our description of the decay Dþ → K−πþπþ includes
both the primary weak vertex and hadronic final-state
interactions, associated with successive Kπ scatterings.
When theW → ππ vertex is corrected by means of timelike
form factors, both the ρ-meson and P-wave ππ interactions
also become part of the problem. This could, in principle,
give rise to a structure of final interactions depending on
both ππ and Kπ amplitudes. Therefore, the amplitude for
the process DþðPÞ → K̄0ðpKÞπ0ðp0ÞπþðpþÞ at tree level,
given in Fig. 5 (left) and denoted by A0, becomes the basic
building block in the evaluation of the weak vector series.
As it includes the W → ππ form factor, we consider the
following steps:

1. Construction of the ππ amplitude

The diagrams of Fig. 4 depend on TP1
ππ , the I ¼ 1, P-

wave ππ amplitude. The momenta of the outgoing pions are
pþ and p0, whereas those inside the two-pion loop are qþ
and q0. The total momentum is Q¼ðpþþp0Þ¼ðqþþq0Þ
and the loop integration variable is l ¼ ðqþ − q−Þ=2.
Assuming that, at low energies, ππ interactions are domi-
nated by a Oðq2Þ contact term supplemented by the Oðq4Þ
ρ-pole contribution, the effective Lagrangians in Ref. [20]
yield the tree contribution

T̄1 ¼ ðt − uÞ
�
1

F2
−
2G2

V

F4

s
s −m2

ρ

�
; ðB1Þ

where F is the pion decay constant and GV describes the
ρππ coupling. The approximation GV ¼ F=

ffiffiffi
2

p
∼ 66 MeV

yields a more compact structure, given by

T̄1 ¼ −
ðt − uÞ
F2

m2
ρ

s −m2
ρ
: ðB2Þ
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For free particles in the center of mass frame, ðt − uÞ ¼
ðs − 4M2

πÞ cos θ and P-wave projection gives rise to the
kernel

KP1 ¼ −
ðs − 4M2

πÞ
3F2

m2
ρ

s −m2
ρ
: ðB3Þ

The iteration of this kernel by means of intermediate two-
pion states produces the unitarized amplitude [21]

TP1
ππ ¼ KP1

1þKP1Ωππ
; ðB4Þ

whereΩππ is a divergent loop function. Therefore, we write
it as the sum of an infinite constant Λ∞ and a regular
component Ω̄ππ, given by [16]

Ω̄ππ ¼ −
S

16π2

�
2 −

ffiffiffi
λ

p

s
ln

�
s − 2M2

π þ
ffiffiffi
λ

p

2M2
π

�
þ iπ

ffiffiffi
λ

p

s

�
;

λ ¼ s2 − 4sM2
π; ðB5Þ

where S ¼ 1=2 is the symmetry factor for identical
particles. After regularization, one finds

TP1
ππ ¼ KP1

1þKP1ðΩ̄ππ þ CππÞ
; ðB6Þ

where Cππ is an arbitrary constant.
The I ¼ 1 amplitude to be used in the evaluation of

theW → ππ vertex (Fig. 4) is given by Eq. (B6) multiplied
by ð3 cos θÞ. It is denoted by T1

ππ and can be cast in the
covariant form

T1
ππ ¼ 3

ðt − uÞ
s − 4M2

π

TP1
ππ ¼ −6

ðpþ − p0Þνlν

s − 4M2
π

TP1
ππ : ðB7Þ

2. Construction of the W → ππ vertex

The diagrams of Fig. 4 correspond to the following
matrix element of the vector current Vμ:

hπþπ0jVμj0i¼−
ffiffiffi
2

p �
m2

ρ

Q2−m2
ρ

�

×

�
ðpþ−p0Þμþi6

ðpþ−p0Þν
Q2−4M2

π
TP1
ππ ðQ2ÞIμν

�
;

Iμν¼
Z

d4l
ð2πÞ4

lμlν

½ðlþQ=2Þ2−M2
π�½ðl−Q=2Þ2−M2

π�
:

ðB8Þ
The regular part of Iμν can be related with Eq. (B5), and one
has [29,30]

Iμν ¼
i
6
½Q2 − 4M2

π�
�
gμν −

QμQν

Q2

�
½Ω̄ππ þ Cππ� ðB9Þ

and finds

hπþπ0jVμj0i ¼ −
ffiffiffi
2

p
ðpþ − p0Þμ

m2
ρ

Dρ
; ðB10Þ

Dρ ¼ ðQ2 −m2
ρÞ − ðm2

ρ=3F2ÞðQ2 − 4M2
πÞ½½Ω̄ππ þ Cππ�:

ðB11Þ

3. Construction of A0

The direct reading of the left diagram in Fig. 5 yields the
tree amplitude A0 as

A0 ¼ −
1ffiffiffi
2

p ½GFcos2θC�hπþπ0jVμj0iFDKð0ÞhK̄0jVμjDþi

¼ ½GFcos2θCFDKð0Þ�ðpþ − p0Þμ
m2

ρ

Dρ
hK̄0jVμjDþi;

ðB12Þ
where GF is the Fermi constant, θC is the Cabibbo angle,
and FDKð0Þ ¼ 0.75 [26] is the empirical phenomenological
constant, and the heavy-sector vector-current matrix
element is written as

hK̄0jVμjDþi ¼ ðPμ
D þ pμ

KÞFDK
1 ðQ2Þ

−Qμ M
2
D −M2

K

Q2
½FDK

1 ðQ2Þ − FDK
0 ðQ2Þ�;

ðB13Þ
where form factors are parametrized in terms of vector and
scalar cs̄ nearest poles as [26]

F1ðQ2Þ ¼ 1

1 −Q2=m2
V

and F0ðQ2Þ ¼ 1

1 −Q2=m2
S
;

ðB14Þ

with V → D�
sð2100Þ and S → D�

sð2317Þ.

4. Tuning of A0 to ππ data

The denominator Dρ in Eq. (B12) describes the ρ
meson and includes its dynamically generated width.
The function Dρ does not vanish along the real axis, in
spite of the bare ρ propagators in Fig. 4. It has a zero in

TABLE I. Fitted parameters in Eq. (B16).

k θR θI NR NI

ρ 0.580133 − 0.1137172 0.6131598 − 0.1107509
1 2.539625 − 0.6468928 0.2418401 − 0.1080483
2 3.642091 − 0.1595399 0.0016668 − 0.1941643
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the second Riemann sheet, quite close to the value quoted
in Ref. [31], namely, at Q2¼ðmρ− iΓρ=2Þ2, mρ ¼ 762.4�
1.8 MeV, Γρ ¼ 145.2� 2.8 MeV.
In order to simplify calculations one notes that the ratio

m2
ρ=Dρ in Eq. (B11) is related to the P-wave amplitude,

Eq. (B4), by

m2
ρ

Dρ
¼ −

3F2

s − 4M2
π
TP1
ππ : ðB15Þ

Using the data from Hyams et al. [27] for TP1
ππ , we fitted this

ratio using the structure

m2
ρ

Dρ
¼ Nρ

s − θρ
þ N1

s − θ1
þ N2

s − θ2
; ðB16Þ

with parameters θk ¼ θkR þ iθkI and Nk ¼ NkR þ iNkI
given in Table I.
In Fig. 9 we display the importance of the inclusion of

higher poles in Eq. (B16) in extending the agreement with
Hyams et al. [27] data. One thus gets an expression for A0

to be used in calculations, which includes a compatible
description of ππ data, written as

A0 ¼ −½GFcos2θCFDKð0Þ�
�

Nρ

Q2 − θρ
þ N1

Q2 − θ1
þ N2

Q2 − θ2

��
½M2

D þ 2M2
π þM2

K − 2ðp0 þ pKÞ2 −Q2

þðp2
0 −M2

πÞ þ ðp2
K −M2

KÞ�
m2

V

Q2 −m2
V
− ðp2

0 −M2
πÞ
ðM2

D −M2
KÞðm2

V −m2
SÞ

ðQ2 −m2
VÞðQ2 −m2

SÞ
�
: ðB17Þ

APPENDIX C: Kπ AMPLITUDE

In this work, one needs the elastic Kπ amplitude over the
full Dalitz plot. As there are no data [1] available in the
interval 0.401 GeV2 ≤ s ≤ 0.681 GeV2, one encompasses
this region with the help of a theoretical amplitude, based
on the unitarized chiral symmetry. This model has been
discussed in detail in Refs. [16,32] and here we just
summarize its main features.
For each spin-isospin channel, the unitary amplitude TLI

is obtained by resumming the infinite geometric series

TLI ¼ KLI −KLI½Ω̄Kπ þ CLI�KLI

þKLI½Ω̄Kπ þ CLI�KLI½Ω̄Kπ þ CLI�KLI þ � � �

¼ KLI

1þ ½Ω̄Kπ þ CLI�KLI
; ðC1Þ

where KLI is a kernel and the function Ω̄Kπ , related with
the two-meson propagator, is given by [16]

FIG. 9 (color online). Results for the ππ phase and modulo with only one-ρ (dashed) and adding another two poles (continuous),
compared with Hyams et al. [27] (dotted).
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FIG. 10. Inelasticity parameter η for S1=2 LASS data.
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Ω̄Kπ ¼ 1þM2
π þM2

K

M2
π −M2

K
ln

Mπ

MK
−
M2

π −M2
K

s
ln

Mπ

MK

−
ffiffiffi
λ

p

s
ln

�
s −M2

π −M2
K þ ffiffiffi

λ
p

2MπMK

�
þ iπ

ffiffiffi
λ

p

s
;

λ ¼ s2 − 2sðM2
π þM2

KÞ þ ðM2
π −M2

KÞ2; ðC2Þ

and CLI is a constant. Chiral perturbation theory deter-
mines the kernelsKLI as the sum of anOðq2Þ contact term
[19], supplemented by Oðq4Þ corrections, which we
assume to be dominated by s-, t-, and u-channel

resonances [20]. In order to fit LASS data [1], we also
included a higher mass resonance, as described
in Ref. [32].
In the case of the S1=2 wave (L, I ¼ 0, 1=2), the

theoretical kernel is written as KS1=2 ¼ KBG þKH, where
KBG is a real background and KH includes resonances. The
former is given by KBG ¼ KC þKS þ cVKV, with

KC ¼ 1

F2
½s − 3q2=2 − ðM2

π þM2
KÞ�; ðC3Þ

KS ¼ −
4

F4
f½~c2dm2

0 − 2~cdð~cd − ~cmÞðM2
π þM2

KÞ − 2~c2dq
2�þ½~cdm2

0 − 2ð~cd − ~cmÞM2
π�½~cdm2

0 − 2ð~cd − ~cmÞM2
K�ItSðq2;m2

0Þg

þ 1

3F4
f½c2dm2

8 − 2cdðcd − cmÞðM2
π þM2

KÞ − 2c2dq
2�þ½cdm2

8 − 2ðcd − cmÞM2
π�½cdm2

8 − 2ðcd − cmÞM2
K�ItSðq2;m2

8Þg

þ 1

2F4
f½c2dðm2

K�
0
þ 2M2

π þM2
K − sþ 2q2Þ þ 2cdðcd − cmÞðM2

π þM2
KÞ�

þ½cdm2
K�

0
− ðcd − cmÞðM2

π þM2
KÞ�2IuSðq2;m2

K�
0
Þg; ðC4Þ

KV ¼ −
�
GV

F2

�
2

f½2ðs −M2
π −M2

KÞ þm2
ρ − 2q2�þm2

ρ½m2
ρ þ 2ðs −M2

π −M2
KÞ�ItSðq2;m2

ρÞg

−
1

4

�
GV

F2

�
2

f½m2
K� þ sþ 2q2�þ½m2

K� ðm2
K� þ 2ðs −M2

π −M2
KÞÞ − ðM2

π −M2
KÞ2�IuSðq2;m2

K� Þg; ðC5Þ

ItSðq2;m2Þ ¼ −
1

4q2
ln

�
1þ 4q2

m2

�
; ðC6Þ

IuSðq2;m2Þ ¼ 1

4q2
ln

�
1 −

4q2

m2 þ s − 2ðM2
π þM2

KÞ
�
; ðC7Þ

where F, cd, cm, c̄d, c̄m, and GV are coupling constants and the CM three-momentum is

q2 ¼ 1

4s
½s2 − 2sðM2

π þM2
KÞ þ ðM2

π −M2
KÞ2�: ðC8Þ

FIG. 11 (color online). Fits for the modulus and phase of the KπS1=2 LASS data. Points within the regions indicated as gap in the top
axis were excluded from the fit.
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Two s-channel resonances are incorporated as sum of Breit-
Wigner functions [32]

KH ¼ −
3

2F4

�½cds − ðcd − cmÞðM2
π þM2

KÞ�2
s −m2

K�
0
þ ig2aQa=8π

ffiffiffi
s

p

þ ½cdbs − ðcdb − cmbÞðM2
π þM2

KÞ�2
s −m2

b þ ig2bQb=8π
ffiffiffi
s

p
�
; ðC9Þ

gi ¼ Ai þ Bis; ðC10Þ

Qi ¼
ffiffiffi
s

p
2

ð1 − h2i =sÞ: ðC11Þ

The usual inelasticity parameter η, evaluated for S1=2 data,
is shown in Fig. 10. Points for which η > 1 within error
bars were discarded in our fit.
We have extended S1=2Kπ data to threshold by means of

two different fits. The first one includes just a single
resonance and holds for energies smaller than 1.33 GeV,
whereas the second one includes two resonances and is
valid over the whole Dalitz plot. They correspond, respec-
tively, to χ2=n:d:f: ¼ 0.55 and χ2=n:d:f: ¼ 1.62. Our
parameters, in suitable powers of GeV, are F ¼ 1.02722,
GV ¼ 0.0686287, m8 ¼ m0 ¼ 0.983 and CS1=2 ¼
1.124899 × 10−2, mK�

0
¼ 1.108858, cd ¼ 0.0254505,

cm ¼ 0.1483455, Aa ¼ 4.563646, Ba ¼ −2.055842,
ha ¼ 1.138489, cV ¼ 0.26200 for the single resonance
fit and CS1=2 ¼ −2.273182 × 10−3, mK�

0
¼ 1.338404,

cd ¼ 0.026607, cm ¼ 0.017428, Aa ¼ 4.952313, Ba ¼
−1.956429, ha ¼ 1.130126, mb ¼ 2.003338, cdb ¼ 0,
cmb ¼ 0.166268, Ab ¼ 5.042537, Bb ¼ −7.182061, hb ¼
1.809129, and cV ¼ 0.89272 for the two-resonance case.
Both fits for the modulus and phase are given in Fig. 11.

In the Dþ → K−πþπþ decay amplitude, alternatively,
we can use directly empirical data from LASS [1] and

merge it with the low-energy fit, where there are no data.
This became what we called hybrid amplitude.
In Fig. 12 we show the real and imaginary components

of the amplitude. One notices that values for the real part at
threshold are different, namely, 24 and 30, and they can be
compared with those obtained by ChPT [33] and dispersion
relations [34], respectively, T ¼ 21.7 and T ¼ 25.5. These
values indicate that the single resonance fit is more suitable
to describe low-energy behavior. Nevertheless, in the
Dþ → K−πþπþ calculations we consider both hybrid
and two-resonance fits.

APPENDIX D: LOOP INTEGRALS

ISabc ¼
Z

d4l
ð2πÞ4

16π2

DaDbDc
;

ISabcd ¼
Z

d4l
ð2πÞ4

16π2

DaDbDcDd
:

We begin by discussing the integrals IS, given by
Eqs. (9). Their treatment can be simplified because the ρ
and the cs̄ state entering the form factor share the same
momentum. This allows one to write, for instance,

ISπKρV ¼ 1

M2
V − ΘR þ iΘI

½ISπKV − ISπKρ�; ðD1Þ

where Θ is the parameter defined in Appendix B. Similar
simplifications can be performed every time subscripts ρV
or ρS occur.
The integral ISπKρ is important in this problem because its

imaginary part is determined by two different thresholds,
associated with cuts along Kπ and Kρ propagators. Using
results from Appendix B, one writes

ISπKρ ¼
Z

d4l
ð2πÞ4

16π2

½ðl − p3Þ2 −M2
π�½ðl − PÞ2 −M2

K�
×

Nρ

l2 − ΘR þ iΘI
: ðD2Þ

Representing this function by means of Feynman param-
eters and performing one of the integrals analytically, one
finds

ISπKρ ¼ iNρΠπKρ; ðD3Þ

ΠπKρ ¼ −
Z

1

0

daJπKρðaÞ; ðD4Þ

with

JπKρðaÞ ¼
1ffiffiffi
λ

p
��

ln
jF1∥G2j
jG1∥F2j

�
þ i½θJ�

�
; ðD5Þ

FIG. 12 (color online). Real and imaginary components of the
S1=2 Kπ amplitude fitted to LASS data (squares) and extended to
low energies using chiral symmetry.
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θJ ¼ ½θF1 − θF2 − θG1 þ θG2�; ðD6Þ

F1;2 ¼
j2M2

Daþ B∓ ffiffiffi
λ

p j
M2

D
eiθF1;2 ; ðD7Þ

G1;2 ¼
jB∓ ffiffiffi

λ
p j

M2
D

eiθG1;2 ; ðD8Þ

and

B ¼ ½ΘR − iΘI −M2
π −M2

K þm2
12 − aðM2

D −M2
π þm2

12Þ�;
ðD9Þ

λ ¼ B2 − 4M2
DC; ðD10Þ

C ¼ ½ð1 − aÞM2
π þ aM2

K − að1 − aÞm2
12�: ðD11Þ

The ρ width is incorporated into the factors Nρ, ΘI , and the
case of a pointlike resonance is recovered by making
Nρ → 1, ΘI → ϵ.
The integral ISπKV is

ISπKV ¼
Z

d4l
ð2πÞ4

16π2

½ðl − p3Þ2 −M2
π�½ðl − PÞ2 −M2

K�
×

1

l2 −m2
V
¼ iΠπKV; ðD12Þ

and its evaluation is totally similar. However, as now
mV > MD, its imaginary part comes just from the cut of
the diagram along the Kπ subsystem. Integrals ISπρV , I

S
KρV ,

and ISKρS do not depend on m2
12.
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