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We derive the relativistic thermodynamic scale equation using imaginary-time path integrals, with
complex scalar field theory taken as a concrete example. We use Fujikawa’s method to derive the scaling
anomaly for this system using a matrix regulator. We make a general scaling argument to show how for
anomalous systems, the β function of the vacuum theory can be derived from measurement of macroscopic
thermodynamic parameters.
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I. INTRODUCTION

In a series of seminal papers by Callan, Coleman, and
Jackiw [1,2], it was noted that in general the trace of the
Belifante stress-energy tensor θμμ for any renormalizable
theory could be improved, so that classically for scale-
invariant systems (systems invariant under the conformal
group),

θμμ ¼ 0: ð1Þ

This improved tensor has a number of desirable proper-
ties over the canonical tensor (the one derived from
Noether’s theorem) such as having finite matrix elements
in the quantum theory, and that the energy for bound states
can be naturally expressed as the trace of this tensor.
Shortly after these observations, it was noted that the same
improvement program could be applied in the nonrelativ-
istic case [3], so that for classical scale-invariant systems
(systems invariant under the Schrödinger group)

2θ00 −
X3
i¼1

θii ¼ 0; ð2Þ

where the 2 results from the fact that in nonrelativistic
theories time must scale as twice the power of space.1

Equations (1) and (2) fail to consider the trace anomaly.
In general, the trace of the stress-energy tensor taken
between bound states gives the energy of the bound state:

Eb ¼
Z

dVhθμμi; ð3Þ

which derives from the fact that the time average of the field
virial is zero for bound states [4]. With slight modification
Eq. (3) holds in the nonrelativistic case too (see [5] for a

specific example). However, it is well known that even
though θμμ ¼ 0 for a classically scale-invariant system,which
would imply bound states can only have zero energy,2 the
quantization procedure can destroy this relationship. When
this happens this is called a scale anomaly, and is the
mechanism that allows the bound state energy to differ from
zero.
As an example, in QCD with massless quarks (or no

quarks at all), the Lagrangian is classically scale invariant
so that θμμ ¼ 0. However, through the renormalization
process, a scale appears as ΛQCD. In general this makes
hθμμi ¼ A, where A is the anomaly. The stress-energy
tensor can then be further improved:

Tμν ¼ θμν þ gμν

4
Tη
η; ð4Þ

so that Tμν is no longer traceless. Then

Eb ¼
Z

dVhT00i ¼
Z

dVhθ00i þ Eb

4
; ð5Þ

which implies that A accounts for 1=4 of the energy of the
hadron. This can explicitly be seen in the bag model where
confinement of the quarks and gluons is the result of a
cosmological constant term in the Lagrangian which
contributes a positive energy and negative pressure Λgμν

to θμν, which confines the system. Then from the trace-
lessness of θμν, Λ ¼ 1

4
Tμ
μ, so that confinement accounts for

1=4 of the hadron energy [4].
In this paper, we are interested in the thermal analogues of

Eqs. (1) and (2). Both of these quantities arevery important in
their respective areas of physics. In the nonrelativistic sector,
for an ultracold dilute gas, (2) would read

2E − 3P ¼ −
ℏ2

3m
λhðψ†ðxÞψðxÞÞ2i: ð6Þ
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1The Schrödinger equation has only one derivative of time, and

two of space, so for scale invariance time must scale as twice the
power of space.

2This is also obvious from the fact that there are no scales to
even form Eb.
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The rhs is known as the Tan contact, and is extremely
important in atomic physics. In terms of it, Tan derived a set
of universal relations [6–8] that govern many relationships
between the thermodynamics variables of the system and
the behavior of the large momentum tails of correlation
functions. These relationships hold even in the strongly
interacting regime where perturbation theory becomes
inadequate [9]. A field theoretic explanation of Tan’s result
was later developed in terms of the operator product
expansion [10].
In QCD, the analog would be [11]

E − 3P ¼
Xnf
i¼1

mihψ̄ iψ ii þ
2

g
βðgÞ 1

4
hFa

μνFμνai: ð7Þ

In the low temperature regime where the coupling g is
strong, the trace anomaly of the rhs is calculated by
calculating the lhs of Eq. (7) using a lattice action. The
goal is to calculate the QCD equation of state P ¼
PðT; μ; VÞ rather than the anomaly itself. However, for
technical reasons [12], E − 3P is important as an inter-
mediate step in lattice QCD for calculating PðT; μ; VÞ,
where it is given by

A ¼ E − 3P ¼ −
T
V
d lnZ
d ln a

; ð8Þ

and plugging into Eq. (7) gives after using thermodynamic
identities

∂
∂ lnT

�
P
T4

�
¼ A

T4
; ð9Þ

which can then be integrated to get PðT; μ; VÞ. a is the
lattice spacing and Z is the partition function with lattice
action.
In this paper, following the approach initiated in [13–15]

for nonrelativistic systems, we provide a continuum/non-
lattice path-integral approach to deriving the thermody-
namic trace equation E − 3P, where anomalies naturally
appear as a result of a change of variables of the path-
integral measure, the thermal analog of Fujikawa’s method.
This is in contrast to an operator approach, where one takes
the thermal quantum statistical expectation values of both
sides of equations like (1) and (2), and identifying hT00i ¼
E and hTiii ¼ PH, wherePH is the hydrodynamic pressure
[16]. Within this path-integral approach, no reference needs
to be made about improvement of the stress-energy tensor,
or the validity of equating the hydrodynamic pressure PH
with the thermodynamic pressure P derived from the grand
partition function, which is nontrivial, especially in the
presence of anomalies [17,18]. For concreteness, we will
take as our system a complex scalar field theory, but the
results can be extended for other systems. The Lagrangian
is given by

L ¼ ∂μϕ†∂μϕ −m2ϕ†ϕ −
λ

4
ðϕ†ϕÞ2 ð10Þ

and has a Uð1Þ symmetry

ϕ → eiθϕ;

ϕ† → e−iθϕ†; ð11Þ

leading to a conserved charge:

j0 ¼ iϕ†∂0

↔
ϕ;

Q ¼ i
Z

d3xϕ†∂0

↔
ϕ: ð12Þ

Under scale transformation

x0μ ¼ eρxμ;

ϕ0ðx0Þ ¼ e−ρϕðxÞ;
ϕ0†ðx0Þ ¼ e−ρϕ†ðxÞ: ð13Þ

II. THERMODYNAMIC DILATION EQUATION

For a homogeneous system the grand potential Ω ¼
Ωðβ; μ; VÞ in the large volume limit equals −PV, so that the
partition function is Z ¼ e−βΩ ¼ eβPV , and can be
expressed via a path integral:

Z ¼ eβPV ¼
X
i

hije−βðH−μQÞjii

¼
Z

½dϕ�½dϕ��e−SEþμ
R

β

0

R
V
d3xdτj0 ; ð14Þ

with3

SE¼
Z

β

0

Z
V
d3xdτ

�
∂μϕ

�∂μϕþðm2−μ2Þϕ�ϕþ λ

4
ðϕ�ϕÞ2

�
;

j0¼−ϕ�∂τ

↔
ϕ: ð15Þ

Now consider an infinitesimal “relativistic thermody-
namic scaling”

β0 ¼ eρβ ¼ β þ ρβ ¼ β þ δβ;

L0
i ¼ eρLi ¼ Li þ ρLi ¼ Li þ δLi;

μ0 ¼ μ: ð16Þ

3Due to the dependence of j0 on conjugate momenta, when
integrating out conjugate momenta to pass into the Lagrangian
formulation of the path integral, LE acquires an additional μ2ϕ�ϕ
term: see [19].
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where Li is the length of the box in the i direction and ρ is a
dimensionless infinitesimal parameter.
In the large volume limit it is assumed that Pðβ; μ; VÞ ¼

Pðβ; μÞ,4 so under the transformation of Eq. (16)

δðβPVÞ ¼ ðδβÞPV þ βðδPÞV þ βPðδVÞ

¼ ρ

�
βPV þ β

�∂P
∂β β

�
V þ βPð3VÞ

�
: ð17Þ

Now using the identity βV ∂P
∂β ¼ −PV − Eþ μQ, we get

δðβPVÞ ¼ ρð−βEþ βPð3VÞ þ βμQÞ; ð18Þ

and therefore

δðeβPVÞ¼δðβPVÞeβPV¼ρβð−Eþ3PVþμQÞeβPV: ð19Þ

Equation (19) represents the effect of the scaling in
Eq. (16) on the lhs of Eq. (14). Now we analyze the effect of

this scaling to the rhs of Eq. (14), the path-integral part,
from which anomalies originate, and eventually equate the
two expressions.
The scaling in Eq. (16) represents a dilation of the

system:

x0μ ¼ eρxμ;

ϕ0ðx0Þ ¼ e−ρϕðxÞ;
ϕ0�ðx0Þ ¼ e−ρϕ�ðxÞ: ð20Þ

The dilated system has

eβ
0P0V 0 ¼

Z
½dϕ0�½dϕ0��e−S0Eþμ

R
β0
0

R
V0 d

Dx0dτ0j0
0 ; ð21Þ

where

S0E ¼
Z

eρβ

0

Z
eρV

d3x0dτ0
�
∂ 0
μϕ

0�∂ 0
μϕ

0 þ ðm2 − μ2Þϕ0�ϕ0 þ λ

4
ðϕ0�ϕ0Þ2

�
;

μ

Z
β0

0

Z
V 0
d3x0dτ0j00 ¼ μ

Z
eρβ

0

Z
eρV

d3x0dτ0ð−ϕ0�∂ 0
τ

↔
ϕ0Þ: ð22Þ

To compare to the undilated system, we “pull back” to unprimed variables by substituting Eq. (20) into Eq. (21) and
Eq. (22). Equation (22) becomes

S0E ¼
Z

eρβ

0

Z
eρV

d3x0dτ0
�
∂ 0
μϕ

0�∂ 0
μϕ

0 þ ðm2 − μ2Þϕ0�ϕ0 þ λ

4
ðϕ0�ϕ0Þ2

�

¼
Z

β

0

Z
V
e4ρd3xdτ

�
e−2ρ

∂ϕ�

∂ðeρxμÞ
∂ϕ

∂ðeρxμÞ þ ðm2 − μ2Þe−2ρϕ�ϕþ λ

4
ðe−2ρϕ�ϕÞ2

�

¼ SE þ 2ρ

Z
β

0

Z
V
d3xdτðm2 − μ2Þϕ�ϕ: ð23Þ

Similarly,

μ

Z
β0

0

Z
V 0
d3x0dτ0j00 ¼ μ

Z
eρβ

0

Z
eρV

d3x0dτ0ð−ϕ0�∂ 0
τ

↔
ϕ0Þ ¼ μ

Z
β

0

Z
V
d3xdτj0 þ ρμ

Z
β

0

Z
V
d3xdτj0: ð24Þ

Plugging in these expressions into Eq. (21),

eβ
0P0V 0 ¼

Z
J½dϕ�½dϕ��e−SEþμ

R
β

0

R
V
d3xdτj0−2ρ

R
β

0

R
V
d3xdτðm2−μ2Þϕ�ϕþρμ

R
β

0

R
V
d3xdτj0 ; ð25Þ

where J is the Jacobian of the transformation ðϕ0;ϕ0�Þ → ðϕ;ϕ�Þ. Expressing J ¼ 1 − ρA and using Eq. (19)5

δðeβPVÞ ¼ ρβð−Eþ 3PV þ μQÞeβPV ¼ ρ

�
−A − 2

�Z
β

0

Z
V
d3xdτðm2 − μ2Þϕ†ϕ

�
þ
�
μ

Z
β

0

Z
V
d3xdτj0

��
eβPV: ð26Þ

4This can be shown via cluster decomposition: e.g., see [14].
5hFðϕ;ϕ†Þi≡ 1

Z

R ½dϕ�½dϕ��Fðϕ;ϕ�Þe−SEþμ
R

β

0

R
V
d3xdτj0 .
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The chemical potential terms drop out on both sides6 and
we get

E − 3P ¼ 2m2hϕ†ϕi þA; ð27Þ

where

J ¼
�∂ϕ0∂ϕ0�

∂ϕ∂ϕ�

�
¼ eTr log ðI2ðδ4ðx−yÞþρð−1−xμ∂μÞδ4ðx−yÞÞÞ

¼ eρ
R

d4x tr½ð−1−xμ∂μÞδ4ðx−yÞI2�jx¼y

¼ 1þ ρ

Z
d4x tr½ð−1 − xμ∂μÞδ4ðx − yÞI2�jx¼y; ð28Þ

so that

A ¼ tr½ð1þ xμ∂μÞδ4ðx − yÞI2�jx¼y: ð29Þ

I2 is the two dimensional identity matrix which results
from having two fields, ϕ and ϕ�.7A ¼ A

βV is the anomaly, a
divergent quantity that requires regularization.

III. FUJIKAWA CALCULATION

In Euclidean space, LE¼∂μϕ
†∂μϕþm2ϕ†ϕþλ

4
ðϕ†ϕÞ2.

A saddle point expansion about a constant classical back-
ground ϕ produces the quadratic piece L2:

L2 ¼
1

2

�
η† η

��−∂2 þm2 þ λϕ�ϕ λ
2
ϕϕ

λ
2
ϕ�ϕ� −∂2 þm2 þ λϕ�ϕ

��
η

η†

�

≡ 1

2

�
η† η

��−∂2 þ C λ
2
ϕϕ

λ
2
ϕ�ϕ� −∂2 þ C

��
η

η†

�
≡ 1

2

�
η† η

�
M

�
η

η†

�
; ð30Þ

where C ¼ m2 þ λϕ�ϕ, η is the fluctuating field around ϕ,
and M is a Hermitian matrix. Following Fujikawa [20], we
use M, the bilinear matrix, as the Hermitian matrix that
goes in our regulator.8 Choose a regulator of the form R ¼
RðMΛ2Þ with the property that Rð0Þ ¼ I2. The expression to

be regulated is

A ¼ tr

�
θδðx − yÞ 0

0 θδðx − yÞ

�����
x¼y

ð31Þ

where θ ¼ 1þ xμ∂μ, so that

AR ¼ tr
�
R
�
M
Λ2

�
θδðx − yÞI2

�����
x¼y

: ð32Þ

This expression equals

AR ¼
Z

d4k
ð2πÞ4 trR

� −∂2þC
Λ2

λϕϕ
2Λ2

λϕ�ϕ�

2Λ2
−∂2þC

Λ2

�
θe−ikðx−yÞ

����
x¼y

¼
Z

d4k
ð2πÞ4 trR

� k2þC
Λ2

λϕϕ
2Λ2

λϕ�ϕ�
2Λ2

k2þC
Λ2

�
ð1 − ixμkμÞ

¼ Λ4

Z
d4k
ð2πÞ4 trR

� k2 þ C
Λ2

λϕϕ
2Λ2

λϕ�ϕ�

2Λ2 k2 þ C
Λ2

�
ð1 − iΛxμkμÞ

¼ Λ4

Z
d4k
ð2πÞ4 trR

� k2 þ C
Λ2

λϕϕ
2Λ2

λϕ�ϕ�
2Λ2 k2 þ C

Λ2

�
; ð33Þ

where the kμ term is odd so vanishes over the integral when
multiplied by the even function Rð−kÞ ¼ RðkÞ ¼ fðk2Þ.
Next we define

D ¼ k2I2;

B ¼ 1

Λ2

�
C λϕϕ

2

λϕ�ϕ�
2

C

�
; ð34Þ

so that the equation can be written succinctly:

AR ¼ Λ4

Z
d4k
ð2πÞ4 tr RðDþ BÞ: ð35Þ

We then Taylor expand about D (note that ½D;B� ¼ 0 so
the Taylor expansion is valid):

8E.g., for the chiral anomaly with L ¼ ψ̄iDψ , the
matrix iD is to be used as the argument of the regulator. M,
the quadratic piece of the quantum action, naturally captures
the 1-loop effects of interactions which are responsible for
anomalies.

6Using the identity Q ¼ ∂P
∂μ and Eq. (14), Q ¼ ∂P

∂μ ¼ hj0iþ
2μhϕ†ϕi.

7Note that Tr in Eq. (28) refers to both discrete (2 × 2)
and continuous variables, whereas tr in Eq. (29) refers to
only (2 × 2).
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AR ¼Λ4

Z
d4k
ð2πÞ4 tr

�
RðDÞþR0ðDÞBþ1

2
R00ðDÞB2þ���

�
:

ð36Þ

The first term is the same as in the noninteracting case,
which is taken to be anomaly free [21], so we neglect it. The
second term can be absorbed by a mass counterterm. Terms
higher order than the third term fall faster than 1

Λ4 so the Λ4

prefactor in Eq. (36) cannot keep them from going to zero.
Only the 3rd term is independent of the cutoff. Therefore,

AR ¼ Λ4

Z
d4k
ð2πÞ4

1

2
trðR00ðDÞB2Þ

¼ Λ4

Z
k2dk2

16π2
1

2
trðR00ðDÞB2Þ; ð37Þ

where the solid angle Ω ¼ 2π2 was used. Now

B2¼ 1

Λ2

�
C2þ λ2ðϕ�ϕÞ2

4
λCϕϕ

λCϕ�ϕ� C2þ λ2ðϕ�ϕÞ2
4

�
≡ 1

Λ2

�
B1 B2

B�
2 B1

�
;

ð38Þ

and since RðDÞ is diagonal, we can define

RðDÞ ¼ fðk2ÞI2: ð39Þ

Note that the derivative in Eq. (37) is with respect to k2.
Therefore,

AR ¼ Λ4

Z
k2dk2

16π2
1

2
trðR00ðDÞB2Þ

¼ B1

Z
k2dk2

16π2
f00ðk2Þ; ð40Þ

where we have safely taken Λ → ∞. Integrating by parts,

AR ¼ B1

16π2
½k2f0ðk2Þ�

���∞
0
−

B1

16π2

Z
dk2f0ðk2Þ

¼ B1

16π2
½k2f0ðk2Þ�

���∞
0
−

B1

16π2
fðk2Þ

���∞
0

¼ B1

16π2
; ð41Þ

where we require

fð0Þ ¼ 1

fð∞Þ ¼ 0

½k2f0ðk2Þ�j∞0 ¼ 0; ð42Þ

which are the same conditions on the regulator for the chiral
case [22].

Plugging in B1 from Eq. (38) into Eq. (41), we get

AR¼
C2þ λ2ðϕ�ϕÞ2

4

16π2
¼5λ2ðϕ�ϕÞ2

64π2
þ m4

16π2
þλm2ðϕ�ϕÞ

8π2
: ð43Þ

The second term is independent of the coupling, and
since the free theory is taken to be nonanomalous, we can
subtract it. The third term can be absorbed into the mass
term of Eq. (27), leaving only the 1st term as the anomaly
[23]. Therefore

E − 3P ¼ 5λ2

64π2
hðϕ†ϕÞ2i: ð44Þ

Note that the anomalyAR occurs inside the path integral,
and 1

Z

R ½dϕdϕ��fðϕ;ϕ�Þe−SEþ��� ¼ hfðϕ;ϕ†Þi, so that in
Eq. (44) there are expectation values. This replacement
is valid up to 1-loop [23].

IV. DIMENSIONAL ANALYSIS FOR
RELATIVISTIC SYSTEMS

In relativistic theories we set ℏ ¼ c ¼ kB ¼ 1. The units
for all quantities can then be written as ℏicjkkBL

l, where L
is a variable in the problem with units of length. Suppose
the system has microscopic parameters gk, which can be
coupling constants or dimensionally transmuted quantities.
We define ½gk� ¼ l as the power of L when gk is written in
units of ℏicjkkBL

l. So for example ½m� ¼ ½E� ¼ −1. The
grand potential Ω ¼ Ωðβ; μi; V; giÞ has ½Ω� ¼ −1 and can
be written as

Ωðβ; zi; V; giÞ ¼ Vβ−1−Dfðzi; giβ−½gi�Þ; ð45Þ

where fðzi; giβ−½gi�Þ is a dimensionless function of dimen-
sionless variables, zi is the fugacity corresponding to μi
(zi ¼ eβμi ), and D is the number of spatial dimensions.9 Ω
has this form because β and μi do not depend on the
absolute size of the system (they are intensive variables). If
one doubles the system keeping β and μi constant, then Ω,
being an extensive quantity, should double. So Ω must be
proportional to V.10 To make up for the remaining
dimension (½Ω� ¼ −1), we are free to pull out one of the
dimensionful arguments of Ω, and the rest of the arguments
must be ratios with the argument we pulled out. We will
pull out β. This is equivalent to choosing our scale as β and
measuring all other quantities in units of β.
Take the derivative of Eq. (45) with respect to β at

constant fugacity zi and volume V, and multiply times β:

9For example, if the coupling g1 has dimensions of length, the
corresponding dimensionless variable is g1β−1 ¼ g1T which is
dimensionless. If the coupling g2 as dimensions of energy,
g2β−ð−1Þ ¼ g2β ¼ g2

T .10Ω ¼ −PV, so Eq. (45) is consistent with the statement that
Pðβ; μ; VÞ ¼ Pðβ; μÞ.
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β
∂Ω
∂β

����
zi;V

¼ ð−1 −DÞΩþ Vβ−1−Dβ
∂fðzi; giβ−½gi�Þ

∂β
����
zi

¼ ð−1 −DÞΩ

þ Vβ−1−Dβ

�X
k

−½gk�gk
β

∂fðzi; giβ−½gi�Þ
∂gk

�����
zi

¼ ð−1 −DÞΩ −
X
k

½gk�gk
∂Ω
∂gk : ð46Þ

Now, we use the thermodynamic identity E ¼
∂ðβΩÞ
∂β j

zi;V
¼ Ωþ β ∂Ω

∂β jzi;V .

E−DPV¼
�
Ωþβ

∂Ω
∂β

����
zi;V

�
−DPV

¼
�
Ωþð−1−DÞΩ−

X
k

½gk�gk
∂Ω
∂gk

�
−DPV

¼−
�
Pþð−1−DÞP−

X
k

½gk�gk
∂P
∂gk

�
V−DPV

¼
X
k

½gk�gk
∂P
∂gkV

E−DP¼
X
k

½gk�gk
∂P
∂gk ; ð47Þ

where the derivatives are at constant β, μ, and V.

V. β FUNCTION

For a system that develops a microscopic scale M
through dimensional transmutation via renormalization of
the coupling constant

E −DP ¼ ½M�M dλ
dM

∂P
∂λ ¼ −M

dλ
dM

∂P
∂λ

¼ −βðλÞ ∂P∂λ ¼ βðλÞ
�∂HI

∂λ
�
; ð48Þ

since ∂P
∂λ ¼ 1

βV
∂
∂λ ln f

R ½dϕ�½dϕ��e−SEþμ
R

dDxdτjog pulls down
the interaction term in the path integral, creating a thermal
average.
Comparison of Eq. (10), Eq. (27), Eq. (44), and Eq. (48)

gives

βðλÞ ¼ 5λ2

16π2
; ð49Þ

as

E − 3P ¼ 5λ2

64π2
hðϕ†ϕÞ2i ¼ βðλÞ

�ðϕ†ϕÞ2
4

�
ð50Þ

would give Eq. (49).
The β function of Eq. (49) can be gotten from setting

e ¼ 0 for the charge e in the calculation for the four-scalar
vertex in scalar electrodynamics [24]. A diagrammatic
calculation requires the identification of 3 diagrams (see
Fig 1). Diagram (a) contains a symmetry factor of 1=2 due
to the swapping of internal propagators. Modulo the
symmetry factor, each diagram contributes the same
amount to the β function, giving 1=2þ 1þ 1 ¼ 5ð1=2Þ,
or the first diagram’s contribution multiplied by 5. The
matrix M used for regularization automatically mixes the
interactions, giving the factor of 5. Using the definition of
the beta function M dλ

dM ¼ 5λ2

16π2
and setting the renormaliza-

tion scale M ¼ T, one can solve the differential equation
for the coupling λðTÞ ¼ 16π2

5 lnðΛTÞ
, where Λ is the Landau pole.

As T
Λ → 0 the coupling is small and the system behaves like

a gas of noninteracting bosons, while as T → Λ the
coupling blows up and perturbation theory fails.

VI. CONCLUSIONS

In this paper we have extended to relativistic systems the
path-integral approach to the study of quantum anomalies
for many-body systems initiated in [13–15]. A notable
difference is that in the relativistic case we have a very wide
class of regulators characterized by the function fðk2Þ of
Eq. (39), which, other than satisfying Eq. (42), is of a very
general nature. An interesting result of this paper is the
extraction of the leading order result for the beta function
for complex fields, Eq. (49), obtained here by comparing
Eqs. (10), (27), (44) and (48), without resorting to graphical
methods [24,25]. This result gives further support to the
importance of Fujikawa’s approach in the description of
quantum anomalies for systems at finite temperature and
density. We are currently pursuing further studies and
extensions of this method, as well as applications to other
systems with classical scale symmetry.
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FIG. 1. Diagrams contributing to the β function for complex
scalar field theory. 1 and 2 refer to incoming particles, 3 and 4 to
outgoing particles.
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