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The observed leptonic mixing pattern could be explained by the presence of a discrete flavor symmetry
broken into residual subgroups at low energies. In this scenario, a residual generalized charge parity (CP)
symmetry allows the parameters of the Pontecorvo-Maki-Nakagawa-Sakata matrix, including Majorana
phases, to be predicted in terms of a small set of input parameters. In this article, we study the mixing
parameter correlations arising from the symmetry group A5 including generalized CP subsequently broken
into all of its possible residual symmetries. Focusing on those patterns which satisfy present experimental
bounds, we then provide a detailed analysis of the measurable signatures accessible to the planned reactor,
superbeam and neutrinoless double-beta decay experiments. We also discuss the role which could be
played by high-precision measurements from longer term projects such as the Neutrino Factory. This work
provides a concrete example of how the synergies of the upcoming experimental program allow flavor
symmetric models to be thoroughly investigated. Indeed, thanks to the rich tapestry of observable
correlations, we find that each step of the experimental program can make important contributions to the
assessment of such flavor-symmetric patterns, and ultimately all patterns that we have identified can be
excluded, or strong evidence found for their continued relevance.
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I. INTRODUCTION

The existence of three families of fermions in the
standard model (SM), identical in all properties apart from
their masses, is as yet unexplained by any physical
principle or mechanism. Moreover, the discovery that both
quarks and leptons permit complementary but distinct
descriptions in terms of the flavor states which diagonalize
the weak interactions and the states which diagonalize their
mass terms has shown that the connection between families
betrays a precise structure which is an essential component
in our description of the physical world. Explaining the
origins of this flavor structure has been a recurring theme in
proposed extensions of the SM. One such program is the
application of discrete flavor symmetries, predominately in
the lepton sector, where the flavor quantum numbers are
associated with a new symmetry and particles are assigned
to its irreducible representations. This can provide a way to
unify the three families into a single mathematical object.
However, as the lepton masses are known to be distinct, any
non-Abelian symmetry can only be exact above the scale of
mass generation. Nevertheless, its existence at high energy
shapes the theory, and the residual symmetries which
survive the breaking procedure at low energies can play
an important role in the structure of flavor observables.

The paradigm of a non-Abelian flavor symmetry
breaking into residual symmetries has been used by
many authors to make predictions about the six mixing
angles and phases which constitute the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix and parametrize
neutrino mixing: θ12, θ13, θ23, the Dirac phase δ and two
Majorana phases α21 and α31. For a recent review of such
models see e.g. Ref. [1]. Although many of the earliest
models were designed to predict a very small value of θ13, a
prediction now firmly ruled out [2–4], a number of models
remain consistent with the current data, many of which are
based on groups taken from the Δð6n2Þ family: Δð96Þ
[5,6], Δð150Þ [7], Δð600Þ [8] and Δð1536Þ [9]. This
connection was strengthened in Ref. [10] which showed
that, based on only a few generic model building assump-
tions, if the full PMNS matrix is to be specified by the
symmetry alone (so-called “direct” models [1]), the only
possible predictions which would agree with current data
are those arising (minimally) from Δð6n2Þ. In general,
however, the existence of residual symmetries amongst the
leptonic mass terms may not fully specify the mixing
pattern. In these “semidirect” models [1] the symmetries
reduce the degrees of freedom necessary to describe the
mixing parameters by defining a correlation between
previously independent parameters (sometimes known as
mixing sum rules [11–14]). Often these correlations
between mixing angles and phases can be derived from
quite generic analyses of the residual symmetries present in
a system without needing to specify a full UV-complete
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theory [15–21]. As such, focusing on these relations can be
an effective way to compare a wide class of models to
data [17–24].
To date, the fine structure of the PMNS matrix has been

inaccessible to experiment, preventing the study of subtle
parameter correlations. Current measurements of the mix-
ing angles have 3σ uncertainties of around 6.9% on θ12,
7.3% on θ13 and 16.7% on θ23 [25].1 All three of the CP
phases are unconstrained at this significance level;
although, some low-significance hints for a maximally
CP-violating value of the Dirac phase δ ≈ 3π=2 have been
observed [25,26]. Therefore the upcoming experimental
work will focus on two key topics: the precision determi-
nation of the mixing angles and the first measurements of
the CP phase δ. This will open the door for studies of the
correlations between mixing angles, and between mixing
angles and phases, that are predicted by models of flavor
symmetries.
In the most popular formulation of models with discrete

flavor symmetries, the constraints on the mass matrices
used to derive the PMNS matrix cannot remove a number
of complex phase degrees of freedom. This results in an
inability to predict the Majorana phases and, in general,
lessens the predictivity of the model. However, by impos-
ing a generalized CP symmetry (GCP), phase information
may be accessible and dictated by the flavor structure itself.
This can lead to very predictive scenarios, where all six
mixing parameters are related to a small number of input
parameters [27]. GCPs were first explored in the context of
discrete and continuous groups in Ref. [28]; however, they
have recently been revived due to the question of con-
sistency between a CP symmetry and discrete flavor group
[27,29,30]. This has lead to interesting work studying the
predictions of models with imposed flavor and GCP
symmetries for a number of groups such as A4 [29,31],
S4 [27,32–35], Δð48Þ [36,37] and Δð96Þ [38] along with
more comprehensive analyses of the families Δð3n2Þ and
Δð6n2Þ [39–41]. (See also Refs. [42,43] for further appli-
cations of GCP symmetries.)
In this article, we present a detailed analysis of a single

group: the alternating group on five elements, A5. This was
first introduced to leptonic flavor physics in Ref. [44] via
the study of golden ratio mixing [45,46]: a possible pattern
of the PMNSmatrix with θ13 ¼ 0, θ23 ¼ π=4 and a value of

θ12 related to the golden ratio φ ¼ 1þ ffiffi
5

p
2

, tan θ12 ¼ 1=φ.
This pattern has been shown to be a prediction of a number
of different models based on A5 [44,46–50]; however, it is
not the only fully specified mixing pattern associated with
direct models based on this group. If a Z3 subgroup is
preserved among the charged leptons and a Z2 × Z2 is
preserved among the neutrinos, a pattern with θ13 ¼ 0,
θ23 ¼ π=4 and cos θ12 ¼ φ=

ffiffiffi
3

p
can be found [21,51,52].

Further patterns are also possible when a Z2 × Z2 sym-
metry is preserved in the charged leptons while a different
Z2 × Z2 remains in the neutrino sector, which predicts a
large value of θ13, θ13 ≈ 17.9° [52].
Needless to say, the patterns above are in severe tension

with the current global data by dint of their θ13 predictions
alone; however, the possibility remains that symmetries
such as these do not completely survive at low energies and
that a semidirect approach may remain viable. In this work,
we consider the group A5 with a GCP symmetry, deriving
the most general GCP transformation which could be
implemented for this group. We assume that the flavor
group with GCP is broken into a set of residual symmetries
at low energies insufficient to fix all of the oscillation
parameters. We compute all possible predictions for the
induced correlations amongst the mixing parameters. These
are compared to the current data, and we identify those
which are compatible with the current bounds. The viable
patterns that we identify are highly predictive, expressing
all six parameters of the PMNS matrix in terms of a single
unphysical angle. We take particular care in assessing the
phenomenology of the correlations between mixing angles
and phases for these viable models: discussing their
accessibility to reactor, long-baseline and neutrinoless
double-beta decay experiments, and highlighting particu-
larly interesting signatures to be tested. Although we have
restricted our attention to the group A5, this can be seen as
an illustrative choice and we stress the rich but moreover
readily testable phenomenology which exists in the
residual symmetry framework, much of which arises from
the predictions taken as a whole instead of resting on single
generic types of parameter correlation.
Thework presented in this paper is divided into two main

parts. In Secs. II–III, we discuss the assumptions behind
our framework, and explain the technical steps in our
derivation of the correlations. In Sec. IV, we focus on the
predictions themselves, presenting some simplified formu-
las for the correlations between observable quantities and
identifying their most interesting phenomenological sig-
natures. We also study a number of ways that the
correlations can be tested by upcoming reactor, superbeam
and neutrinoless double-beta decay experiments, as well as
possible longer-term experiments such as neutrino facto-
ries. We make our concluding remarks in Sec. V.

II. RESIDUAL FLAVOR AND GENERALIZED
CP SYMMETRIES

We assume the presence of a discrete flavor symmetry,
G, at high energies. To unify the three flavors, we assume
that the fields are assigned to a three-dimensional irreduc-
ible representation of this group, and the general multiplets
of leptons Ψ transform as

Ψα → ρðgÞαβΨβ;
1For alternative global analyses of oscillation data, see

Ref. [26].
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where ρ∶G → GLð3;CÞ represents a unitary representation
of G.2 Ensuring the existence of the three-dimensional
irreducible representation ρ restricts us to non-Abelian
groups.
As neutrinos are known to oscillate, they cannot have

degenerate masses and therefore the non-Abelian flavor
group,G, cannot be a symmetry of our low-energy effective
Lagrangian. Therefore, we assume that the full flavor
symmetry must be broken at low energies into two
Abelian residual symmetry groups, Ge and Gν, which
are unbroken in the charged-lepton and neutrino sectors,
respectively. We denote the leptonic mass terms in the
low-energy effective theory by

−Lλν ¼ ðeLÞαðmλÞαβðeRÞβ þ ðeRÞαðm†
λÞαβðeLÞβ

þ 1

2
ðνcLÞαðmνÞαβðνLÞβ þ

1

2
ðνLÞαðm†

νÞαβðνcLÞβ; ð1Þ

where the greek indices are flavor indices and the mass
matrices are 3 × 3 and complex valued. Due to the
anticommutation of the fermionic fields, one can show
that the Majorana mass matrix mν is restricted to being
complex symmetric.
We assume that there exist residual symmetries acting on

the left-hand charged and neutral leptons. If we denote a
general element of these subgroups by ge ∈ Ge and
gν ∈ Gν, the fields transform according to the following
rules:

ðeLÞα → ρðgeÞαβðeLÞβ; and ðνLÞα → ρðgνÞαβðνLÞβ:

Combining these relations with the Lagrangian in Eq. (1)
leads us to matrix relations which the mass terms must
satisfy if the residual symmetries are to be preserved at low
energies,

mλm
†
λ ¼ ρðgeÞ†ðmλm

†
λÞρðgeÞ; ð2Þ

mν ¼ ρðgνÞTmνρðgνÞ: ð3Þ

These relations constrain the forms of the mass matrices
and, as we show, knowledge of their existence can be used
to derive a form of the PMNS matrix, UPMNS.
Working from a bottom-up perspective, we deduce the

phenomenological consequences of a given choice of
residual symmetries Ge and Gν. The choice of residual
flavor groups is constrained in two ways. First, Ge and Gν

must be subgroups of the unbroken group G. Secondly, the
possible residual flavor symmetries must be subgroups of
the largest symmetry allowed by the mass terms in Eq. (1).

These maximal symmetries are best identified in the basis
where both mass terms are diagonal. In this basis, the most
general symmetry of the charged lepton mass matrices is
Uð1Þ3, which has discrete subgroups of the form Ge ¼ Zm
for any m or a direct product of such groups. For the
neutrino residual symmetry, the argument changes due to
the assumed Majorana nature of the mass term. In this
case the largest possible symmetry is smaller, Z2 × Z2,
which leaves us with only two choices, Gν ¼ Z2

or Gν ¼ Z2 × Z2.
In addition to a flavor symmetry G, we also assume the

presence of a GCP symmetry. A CP symmetry is under-
stood as a combination of charge conjugation and a parity
transformation; however, a generalized CP symmetry is
one which also acts on the flavor indices while making this
transposition. In Ref. [29], it was shown that ensuring the
consistency of a discrete flavor symmetry and a CP
symmetry often requires the introduction of a nontrivial
generalized CP symmetry.
We define our generalized CP symmetry to act on a set

of fields Ψα as

Ψα → XαβΨc
β;

where Xαβ is assumed to be a unitary matrix so as to
preserve the kinetic terms in the Lagrangian andΨc denotes
the conventional CP conjugate appropriate for the Lorentz
representation of the field Ψ. If a discrete flavor symmetry
is present, G, then a generalized CP symmetry must satisfy
a consistency equation [27,29]

XρðgÞ�X� ¼ ρðg0Þ; ð4Þ

where g and g0 are elements of G. For a faithful repre-
sentation ρ, this relation can be seen as establishing a
mapping from g to g0 which preserves the structure of the
group and therefore defines a group automorphism. In
Ref. [30], it was pointed out that a physical GCP trans-
formation must be restricted to a single irreducible repre-
sentation, and is related to a class-inverting automorphism
of G, meaning that g0 is mapped to an element in the
conjugacy class of g−1. We restrict our consideration to
involutory GCP transformations, requiring that the appli-
cation of the transformation twice is equivalent to the
identity, and therefore the X matrix satisfies an additional
constraint

XX� ¼ 1: ð5Þ

As with the flavor symmetry G, for our GCP symmetry
to leave the Lagrangian invariant the mass matrices must
satisfy further constraints. The GCP symmetry exchanges
the Hermitian conjugate terms in the Lagrangian of Eq. (1),
which remains invariant if the mass matrices obey the
relations

2Throughout this paper we assume that all representations are
unitary and therefore all group elements are represented by
unitary matrices.
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XTmνX ¼ m�
ν; ð6Þ

X†ðmλm
†
λÞX ¼ ðmλm

†
λÞ�: ð7Þ

If Eqs. (6)–(7) are unbroken relations at low energies, it
can be shown that all CP-violating effects of the PMNS
matrix vanish [27,29]. However, if only one of these
relations is preserved, the consistency of the flavor and
CP symmetries leads to novel constraints on the PMNS
matrix. In this paper, we assume that the GCP symmetry is
broken in the charged-lepton sector but is preserved in the
neutrino sector. For this to be consistent, the X matrix must
map the elements of the neutrino residual symmetry to
themselves,

XρðgνÞ�X� ¼ ρðgνÞ: ð8Þ

In summary, we assume a discrete flavor symmetry G
and a GCP symmetry implemented by X at high-energy
scales which is assumed to break into a subgroup Ge acting
on the charged-lepton mass terms and another subgroup Gν

which along with the GCP symmetry acts on the neutrino
mass terms. This leads to a system of constraints which the
mass matrices must satisfy: Eqs. (2)–(3), Eq. (6) and
Eq. (8). In the next section we show how knowledge of
these constraints alone can be used to predict the PMNS
matrix, including its Majorana phases.

A. Constructing the PMNS matrix using
symmetry constraints

Constraints on the mass matrices, as derived above, lead
to restrictions on their allowed form, and subsequently to
the matrices required to diagonalize them. We focus first on
the charged leptons. A constraint on the charged-lepton
mass matrix of the form in Eq. (2) can be rephrased as a
statement of commutation

½ρðgeÞ; ðmλm
†
λÞ� ¼ 0:

As the matrix ρðgeÞ is unitary and the matrix H ¼ mλm
†
λ is

Hermitian, there exists a basis such that they are simulta-
neously diagonalized,

∃Ue s:t:U
†
eUe ¼ 1; ρðgeÞd ¼ U†

eρðgeÞUe;

Hd ¼ U†
eHUe;

where ρðgeÞd andHd denote diagonal forms of the matrices
ρðgeÞ and H. As the charged leptons have distinct masses,
H is full rank. This implies that Ue is unique (up to
rephasing and reordering of columns). If ρðgeÞ is also
known to be full rank, Ue can also be found by diagonal-
izing this operator. In this way, by insisting on the relation
in Eq. (2), we can compute Ue solely from the group
element ρðgeÞ, and the symmetry alone specifies the mixing

matrix. However, a complication arises if ρðgeÞ is not full
rank. In this case, ρðgeÞ does not have a unique diagonal-
izing matrix, as in any basis in which it takes diagonal form,
further SU(2) transformations can be performed freely in its
degenerate eigenspace. Without knowledge of the mass
matrix, our knowledge of ρðgeÞ will only allow the
identification of the family of diagonalizing matrices of
ρðgeÞ, and Ue must take a more general form

Ue ¼ U0Reðϕ; γÞΦ;

where U0 is any matrix which diagonalizes ρðgeÞ, Reðϕ; γÞ
is a complex rotation in the degenerate subspace of ρðgeÞ by
an angle ϕ with a phase γ and Φ is a diagonal matrix of
phases.
In the neutrino sector, we have three constraints to

consider on the mass terms: one from the flavor symmetry,
one from the GCP symmetry and one ensuring their
consistency. Under a change of flavor basis, the matrix
X is mapped to

X → U†XU�:

As X is unitary and symmetric, Takagi factorization allows
us to express it as X ¼ ΩΩT for some unitary matrix Ω
which implies that we can choose a basis where X becomes
trivial [27]. In fact, this basis is not unique and the
remaining freedom can be used to further diagonalize
ρðgνÞ. In this basis the constraint in Eq. (6) implies that
the mass matrix is real valued

ðΩTmνΩÞαβ ∈ R:

As ρðgνÞ is diagonal and commutes with this matrix, we
know that the mass matrix in this basis must be diagonal up
to a basis change in the degenerate subspace of ρðgνÞ. As it
is purely real, the most general additional basis trans-
formation required to bring it into diagonal form is a
rotation in two dimensions

Uν ¼ ΩRνðθÞ;

where θ is the angle describing the real rotation. There
remains the possibility that the diagonal mass matrix is not
positive definite, in which case a diagonal rephasing must
occur. Without further knowledge of the mass matrix this
cannot be predicted, and in consequence, the Majorana
phases can be predicted only up �π or multiples thereof.3

We see that the GCP symmetry in the neutrino sector has
specified a special basis in which the residual flavor-
symmetry elements are diagonal and the mass matrix is

3We always work with the Particle Data Group parametrization
of the PMNS matrix [52], in which the Majorana phases are
defined by the diagonal matrix diagð1; eiα212 ; eiα312 Þ which take
physical values on the intervals αij ∈ ½0; 2πÞ.
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real. In this way, GCP symmetries help to fix some of the
rephasing degrees of freedom associated with diagonalizing
matrices and allow for the prediction of Majorana phases.
Combining the results for the charged-lepton sector and the
neutrino sector, we find the full PMNS matrix is given by

UPMNS ¼ ΦReðϕ; γÞU†
0ΩRνðθÞ; ð9Þ

where Re and Rν denote two unspecified rotations (Re ¼ 1
if ordðgeÞ > 2). We make two further simplifications: Φ is
removed by rephasing the charged leptons, and we note that
the angles θ and ϕ need only be defined over the interval θ,
ϕ ∈ ½0; πÞ, as shifts by π can be absorbed by unphysical
redefinitions of the complex phases.

III. MIXING PATTERNS FROM A5

The preceding section showed how the assumed residual
flavor and GCP symmetries can lead to expressions for the
PMNS matrix. In this section, we derive the possible
mixing matrices which arise by this method for the group
A5. First we discuss the structure of A5 and the possible
subgroups eligible to be taken as residual symmetries. Then
we derive the form of the most general GCP transforma-
tion. In the subsequent subsections, we consider all viable
combinations of CP and residual subgroups and present
those patterns which are consistent with the current global
data [25].

A. Subgroups and GCP symmetries

The group A5 can be defined as the group of even
permutations on five elements. It has the abstract presen-
tation

hS; TjS2 ¼ T5 ¼ ðSTÞ3i;

where S and T are the generators of the group and all group
elements can be expressed by a word made from these
distinguished elements. The structure of this group and its
representation theory have been discussed in the physics
literature before (see e.g. Refs. [44] and [48]) and we
abstain from deriving the explicit representations, deferring
the reader to these references instead. However, we briefly
recap those features of the group and its representations
most pertinent to our subsequent analysis.
We assume that the lepton doublets are assigned to a

three-dimensional representation. A5 has two distinct three-
dimensional irreducible representations, and in the follow-
ing we always work with the representation 3 of Ref. [48].
We have checked that the final results do not change if we
choose the alternative three-dimensional representation
instead. For our chosen representation, the generators S
and T can be expressed by

S ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA and T ¼ 1

2

0
B@

1 −φ −φg

φ −φg −1
−φg 1 φ

1
CA;

where φg ¼ 1−
ffiffi
5

p
2

represents the Galois conjugate4 of φ. We
note that this is a real representation and in our chosen
basis all group elements are real; it also forms a subgroup
of SU(3).
The nonidentity elements of A5 are either of order 2, 3 or

5 and can be partitioned into four conjugacy classes: one of
order 2 elements (15 members), one of order 3 elements (20
elements) and two of order 5 elements (12 members each).
The center of A5 is trivial, and the identity alone forms one
additional conjugacy class.
As described in Sec. II, to compute the PMNS matrix

from residual symmetries, we must first find Ue, the matrix
which diagonalizes the generator of the residual symmetry
of the charged-lepton mass term. To do so, we must identify
the eligible residual symmetry groups for Ge. This sym-
metry must be an Abelian subgroup of A5, of which there
are four kinds (up to isomorphism). Three of these
subgroups are cyclic groups: Z2, Z3 and Z5. These are
the groups generated by a single element g, and its
members are those powers of g less than or equal to its
order

hgi ¼ fgnjs:t:n ≤ ordðgÞg:

As any element can be taken as the generator of a cyclic
group, there are 15 distinct subgroups ofZ2 in A5, ten ofZ3

and six of Z5. The diagonalizing basis for these groups is
simply the basis which diagonalizes the generator ρðgÞ.
In addition to the cyclic subgroups, there are also

noncyclic Abelian subgroups in A5. These are isomorphic
to the Klein four group Z2 × Z2 which is generated by
distinguished pairs of order-2 elements,

hg1; g2jg21 ¼ g22 ¼ ðg1g2Þ2i:

In fact, the 15 order-2 elements in A5 can be divided into
five triplets which (with the identity) define distinct four-
element groups. For these noncyclic groups, the diagonal-
izing basis is defined as that which diagonalizes the two
generators simultaneously.
Therefore, the different choices for the residual sym-

metry of the charged-lepton mass term can be divided into
four categories depending on the preserved subgroup:
Ge ∈ fZ2;Z3;Z5;Z2 × Z2g. For the residual symmetry
of the neutrino Majorana mass term, we are restricted to
taking subgroups of Z2 × Z2, leaving us with two options:
a single Z2 or the full Klein group Z2 × Z2.

4In this case Galois conjugation exchanges the two solutions of
the minimal polynomial over the rationals x2 − x − 1 ¼ 0.
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B. Deriving X

The matrix X which implements the generalized CP
symmetry, as discussed in Sec. II, must satisfy XX� ¼ 1
and be related to a class-inverting automorphism of the
group,

∀ g ∈ A5; ∃hg ∈ A5 s:t:

ðX�ρðgÞXÞ� ¼ ρðh−1g Þρðg−1ÞρðhgÞ;

where ρ is our chosen irreducible representation, generated
by the matrices S and T. We derive the most general form of
X for the group A5 by exploiting our knowledge of the
automorphism structure of the group. The automorphism
group of A5 is S5 (see e.g. [53]), and we identify two
important subgroups: inner and outer automorphisms. The
inner automorphism group, InnðA5Þ, comprises those auto-
morphisms which can be represented by conjugation by a
group element,

ϕh ∈ InnðA5Þ ⇔ ∀ g ∈ A5; ϕhðgÞ ¼ h−1gh:

This group can be found by considering the map from
element (h ∈ A5) to inner automorphism (ϕhðgÞ ¼ h−1gh),
and applying the first isomorphism theorem,

InnðA5Þ ≅ A5=ZðA5Þ ≅ A5;

where the final step uses the fact that A5 has trivial center,
ZðA5Þ ¼ 1. Therefore, the inner automorphisms of A5 are
given by A5 itself. The outer automorphism group is
defined as the quotient of the full automorphism group
by the inner automorphism group. For A5 it follows from
our discussion above that this is the unique group of two
elements Z2. Our derivation of X is greatly simplified by
A5 being an ambivalent group, where each element is
conjugate to its inverse. For such groups, the class-inverting
automorphisms are also class preserving. All inner auto-
morphisms of a group are class preserving, but the two
properties are not equivalent as there do exist class-
preserving outer automorphisms for some groups
[54,55]. However, for the case of A5 we have a single
nontrivial outer automorphism to check, and this auto-
morphism maps elements of order 5 from one conjugacy
class to the other. Therefore, in the present case, we
conclude that the class-preserving automorphisms are
precisely the inner automorphisms.
We can therefore simplify our defining constraint on X,

∃h ∈ A5; ∀g ∈ A5 ðX�ρðgÞXÞ� ¼ ρðh−1ÞρðgÞρðhÞ;

where the element h is the same for all elements g. As we
are working with a real representation, we can always
change basis so that all group elements are given by real
matrices, and we use this fact with Eq. (5) to make further
simplifications

∀g ∈ A5 XρðgÞX� ¼ ρðh−1ÞρðgÞρðhÞ;

which is equivalent to a commutation relation,

½ρðhÞX; ρðgÞ� ¼ 0:

We can then invoke Schur’s lemma to infer that as ρðhÞX
commutes with all the elements of an irreducible repre-
sentation, it must be a scalar matrix: ρðhÞX ¼ λ1, for some
complex constant λ. Requiring that XX� ¼ 1 constrains
ρðh2Þ ¼ 1=jλj2. However, by closure the element on the left
must be a member of A5 and, as our representation is
unitary, we conclude that λ is just a complex phase, λ ¼ eiθ

for θ ∈ R. Therefore, hmust be an order-2 element, and the
most general form of X which implements an involutory
class-inverting automorphism for A5 is given by

X ¼ eiθρðhÞ s:t: ordðhÞ ¼ 2:

In our basis, the consistency relation in Eq. (8) implies
that the X matrix must commute with the generator S of the
residual Z2 symmetry in the neutrino sector. Therefore not
all choices of h can be consistently implemented, and there
will be only three nontrivial X matrices (up to global
phases) for any given S. These are the three elements of the
Klein four group associated with S. If we work in the basis
where this group is diagonal, we find that

X1 ¼ eiθ

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA;

and X2 and X3 can be defined as permutations of this
matrix, where the row of the positive entry is denoted by the
subscript. It is necessary for us to find the basis in which X
is trivial. The necessary change of basis is given for Xi by
Ωi, where

Ω1 ¼ eiθ=2

0
B@

1 0 0

0 i 0

0 0 i

1
CA;

and similar definitions hold for i ¼ 2 and i ¼ 3. In this
basis, the generator of the residual symmetry in the neutrino
sector is diagonal and the GCP action is trivial. However,
due to the degenerate subspace in the Z2 generator, it
remains possible that the neutrino mass matrix is only block
diagonal and requires an orthogonal transformation to fully
diagonalize it. This rotation must be in the plane of the
degenerate subspace for the matrix S. Given these two
elements, the most general form of the matrix which maps
between neutrino flavor and mass bases is given by

Uν ¼ ΩRðθÞ;
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where RðθÞ is an orthogonal matrix effecting a rotation in
either the 12-, 13- or 23-plane. We also note at this point
that the overall phase included in our definition of Ω can be
seen to have no physical effect, and will be set to zero in
what follows.
In the following subsections, we consider all possible

residual symmetry groups in the charged-lepton sector. In
the first three sections we consider the charged-lepton
residual symmetry to be given by each of the 10 Z3

subgroups, 6 Z5 subgroups and 5 Z2 × Z2 subgroups. For
each of these subgroups, the basis is found which diago-
nalizes its elements, Ue. Due to the order of these
subgroups, this diagonalizing matrix is predicted exactly
with no remaining degrees of freedom [e.g. Re ¼ 1 in
Eq. (9)]. The PMNS matrix is then constructed combining
Ue with one of the forms of Uν found above by consid-
eration of the residual CP symmetry,

UPMNS ¼ U†
eΩRðθÞ:

Finally in Sec. IIIF, we consider less restrictive symmetries
whenUe is not fully specified by symmetry alone (Re ≠ 1).
For each configuration considered in this section, the

arbitrariness in eigenvector ordering and phasing is
accounted for by considering all permutations of rows
and columns of the PMNS matrix. From these permuted
matrices, we compute the mixing angles and phases, and
these are compared to global data. We report all patterns of
mixing angles found by this process which are consistent
with the current 3σ regions as reported in Ref. [25].

C. Predictions from Ge ¼ Z3 and Gν ¼ Z2

When the residual symmetry in the charged leptons is
taken as Z3, the diagonalizing matrix of the residual
symmetry generator T is uniquely specified (up to diagonal
rephasings and permutations). We have considered the 10
Z3 subgroups of A5 which could act as the residual
symmetry of the charged leptons. Although many different
group elements lead to viable mixing patterns, all viable
solutions can be described by a single matrix after a suitable
permutation and redefinition of the unphysical parameters.
This leads to a single viable set of correlations between the
angles. The angles can be derived from the PMNS matrix,

UPMNS ¼

0
BBBB@

ffiffi
2
3

q
− iffiffi

3
p 0

− iffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

iffiffi
6

p − 1ffiffi
3

p 1ffiffi
2

p

1
CCCCAR13ðθÞ; ð10Þ

where R13ðθÞ denotes a rotation in the 13-plane by an angle
θ. This leads to the following expressions for the mixing
angles:

sin2θ12 ¼
1

3–2sin2θ
; sin2θ13 ¼

2

3
sin2θ;

sin2θ23 ¼
1

2
:

This pattern is continuously connected to the tribimaximal
mixing pattern [56] which is recovered at θ ¼ 0, and is an
explicit example of a trimaximal pattern [57] where
jUα2j ¼ 1=

ffiffiffi
3

p ∀α ∈ fe; μ; τg. We have plotted these mix-
ing angle predictions for the full range of the unobservable
parameter θ in Fig. 1 in which the colored regions show the
current 3σ global intervals from Ref. [25]. Although
meeting our criterion of having mixing angles within the
current 3σ limits, we point out that this pattern’s prediction
for θ12 is currently excluded at greater than 2σ.
The Dirac phase for this pattern depends discretely on

the value of θ. It can be shown that

δ ¼
� 3π

2
θ ∈ ð0; π

2
Þ;

π
2

θ ∈ ðπ
2
; πÞ;

while the Majorana phases can be shown to take CP-
conserving values fα21; α31g ⊆ f0; πg for all values of θ.
From Fig. 1, we see that there are two intervals of the
unphysical parameter which lead to mixing angles which
satisfy the current global 3σ bounds. Due to the symmetry
of the expressions, these two solutions offer identical
predictions for values of θ12, θ13 and θ23; however, one
of these values lies in a region with δ ¼ π

2
while the other

predicts δ ¼ 3π
2
. Therefore, there are two sets of predictions

from the order-3 elements, differing only in their prediction
for the Dirac CP phase.
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FIG. 1 (color online). Mixing angles for Z3 as a function of the
internal parameter θ. This pattern predicts j sin δj ¼ 1 and
sin α21 ¼ sin α31 ¼ 0. The shaded regions show the 3σ allowed
region for the corresponding mixing angle according to current
global data [25].
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D. Predictions from Ge ¼ Z5 and Gν ¼ Z2

If the residual charged-lepton symmetry is assumed to be
Ge ¼ Z5, there are six subgroups which we need to
consider which could lead to a viable set of mixing
parameters. We find two distinct sets of correlations which
are viable for some range of the unphysical parameter,
leading to three distinct sets of mixing angle predictions.
The first set of predictions can be derived from the

following matrix,

UPMNS ¼

0
BBB@

φffiffiffiffiffiffiffi
2þφ

p − iffiffiffiffiffiffiffi
2þφ

p 0

− iffiffiffiffiffiffiffiffiffi
4þ2φ

p φffiffiffiffiffiffiffiffiffi
4þ2φ

p 1ffiffi
2

p

iffiffiffiffiffiffiffiffiffi
4þ2φ

p − φffiffiffiffiffiffiffiffiffi
4þ2φ

p 1ffiffi
2

p

1
CCCAR13ðθÞ; ð11Þ

which leads to mixing angles expressed by

sin2θ12 ¼
1

1þ φ2cos2θ
; sin2θ13 ¼

sin2θ
1þ φ2

g
;

sin2θ23 ¼
1

2
:

The mixing angle predictions from this pattern are shown
on the left of Fig. 2 as a function of the unphysical
parameter θ. In this case, the Dirac phase is maximally
CP violating with cos δ ¼ 0. However, as with the order-3
elements, the sign of sin δ depends on the parameter θ,

δ ¼
(

3π
2

θ ∈ ð0; π
2
Þ;

π
2

θ ∈ ðπ
2
; πÞ;

and the Majorana phases are again given by CP-conserving
values, fα21; α31g ⊆ f0; πg, although the precise values
cannot be determined in this framework.

The second viable pattern arising from Z5 is shown on
the right panel of Fig. 2. This can be derived from a matrix
similar to Eq. (11) but distinct in the relative phasing
between the columns,

UPMNS ¼

0
BB@

φffiffiffiffiffiffiffi
2þφ

p 1ffiffiffiffiffiffiffi
2þφ

p 0

− 1ffiffiffiffiffiffiffiffiffi
4þ2φ

p φffiffiffiffiffiffiffiffiffi
4þ2φ

p 1ffiffi
2

p
1ffiffiffiffiffiffiffiffiffi

4þ2φ
p − φffiffiffiffiffiffiffiffiffi

4þ2φ
p 1ffiffi

2
p

1
CCAR13ðθÞ: ð12Þ

This relative phase difference, which arises from the choice
of alignment between the matrix implementing the GCP
symmetry X and the generator S of the residual Z2

symmetry of the neutrino mass term, crucially affects the
mixing angle θ23 and leads to mixing angles which can be
expressed by

sin2θ12 ¼
1

1þ φ2cos2θ
; sin2θ13 ¼

sin2θ
1þ φ2

g
;

sin2θ23 ¼
1

2

�
sin θ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ2

p
cos θ

�
2

1þ φ2cos2θ
:

AllCP phases takeCP-conserving values for this pattern of
mixing parameters. The precise value of the Dirac phase
again depends on θ,

δ ¼
�
0 θ ∈ ð0; π

2
Þ;

π θ ∈ ðπ
2
; πÞ:

The appearance of CP conservation can be explained as,
although it was not imposed explicitly, the generalized CP
symmetry remains accidentally unbroken in the charged-
lepton sector. This second pattern leads to two distinct
allowed intervals in θ once we restrict the mixing angles to
lie in the current 3σ intervals. Due to the symmetry of the
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FIG. 2 (color online). The two patterns of mixing angles for Z5 as a function of the internal parameter θ. Both patterns predict
sin α21 ¼ sin α31 ¼ 0. The right pattern predicts j sin δj ¼ 0 while the left pattern predicts j sin δj ¼ 1. The shaded regions show the 3σ
allowed region for the corresponding mixing angle according to current global data [25].
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curves, these two viable sets of mixing angles are distin-
guished only by their predictions for θ23.
Both of the above mixing patterns are continuous

extensions of the well-known GR mixing pattern (also
known as GR1 or GRA) [45,46], which is found at θ ¼ 0. If
we expand in the small parameter r≡ ffiffiffi

2
p

sin θ13 [11], we
find that both patterns arising fromZ5 lead to the prediction
for s≡ ffiffiffi

3
p

sin θ12 − 1 [11] given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2þ φ

s
− 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2þ φ

s
r2

4
þOðr4Þ: ð13Þ

The two patterns are distinguished by their predictions for
θ23; however, both can be seen as subcases of a more
general model predicting the θ12 correlation in Eq. (13) and
further obeying a linearized atmospheric sum rule first
derived in Ref. [17],

a ¼ 1 − φffiffiffi
2

p r cos δþOðr2; a2Þ:

From this relation, it is clear how the maximal angle of
the first pattern a ¼ 0 is associated with the vanishing
of cos δ, while the contrasting nontrivial predictions
of θ23 in the second pattern are due to the CP-conserving
value of δ, sin δ ¼ 0. However, the correlation of maximal
atmospheric mixing and CP-conserving values of δ is
not an artefact of linearization and holds exactly, as is
shown in the right panel of Fig. 2. We consider these
correlated maximal predictions as a measurable signature in
Sec. IVB.

E. Predictions from Ge ¼ Z2 × Z2 and Gν ¼ Z2

The only noncyclic Abelian subgroup in A5 is the Klein
four group Z2 × Z2. If we take this as the residual
symmetry in the charged-lepton sector, we find two
patterns of mixing angles which differ only by their
predictions for θ23. Consistent predictions exist for all of
the 3σ range of θ13, and the predictions for the other mixing
angles can be seen in Fig. 3.
The first pattern can be derived from the following

mixing matrix:

UPMNS ¼
1

2

0
B@

φ φg −1
φg 1 −φ
−1 −φ φg

1
CA
0
B@

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

1
CA:

ð14Þ

From this matrix, we find the mixing angles can be
expressed by

sin2θ12 ¼
1þ φg½cos2θ þ sin ð2θÞ�
3 − φg½sin2θ − sin ð2θÞ� ;

sin2θ13 ¼
1þ φg½sin2θ − sin ð2θÞ�

4
;

sin2θ23 ¼
1þ φ½cos2θ − sin ð2θÞ�
3 − φg½sin2θ − sin ð2θÞ� :

For this pattern the complex phases are given by CP-
conserving values: sin δ ¼ 0 and fα21; α31g ⊆ f0; πg. The
true value of δ can be shown to depend on θ,

δ ¼
�
0 31.7° < θ < 58.3° or 121.7° < θ < 159.1°;
π else:

This dependence on θ looks complex, but the boundaries of
the δ ¼ 0 regions can be seen in Fig. 3 to be those values of
θ for which one mixing angle is either 0° or 90°, and closed
form expressions can be derived for these values from the
mixing angle formulas above. For the matrix shown here,
this means that only the δ ¼ π solution agrees with the
global data. However, when considering all permutations
the alternative CP-conserving solution can also be found.
The prediction for θ23 can be expressed as an atmos-

pheric sum rule to first order in r,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ φ2

s
− 1þ φ

1þ φ2
g
rþOðr2Þ:

This relation, being derived from a noncyclic symmetry in
the charged-lepton sector, has to the best of our knowledge

M
ix

in
g 

an
gl

e 
(d

eg
.)

Internal θ (deg.)

Ge = Z2 x Z2
θ12
θ13
θ23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100  120  140  160  180

FIG. 3 (color online). Allowed mixing angles for Ge ¼
Z2 × Z2 as a function of the unphysical parameter θ. There
are two possible sets of predictions of the mixing angles which
have the same θ12 and θ13 predictions but distinct θ23 predictions
(solid and dotted lines) related by the mapping θ23 →

π
2
− θ23.

All complex phases are CP conserving for these patterns:
sin δ ¼ sin α21 ¼ sin α31 ¼ 0. The shaded regions show the 3σ
allowed region for the corresponding mixing angle according to
current global data [25].
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not been presented before in general analyses of atmos-
pheric sum rules [17].
A permutation in the θ23 plane acting from the left of the

PMNS matrix effects a mapping of θ23 →
π
2
− θ23. For this

reason, both of the expressions defined above have a
complementary pattern with an inverted θ23. These alter-
native patterns are shown by dashed lines in Fig. 3.

F. Predictions with two and three degrees of freedom

So far we have analyzed the cases when Ge ∈
fZ3;Z5;Z2 × Z2g and Gν ¼ Z2. The patterns resulting
from these groups have a single degree of freedom (d.o.f.),
the unphysical angle θ, controlling their mixing parameter
predictions. There are, however, more general scenarios
where the three angles and three phases of the PMNS
matrix are specified by two or three input parameters.
The cases with two degrees of freedom arise from the

choiceGe ¼ Z2 while the neutrino symmetry is enlarged to
the full Klein group, Gν ¼ Z2 × Z2. The symmetry of the
charged-leptonmass terms is insufficient to uniquely specify
the diagonalizing matrix of the mass matrix, and requires in
general a further two-dimensional complex rotation,

Reðθ; γÞ ¼

0
B@

1 0 0

0 cos θ sin θeiγ

0 − sin θe−iγ cos θ

1
CA:

However, the neutrino symmetry has been enlarged, and so
Uν is uniquely specified by the symmetry generators. We
have scanned over all such combinations and found that no
viable patterns arise from this scenario.
There is one more combination of residual symmetries

possible in our construction:Ge ¼ Z2 andGν ¼ Z2. This is
an extension of the previous case, where the charged-lepton
symmetry introduces two parameters but now the neutrino
residual symmetry also requires a single real parameter to
diagonalize the most general mass matrix. In principle,
there is no reason to discount these patterns. They are
consistent with the idea that the full flavor group has broken
into residual subgroups implying correlations on the flavor
observables. However, the increased number of parameters
reduces the predictivity of the theory (three inputs, six
outputs). We have scanned over such groups and verified
that there are eligible patterns which match all the global
data. Some of these patterns feature nonconstant Majorana
and Dirac phase predictions, and many are not simply
related to the patterns that we have found in more restrictive
schemes. However, due to the larger parameter space and
reduced predictivity, we do not attempt to present any
results of this type.

IV. PHENOMENOLOGICAL PROSPECTS

In the preceding sections we have derived all patterns of
mixing angles and phases which are possible with an A5

symmetry with generalized CP broken into residual sym-
metries. They depend upon a single real angle, θ, and can
all be brought into agreement with current global data [25]
for a suitable restriction of its range. Eliminating the
unphysical parameter θ leads to a set of correlated
predictions between observables which are testable by
oscillation experiments and searches for neutrinoless dou-
ble-beta decay. In this section, we discuss the prospects for
present and future experiments to constrain these patterns
and derive simple versions of the predicted parameter
correlations which may be useful experimentally. We stress
that the correlations identified in this paper will be tested at
almost every stage in the experimental program of the next
few decades. Near term results from T2K [58] and NOνA
[59] can be expected on the maximality of θ23 and δ, and in
the medium term, new reactor and long-baseline experi-
ments such as JUNO [60], RENO-50 [61], DUNE,5 T2HK
[62] and possibly ESSνB [63] should bring us increased
precision on θ12, θ23 and δ. Finally, for the most stringent
tests of the models in question, the option remains to
construct a more ambitious facility such as the Neutrino
Factory (NF) [64]. In a complementary direction, neutrino-
less double-beta decay experiments will further sensitivity
to this decay, providing evidence on the Majorana nature of
neutrinos and, in combination with precise measurements
of the neutrino masses, e.g. from cosmological studies,
could potentially constrain the value of one of the Majorana
phases. Many of these observations are largely independent
and we can expect significant evidence either in favor of, or
ruling out, the patterns identified in this paper.

A. Precision measurements of θ12
The viable sets of mixing parameters which we have

found above predict correlations in θ12 and θ13, and
therefore very precise measurements of these angles have
the potential to discriminate between flavor-symmetric
patterns, or to rule them out entirely [23].
The upcoming medium-baseline reactor (MR) neutrino

oscillation experiments, such as JUNO [60] and RENO-50
[61], expect to make very precise, subpercent measure-
ments of the oscillation parameter θ12. The precision on θ13,
currently dominated by measurements from Daya Bay [2]
and RENO [3], is not expected to be significantly improved
by the next generation of reactor facilities. Therefore, the
first significant test of the predictions of this paper will
come from increased precision on θ12 independently of θ13.
We have identified three distinct predictions for θ12; if we
fix θ13 to its current best fit [25] these are

θ12 ¼ 35.71°; θ12 ¼ 32.11°; θ12 ¼ 35.14°;

for preserved charged-lepton subgroups Z3, Z5 and
Z2 × Z2, respectively. Given that the expected precision

5The new name for the LBNF/ELBNF project.
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of the MR experiments is at the level of 0.1° or around 0.3%
for θ12, a strong discriminatory power exists between the
values of the mixing angles predicted by these correlations.
The difference between the predicted values of all models
under consideration is always greater than 0.26° over the
current 3σ interval for θ13, and in many cases significantly
greater. Therefore we can expect these experiments to
identify with considerable confidence if any of the
charged-lepton residual symmetries are consistent with
observation.
In the framework discussed in this article, each model

predicts a continuous correlation between the values of θ13
and θ12. If one of the predictions above appears to agree
with data, it would be desirable to test the correlation
between parameters itself. These correlations can be
conveniently expressed as expansions in the dimensionless
parameter r≡ ffiffiffi

2
p

sin θ13 [11]. The current global best fits
give θ13 ≈ 8.50° [25] which translates to r ≈ 0.2; the
second-order corrections are therefore suppressed by a
factor of 1=25. Expressed in this way, the predictions for
sin θ12 associated with the charged-lepton subgroups Z3,
Z5 and Z2 × Z2 (respectively) can be expanded in the
following relations,

sin θ12 ¼
1ffiffiffi
3

p
�
1þ r2

4

�
þOðr4Þ;

sin θ12 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ φ2
p �

1þ r2

4

�
þOðr4Þ;

sin θ12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ φg

p
2

−
2 − φgffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ φg

p r2

8
þOðr4Þ:

Expressing these in terms of the angles themselves, we find

θ12 ¼ 35.27°þ 10.13°r2 þOðr4Þ; ð15Þ

θ12 ¼ 31.72°þ 8.85°r2 þOðr4Þ; ð16Þ

θ12 ¼ 36.00° − 19.72°r2 þOðr4Þ: ð17Þ

The approximations in Eqs. (15)–(17) have been plotted
against the unapproximated expressions for θ12 in
Fig. 4. We see that these relations depend only slightly
on θ13, which first appears at the order Oðr2Þ, leading to
subdegree-level corrections.
The formulas above show that the predictions for θ12

only vary by 0.07°, 0.06° and 0.13° (for Z3, Z5 and
Z2 × Z2, respectively) over the current 3σ region for θ13.
This is of the order of the target precision of the MR
experiments, and it is therefore unlikely that the θ12–θ13
correlations themselves will be tested at a significant level
even if precision on θ13 were to be greatly improved. There
are no currently planned facilities which could further
improve the precision on θ12.

B. Maximal-maximal predictions for θ23 and δ

The current and upcoming generation of long-baseline
experiments will be able to place important constraints on
the parameters θ23 and δ. Measuring θ23 and δ independ-
ently will provide valuable information on the viability of
flavor-symmetric models; however, in the patterns that we
have identified the maximality of θ23 is significantly
correlated with the value of δ. In four of these patterns
(excluding different Majorana phase assignments), two
from Ge ¼ Z3 and two from Ge ¼ Z5 predict a maximal
value of θ23 and a maximal amount of CP violation,

θ23 ¼
π

4
and j sin δj ¼ 1:

Therefore, the joint determination of these parameters
around these maximal values would be a particularly
interesting measurement from the point of view of GCP
model building.
Testing the maximality of these parameters is an attain-

able goal for current and future oscillation experiments.
After its full period of data taking, T2K expects to be
able to exclude maximal θ23 at the 90% C.L. for
jsin2ð2θ23Þ − 0.5j > 0.05–0.07 largely independently of
the value of δ [58]. Measuring δ itself is significantly
harder; however, the maximal CP-violating values consid-
ered here are the most accessible. T2K can expect to be able
to exclude 0≲ δ≲ π (π ≲ δ≲ 2π) at the 90% C.L. for a
true value of δ ¼ 3π=2 (δ ¼ π=2) [58]. This would allow
T2K to distinguish between δ ¼ π=2 and δ ¼ 3π=2 if one
of them is true at least the 90% C.L. NOνA can also be
expected to contribute to this measurement [59] with a
similar power for excluding δ ¼ π=2 and δ ¼ 3π=2.
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FIG. 4 (color online). Predictions for θ12 as a function of θ13.
All of the patterns of mixing parameters associated with a given
charged-lepton residual symmetry have the same prediction
(solid lines). The dashed line close to each prediction shows
the linearized predictions in Eqs. (15)–(17). The grey regions
show the 1 and 3σ allowed regions for θ12 and the vertical lines
show the 3σ range for θ13 from current global data [25].
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Although these exclusions are expected to be individually
statistically weak, they would constitute valuable informa-
tion on the validity of the models studied in this paper and
would provide strong encouragement for future work by the
next generation of oscillation experiments.
In the medium term, new long-baseline experiments are

expected with significantly improved sensitivities, in par-
ticular to the phase δ, allowing the maximal-maximal
predictions to be further tested. To estimate the potential
for excluding these models with future facilities, we have
run a simulation of LBNE/DUNE using the GLoBES
package [65]. Our simulation is based on the detector
responses files and fluxes made available by the LBNE
collaboration in Ref. [66]. We point out that thanks to its
more ambitious design, it seems likely that the DUNE
project can significantly improve the sensitivity computed
here.6 However, without access to updated experimental
information, making a quantitative assessment of the extent
of this improvement is challenging. We assume a 700 kW
beam operating at 120 GeV, a detector based on liquid
argon-TPC technology with a mass of 34 kton, and overall
systematic errors of 5% for both the signal and background
normalizations.7 The results of these simulations are shown
in Fig. 5, where we present the regions of true parameter
space for which the combinations of ðθ23; δÞ ¼ ðπ=4; π=2Þ
and (π=4, 3π=2) can be excluded after five years neutrino

and five years antineutrino running. We find that these
patterns can be excluded at 3σ if the true value of θ23
satisfies θ23 ≲ 43.0° or θ23 ≳ 48.3°, or if the true value of δ
is outside the intervals 90°þ48°

−69° or 270°
þ53°
−67°. Here we see the

importance of observing both θ23 and δ for excluding our
models. A measurement of θ23 alone will not be able
to distinguish between the models which predict θ23-
maximality and the model from Z2 × Z2 which predicts
values of θ23 which differ from maximality by only around
2°. However, these models have maximally distinct pre-
dictions for δ, and as we have shown, the measurement of δ
alone would be able to separate these cases at 3σ.

C. Dirac CP-conserving patterns and precision
measurements of θ23

Those patterns which instead make nonmaximal pre-
dictions of θ23 also predict CP-conserving values of δ, such
that j cos δj ¼ 1, and we can expect constraints to be placed
on these models by the attempts to discover leptonic CP
violation—a standard search for the next-generation of CP-
sensitive oscillation experiments [62,63,68–71]. It has been
shown that LBNO running with a beam derived from the
SPS accelerator at CERN could rule out leptonic CP
conservation at 3σ for around 45% (65%) of the parameter
space for a detector mass of 20 kton (70 kton). This could
be increased to 70% (80%) with an upgraded beam power
[70]. LBNE has predicted a similar sensitivity to CP
violation [68], with the ultimate reach also depending
crucially on the planned series of upgrades to detector
mass and beam power. With a 10 kton detector and six
years of data using a 1.2 MW beam, the measurement could
be made for 33% of the parameter space at 3σ. This rises to
40% of the parameter space at 5σ once the detector mass
has been increased to 34 kton and six years more data has
been collected. Finally, a beam power upgrade to 2.3 MW
could increase this to 60% of the parameter space at 5σ
[68]. The T2HK and ESSνB proposals also show strong
sensitivity to CP violation, both using a megaton-scale
water Čerenkov detector and MW power beams. T2HK has
shown that it can expect a discovery of CP violation over
76% (58%) of the parameter space at 3σ (5σ) [72]. A
similar reach is possible with ESSνB, which expects a 3σ
(5σ) discovery of CP violation after ten years of data taking
over 74% (50%) of the parameter space [63].
If the current experimental program fails to discover CP

violation in the leptonic sector and sin δ is discovered to be
small, there are four distinct patterns from our model which
would remain in agreement with the data. These models
can be tested by the increased precision on measurements
of θ23 expected from next-generation long-baseline facili-
ties. In all cases of this kind, we find predictions coming in
pairs. The model associated with a Z5 residual symmetry
predicts

θ23 ¼ 45°� 25.04°rþOðr2Þ; ð18Þ
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FIG. 5 (color online). Red (green) lines show the exclusion
regions at 1, 2 and 3σ for θ23 ¼ π=4 and δ ¼ 3π=2 (δ ¼ π=2)
expected at LBNF with a 34 kton LAr detector after 5þ 5 years
running. In this region outside the curves, the two sets of
predictions can be excluded at the given confidence. The side
panels show the appropriate marginalizedΔχ2 and the 1, 2 and 3σ
confidence levels (one d.o.f).

6For the latest information on the DUNE design see Ref. [67].
7Over the lifetime of our simulation, the experiment expects

around 795 (174) νμ → νe (ν̄μ → ν̄e) charged-current events for
δ ¼ 0. This is roughly equivalent to the rates for the LBNE-LE
configuration described in Ref. [68] with a total exposure of
180 kton yr.
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while the predictions for a residual Z2 × Z2 symmetry are
given by

θ23 ¼ 31.72°þ 55.76°rþOðr2Þ;
θ23 ¼ 58.28° − 55.76°rþOðr2Þ: ð19Þ

The pairs of sum rules given by Eq. (18) or (19) are related
by the octant degeneracy, θ23 →

π
2
− θ23, as can be seen

clearly in Fig. 6 where the approximations above are shown
against the full predictions. We note that in contrast to those
for θ12, these relations depend on r at linear order.
Therefore, they are far more sensitive to the precise
correlation between parameters, and the measurement of
the correlation itself becomes more accessible.
The first discriminating factor between these solutions

will come from improved precision on θ23 and the
resolution of the octant degeneracy. In these models we
predict nonmaximal mixing, and a successful determina-
tion of the octant would provide early evidence in their
favor. This would be most challenging for the model based
on Z2 × Z2 for which θ23 differs from 45° by between 2.5°
and 0.8° over the current 3σ range of θ13. The model based
on Z5 instead predicts greater deviations from maximal
atmospheric mixing, ranging between 4.8° and 5.6° over the
same interval. Studies of the potential for the current
generation of oscillation experiments, of which T2K and
NOνA play the most important role, suggest that the octant
can be established at 3σ (2σ) for deviations from max-
imality greater than around 6° (4°) [73,74]. This precludes
the current generation from separating between the two
predictions of Z2 × Z2, but would allow for 2σ evidence
for those predictions coming from our model based on Z5.
This discovery potential will be improved by the next

generation of oscillation experiments. In Ref. [68] it is
shown that with an exposure of 60 kton years, LBNE could
determine the octant at 3σ if the true value of θ23 deviates
from maximality by more than 4°–5°. However, the best
bounds could come from T2HK by studying atmospheric
neutrino data. A 3σ determination of the octant is expected
to be possible after ten years of data taking for true values
jsin2θ23 − 0.5j > 0.04–0.06 corresponding to deviations
between 2° and 3° [62]. Although exclusion of the
Z2 × Z2 pattern would be unlikely, the two predictions
from Z5 would be distinguishable.
To go beyond the octant measurement, higher precision

will be necessary to separate between the Z5 and Z2 × Z2

predictions, or indeed to test their specific correlations with
θ13. The difference between these two predictions varies
between 2.4° and 4.8° over the current allowed regions.
Therefore degree-level precision will be required to dis-
tinguish between them, even in the presence of greatly
improved knowledge of θ13. In Ref. [68] it is shown that the
minimal 10 kton LBNE configuration running for six years
would have a precision of around 1° at 1σ for true values of
θ23 around 51°, which increases as we approach θ23
maximality to a 1σ width of around 2.5°. Similarly,
T2HK shows that around the point expected to give the
worst sensitivity to θ23, the 90% C.L. width is around 2°–3°
[62]. These results suggest that a significant discrimination
between these models would be challenging with these
setups; however, evidence in favor of these models would
be possible at low significance and if observed in con-
junction with an absence of observable CP violation, this
would present a concrete hypothesis for future work.

D. Long-term prospects

We have seen in the previous sections that although the
next generation of superbeam and reactor experiments will
be able to test the consistency of the patterns that we have
identified, much of their discriminatory power relies on
excluding maximal angles and phases. Testing the con-
tinuous correlations predicted in our models, for example
between θ12 and θ13 or between θ23 and θ13, would require
higher precision.
The only proposed experiment capable of pushing the

precision frontier beyond the results of the next-generation
superbeams is the NF [75], which produces a beam with
low systematic uncertainties from the decay of stored
muons [64]. A NF would be able to improve our knowledge
of the mixing parameters in a number of ways, but for the
present purposes it serves two main roles. First, such a
facility would greatly increase the precision on δ, with an
ultimate 1σ precision estimated at around 5° [76,77].
This could allow many of our models to be excluded
independently of their other parameter correlations.
Secondly, a NF would improve the precision in the
determination of θ13 and θ23 [76,78], allowing it to better
test the θ23–θ13 correlations discussed in the previous
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FIG. 6 (color online). θ23 as a function of θ13 for the patterns
which predict CP conservation (solid lines). The dashed line
close to each solid line shows the linearized expression in
Eqs. (18)–(19). The grey regions show the 1 and 3σ allowed
regions for θ23 while the vertical lines show the 3σ range for θ13
from current global data [25].
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subsection. To quantify this possibility, we have performed
a simulation of a representative low-energy Neutrino
Factory [79,80] to compute the regions of true parameter
space which would allow two candidate models to be
(individually and collectively) excluded. Our simulations
assume a 2000 km baseline and a stored-muon energy of
10 GeV which is close to the optimal configuration for CP
violation discovery [78,81–83]. For our detector, we take a
MIND [84,85], assumed to be in a toroidal magnetic field
allowing for muon charge identification, with a fiducial
mass of 100 kton. The detector response is described by a
set of migration matrices provided by Ref. [86].
Backgrounds to the appearance channel signal come from
both charge- and flavor-misidentified events, as well as
the secondary decay products arising from τ� decays in the
detector. An overall 1% (10%) uncertainty is taken on the
signal (background). Our results are shown in Fig. 7, where
the blue (red) shaded regions show the area of true
parameter space for which the Z2 × Z2 (Z5) correlation
would not be able to be excluded. We see that the two
colored regions do not overlap, and therefore all points in
this parameter space allow for the exclusion of at least one
of the correlations at 3σ or higher significance.

E. Neutrinoless double-beta decay

Over the next decade, the new generation of neutrinoless
double-beta (0νββ) decay experiments will significantly
increase the sensitivity to this rare process. For the first time
these experiments will probe the region of parameter space
associated with the inverse hierarchical spectrum. These
experiments aim to establish that neutrinos are Majorana in
nature, but can also provide valuable information on the
neutrino mass spectrum and, through the global analysis of
mixing parameters and a precise measurement of the

neutrino mass scale, evidence for the value of one of the
Majorana phases.
The 0νββ decay rate is proportional to the effective

Majorana mass jmeej (see e.g. Ref. [52,87]), which is given
by

jmeej ¼
����X3
k¼1

U2
ekmk

����;
¼ jm1cos2θ12cos2θ13 þm2sin2θ12cos2θ13eiα21

þm3sin2θ13eiðα31−2δÞj; ð20Þ

where α21 and α31 are Majorana phases and δ is the Dirac
phase. The predicted values of jmeej depend crucially on
the neutrino masses. The latter can be ordered in two ways:
normal ordering (NO;m1 < m2 < m3) or inverted ordering
(IO; m3 < m1 < m2). As the parameters Δm2

21 and jΔm2
31j

are known from oscillation physics, there is a single degree
of freedom remaining amongst the masses. This is typically
taken to be the lightest neutrino mass,m1 (m3) for NO (IO),
which we denote in both cases by ml [87]. The parameter
space available to jmeej can be further divided into three
particularly interesting regions based on the true value of
ml. The first is for quasidegenerate masses (QD) where
ml ≳ 0.1 eV, in which the splitting between masses is a
small correction to approximately degenerate values. For
smaller values of ml there are two parameter regions: one
for normal hierarchical masses (NH; m1 < m2 ≪ m3)
and the other for inverted hierarchical masses (IH;
m3 ≪ m1 < m2). In order to better understand the predic-
tions of our models, we have first computed the predicted
values of jmeej in the generic case, assuming only that the
mixing parameters lie in their current 3σ allowed ranges
[25]. These predictions for NO (IO) are shown as the blue
(red) region in Fig. 8. For quasidegenerate and IH spectra,
there exist lower bounds on jmeej [88]: for IH
jmeej≳ 0.015 eV, and for QD jmeej≳ 0.03–0.04 eV. For
NO there is no nonzero lower bound as jmeej can vanish
due to a cancellation between terms in Eq. (20).
There are many experiments that are searching for 0νββ

decay or are in various stages of planning and construction.
Recent experiments that have set limits on the effective
Majorana mass are CUORICINO, GERDA, EXO-200,
KamLAND-Zen and NEMO-3. Both CUORICINO [90]
and GERDA [91] have measured a lower jmeej limit of
200 meV. EXO-200 [92] and KamLAND-Zen [93] have
probed even further with a lower jmeej limit of 69 and
140 meV respectively. This set of experiments has success-
fully explored the QD region of parameter space; however
the IO region still remains unexplored. The future goal of
upcoming experiments will be to fully probe the IO region
and measure jmeej down to 10–20 meV. The experiments
involved in these future searches, such as SuperNEMO
[94], CUORE [95], AMoRE [96], COBRA [97], nEXO
[98], MOON [99], SNOþ [100], XMASS [101], BEXT
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FIG. 7 (color online). The regions of true parameter space for
which the upper-octant relations in Eqs. (18)–(19) can be
excluded at 1, 2 and 3σ by a 2000 km, 10 GeV LENF using
a magnetized iron neutrino detector (MIND). The two regions
start to overlap at low values of θ13 at the 5σ confidence level.
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[102] and KamLAND2-Zen [93] amongst others, will be of
the tonne or multitonne scale (see e.g. Ref. [103,104] for an
in-depth discussion).
The predicted values of jmeej for the case of A5 with

GCP can be calculated from the leptonic mixing matrices of
Eqs. (10)–(11) and Eq. (14) for both IO and NO. The
complex phases only influence jmeej through the combi-
nations eiα21 and eiðα31−2δÞ, and we denote the phases of our
predictions by an ordered pair of � signs e.g. ðþ−Þ when
α21 ¼ 0 and α21 − 2δ ¼ π. As jmeej does not depend on
θ23, patterns which only differ by this angle will be
degenerate and each preserved charged-lepton subgroup
leads to a single prediction for each mass ordering and
phase assignment. Figure 8 shows the predicted values
from the mixing patterns in this paper for each charged-
lepton residual symmetry Ge. In these plots, we have
neglected a small width to each line which comes from
varying θ13 and the neutrino mass-squared splittings over
their allowed ranges, instead fixing these at their best-fit
values from Ref. [25].
We focus first on the IO spectra. The phase assignments

ðþþÞ and ðþ−Þ, shown on the top row of Fig. 8, predict

large values of jmeej, close to the upper boundary of the IO
region obtained using the 3σ global data. These predictions
are very similar for all models. This can be understood as
the term in jmeej proportional tom3 only has a subdominant
effect: it is not only multiplied by the small number sin2 θ13,
but is further suppressed for IH by the small value of m3

itself. If we neglect this term, the resulting approximation at
leading order is independent of θ12 up to corrections of the
order OðΔm2

21=Δm2
31Þ. It is feasible that experiments such

as CUORE, KamLAND2-Zen, BEXT and nEXO will be
able to explore this topmost region of the IH parameter
space and test these predictions. Furthermore, distinguish-
ing between them will be beyond their scope due to the
small predicted differences and substantial experimental
and theoretical uncertainties on jmeej. For the phase
assignments ð−þÞ and ð−−Þ, shown on the bottom row
of Fig. 8, we see values of jmeej that are further suppressed
and which exhibit more model dependence. Once again,
Zthe suppression of the m3 term explains the similarity
between the two phase assignments. The lower values
compared to the ðþþÞ case arise from the relative phase
difference between the m1 and m2 terms: at leading order

FIG. 8 (color online). jmeej versus the lightest neutrino mass for the IO (NO) for the solid (dashed) lines. The predictions in a given
panel all have the same phase assignment, shown in the top left of the plot. The red (blue) shaded region shows the most general
predictions for jmeej with IO (NO) obtained by varying the oscillation parameters over their current 3σ global ranges [25]. The green
band indicates the combined limit using data from CUORICINO, EXO-200, GERDA, KamLAND-Zen and NEMO-3 [89] and the light
blue band displays the projected limit of future experiments.

MIXING ANGLE AND PHASE CORRELATIONS FROM … PHYSICAL REVIEW D 92, 093008 (2015)

093008-15



jmeej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
p

cos2θ13cos2ð2θ12Þ [88,105]. This effect
is evident if we compare Z5 and Z3 cases: the larger θ12
value of Z3 accounts for the more pronounced cancellation
and therefore lower jmeej than that of Z5. These predictions
are beyond the reach of many of the facilities discussed so
far; although KamLAND2-Zen aims to set limits near the
predictions for Z5 and, if capable of testing the full IO
region, should be accessible to the next generation of
experiments. Although lying in a region of parameter space
that is harder to explore, the greater model dependence for
these phase assignments would make it easier to distinguish
between models than with the ðþþÞ and ðþ−Þ cases. There
exists a separation of around 5 meV between the predic-
tions forZ5 and the other subgroups; however, it is unlikely
such a resolution on jmeej would be attainable in the
foreseeable future. For NO, we see quite different behavior.
In the quasidegenerate region, the mass-squared splittings
are negligible and the predictions for the IO and NO cases
effectively coincide. However, in the limit of vanishing ml
the situation is very different. In this limit it is the relative
phase between the m2 and m3 terms which dominates the
magnitude of jmeej, which leads to larger predictions for
the phase assignments ðþþÞ and ð−−Þ, while suppressing
the predictions of ð−þÞ and ðþ−Þ. Although exploring the
NH region experimentally is beyond the scope of any
planned experiment, if 0νββ decays are not observed and
oscillation physics establishes that the neutrino masses are
NO, it would be of paramount importance to try and test
jmeej values in the NH region. Due to the rich interplay
between relative phases, these models make quite different
predictions across this parameter space. In fact, all mixing
angle patterns discussed in this paper could accommodate a
value of jmeej near the top of the current NH region allowed
by global data. Although such an observation would add
further support to any prediction of this paper which was

still consistent with experimental data, to further discrimi-
nate between these models it would be necessary to provide
complementary information on the absolute mass scale.

V. CONCLUSIONS

Assessing the viability of flavor-symmetric models of the
leptonic sector is an accessible target for precision mea-
surements from present and future neutrino oscillation
experiments. In this article, we have presented a detailed
analysis of a particular theoretical scenario: the flavor
symmetry A5 with a generalized CP symmetry breaking
into residual subgroups at low energies. We have identified
the most general form of the generalized CP transforma-
tion, and studied the full group for consistent residual
symmetries. Our analysis results in six distinct sets of
mixing angle predictions each with an additional eight
possible combinations of phases which are shown in
Table I. These depend at most on a single real parameter,
and predict testable correlations between certain parame-
ters. In addition, the Majorana phases for all of our
predictions are CP conserving. These patterns can be
classified by the residual symmetry in the charged-lepton
mass terms: Z3, Z5 and Z2 × Z2. A symmetry of Z3

predicts maximal θ23, maximal CP violation from δ and a
value of θ12 that lies close to the upper boundary of the 3σ
global fit data. There are two distinct patterns which arise
from a preserved Z5 residual symmetry. These share a
common θ12 prediction which lies close to the lower
boundary of the 3σ global fit data; however, one prediction
has maximal θ23 and a maximally CP-violating value of δ
while the other has nonmaximal θ23 and CP-conserving
values of δ. The patterns arising from a preserved subgroup
Z2 × Z2 also share a common θ12 which lies above the
current 1σ region. In this case both θ23 predictions are
nonmaximal and the value of δ is CP conserving.
We then discussed the phenomenology of our predic-

tions, focusing on the role which current and future reactor,
superbeam and neutrinoless double-beta decay experiments
can play. The predictions for θ12 should be testable at high
significance by the next generation of reactor neutrino
experiments, such a JUNO and RENO-50. These experi-
ments can be expected to distinguish between the different
models; however, testing the precise correlations between
θ12 and θ13 will most probably remain beyond the reach of
any foreseen experiment. A particularly interesting feature
of the patterns found in this paper is the correlated
maximality of θ23 and δ, and also nonmaximal θ23 and
CP-conserving values of δ. Testing these correlations is a
feasible goal for current and future superbeam experiments.
T2K and NOνA can be expected to collect early evidence if
such a pattern obtains, and we have shown that DUNE will
be able to identify such a pattern over a significant part of
the parameter space. For the CP-conserving patterns, the
deviations from θ23 ¼ π=4 are expected to be measurable at
3σ by the next generation of superbeams for the preserved

TABLE I. Numerical predictions for the correlations found in
this paper. The dimensionless parameter r≡ ffiffiffi

2
p

sin θ13 is con-
strained by global data to lie in the interval 0.19≲ r ≲ 0.22 at 3σ.
The predictions for θ12 and θ23 shown here neglect terms of order
Oðr4Þ and Oðr2Þ, respectively. Following the method of this
paper, the Majorana phases can only be predicted modulo π and
the values in the fourth column hold for all phases.

Ge θ12 θ23 sin αji δ

Z3 35.27°þ 10.13°r2 45° 0
90°

270°

Z5 31.72°þ 8.85°r2
45°� 25.04°r 0

0°
180°

45° 0
90°

270°

Z2 × Z2 36.00° − 34.78°r2
31.72°þ 55.76°r 0

0°
180°

58.28° − 55.76°r 0
0°

180°
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subgroup Z5, but not for Z2 × Z2. Ultimately separating
between these models at 3σ significance across the whole
parameter space could be done using a Neutrino Factory
after ten years of data taking. An attractive feature of the
theoretical scenario in this work is its ability to predict
Majorana phases, and, therefore, observables for neutrino-
less double-beta decay experiments. We have seen that in
the case of inverted mass ordering, two of the possible
Majorana phase combinations predict the discovery of
neutrinoless double-beta decay at upcoming experiments.
In the longer term, the exploration of the full parameter
space for inverted hierarchical mass spectra could allow all
of our patterns with this mass spectrum to be confirmed
independently of oscillation physics.
In conclusion, we find that the combination of the flavor

symmetry A5 with a generalized CP symmetry allows for a
number of viable predictions to be made for the mixing
angles and phases. These predictions specify parameter
correlations which present good targets for each stage of the
next decade of the experimental program.
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Note added.—Recently, preprints of two similar works
were made available [106,107] which also study the mixing
patterns arising from the residual symmetries of A5 with
GCP. The patterns derived in the first part of our paper,
previously presented at NuPhys 2014 [108], are in agree-
ment with those found in Refs. [106,107]. Although, case II
in Ref. [106] is omitted in our analysis as its predictions fall
outside the 3σ global intervals used in this work. Our
phenomenological work significantly extends the analysis
in these papers.
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