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We elucidate and extend the conditions that map gauge-Yukawa theories at low energies into time-
honored gauged four-fermion interactions at high energies. These compositeness conditions permit us to
investigate theories of composite dynamics through gauge-Yukawa theories. Here we investigate whether
perturbative gauge-Yukawa theories can have a strongly coupled limit at high energy that can be mapped
into a four-fermion theory. Interestingly, we are able to precisely carve out a region of the perturbative
parameter space supporting such a composite limit. This has interesting implications on our current view on
models of particle physics. As a template model we use an SU(N) gauge theory with Ny Dirac fermions
transforming according to the fundamental representation of the gauge group. The fermions further interact
with a gauge singlet complex N x N Higgs boson that ceases to be a physical degree of freedom at the
ultraviolet composite scale, where it gives away to the four-fermion interactions. We compute the hierarchy
between the ultraviolet and infrared composite scales of the theory and show that they are naturally large
and well separated. Our results show that some weakly coupled gauge-Yukawa theories can be viewed,
in fact, as composite theories. It is therefore tantalizing to speculate that the standard model, with its
phenomenological perturbative Higgs sector, could hide, in plain sight, a composite theory.
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I. THE COMPOSITE FACET OF
GAUGE-YUKAWA THEORIES

Gauge-Yukawa theories are what make up our current
best bet for a description of nature at the smallest scales: the
standard model of particle physics (SM). However, in order
to resolve any of the standing problems in the SM, it must
be extended. In this work we dedicate ourselves to the study
of a general set of gauge-Yukawa theories, inspired by the
global symmetries of QCD and the electroweak theory.
Keeping the initial discussion general we then argue that it
is possible to reinterpret and make use of a certain class of
gauge-Yukawa theories that is not ultraviolet (UV) safe.
This amounts to having Landau poles in the couplings of
the theory that cannot be tamed controllably at least within
perturbation theory. Our results serve as a starting point of
nonperturbative first principle numerical studies beyond the
conformal window of asymptotically free theories [1-3].

A gauge-Yukawa theory can be described by a Lagrangian
of the general form
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where Y, m(z), and A may be matrices in the fermion ¥ and
scalar ® field space. To define the theory the appropriate
gauge group(s) and corresponding representations must
be specified, while the choice of the Yukawa and scalar
couplings determines the global symmetries of the theory.
This class of theories is renormalizable and has been
extensively studied. When quantum effects are considered
and counterterms are added to remove the ultraviolet
divergences, all of the terms in the Lagrangian Eq. (1)
receive corrections. Focusing on the fermionic and scalar
sector of the theory the changes to the Lagrangian are
given by

VPV — (14 6,,) VDY,
D, ®D*®" - (1 + 54,)D,PD &7, (3)

m3 — m} + 68,
Y>Y+o6y=Y,,

A= A48, =2, (4)

2
my,

where 67, and 6, are the corrections from field-strength
renormalization of the scalars and fermions. Through the
renormalization procedure, a renormalization scale y is
introduced, and when the operators above change as the
renormalization scale is varied, the theory moves along a
renormalization group (RG) flow in the space of cou-
plings. Defining the couplings at a given energy scale
picks out a unique RG trajectory of the flow. Therefore in
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principle, a specific gauge-Yukawa theory has an infinite
number of physically different paths in the RG flow. It can
happen, however, that the theory possesses ultraviolet
interacting fixed points that, depending on the dimension
of the critical surface, can increase the predictivity of the
theory [4,5].] This is, of course, also true for asymptoti-
cally free gauge theories such as QCD where the infrared
dynamics of the theory is known once the external group-
theoretical parameters of the theory are given, such as the
number of quark flavors and colors.

To retain the canonical form of the renormalized
Lagrangian, the field-strength renormalizations may be

absorbed by a redefinition of the fields, ® — ®/
(14 8,,)"% and ¥ — W/(1 + 5,,)"/?, giving
1
L =--—F,F"+iUDV + D,®D'd*
g
+ (YT ®V +He.) - V(D), (5)
with
V(®) = mi®td + 2(TD)2. (6)

The renormalized canonical parameters are in terms of
the renormalized noncanonical ones given by

~ Y
Y = r ,
N
2
5 m; ~ Ar
mi; =———, and A=—-——. 7
"= 567 (R

In standard perturbation theory the denominators in the
above expressions can be taken to unity, such that to
lowest order Y = Y,, mj = m? and 24 = A,. However, this
identification breaks down if at strong coupling the field-
strength renormalizations grow big. This is the situation we
investigate.

In particular, we consider in this work gauge-Yukawa
theories, where the scalars are composite fields appearing
only below a certain energy scale Ayy. Above that scale,
one should recover a theory of only fermions and gauge
bosons. This means that the scalars must cease to propagate
at the scale Ayy, and there we must set 6, = —1. This
physical requirement on the scalar field translates into
requirements for the scalar and Yukawa couplings as well
as the mass term of the renormalized Lagrangian in Eq. (5),
which we call the compositeness conditions. It is conven-
ient to express these conditions in the following form:

2 2
lim 72 =0, lim Salr im 22~
u—Ayy u—=Ayy Y Y r

m ,

u=Ayy Y2 Y2
(8)

'Complete asymptotically safe theories have novel

thermodynamic properties [6] and provide new ideas for model
building [7.8].
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where by the limit an inverse transformation from Eq. (5) to
Eq. (1) is implied at the scale Ayy. This transformation is
necessary because the canonical couplings diverge at the
scale Ayy. In perturbation theory such a divergence is
associated with the occurrence of a Landau pole. The
approximation used requires also that the fermion wave
function renormalization correction does not spoil Eq. (8).

We show now a particularly important case, where these
conditions are matched onto a purely fermionic gauge
theory at the composite scale. Consider the case when
A, = 0 at the scale Ayy. The Lagrangian at the scale Ayy in
this case reads

1 _ _
L=——F,F"+iIpV+ (Y,IV + Hc.)

ag e

©)

where we assume that §;, <1, or equivalently that the
interactions are very weak at Ayy. Since there is no kinetic
term for the scalars, we may eliminate them via their
equations of motion, and the resulting Lagrangian is

1 -
L= =g Fuh" + 1TV +

v )2

m—%( )7 (10)
which has the structure of a generalized gauged Nambu-
Jona-Lasinio (gNJL) model [9]. The link between the
four-fermion theory described above and a low energy
gauge-Yukawa theory was first demonstrated in [10]. To
connect the picture to the effective field theory language,
we may choose as renormalization conditions m?(Ayy) =
A}y and Y?(Ayy) = G, with G being the dimensionless
four-fermion coupling. Then the above Lagrangian takes
the form of the following effective field theory:

L——Lp Fﬂ”+z\1/D\1r+AG (D)2 (11)

4 92 Hv 2y

The attentive reader would have realized that to derive
the gNJL effective theory from the gauge-Yukawa system
we used not only the compositeness conditions Eq. (8)
but also that 4, = 0. It is therefore important to know when
this requirement may be satisfied starting from the gauge-
Yukawa theory. Consider the following limit:

A A,
lim =R lim —2 (12)
u=Ayy Y H=Ayy (1 + (qu))Y

One observes that if 4, does not vanish at the composite
scale the above quantity diverges at Ayy. If, however,
A, — 0 in this limit, the ratio of —%— Mios) may go to a constant
value, thus yielding

l+5

A
lim == = constant. 13
u=Ayy Tz ( )
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This new condition will be added to the list of compos-
iteness conditions given in Eq. (8), further reducing the
number of gauge-Yukawa theories that may admit a
composite realization of the gNJL type.

The previous conditions are nonperturbative in nature
and can be exploited to investigate also the correspondence
between the two types of theories. In particular, as we shall
see, the correspondence enables us to study certain aspects
of theories of composite dynamics through gauge-Yukawa
theories that feature a RG region, where the theories can be
treated perturbatively. This result shows that weakly coupled
gauge-Yukawa theories at some intermediate energy scale
are, de facto, composite theories. It is therefore tantalizing to
speculate that the standard model with its perturbative Higgs
sector could hide, in plain sight, a composite theory.

Beyond perturbation theory one can use first principle
lattice studies [11-15] for which our results can be viewed
as exploratory in nature.

We introduce a concrete example in Sec. II that we use to
elucidate the main points. It consists of an SU(N ) gauge
theory featuring N Dirac fermions transforming according
to the fundamental representation of the gauge group. They
further interact with a gauge-singlet Ny x Ny complex
scalar field via Yukawa interactions that at intermediate
energies self interact. We show that it is possible to enforce
the compositeness conditions in this theory while simulta-
neously discovering a controllable perturbative regime
along the RG flow. This situation is similar to the SM,
where at and around the electroweak scale all the couplings
can be treated in perturbation theory. Because we have a
clear perturbative regime, we divide the section in several
subsections associated to different orders in perturbation
theory. We show that the theory can admit a composite
nature and furthermore estimate the ratio of the ultraviolet
composite scale to the infrared chiral symmetry/confining
scale as a function of the parameters of the theory. We offer
our conclusions in Sec. III. A series of appendixes contain
detailed computations used to derive the results in the
main text.

II. THE COMPOSITE TEMPLATE

We start with an SU(N.) gauge theory with No > 2.
The associated gauge fields Ay have field strength Fj,
(@=1,...N&—1). We add N Dirac fermions Q¢ with
i=1,...Np and ¢ = 1,...N transforming according to
the fundamental representation of SU(N¢). The fermions
further interact with an Ny x N complex scalar H. The
fundamental interaction Lagrangian reads

L=- %Tr[F’”’FM,,] + Tr[QiP Q] + Tr[0,H' 9" H]
+YTr[QHQ] - V[H], (14)

with Tr[QHQ] = Tr[Q, HQg + OxH'Q;] and
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V[H] = m}Tr[H'H] + uTr[H'HH H] + v(Tr[HH])>.
(15)

We trace over both color and flavor indices. This theory
has been investigated in much detail recently in [16-20] for
a large number of interesting properties, not directly
connected with compositeness. It has been studied earlier
in connection with top-quark condensate models in [21,22],
albeit in a different setup and limit than we are taking here.

The model has four classically marginal coupling con-
stants given by the gauge coupling, the Yukawa coupling y,
and the quartic scalar couplings: the single-trace coupling u
and the double-trace coupling v. From these we define new
rescaled couplings, useful in the large N and Ny limit,
which read

o — g°Nc¢ a0 — y*N¢
g9 (471')2 ’ y (471')2 ’
uN vN2
== , = ) 16
“lanr O (ay (16)

These are the appropriately normalized couplings which
enable us to study the Veneziano limit of the theory, where
Np, N¢ — oo, while Ni/N( is kept constant. Note the
additional power of Ny in the definition of the scalar
double-trace coupling, which makes v/u go as a,,/ (o, Nf).
The resulting compositeness conditions introduced in the

previous section specialize to

lim o' =0,  lim 24— im 22—,
u—=Ayy u=Ayy ay

2

im 2=, (17)
n=hovmy - Agy
where the last requirement gives the matching to the high
energy four-fermion theory. The two first conditions can be
investigated in any renormalization scheme, while the last
one involving the mass only applies to mass-dependent
schemes. In mass-independent schemes there will be
corrections to the right-hand side of the latter condition
[23], which are, however, unimportant to this work. The
matching to the high energy theory is achieved in the
following way: At the scale Ayy, where the couplings of
the Lagrangian Eq. (14) formally diverge, the theory should
instead be rewritten through the transformations given in
Eq. (7). Assuming furthermore that

au/

lim —* = constant (18)

H=Ayy QY
as explained in the previous section, it follows that the
scalar sector of the theory is described by

Egomposite = \/ETr[QLHQR + QR[—IJr QL] - A%VTI'[HTH},
(19)
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where the fields Q;/z and H now are the inversely
transformed ones of Eq. (3). The renormalized mass
parameter and Yukawa coupling are the inversely trans-
formed ones defined in Eq. (4), where the renormalization
conditions identifying them with the cutoff and the four-
fermion coupling were imposed. By eliminating the aux-
iliary scalar degrees of freedom through their eqzuation of
motion, one obtains the four-fermion interaction”:

2G

H _ =
Eomposie = 37

Composite Tr[QL re QR]Tr[QR re QL] : (20)
Here 7% was introduced through H = h°T¢, with a =
0,1,..., N% — 1 which are the generators of SU(N ), while
T0 = \/2]T 1. The normalization used is TrTT" = 5.
F . . .

We are now ready to provide a consistent renormaliza-
tion group investigation of this gauge-Yukawa system
superimposed with the compositeness conditions derived
above. The renormalization group flow of a gauge-Yukawa
theory arranges itself in a particular pattern in perturbation
theory. As shown in [24] the beta functions of these theories
in mass-independent schemes abide the Weyl consistency
conditions [25]. These conditions have been further tested
in [26]. These dictate a specific counting scheme to
correctly take into account higher-order corrections. This
counting scheme can in perturbation theory also be under-
stood through the general pattern for the perturbative
beta functions of the dimensionless couplings in mass-
independent schemes:

By =B"(9)+ BP9 ) + (g A+, (21)
By =B (9.3) + B (9.3, 2) + -+ (22)
Br=p" g y) + -, (23)

where the superscripts denote the loop order of the terms
and the parenthesis shows which couplings they depend on.
This pattern is completely general, and shows that one
may consider the running of the gauge coupling at one loop
consistently without taking into account the running of
Yukawa and the quartic couplings (leading order).
Likewise one may analyze the two-loop running of the
gauge coupling taking into account the one-loop running of
the Yukawa consistently without taking into account the
running of the quartics (next-to-leading order). At three
loops, running of all couplings must be taken into account
and the lowest consistent counting order is 3-2-1 loops in
the gauge-Yukawa-quartic beta functions [next-to-next-to-
leading order (NNLO)]. The Weyl consistency conditions, in
fact, dictate that this is the only consistent counting scheme.
We in this sense analyze the leading, next-to-leading and

2By using a Fierz identity, this can be recast into the form

G/AIZJV( _% ﬁc)(Q;‘?’jQLiC’)'
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next-to-next-leading order corrections to the RG flow and
their physical implications on the four-fermion theory
described above. In particular, we compute the distance in
energy between the composite scale and the confinement
scale of the theory, and show that large hierarchies are not
only possible to establish, but seem to be a clear feature of
these theories.

A. Leading order and weak compositeness
conditions

The leading order analysis is an oversimplified case,
which is not able to capture the composite nature of gauge-
Yukawa theories. Nevertheless, we make a leading order
analysis in this section for completeness, since it allows us
to define the infrared scale and furthermore provides a
pedagogic step towards the following sections.

To the leading order one needs only to consider the
gauge beta function at one loop which reads

B, = 0a, = —poa; = —gag (11 - 2&) (24)
The Veneziano limit allows us to further take N /N to be
any real non-negative number, called x = Ny/N¢.
Depending on the number of flavors, the double zero at
a, = 0 can either be an infrared or an ultraviolet Gaussian
fixed point. The second case is also known as asymptotic
freedom. In the first case the ultraviolet theory is not well
defined unless higher orders introduce an interacting ultra-
violet fixed point, in which case the theory becomes
asymptotically safe [4,5].

Here we consider the case in which the theory is
asymptotically free. This restriction allows us to assume
that the wave function renormalization of the fermions will
stay small near the composite scale, since they are at one
loop produced by gauge interactions. As explained in the
previous section, for consistency we should not consider
the running of the scalar and Yukawa couplings at this
order. According to the compositeness conditions Eq. (17)
we should have

lim a,2 = 0. (25)
u=Agy

To this order, a constant and formally divergent «, is thus
required. This is in clear tension with perturbation theory.
Given that we want to avoid an uncontrollable nonpertur-
bative analysis, to the leading order we therefore must take
another approach by enforcing instead a weaker version of
the compositeness conditions: Assuming that we are
describing a four-fermion theory at a mass scale, which
is at least a few times below the composite scale, we may
consider a, simply to some constant value smaller than one,
as depicted in Fig. 1, to ensure validity of the pertubative
analysis. We see that when next-to-leading order correc-
tions are taken into account, this assumption is valid, since
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FIG. 1 (color online). Renormalization group evolution for the
lowest order analysis, where the Yukawa coupling is constant and
nonzero, while the gauge coupling runs. We have here defined the
scale Ajg such that a;(Ar) = 1. The scalar quartic couplings, not
included here, are also constants to this order.

the Yukawa coupling will naturally grow at high energy
and what we are describing here are boundary conditions in
an energy range, where the Yukawa coupling is small
enough for perturbation theory to hold. For the scalar self
interactions we assume a similar behavior.

From this first oversimplified analysis one concludes that
the asymptotically free theory develops a mass gap asso-
ciated with the divergence of the gauge coupling at low
energies. At these energies chiral symmetry breaks leading
to the formation of the nonperturbative condensate

(00) o A (26)

The scale Ajg can be estimated to be [cf. Eq. (A7) in the
appendix]

Am = o xp (— %%M) 27)

This estimate is insensitive to the perturbative corrections
from the Yukawa and scalar sectors, which contribute only
at higher orders. Thus if the Yukawa and scalar sectors stay
perturbative in the infrared (IR), the above expression
provides a good estimate of the IR strong scale of the
fully dynamical gauge-Yukawa theory.

B. Next-to-leading order analysis: the rise
of the Yukawa coupling

For the next order in perturbation theory one needs to go
to two loops in gauge coupling and one loop in the Yukawa,
while the running of the scalar couplings is still not relevant.
To this order, therefore, the Yukawa coupling is no longer a
constant and its running and consequent backreaction on the
gauge coupling are important. We have’

*The beta functions are in the MS-scheme [27-32]. It would
also be interesting to investigate the compositeness conditions in
other renormalization schemes such as the momentum subtrac-
tion scheme [33-36], since different schemes can be more or less
suitable to explore different facets of gauge-Yukawa theories.
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2 Ny Nr NA—1
=—— 11-2— 34—-———<10+3
Py 3%[< Nc>+( Nc{ " Ne %

N2
+3—Fa,] : (28)
NZ

N Nz -1
B, = a {2(1 +N—C>ay - 6;]7%%]. (29)

Working in the Veneziano limit by defining x = N,/N at
large N and N yields

2
B, = —gag[(ll - 2x) 4 (34 — 13x)a, + 3x%a,],  (30)

py =20, [(1 + x)a, — 3a,]. (31)

We restrict x < 11/2, ensuring asymptotic freedom for the
gauge coupling. In the absence of the Yukawa interactions, a
well-known interacting infrared fixed point emerges at

11 —2x 34 11
for —<x<

oo X 2 and a, =0.
% T 13x—34 13 2 e %

(32)

For x very close to 11/2 this is the Banks-Zaks perturbative
infrared fixed point. This fixed point, however, disappears in
the presence of the Yukawa interactions.* Therefore the next-
to-leading order effects on the gauge beta function strength-
ens the infrared QCD-like behavior of the theory.

The RG flow of the gauge-Yukawa system for x = 2 is
shown in Fig. 2. The arrows in the figure show the flow
from the UV to the IR regime. In the UV two distinct
phases form. The boundary between these two phases is
approximately given by

a,  2(x-—1)
a_g_3(x+1)’ (33)

which is determined by the one-loop beta functions in both
couplings [cf. Eq. (A24) in the appendix]. Below the red
trajectory both couplings are asymptotically free meaning
that the theory is noninteracting and well defined in the UV.
This RG region, therefore, does not support a composite
limit of theory. The composite limit emerges in the RG

*If the infrared fixed point should exist, it should be a fixed
point also for the Yukawa interactions. By setting f, =0 we

. 3 . . . . "y
derive a, = 135 a, which can be substituted in f, yielding

2 x?
By~ —gaé {(ll —2x) + (34— 13x+91+x)ag},

showing that the presence of the Yukawa has eliminated the
possibility of the infrared fixed point.
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FIG. 2 (color online). The RG flow in the (a,, @,) plane for
x =2. Two distinct phases are present. The red trajectory
indicates the phase ll))oundau'y estimated from the one-loop beta

. . a_‘ o 2(X—
functions: @ = 300y

region above the red trajectory, where the Yukawa coupling
diverges in the UV, thus allowing the compositeness
conditions given in Eq. (17) to be satisfied. We notice
that the boundary Eq. (33) for x < 1 is outside the physical
parameter space of the couplings. Therefore the composite
limit is supported by the entire perturbative region of the
physical space of couplings, i.e. the Yukawa coupling will
also diverge in the UV. Thus x = 1 defines a boundary in
the external parameter space.

We show in Fig. 3, again for x = 2, the actual running of
the two couplings in the composite region for one particular
RG trajectory. Considering the flow from UV to IR,
initially a, > a, due to the compositeness condition.
Since ay will decrease, while a, increases towards the
IR, at some intermediate scale y, their values cross, and
once 3a, > (1 +x)a,, the sign of the Yukawa beta
function changes, making it grow again in the deep IR.

05¢
04t

03}

02}

0.1f

= /AR

1 10 100 1000
FIG. 3 (color online). Renormalization group evolution for the
next-to-leading order analysis, where the Yukawa and gauge
couplings run. We define the scale A and Ayy such that

ay(Ar) = ay(Ayy) = 1. The scalar quartic couplings are con-
stants to this order and are not included here.
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This growth of a, in the IR is therefore at most as fast
as 3a,/(1 +x).

The composite scale Ayy is identified with the Landau
pole in the Yukawa coupling. We fix our perturbative initial
conditions at the crossing scale yu,, and we ensure that
perturbation theory is valid by requiring a,(uy) =
ay (o) = C < 1. This condition is for any x consistently
above the boundary Eq. (33), ensuring that the theory is in
the composite phase.

It is interesting to study the hierarchy between the
composite scale and the chiral symmetry breaking one,
as a function of both C and x. At the one-loop level, in
both the gauge and Yukawa coupling, we can estimate it
analytically to be

(o) 2(1-x) \ 355
o Apy) 3<1 + (o) 3(1+x)> (34)
¢ Ar 2(11 = 2x)ay(uo)

The expression is well defined for any x, and it takes the
following simple form at x = 1:

a,(uo) 2(1 = x)\ 2=
limlo UV) = lim< 4 4770 7_>
x—1 g(AlR 3a,(po) 1 oy (po) 3(1 + x)
3ay(po)
ol .
3“9(#0) ‘

To set the initial values of the couplings we use a,(ug) =
a,(uy) = C since in the composite phase there will always
be a u, such that this condition is fulfilled.

In Fig. 4 we compare the approximate analytical one-
loop result with the next-to-leading order numerical cal-
culation. To numerically estimate the value of the IR (UV)
scale we use the approximate relation a,,)(Aryv)) = 1.

The ratio increases for small and large values of x for a
fixed value of C. This is because for small x the first
coefficient of the Yukawa beta function decreases, de facto,
slowing the runaway behavior of the associated coupling in
the UV. For large x, instead, the ratio becomes large since
we are nearing the limit where asymptotic freedom is lost
for the gauge coupling. Consequently the infrared scale is
approaching zero.

Additionally, we explore the influence of the chosen
value of the couplings a, = a, = C at the scale where they
are equal. Setting x = 2.5 associated to a region of x that
does not influence dramatically the ratio Ayy /A, as it is
clear from Fig. 4(a), we vary the value C and plot again the
ratio in Fig. 4(b). As one might have expected, smaller
values of the couplings lead to a larger ratio of the scales
since more RG running is needed to reach the UV and IR
scales where the couplings become nonperturbative. We
also observe that the approximate one-loop result over-
estimates the ratio.

Another interesting feature is that for the theory to
remain perturbative in an intermediate regime, say

085043-6
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The ratio between the scale of UV compositeness (Ayy) and the one associated to infrared gauge coupling

divergence (Arg), as a function of the number of flavors/colors, parametrized by x and the common value, C, of the gauge and Yukawa
coupling at the scale where they are equal. We vary x in (a) and C in (b). The one-loop estimate is presented in dashes while the next-to-
leading perturbative (2-1) numerical result is represented by the solid curve.

C < 0.1, the ratio of the scales, as a function of x, cannot be
too small, and typically should be larger than 100, implying
a hierarchy of scales of at least two orders of magnitudes.
This has interesting phenomenological consequences
which will be discussed later.

It is straightforward to see that the compositeness
conditions in Eq. (17) are satisfied to this order. The
conditions for the scalar sector are satisfied by imposing
the weaker version of the conditions discussed in the
previous leading order case. Following that reasoning, to
the next-to-leading order in perturbation theory, we have
shown that gauge-Yukawa theories can be naturally viewed
as stemming from a compositeness paradigm for a wide
region of the RG phase diagram, e.g. the one in Fig. 2.

C. Next-to-next-to-leading order: the awakening
of the scalars

In the previous sections, we were able to draw a
consistent picture of compositeness in the gauge-Yukawa
sector, and we were furthermore able to provide estimates
for the hierarchy between the ultraviolet composite scale
and the infrared confinement scale. From the ultraviolet
theory point of view, the scalars are merely auxiliary fields.
For consistency of the analysis in the previous sections,
they should therefore not play any physical role. In this
section, we investigate the influence of the scalars on the
above results, and provide the needed constraints on the
scalar coupling phase space, needed to ensure consistency
of the previous analysis.

The next order in the RG analysis requires the one-loop
beta functions for the quartic couplings, the two-loop terms
in the Yukawa beta function, and the three-loop terms in the
gauge beta function. This system of RG equations obeys
the Weyl consistency conditions and reflects the back-
reaction from the scalars on the running of the Yukawa
coupling, which in turn backreacts on the gauge coupling.

Since the scalars do not carry gauge charge, they do not
contribute to the three-loop terms for the gauge coupling.
Additionally, since we are considering a mass-independent
renormalization scheme, we can independently take into
account the running of the mass, where one loop is also
sufficient. In the Veneziano limit, the beta functions to this
order read [18,20]

2, ’ 81x?
ﬁg:_§a9 (11=2x) + (34— 13x)a, +3x ay +— g,

3x2(7+6x) , 2857+ 11222 — 1709x 2}
- (xy _F a )

4 18
(36)
20x — 203
py =2a, {(1 + X)ay = 3a, + (8x + 5)a a, + XTag
12
— 8xa, — %a}% + 4053] , (37)
and for the scalar sector
B, =4 [20{3 + a,a, — gaf] , (38)
B, = 4[a? + da,a, + 302 + a,oy), (39)
Bz, = omy, = 4mja, + a, + 2a,]. (40)

The RG structure of this theory is quite rich and has been
intensively studied in recent years [4,5,16-20,37]. Here,
we are interested in a new point of view, which concerns
compositeness.

In this section we must show that the scalar self
interactions can be consistent with the compositeness
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picture that emerged above and has been driven, so far, by
the Yukawa interactions. Specifically, considering as in the
above analysis an intermediate RG scale y, where pertur-
bation theory is well defined, we have to ensure that the
scalar couplings stay perturbative up to the composite scale,
where they furthermore have to satisfy the compositeness
conditions given in Egs. (8) and (13). The reason for this
requirement is that if the scalar couplings grew strong
before the composite scale, the analysis of the previous
sections would be invalidated.

There are two other issues which may arise; the first is that
according to the mass-independent scheme, the scalars
remain dynamical as long as my(u) < u. For my(u) = p,
the scalars will decouple before reaching the scale where
they should be seen as auxiliary fields, and therefore this
situation should be avoided. The second issue arises when
the effective potential develops a global minimum away
from the origin due to quantum corrections. For consistency
of our analysis, this has to be avoided between the scales y,,
and Ayy, since the vacuum expectation value of the scalar
fields was earlier assumed to be zero in the analysis of the
compositeness condition on the Yukawa coupling and in the
calculation of the scale hierarchy. However, at lower scales
there is no inconsistency with having a symmetry breaking
through the scalar sector, rather than the gauge sector. This
would correspond to another interesting possibility that we
are, however, not considering here.

To summarize, the aim of this section is to understand
and provide the criteria under which the following occur:

(1) The scalar sector stays perturbative up to the
composite scale, where it furthermore must satisfy
the compositeness conditions.

(2) The scalars do not decouple before the infrared
confinement scale.

(3) The minimum of the effective potential at the origin
remains stable under quantum corrections between
the composite and confinement scales.

We now demonstrate that there is a subset of theories
which do obey the above three constraints on the scalar
sector. First of all, we need to ensure that there is no Landau
pole in the scalar couplings between g and Ayy. To lowest
order in perturbation theory, we have shown in the
appendix [cf. Eqs. (A35)-(A36) and (A48)] that the initial
conditions on the scalar couplings must satisfy the follow-
ing inequality, to not become strong at intermediate scales:

2(11 = 2x) C

24 (1- %%)z'ff_z.f -1

(e (o), 2lex (o) [} <

(41)

where we used the renormalization condition of the
previous section a,(u) = a,(uy) = C.

There is another subtle effect, which can lead to a
Landau pole, due to tangential divergence, as explained

PHYSICAL REVIEW D 92, 085043 (2015)

in the appendix [cf. Egs. (A38)—(A39)]. Here we can in the
general case at best impose an overconstraint inequality,
ensuring no Landau poles. For the a, coupling it reads

“1-VI+4x <4 “(C”O) —1+V1+4x. (42)

For the a, coupling, the situation is more complex
[cf. Eq. (A47)]. The following constraints, however, will
ensure no Landau poles at intermediate scales:

ay (ko) +4a, (ko) 12

arlio)>="—— T )

<4+a;4(ﬂ0))
(43)

(#0) +4a, (o)
(o) ) -1

(44)
If o,(uy) 1is negative, the additional constraint,

(4 —l—%)Q > 12, must be imposed, which can be
expressed more clearly as

au(ﬂO) > = (\/)—
X Ho) (/"0)

V24"

To ensure that there are no Landau poles in the infrared
regime, before the confinement scales, similar constraints
can be put, which are also provided in the appendix
[cf. Egs. (A36) and (A48)].

At high scales the coupling «,, may also exhibit tangential
divergence, as explained in the appendix [cf. Eq. (A44)].
This is avoided by imposing the following constraint on the
theory parameters:

—0. 13ay(/"0)

and  a, (i) < —1.87a, (o). (45)

x> —4+43V3-1/6(7T-4V3)~054.  (46)
The constraint does not depend on the initial perturbative
values of the scalar couplings and must be satisfied regard-
less. Thus we can conclude that for x < 0.54, the perturba-
tive theory cannot show a composite nature of the type we
are considering, but for any other values 0.54 < x < 5.5,
there are well-defined regions where compositeness is
expected.

When these constraints are satisfied, the only Landau
pole appearing in the UV regime is the one driven by the
Yukawa coupling. It is then clear that in perturbation theory
the running of the scalar couplings at the composite scale
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Constraints on a,/a, at i

1.0F

0.5f

-
-
-
-
-
-
-
-
-

a’u(,uO)
ay(po) . 0f=—1

~0.5Fx
| -
-10 e

FIG. 5 (color online). The constraints on «,(yg) in terms of
ay (o) for different values of x. The strong coupling constraint
Eq. (41) is shown in solid, while the perturbative tangential
divergence constraints on «, Eq. (42), and on «a,, Eqgs. (45)-(46),
are shown in dashes, dots, and dot dashes, respectively.

Composite limit

Landau poles below Ayy

may only diverge as fast as the Yukawa coupling, and thus
the extra condition in Eq. (13), in agreement with an Nambu-
Jona-Lasinio (NJL)-type four-fermion theory interpretation,
is automatically satisfied. In the appendix we have further-
more shown that the value of Eq. (13) is at one loop exactly
fixed by the theory parameters, and is independent of the
initial values of the couplings [cf. Egs. (A31) and (A45)].
In particular, near the composite scale the sign of «, is
always negative, while the sign of a, is always positive.
The consequence of this on the stability of the potential will
be analyzed at the end.

Intuitive understanding of the constraints for the quartic
couplings may most easily be obtained from a visualization,
and in Fig. 5 we display the constraints Eqgs. (41)—(42)

Constraints on @, as a function of a, at y

0.0p—
]
%
LN Composite limit
-0.2p %
k |
a,(to) [ S
v i
o4l B[ T
ay(/‘O) A S D
A
Py T
06—t
i Landau poles below Ayy "t
]
~0.8k__

02 00 02 04 06 08 10
a,(Ho)/a, (o)
(a)

FIG. 6 (color online).
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and (45)—(46) in terms of the ratio Z? EZ Z; From the figure we

see that, although the absence of unwanted Landau poles is
strongly constraining the parameter space, a range of initial
values for a, is still consistent with the composite picture.
We note in particular that the quartic coupling «,, is always
constrained to be smaller than the Yukawa coupling, and that
for any x, the coupling a, cannot be smaller than —0.13a,,.

As mentioned, the picture for the other coupling, «,), is
more involved, and the constraints depend on the values of
x and a, as well as the ratio ““ . We start by examining the
latter dependence coming from Egs. (43)—(44), which is
depicted in Fig. 6(a).

The allowed regions for a,(yy) depend on the ratio
@, /a, in a nontrivial way, but notice that this dependence
only constrains «, in the region of negative values, while
leaving positive values for a, (1) unconstrained. For values
of @, /a, larger than ~0.7 the region excluded by Eq. (43) is
fully contained within the absolute lower bound coming
from the strong coupling constraints Eq. (41), making the
former constraint irrelevant. The region where Eqs. (43)—
(44) are most relevant is the one where a,,/a, takes small
values, the lowest value allowed from Eq. (45) being

ay(Ho) ﬂO ~
ay (”0)

coupling constraints Eq. (41) (independent of a,/ay)
alongside the constraints, Eqs. (43)—-(44), evaluated at

o Ez 3) = —0.13. For larger values of a,/a,, the horizontal

band in Fig. 6(b) moves downwards and closes the small
window of allowed parameter space in the lower right

corner for %) —
ay(ug)

—0.13. In Fig. 6(b) we therefore display the strong

—0.05, as one can infer from Fig. 6(a).

To test the validity of the approximations made in the
calculations of the constraints above, we perform a full

Constraints on @, /a, at i

0.6}

0.4}

0.2} Composite limit

@, (o)
a/y(ﬂ())

Constraints on the initial value of the coupling «, in terms of a,. Figure 6(a) displays the x-independent

constraints coming from Eqs. (43)—(44) (dots), and Eq. (45) (dot dashes), while the lowest x-dependent bound is also displayed (solid),
which can be inferred from 6(b). Figure 6(b) displays the x-dependent strong coupling constraints Eq. (41) (solid), and Eq. (46) (dot

W(po)

dashes), while the x-independent constraints Eqgs. (43)—(44) (dots) are displayed for < ( 0= —0.13. For larger values of "E"‘]) the

horizontal band moves downwards and closes the small window in the lower right corner for

o "") = —0.05, as one can infer from 6(a).
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FIG. 7 (color online).
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1.0¢

u/ Ar

(b)

The RG evolution of the one loop system of gauge, Yukawa, and quartic couplings for a benchmark model,

which respects the constraints for composite theories, where x = 2.5 gives the smallest hierarchy between Ayy and A [see Fig. 4(a)].
Figure 7(a) shows the composite signature, where the divergence of the Yukawa and scalar couplings at Ayy is expected, and implies a
possible composite interpretation of the theory. Figure 7(b) shows that the ratios a, /a, and a,,/a, are well behaved in the entire region
and run for different initial conditions to a unique fixed value at Ayy, implying that the possible composite theory is of NJL type.

RG running of the coupled system of equations including
the scalar couplings. As a benchmark model, we choose
x = 2.5 [giving the smallest hierarchy between Ayy and
A, cf. Fig. 4(a)], and a,(uy) = a, (1) = 0.1, guarantee-
ing composite behavior in the gauge-Yukawa sector, as well
as a,(po)/ay (o) =03 and  a,(uo)/ay(uo) =0.1 to
respect the constraints for the quartics. A numerical
solution to the RG equations at one loop in all beta
functions generates the running couplings shown in
Fig. 7, where also the running of the ratios a,/a, and
a,/ay is shown. The result shows that the quartic couf)lings
are well behaved between A and Ayy, where respectively
the gauge and the Yukawa coupling poles are located. The
plot of the running of ratios demonstrates that they run to a
unique constant at the composite scale, which signals that a
possible composite UV completion is of four-fermion NJL
type. Including the complete NNLO information in the RG

057
0.4F

0.3F

ot

0.2F

-

0.1F

/A
10 g #/ A

—0.1f ~
Ayv

-0.2F N\

(a)

FIG. 8 (color online).

equations, given at the beginning of this section, we find a
very similar picture for the benchmark model, as shown in
Fig. 8(a). As predicted, we thus see that the initial
conditions for the scalar couplings in this setup are not
relevant for the UV behavior, in contrast to the situation for
the simplest standard model extensions tailored for com-
positeness [38].

Next we consider the running of the mass and note that
from its beta function the mass-squared parameter cannot
change sign in perturbation theory. We further require the
sign of m? to be positive to match the ultraviolet gNJL
theory and to ensure stability of the scalar vacuum at the
origin (for the Coleman-Weinberg instabilities concerning
the case m%, = 0 see [22]). The compositeness conditions
tell us that the mass parameter must also diverge at the
composite scale. At perturbative values, however, it must be
ensured that my(u) < p for every u > po, since otherwise

.or
2 ayay .
0.sf
N
SOSON
SO — u/ AR
NN 100
\\\\\\
SOSOS,
\\\\\\ A
~,
—0.sf NN oY
SSAnds.
SRRy
-1.0"
()

The evolution of the system of gauge, Yukawa, and quartic couplings for same values of parameters as in Fig 7.

The running of the couplings is shown in (a), while the evolution of some ratios of the couplings are shown in (b). The conclusions are
equivalent to that in Fig 7, however, he scale of IR divergence is now closer to the point where the couplings are initially defined, while
the UV divergence is delayed by approximately the same amount. In addition, we also here see that the ratios between the quartic
couplings and the Yukawa couplings stay well-defined, even when the couplings start to diverge, in accordance with the expected

composite-like behavior of four-fermion interactions.
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FIG. 9 (color online). Initial mass values m?; (1) which in the
white region respect the requirement Eq. (49), ensuring that the
scalars do not decouple above the scale Apg.

the scalar fields would decouple at a scale p*, where
my(p*) = p*. In the perturbative regime, however, this can
be easily achieved by choosing my(uy) < pg, since the
growth in my is logarithmic in u/uy, and thus never
exceeds p. If we instead ask for the stronger constraint
that the decoupling scale should be the strong IR scale of
the previous sections, and not the my scale, we need to
impose the following constraint:

70
i) < 23 (42)" ()

where y, is the one-loop coefficient of ﬂm)zq evaluated at
Hos i.e.

Yo = 4ay (uo) + a,(1o) + 2, ()] (48)

Taking the IR scale to be the strong IR scale of the previous
section, we get

o) < exp (= [fa‘—(f”) (49)

This parameter choice ensures that the scale hierarchies
computed in the previous section remain valid, when taking
the scalar sector into account. One can imagine other
possibilities that can lead to the generation of new inter-
mediate scales with interesting phenomenological applica-
tions that we, however, do not consider here. We illustrate
the requirement Eq. (49) in Fig. 9 for the benchmark
parameters mentioned above while varying x.

Finally we must ensure stability of the potential. The
scalar fields are well defined in the regime AR < H <
Ayy. The scalar potential must for these values be positive
to ensure the global minimum of the origin in field space.
As shown in the appendix [cf. Eq. (A58)], in the large Ny
limit the constraint ensuring stability of the potential
reduces to

PHYSICAL REVIEW D 92, 085043 (2015)
m? > 0. (50)

Thus, if all the previous compositeness constraints are
satisfied, the potential will automatically stay positive, in
the entire domain of possible field values of H.

We have thus witnessed the emergence of a perturbative
consistent picture of a subclass of gauge-Yukawa theories
featuring Landau poles. We argued that these theories
suggest a composite picture because they are, in fact,
gNJL theories. We have furthermore shown that large
scale hierarchies in these theories between the ultraviolet
composite scale of the otherwise elementary scalar and the
infrared scale leading to chiral symmetry breaking are a
general feature. This result can be seen as the stepping
stone towards realistic theories of SM fermion masses not
at odds with flavor changing neutral currents constraints.

ITII. CONCLUSIONS

The discovery of the Higgs boson made it imperative to
explore the phase diagrams of nonsupersymmetric gauge-
Yukawa theories and analyze their physical meaning. One
interesting outcome has been the emergence of the first
controllable four-dimensional example of a complete
asymptotically safe theory [4,5]. Here the elementary
scalars were needed by the dynamics to render the theory
ultraviolet finite without the aid of any other superimposed
symmetry.

On the other hand it is well known that the standard
model is neither complete asymptotically free nor safe.
That means that there are gauge-Yukawa theories that
cannot be considered UV finite. In this work we therefore
analyzed the conditions that map gauge-Yukawa theories
into time-honored gauged four-fermion interactions. Four-
fermion interactions emerge naturally when heavy degrees
of freedom are integrated out. The set of extended com-
positeness conditions discussed here is nonperturbative in
nature and permits us to investigate theories of composite
dynamics through gauge-Yukawa theories.

We have shown that there are regimes along the RG flow
in which the gauge-Yukawa description can be treated
perturbatively. We used as a template an SU(N.) gauge
theory featuring Ny Dirac fermions transforming according
to the fundamental representation of the gauge group. The
fermions further interact with a gauge-singlet complex N x
Ny Higgs boson that ceases to be a propagating degree of
freedom at the composite scale. We used the perturbative
analysis to constrain the underlying gauge-Yukawa theory in
order to enforce the compositeness conditions and showed
that they can be nontrivially fulfilled.

Within our example we argued that the theory leads to
dynamical spontaneous symmetry breaking at an infrared
dynamical scale Az and determined the ratio between the
scale of the four-fermion interactions (the UV composite
scale of the scalar H) and the infrared one as a function of
the external parameters of the theory, i.e. number of flavors
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and colors. We showed that these two scales are very well
separated with a ratio that can easily be two orders of
magnitude or much more. This would naturally allow us to
investigate, for example, the electroweak finite temperature
phase transition within perturbation theory as recently
summarized for a large number of gauge-Yukawa theories
in [39].

Interestingly if one identifies the infrared composite
scale with the electroweak scale and the four-fermion
interactions with the ones needed to give masses to the
SM fermions, one discovers that in this type of theory the
composite scalars can be light and the four-fermion
interactions do not lead to flavor changing neutral currents.
Since, however, the main focus of our work is elucidating
the structure of the gauge-Yukawa theories we leave the
phenomenological analyses to another work. Nevertheless
we cannot refrain from speculating that our results suggest
the intriguing possibility that the standard model with its
deceiving perturbative Higgs sector could hide, in plain
sight, a composite theory.
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APPENDIX: GENERAL ANALYTIC ANALYSIS
OF THE COMPOSITENESS CONDITIONS AT
ONE LOOP

It is possible to study the compositeness conditions in a
general perturbative gauge-Yukawa theory analytically, by
analyzing the gauge-Yukawa-quartic system of beta func-
tions, at one loop in all couplings. We consider the
subspace of theories represented by the Lagrangian in
Eqgs. (14)—(15). The compositeness conditions on the
couplings were given in Eq. (17) and read

) . a . oa,
lim ;! =0, lim % = lim — =0,

u—=Ayy -~ u—=Agy (ly u—=Ayy (13
2 G
lim 2= (A1)
u=hoymy  Agy

We imagine a situation where the theory considered is
valid perturbatively around some energy scale y,. We can
then investigate, using the one-loop running of the cou-
plings, whether the compositeness conditions will be
satisfied at some higher scale Ayy. The one-loop beta
functions in the Veneziano limit of the theory will in
general take the form

_ _ 2
ﬁa‘,j - alag - _ﬂ()ag’

ﬁay = atay = ay(cyay - c.‘]ag)’

(A2)
(A3)
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Bo, =0, = a,(d,a, + dya,) —d, a2, (A4)

ﬁal. = ata@‘ - av(fvav + dyay + fuau) + fuuai7 (AS)
where 1 = Inp/u, and all coefficients are positive definite
in any gauge theory, except for ;. In infrared-free gauge
theories ff; < 0. Here we do not consider such theories,
as we require the gauge sector to be perturbatively well
defined at the composite scale, and thus require f3, > 0.
Notice that the coefficient d,, is the same in 3, and j, for
any gauge theory. Also notice that f, is decoupled from
a,,, which holds to all orders in the Veneziano limit. The
one-loop truncation of RG equations allows us to first solve
the gauge sector, then the Yukawa sector, and finally the
quartic sector sequentially.

1. The gauge sector and the strong scale

The solution of a,(t) is well known and reads

1 1
(lg(t) = m +ﬁ0t.

It has a strong confinement scale at the point, where the
left-hand side vanishes, which reads

A 1
Ho Poa,(0)’

(A6)

t, =1In

(A7)
where we defined #.

2. The Yukawa sector and the composite scale

The beta function ﬂaq can be used to reduce f, to an
ordinary differential equation in terms of R,, = a,/a,,
which for ¢, # f, reads

dR,,
— = R —_ b N A8
dina, @(Ryy = b) (A8)
where
c cy
a=1--2, b= y . A9
Po C_g—ﬂo ( )

It follows that a and b have opposite signs and furthermore
a < 1. The case ¢, = f§, where b is not well defined, will
be considered in a moment.

It is easy to check that Eq. (A8) has the solution:

ag(t)
a,(0)

The compositeness condition for R, reads

R,y (1) = (R, (0) - b)( ) b (AI0)

A
for0<tL:lnﬂ<oo,

ng(tL) — 0, Iuo

(Al1)
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where we defined ;. Due to asymptotic freedom the last
condition on f; can also be stated in terms of a,:

ag (tL>
a4(0)

It can then be seen that if a > 0 (i.e. ¢, < fy), and thus
b <0, the compositeness condition will always be
satisfied.

On the other hand, if a <0 (i.e. ¢, > f;) we have to
impose an extra condition, since the composite scale in
this case can be written as

() 1=

R, (t,) =0, forl>

>0.  (AI2)

(A13)

The lower bound ¢; > 0 (i.e. 0;”%)) < 1) is always satisfied,

since R*%(O) > 0. But the upper bound #; < oo implies that

ag(tL)
a,(0)

> 0 and leads to a constraint on the parameter space:

R, (0) <b, (fora<0). (A14)
Using the expression for a,(¢) in Eq. (A6) we can derive
a general expression for the composite scale Ayy, for any a

and b satisfying the compositeness conditions:

w1 L))

Finally, for the special case a =0, i.e. ¢, = ffy, the RG
equation for R, reads

dR,, c

dlnag

) = ﬂ—z (A16)

From the general solution

¢y ay(t)

R, (1) = R, (0) +-*In—2~, (A17)

ot = B G ™ a, 0)

it is readily seen that the compositeness condition para-
metrized by

a,(t,) = a,(0)exp (—?ng(O)) < a,(0) (A18)

is always satisfied, since the coefficients in the exponential
are positive definite. Furthermore the composite scale here
reads

A 1
153 :lnﬂ_

wo Doy 0) [e"p <c_3R”(O)) _1} A
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This is not in contradiction with Eq. (A15), since it can be
seen to be contained in that expression by noting that

igr(l)(l + aR_La(bO))% = exp<Rfy—a(bO)> = exp (’?ng(O)).
y (A20)

The hierarchy of scales between the composite and
strong scales can now be computed:

tp —t;=1In = 1-
g Ar ﬂoag(o)

1

- (1+R (O)ﬂo_c-")””ﬁ—o‘” (A21)
an(()) ” Cy ‘

As we noted before, the expression is regular for
(ﬁo - Cg) - 0.

Rg)[,) (0))%

a. The SU(N) case

Let us be specific and restrict to the case in Eq. (30)
discussed in the paper, where

22 —4x
Bo = 3 cy =2(1 +x), c, = 6. (A22)
The parameters a and b then read
2(1-x) 3(x+1)
= =——>". A23
T o 2(x—1) (A23)

For x <1 we get that a >0 and the compositeness
conditions are always satisfied from the above analysis.
For x > 0 we get that a < 0 and b > 0. The compositeness
conditions are in this case only satisfied if furthermore
b > R,,(0) or equivalently

0 2(x =1
%) 2x-1) (A24)
a,(0) ~ 3(x+1)
Since %(0) > 0 is always true, this constraint holds auto-

,(0)
matically for x < 1. Thus for any x < 11/2 (such that
Po > 0) we can uniquely impose the compositeness con-
dition in Eq. (A24). Finally, the hierarchy of scales is
given by

a,(0) (1-x) 2”;_2;
3(1 +a‘.(0 3(1+x)) 2(1-x)

A 2(11 —2x)a,(0)

=

(A25)

3. The quartic scalar sector

From the compositeness conditions Eq. (A1) it follows that
the quartic couplings may diverge only as fast as a, at the
composite scale. This specifically means that Landau poles in
the quartic couplings entering before ¢;, defined above, are
not allowed. At the level of perturbation theory this is already
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implicit, since otherwise the above analysis would suffer
from large corrections from the quartic couplings.

We consider, as before, the RG evolution of ratios.
In particular, consider

R, =, R, =-2. (A26)
wT g

The RG equation for R, can be written in terms of R, as
follows:

d, R>

dRy, _ dy+cyRyy Ry + (dy—cy)R vy yu

) yu -
dlnng

¢y = (cy=Po)Ryy

(A27)

This equation is not well defined at ¢, — (¢, — fy)R,, = 0,
which is a problem we will get back to. To investigate
the compositeness conditions, however, we only need to
understand the asymptotic behavior as ¢t — #;, and since
R, (1) = 0, and ¢, > 0, the above equation is well defined
in limit # — ¢;. The asymptotic RG behavior is thus given by

dR, d d, d,
= ="+ (=-1)R,——=R}
dInR cy+<cy )y” c,

gy lt—ty

=po + leyu - P2R§m (AZS)

where to keep the notation light we introduced the coef-
ficients p;. Defining some intermediary scale 7, < f;, where
the asymptotic solution is viable, we can parametrize this
solution by

P1— Ap tanh (K — ﬁll’l Ry,\‘(’))

2 R, (1)
Ryu<t)|tth = 2p2 ’ (A29)
where the discriminant Ap reads
A, = \/pi +4pops. (A30)

The integration constant K is a number that has to be fixed
by matching R\, (t, )], to the full solution given in terms of
R,,(0) at the scale ¢,, and is for this analysis unimportant.
The important result is that the solution exists and that the
ratio of couplings R, at the composite scale is fixed, since
R,,(t,) = 0 and tanh(co) = 1, and reads

P1— A/}

R, (1) =
y (L) sz

, (A31)

which is also a fixed point of the RG equation (A28). Notice
that this value is negative, meaning that a, diverges to

ﬁoag(o)
dy|a, (0)] <

Boa,(0) Kl - Rm;‘)’f - 1]_] for a,(0) >0 (& 1, > 1;).
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negative infinity as fast as «, diverges to positive infinity,
while keeping their ratio constant. This is potentially a
problem for the stability of the potential near the composite
scale. We comment on it after considering the other quartic
coupling a,, as well. Let us comment on the region of validity
of the above approximation. Since R,,(7;) # 0 for any
parameter value, the asymptotic solution will be a good
approximation as long as R, () < 1. This can be expressed
in terms of the initial conditions:

1 R,,(0) — b\
t t - -
>t g |

which for a = 0 exponentiates to

1] . (A32)

1L > tasymp > ﬁoalq(()) {exp <Ci’ (R, (0) — 1)> - 1].
| ' (A33)

Next we address the issue of divergence in Eq. (A27). The
potential problem is that if for some ¢, <t <1t; the
denominator goes to zero, ie. R, (f) = # = b, then
the quartic coupling will diverge at 7. If f, > ¢, then it is
automatically never satisfied since Ry, (¢) > 0. Let us con-
sider the case ¢, > f, meaning that a < 0 and b > 0. From
the general solution it is readily found that R, (¢) = b only
occurs for ¢ = ¢, which is consistent and not a problem.
Finally, as a last condition on «,,, we must ensure that it
does not have Landau poles in the whole region
t, <t < t;. We ensure this by negation: consider the case
where @, does have a pole at a scale 7, < f, < f;. Near this
scale a, is much bigger than «,, and to a good approxi-
mation the RG equation reads
Bo, ~d, 0. (A34)
This is similar to the RG equation for a,, and analogously
its strong scale reads

(A35)

Ensuring that perturbation theory is valid in the region #; <
t < t; thus requires that ¢, < t; or t, > t;. Formally this
gives

for a,(0) <0 (&1, <t,)

(A36)
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One can also include the corrections to this, by including
the term a,()a, () in f, and setting a,(¢) ~ a,(0), which
is a good approximation for intermediary scales. One then

finds the strong scale of a, to be

1 d, a,(0)
t, = —1I 1+ 27 ,
= 4, (0) Og( +azuau<0>>

which makes small corrections to the above bound on
a,(0). Finally, including all terms and assuming
ay(t) = a,(0), one can solve for a,(r) exactly. Defining
A=d,, B=da,0) and C = —d,a,(0)*, and the dis-
criminant D = VB> — 4AC, which is always real, since
C < 0, the solutions reads

(A37)

B + D tanh [%Dt — tanh™! (%a"@))]
Tintermed - 2A .

a,(1)

(A38)

If the argument of tanh is real, there is never a Landau pole,
since tanh € [—1, 1] on the real domain. The argument
|

dr,,  (c,

(chgy —Cy + dy)RguRyv + fuRyuRyv + fuuRgv + fuR%u
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can turn complex if |B + 2Aa,(0)| > D, which poten-
tially can lead to a Landau pole. Here one has to compute
t, case by case and compare with ¢, and #;. To avoid
this, one can ensure that there is never a pole, by
overconstraining the argument of tanh to always be
real, i.e.

|B+2Aa,(0)] <D <& —B—D < 24a,(0) < —-B+ D

(A39)
4d,d,, _d,a,(0)
=>-—1— 1+ <20
a3 dya,(0)
4d,d
<—1+,/1+ dzyy. (A40)
y
We now move on to the coupling a,, through R,,, as we

did for a, above. Its RG equation can be written as

dInR,, a

This is in general not a useful description; however,
asymptotically the equation simplifies to

dR,, f f
yv _ uu R2+<p1_7M)R'
dInRy|,., R (1) " Ry (1)])

fo
+C_L = 772R)2rv + anyv =+ 1o, (A42)

y

where we defined the coefficients #;. Note that 7y > 0
and #, > 0, while #; can take any real value, in general.
The general solution reads

n + A, tanh (3 A, In RpD) 4 K,)

Rs/y(t*)
Ryv(t)|th -~ 2’72 ’ (A43)
where ¢, is defined as before and
A, = \/m = dnon, > 0. (A44)

The positivity constraint on this expression is a require-
ment we have to impose to satisfy the compositeness
conditions; for imaginary A, the above expression
switches from tanh to tan, and leads to Landau poles
in a, before the composite scale. This is therefore a

(Ryy(Bo = ¢y) + Cy)Rfu

(A41)

constraint on the possible theory space of gauge-Yukawa
theories we are considering. Furthermore we get that

_ m- An
2ny

Ry1)<tL) = (A45)

Finally, we repeat the exercise of removing a possible
parameter region that violates perturbation theory in the
region t; < t < t; by considering the strong scale of «a,,.
To a first approximation it is simply

1
L

T fa,(0)

(A46)

which leads to the equivalent bounds as in Eq. (A36).
Perturbation theory is ensured if ¢, < ¢, for ,(0) < 0 and
t, > t; for a,(0) > 0. Finally, we can again solve the full
differential equation by assuming that at intermediate scales
a,(t) = a,(0) and a,() = @,(0), which are good approx-
imations in the composite phase space. Defining this time
A=f, B=da/0)+ f,a,0) and C = f,,a,(0)* and
the discriminant D = v/ B> — 4AC, the solution is given by
the same expression as for , in Eq. (A38). However, note
that this time C > 0 and thus the discriminant can turn
complex, i.e. for B> < 4AC. Considering this case, the
expression is rewritten in terms of tan:
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B — (iD)tan [} (iD)t + tan™! (%{;‘{(0))}
2A

av(t) |tinlermed ==

(A47)

In this case there are many poles, since tan(z/2 + nx) =
+oo for all integer n. The scales at which these occur are
given by

B+2Aq,(0)
(iD)

(iD)

7 —2tan~!( Y+n-2x

t, = (A48)

This leads to the extra constraint, i.e. the smallest negative
t, has to be less than ¢, and the smallest positive 7, has to be

bigger than 7;. This constraint is relevant whenever

4f o fun > (fu +d, Z"Eg;)z, while in the opposite case one

should consider a constraint equivalent to Eq. (A39).

a. The SU(N) case

Let us apply the above analysis to the case considered in
this paper. The beta function coefficients read

d, =38, d, =4, dy, = 2x, (A49)
fo =4, fu =16, Suw = 12. (A50)
From these we derive the relevant parameters:
4 1—x X
o=y Py AR
A, — (1 —1)22; 16x (A1)
2 (1—=x)>+ 16x
£ TR
24x2 (A52)

T 0 )1+ —xP L 6xp

Notice that 7; < O for any x. The expression for A, takes a
lengthy expression, but its constraint Eq. (A44) leads to

x> —4+3V3—1/6(7-4V3)~0.54. (A53)

For a given x it is always possible to find initial
parameter values for ay, a,, @, and a, such that the
constraints Eqs. (A24), (A36), (A39), and (A44), and the
ones related to Eqs. (A46)—(A48), are satisfied. We con-
sider the details in this paper.

We have furthermore found that the ratio of quartic
couplings over a, is completely fixed at the composite
scale, independent of initial conditions, and given by
Eqgs. (A31) and (A45).
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4. Running mass and stability of the potential

The RG equation describing the running of the scalar

mass term is given by

Bz = Oy = miy(hyay + by, + o), (AS4)
where for SU(N.) the parameters read in the Veneziano
limit h, =4, h,, = 4, h, = 8. This expression shows that,
where it is valid, the scalar mass term cannot change sign,
since its beta function is proportional to the squared mass
itself. The initial condition m?% > 0 should then ensure that
spontaneous symmetry breaking will not occur in the range
where the above expression may be applied.

The further condition m%(u) < u? should also be sat-
isfied to make sure that no scalar states decouple at energies
higher than the strong scale. However, this constraint is not
related to compositeness and can be relaxed to instead read
m?,(u) < uy such that the composite nature of the theory,
which is probed for u > u,, stays intact, while the IR
physics defined by u < p, may have different phases. In
our analysis we have constrained the IR phase to be
dominated by strong gauge interactions.

Proceeding to study the stability conditions on the
potential, we first note that the scalar fields are well defined
for field values my(u) < H < Ayy, where as argued above
my(u) < po. For a positive mass term it is clear that the
potential has a minimum at the origin, (H) = 0, which
preserves the U(Ny) x U(Ng) symmetry of the classical
theory. To ensure consistency of our analysis, we must
make sure that this symmetry is obeyed for large field
values as well and at every scale in the region
o < p < Ayy. Itis enough to study the diagonal field H =
diag(h;. ..., hy,) since this can be rotated into any other H
by U(Ny) x U(Ny) transformations. In terms of h; the
potential reads

Ny Np Ny
S RED SUERTO )
=1 i=1 i=1

We consider the general case where 1 and » can take both
positive and negative values. As argued before if all #; are
small (i.e. h; << my) then one sees that the minimum is at
the origin, since my > 0. Let us now consider what
happens for large values of some of the fields 4;; in
particular take for i = 1, ..., n the fields ; — Ayy, while
fori=n+1,...,Np keep h; < my. Then the potential is
dominated by the large fields and reads approximately as

2
. (ASS)

V ~my(nAy) + u(nAdy) + v(n*Aly). (A56)
Positivity of this potential requires
M M0 (A57)
—+0v2>0.
nAy, n
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In terms of the rescaled couplings from Eq. (16), this
becomes

2 A72
mHNF auNF

Ny
, > 0= m? > 0.
n(4ﬂ'AUv)2 n ta M

(AS8)

Thus, in the large Ny limit already assumed constraint
m?% > 0 ensures that the potential stays positive in the
entire region of field values.

For completeness, let us discuss the finite Ny case, and
thus consider the unrescaled couplings. If u is negative,
then the strongest constraint comes from n = 1, yielding
the constraint

PHYSICAL REVIEW D 92, 085043 (2015)

2

m
—L 4+ v>-u foru<0. (A59)

Apy
If » is negative, the strongest constraint comes from
n = Np; thus,

2

@—I—uZ—vNF for v < 0.
Ay

(A60)
If both u and v are negative, one has to maximize the

function u + nv for n, and ensure that the general constraint
Eq. (A57) is satisfied.
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