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In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole
spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which
a regularization prescription based on the Haddamard Green function is employed. The differences
between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which
otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black
holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis
considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead
asymptotically AdS. In addition, the relative distance dðr; rþ 1Þ between two particles located at a radius r
and rþ 1 in the geometry tends to zero when r → ∞. This behavior, which is radically different in a flat
geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is
that there exist several regularization methods other than the one we are employing, and there does not exist
a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and
obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to
the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation
formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the
Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the
paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for
asymptotic points in the geometry.
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I. INTRODUCTION

Electrodynamics in general relativity is described by the
Maxwell equations in curved spacetime [1]. A freely falling
observer in such a background would write the same
equations valid for Minkowski spacetime; however, these
equations must have a different solution because the curved
geometry imposes a different asymptotic behavior than the
flat one. In particular, the electric field around a static point
charge in a curved background is not spherically symmet-
ric, in general, and this gives a nonzero electrostatic self-
force on the charge.
One of the earliest studies on the electrostatic self-force

on static charges induced by a curved background was that
on a Schwarzschild black hole geometry [2]. In that
reference it was shown that the self-force on a charge q
is repulsive; i.e., it points outwards from the black hole, and
the functional dependence on the position is given by

f ∼
mq2

r3
;

where 2m is the horizon radius of the black hole and r is the
Schwarzschild radial coordinate of the charge. This result
was first obtained within the framework of linearized
general relativity [3] and was later recovered working
within the full theory [2].
After the publication of these leading works, the study of

the self-interaction of a charge was extended to other
geometries. A notable result was the self-force on a charge
in the vicinity of a straight cosmic string arising from
symmetry breaking in a system composed by a complex
scalar field coupled to a gauge field [4]. The associated
geometry is locally flat but includes a deficit angle
determined by μ, the mass per unit length of the string
[5]. The self-force in this case points outwards from the
cosmic string and is proportional to μ=r2. This non-null
self-force in a locally flat background is of great interest
because it shows how the global properties of a manifold
(in this case, the existence of a deficit angle) are revealed by
the electromagnetic field of the charge.
The results described above, together with the calcu-

lation of the self-force on a point charge in a wormhole
spacetime [6] which turned out to be attractive, i.e., towards
the wormhole throat, suggested the possibility of detecting
thin-shell wormholes by means of electrostatics. Differing
from well-known wormholes of the Morris-Thorne type [7]
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which are supported by nonlocalized exotic matter, thin-
shell wormhole geometries are supported by a shell of
exotic matter located at the wormhole throat [8]. The throat
connects two (equal or different) geometries which can be
those of other astrophysical objects. For example,
Schwarzschild thin-shell wormholes connect two exterior
(that is, beyond the horizon) noncharged black hole space-
times; hence, the geometry at each side of the throat is
locally identical to the exterior of a black hole geometry.
However, the topology of the wormhole geometry is
nontrivial; thus, the global properties are essentially differ-
ent in each case.
Inspired by the previous discussion, the philosophy of

the present work is that global aspects, such as the existence
of a throat or not, may be revealed by studying electro-
dynamics, in particular, by the electrostatic self-force on a
point charge. In our recent article [9], this proposal was
developed and applied to the case of wormholes with a
cylindrical throat which are mathematically constructed by
removing the regions r < a of two gauge cosmic string
manifolds and pasting the two regions at r ≥ a. The self-
force on a charge in the cylindrical wormhole geometry was
calculated and compared with the self-force on a charge in
the vicinity of a gauge cosmic string. The result is that the
force in the wormhole case can be attractive or repulsive
depending on the position of the charge; this result would
then allow an observer to distinguish between two geom-
etries which are locally equal. The same argument was
applied to the Schwarzschild case by the authors in [10].
Related works include [11–14].
It should be mentioned that there exist some works

related to these ideas. For instance, in [15], the authors
considered a minimally coupled scalar charge and an
electromagnetic charge when a Schwarzschild black hole
interior is replaced by a material body and found that the
leading term in a large-r expansion of the force was
independent of the central body type. Nevertheless, when
the scalar charge is not minimally coupled, the self-force is
dependent on the composition of the body. Another work in
the same line is [16], where a spherical ball of perfect fluid
in hydrostatic equilibrium with rest mass density and
pressure related by some polytropic equations of state is
considered. The authors found that the leading term of the
force is universal and does not distinguish the internal body
structure, but the next-to-leading-order term is sensible to
the equation of state. Thus, the self-force distinguishes the
body composition.
In the present work our studies about electrostatics in

black hole geometries are extended to the three-dimensional
case, which is not a completely explored area. The natural
candidates to consider are the BTZ black hole and worm-
hole. These geometries, although tridimensional and non-
realistic, have several features that makes them an interesting
test laboratory. First of all, both have a negative cosmological
constant Λ < 0, which corresponds to an attraction instead

of repulsion. On the other hand, their metric is not
asymptotically flat, but asymptotically anti–de Sitter. In
addition, there exists a radial coordinate r such that the
circles of the r constant have perimeter 2πr, but the relative
distance dðr; rþ 1Þ between points located on the same
radial line at positions r and rþ 1 goes to zero as r → ∞.
This behavior is not characteristic for simple black holes in
higher dimensions and is a consequence of the attractive
cosmological constant term. This behavior has consequences
on the boundary conditions of the electrostatic problem.
These consequences will be elaborated in the paper.
In addition, there is a further complication. The method

for computing the self-force presented employs a regulari-
zation based on the Haddamard Green function. This
regularization was applied in four dimensions by the authors
in [9,10]. This method reproduces correctly the calculation
of Will and Smith for the Schwarzschild black hole [2].
There exist other regularization methods such as the ones
developed by Detweiller andWhiting [17] or the ones in [18]
and applied recently in five dimensions in [19]. For static
geometries it was shown in [20] that the Detweiler-Whiting
method and the Haddamard one just mentioned are equiv-
alent. The same happens with the one in [18] since the last
introduces an average term which vanishes for even space-
time dimensions. However, these features have not been
proven in three dimensions. Therefore, we can not assure
that the expression we will obtain is the only possible one.
Besides the subtle details discussed above, it should be

remarked that there are no summation formulas allowing us
to find a closed analytic for the self-force; thus, it is given in
series expansion. But the series expansion of the singular
part of the electrostatic field is rather complicated and can
be achieved by certain specific parametrization of the radial
distance, which is explained in detail in Sec. VII A. These
tricks result in a series expansion for the total force that is
convergent to the real one. However, we argue that the
convergence to the real solution is not uniform, in other
words, as larger the coordinate r0 of the charge becomes,
the larger the quantity of terms that has to be summed in
order to approximate the self-force at that point. This
results in a problem when truncating the series at r → ∞.
The present work is organized as follows. Section II

contains a brief description of the BTZ black hole geom-
etry. Section III contains a description of electrostatic
equations in the geometry and the problems for fixing
the boundary conditions for the physical solutions.
Section IV contains the expression for the electrostatic
field for the BTZ black hole and wormhole. Section V
contains a review of Synge calculus, which is a relevant
tool for calculating the singular part of the Haddamard
Green function of the geometry, which is an essential tool
in our regularization choice. In Sec. VI this singular part is
calculated for the BTZ local geometry. In Sec. VII a series
expansion for the electrostatic self-force is calculated, and
the problems mentioned above about the convergence at the
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asymptotic boundary is described. Sections VIII and IX
contain interpretations of the results, which are rather
nontrivial. Section X is a summary of the obtained results.
In Appendix A and B there are collected some useful
formulas which are applied along the text.

II. THE BTZ BLACK HOLE

Since the appearance of the seminal works [21,22],
general relativity in (2þ 1) dimensions became a widely
analyzed model for exploring classical and quantum
gravity, since it is recognized as a useful laboratory for
studying real system properties in (3þ 1) dimensions. In
(2þ 1) dimensions GR there is no Newtonian limit and
there are no local degrees of freedom (that is, there are no
gravitational waves in the classical theory or gravitons in
the quantum theory). It came as a surprise for some then
when the black hole BTZ solution was found [23]. This
black hole has important differences with the
Schwarzschild and Kerr black holes: it is asymptotically
anti–de Sitter and not asymptotically flat, and does not have
any curvature singularity at the origin. Nevertheless, it is
clearly a black hole: it has an even horizon and (in the
rotating case) an internal horizon, and thermodynamical
properties similar to black holes in (3þ 1) dimensions.
The BTZ solution is well known, but in order to fix the

conventions a short description of the local and global
properties of the geometry will be given. The discussion is
not exhaustive, but focused in the aspects that are more
important for the present work.

A. Parameters of the solution

The BTZ black hole is a solution of the Einstein field
equations in (2þ 1) dimensions with cosmological con-
stant Λ < 0, which bears some similarities with black hole
solutions in four dimensions [23,24]. These are, for
instance, the presence of a event horizon, an inner horizon,
and an ergosphere. Also, it has a nonvanishing Hawking
temperature and interesting thermodynamical properties
[25]. Despite these similarities, there are several differences
between BTZ black holes and Schwarzschild or Kerr ones.
The later are asymptotically flat, the BTZ solution instead
is asymptotically anti–de Sitter. Furthermore, the BTZ
solution does not have a singularity at the origin. But
since the BTZ structure is simpler than its four-dimensional
counterparts, it may be a good testing laboratory for
making exact calculations.
The local form of the BTZ solution is well known, but in

order to fix the notation a brief review of these solutions will
be given. Starting with the three-dimensional action [24]

I ¼ 1

2π

Z ffiffiffiffiffiffi
−g

p ½Rþ 2l−2�d2xdtþ B; ð2:1Þ

where B is a surface term and l is related to the cosmological
constant by −Λ ¼ l−2, it follows that the extremal solutions

corresponding to gμνðx; tÞ variations are given by the
Einstein equations

Rμν −
1

2
gμνðRþ 2l−2Þ ¼ 0; ð2:2Þ

which, in three dimensions only, completely determine the
Riemann tensor as

Rμνλρ ¼ −l−2ðgμλgνρ − gνλgμρÞ: ð2:3Þ

This solution corresponds to a symmetric space with
negative curvature. If we restrict our attention to solutions
possessing a rotational Killing vector ∂=∂θ and a timelike
Killing vector ∂=∂t, then by a specific choice of the radial
coordinate it follows that the line element is given by

ds2 ¼ −N2dt2 þ N−2dr2 þ r2ðNθdtþ dθÞ2; ð2:4Þ

with N2ðrÞ and NθðrÞ the following radial functions:

N2ðrÞ ¼ −M þ r2

l2
þ J2

4r2
; ð2:5Þ

NθðrÞ ¼ −
J
2r2

: ð2:6Þ

The range of the coordinates is −∞ < t < ∞, 0 < r < ∞,
and 0 ≤ θ ≤ 2π. The two integration constants in (2.5) and
(2.6) are M and J and correspond to the mass and angular
momentum of the solutions, respectively [24].
The BTZ spacetime is not asymptotically flat. For large

radial values r → ∞, the metric becomes

ds → −
�
r
l

�
2

dt2 þ
�
r
l

�
−2
dr2 þ r2dθ2; ð2:7Þ

which shows that this solution is asymptotically anti–de
Sitter.
The function NðrÞ vanishes for the following two r

values:

r� ¼ l

"
M
2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
J
Ml

�
2

s !#
1=2

: ð2:8Þ

The value rþ corresponds to the horizon of the black hole.
It exists if the following inequalities are satisfied:

M > 0; jJj ≤ Ml: ð2:9Þ

In the extreme case jJj ¼ Ml, both roots of N2 ¼ 0
coalesce into one. The massM and the angular momentum
J can be expressed in terms of r� as
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M ¼ r2þ þ r2−
l2

; J ¼ 2rþr−
l

: ð2:10Þ

For large l, the exterior horizon tends to infinite and only
the interior remains. The vacuum state is obtained when the
black hole disappears, and this corresponds to take the
horizon radius to zero. This is the equivalent of taking
M → 0, which implies J → 0 due to (2.9). In this case,

ds2vac ¼ −
�
r
l

�
2

dt2 þ
�
r
l

�
−2
dr2 þ r2dθ2: ð2:11Þ

When M becomes negative, the solutions studied in [26]
are found. The conical singularity that they possess is a
naked one, such as the one in a black hole with negative
mass in (3þ 1) dimension. Such value should be excluded
from the spectrum. Nevertheless, there exists an excep-
tional case. When M ¼ −1 and J ¼ 0, the naked singu-
larity disappears. There is no horizon in this case, but also
no singularity to hide. The solution corresponding to this
regime is

ds2 ¼ −ð1þ ðr=lÞ2Þdt2 þ ð1þ ðr=lÞ2Þ−1dr2 þ r2dθ2

ð2:12Þ

and is AdS as well.

B. Particular properties of the nonrotating geometry

In this section some properties of the BTZ black hole will
be pointed out, which will be relevant when analyzing the
electrostatic properties of charges in the geometry. In the
present work the nonrotating case J ¼ 0 will be only
considered. The rotating case is leaved for a forthcoming
publication.
An observation which will be of importance for inter-

preting the results of the present work is that, in the
nonrotating BTZ geometry, the distance dðr; rþ 1Þ
between two points with the same θ values and lying on
the circles r and ðrþ 1Þ decreases when r increases. To see
this, consider for simplicity the case M ¼ l ¼ 1. The
distance from a point with coordinate r to the horizon
rh is

d ¼ logðrþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
Þ; ð2:13Þ

which can be inverted to give r ¼ coshðdÞ. When d ≫ 1 it
follows that r ∼ ed. If two points lying on the same line
θ ¼ θ0 are at positions r and rþ δr, then the last formula
gives

δr ¼ edþδd − ed ¼ edðeδd − 1Þ; ð2:14Þ

which leads to

δd ¼ log

�
1þ 1

ed

�
¼ log

�
1þ 1

r

�
: ð2:15Þ

From here it is seen that for r ≫ 1, which implies going far
from the horizon d ≫ 1, the true distance δd between these
points goes to zero δd → 0. This particularity holds for
other values of M and will play a significant role in the
interpretation of our results.

III. THE EQUATIONS OF ELECTROSTATICS
IN BTZ SPACETIMES

In the present section the Maxwell equations correspond-
ing to a static charge q located at r0 and θ0 ¼ 0 in a BTZ
black hole will be derived. The effect of the curved
geometry is to deform the field lines and, as a consequence,
the charge q experiences a self-force due to its own electric
field. As will be shown below, the Maxwell equations are
separable in this case. Nevertheless, the analysis of the
physical and unphysical solutions is more involved than in
the flat case due to the particularities of the geometry
mentioned in the previous section, in particular, the behavior
(2.15). These aspects are carefully examined below and the
criteria for discarding unphysical solutions are found.

A. Separation of variables

The Maxwell equations in three-dimensional curved
spacetimes in natural units are given by [1]

1ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
gμαgνβFμνÞ ¼ 2πjα;

ϵβγδ∂βFγδ ¼ 0: ð3:1Þ

Here Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor, Aμ is
the vector potential and jα the three current in the geometry.
For an static charge q in front of the nonrotating geometry
one has that

jt ¼ q
r
δðr − r0Þδðθ − θ0Þ;

with ðr0; θ0Þ the coordinates of the position of the charge.
The Maxwell equations (3.1) in this situation reduce to

−∂rðrFtrÞ þ
r

Mr2 − r4

l2
∂θFtθ ¼ 2πrjt; ð3:2Þ

∂θ

�
1

r

�
M −

r2

l2

�
Frθ

�
¼ 0; ð3:3Þ

∂r

�
1

r

�
M −

r2

l2

�
Frθ

�
¼ 0: ð3:4Þ

Assuming that the vector Aμ is time independent it follows
from these equations that there exist a gauge in which only
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the component At is nonzero, and the three (3.3) reduce to
the following single equation

−∂rðr∂rAtÞ þ
r

Mr2 − r4

l2
∂2
θAt ¼ 2πrjt: ð3:5Þ

Outside the position of the charge this equation is homo-
geneous and can be solved by variable separation by
postulating

Atðr; θÞ ¼ RðrÞΘðθÞ: ð3:6Þ

When this is inserted into (3.5) it is obtained that

ΘðθÞ ¼ exp½inðθ − θ0Þ�; ð3:7Þ

where n is an integer due to the periodicity on θ, and the
following equation for RðrÞ

r2
�
1−

r2

Ml2

�
∂2
rRðrÞ þ r

�
1−

r2

Ml2

�
∂rRðrÞ þ

n2RðrÞ
M

¼ 0:

ð3:8Þ

By further defining the horizon radius r2h ¼ Ml2 and
making the variable change r2 → xr2h it is transformed into

x2ðx − 1Þ∂2
xRðxÞ þ xðx − 1Þ∂xRðxÞ −

n2RðxÞ
4M

¼ 0: ð3:9Þ

This equation has two regular singular points, which
corresponds to the horizon x ¼ 1 and the infinite
x → ∞. In order to analyze the behavior at the infinite it
is customary to make the change of variables x → 1

u which
transforms the last equation into

uð1 − uÞ∂2
uRþ ð1 − uÞ∂uR −

n2R
4M

¼ 0: ð3:10Þ

The equation (3.10) is a particular case of the hyper-
geometric one

uð1 − uÞR00 þ ½γ − ð1þ αþ βÞu�R0 − αβR ¼ 0; ð3:11Þ

corresponding to the particular values

γ ¼ 1; αþ β ¼ 0; β2 ¼ −n2=4M:

It is important to remark that the change of variables u ¼ 1
x

just performed is regular in the exterior region r > rh of the
black hole, which is the region which we are interested in.

B. Solutions centered around the infinite

Having derived Eq. (3.11) which characterizes the radial
behavior of the electrostatic potential At, the next task is to
find their solutions. Since it is a linear equation of second

order, it has two independent solutions. The most elemen-
tary one, which is centered around u ¼ 0 (r → ∞), is given
by the hypergeometric series [27–30]

fn ¼ 2F1ðαn;−αn; 1; uÞ ¼
X∞
m¼0

ðαnÞmð−αnÞm
ðm!Þ2 um; ð3:12Þ

where

αn ¼
in

2
ffiffiffiffiffi
M

p ;

and the Pochhammer symbols ðaÞn are defined by

ðαÞm ¼ αðαþ 1Þðαþ 2Þ…ðαþm − 1Þ; ðαÞ0 ¼ 1:

The elementary d’Alembertian principle shows that this
series is convergent for juj < 1. Besides, when

Reðγ − α − βÞ > 0; ð3:13Þ
the series is also convergent in juj ¼ 1 [29]. This condition
is satisfied in our situation since β ¼ −α and γ ¼ 1. The
zone juj > 2 corresponds to the inner part of the black hole,
which is of no interest to us.
The transformation R → u1−γR applied to (3.11)

transforms it into another hypergeometric equation but
induces a parameter transformation ðα; β; γÞ →
ðα − γ þ 1; β − γ þ 1; 2 − γÞ. Therefore, in general, the
function

gn ¼ u1−γFðα − γ þ 1; β − γ þ 1; 2 − γ; uÞ; ð3:14Þ
is also a solution of (3.11). Nevertheless, when γ ¼ 1, as in
our case, this solution is equivalent to fn, and gives no new
information. In these particular cases, a new solution is
obtained by postulating a series of the form

gn ¼ fn loguþ
X∞
n¼0

crur; ð3:15Þ

with cr constant coefficients to be determined. By inserting
this into (3.11), the following recurrence for cr is obtained,

ðrþ 1Þ2cr − rðαþ βþ 1Þcrþ1 þ
ðαβ− α− βÞðαÞrðβÞr

r!ðrþ 1Þ! ¼ 0;

ð3:16Þ

which, when solved explicitly, gives the following solution,

gn ¼ 2F1ðαn;−αn; 1; uÞ log uþ
X∞
m¼0

ðαnÞmð−αnÞm
ðm!Þ2 umSn;m;

ð3:17Þ
with
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Sn;m ¼
Xm−1

k¼0

�
1

kþ αn
þ 1

k − αn
−

2

kþ 1

�
: ð3:18Þ

Alternatively, this second solution may be though as the limit [29]

gn ¼ lim
γ→1

u1−γ2F1ðα − γ þ 1; β − γ þ 1; 2 − γ; uÞ − 2F1ðα; β; γ; uÞ
γ − 1

: ð3:19Þ

An important property of the hypergeometric functions is the following [27],

2F
0
1ðα; β; γ; uÞ ¼

αβ

γ 2F1ðαþ 1; β þ 1; γ þ 1; uÞ; ð3:20Þ

which express its derivatives in terms of other hypergeometric functions. From this property and the definition (3.12)–(3.17)
for fν and gν, it follows that

∂fn
∂r ¼ 2α2nu3=2

rh
2F1ðαn þ 1;−αn þ 1; 2; uÞ; ð3:21Þ

∂gn
∂r ¼ −

2

rh
u3=2

�
u−12F1ðαn;−αn; 1; uÞ − logðuÞα2n2F1ð1þ αn; 1 − αn; 2; uÞ

þ
X∞
m¼1

ðαnÞmð−αnÞm
ðm!Þ2 mum−1Sn;m

�
: ð3:22Þ

In deriving this formula, the definition u ¼ r2hr
−2 was taken

into account. These formulas will be useful when evalu-
ating the electrostatic field of the charge q as derivatives of
the potential At.
The behavior of the solutions when r ≫ rh (which

corresponds to u → 0) is directly inferred from their
definition, and the result is

fn → 1; u → 0; ð3:23Þ

gn ∼ logðuÞ → −∞; u → 0: ð3:24Þ

The behavior of their derivatives for large r ≫ rh is inferred
by taking into account the following elementary limits:

lim
u→0

Fðαn;−αn; 1; uÞ ¼ 1; ð3:25Þ

lim
u→0

logðuÞun ¼ 0; ∀ n > 0; ð3:26Þ

lim
u→0

Fðαn þ 1;−αn þ 1; 2; uÞ < ∞; ð3:27Þ

where the last limit follows from the fact that any hyper-
geometric function is convergent at u ¼ 0. These limits,
together with (3.21)–(3.22), show that

d
dr

fn ∼
1

r3
; r → ∞ ð3:28Þ

d
dr

gn ∼
1

r
; r → ∞: ð3:29Þ

Thus, none of the derivatives of the solutions is divergent at
the asymptotic region. Note that this behavior is in contrast
with ordinary electrodynamics in R2 or R3, where there
always exists a solution whose electrostatic field is diver-
gent at the asymptotic region and is discarded in physical
problems. This fact will play a crucial role in our analysis.
Consider now the behavior near the horizon r → rh or

u → 1. Both solutions (3.12) and (3.17) are finite for juj ¼
1 since

fn → 2F1ðαn;−αn; 1; 1Þ ¼
1

Γð1 − αnÞΓð1þ αnÞ
;

gn →
X∞
m¼0

ðαnÞmð−αnÞm
ðm!Þ2 Sn;m < ∞; ð3:30Þ

and the second inequality follows from the d’Alembertian
criteria for the series. More specifically, the function Sn;m
defined in (3.18) can be approximated by an integral whose
result is

Sn;m ∼ log
m2 − α2n
ðmþ 1Þ2 − logð−α2nÞ;

and remembering that αn is purely imaginary, it follows that
Sn;m < ∞ for all m. Therefore, (3.30) is
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jgnj →
����X∞
m¼0

ðαnÞmð−αnÞm
ðm!Þ2 Sn;m

���� <����Smax
n;m

X∞
m¼0

ðαnÞmð−αnÞm
ðm!Þ2

����
¼ jSmax

n;m 2F1ðαn;−αn; 1; 1Þj < ∞; ð3:31Þ

where in the last step (3.25) and the definition (3.12) have
been taken into account. This shows that (3.30) holds. The
derivatives fn with respect to r involve functions of the
form 2F1ð1þ αn; 1 − αn; 2; uÞ, which do not satisfy (3.13).
This means that d

dr fn is divergent in the horizon u ¼ 1. The
analysis for d

dr gn is more involved. The first term (3.22) is
convergent. The second is also convergent, but the third is
divergent. Thus, the final result is that

d
dr

fn → ∞; r → rh ð3:32Þ

d
dr

gn → ∞; r → rh: ð3:33Þ

It is not easy to work with functions with this divergent
behavior. Fortunately, there exists a linear combination
αfn þ βgn of both solutions whose derivative is convergent
at juj ¼ 1. This combination can be found by considering
the set of solutions centered at the horizon u ¼ 1.

C. Solutions centered around the horizon

As was mentioned above, Eq. (3.11) has three regular
singular points. The solutions (fn, gn) found in the previous
section are centered around the regular singular point
u ¼ 0, which corresponds to the asymptotic region and
are convergent in the interval 0 < juj < 1. Consider now a
set of solutions (hn; kn) centered around the regular singular
point u ¼ 1. These solutions will be convergent, as will be
shown below, in the interval 0 < u < 2, in particular for
rh < r < ∞. This means that in the overlapping region
0 < u < 1, which is rh < r < ∞, both sets (fn, gn) and (hn,
kn) constitute a basis of solutions; therefore, there should
exist a relation of the form

hn ¼ afn þ bgn; ð3:34Þ

kn ¼ cfn þ dgn; ð3:35Þ

valid in the overlapping region, with a; b; c; d as constant
coefficients. These coefficients can be found by evaluating
these equalities and their first derivatives in an arbitrary
point r0 inside the overlapping region, and the result is

a ¼ Wðhn; gnÞðr0Þ
Wðfn; gnÞðr0Þ

; b ¼ Wðhn; fnÞðr0Þ
Wðfn; gnÞðr0Þ

; ð3:36Þ

c ¼ Wðkn; gnÞðr0Þ
Wðfn; gnÞðr0Þ

; d ¼ Wðkn; fnÞðr0Þ
Wðfn; gnÞðr0Þ

: ð3:37Þ

HereWðf; gÞ ¼ gðrÞ∂rfðrÞ − fðrÞ∂rgðrÞ is the Wronskian
of the two functions fn and gn. Naturally, the value of
a; b; c; d does not depend on the choice of r0.
A method for finding the solutions (hn; kn) is the

following. Consider the change of variables s ¼ 1 − u.
Equation (3.11) in this variable takes the form

sð1 − sÞ ~R00ðsÞ þ s ~R0ðsÞ − n2

4M
~RðsÞ ¼ 0: ð3:38Þ

Clearly, the solutions of (3.11) around u ¼ 1 correspond to
solutions of (3.38) around s ¼ 0. Equation (3.38) is a
hypergeometric one with parameters

γ ¼ 0; αn ¼
in

2
ffiffiffiffiffi
M

p ; βn ¼
−in
2
ffiffiffiffiffi
M

p :

Its solutions are given by

hnðrÞ ¼ s2F1ð1þ αn; 1 − αn; 2; sÞ; ð3:39Þ

knðrÞ ¼ s lnðsÞ2F1ð1þ αn; 1 − αn; 2; sÞ

þ s
X∞
m¼1

ð1þ αnÞmð1 − αnÞm
ð2Þmðm!Þ sm ~Sn;m −

1

α2n
; ð3:40Þ

where αn is the same as before and

s ¼ 1 − u ¼ 1 −
r2h
r2

: ð3:41Þ

Note that none of the solutions (3.39)–(3.40) are simply
hypergeometric functions. This happens for some special
choice of parameters, such as in our case. In addition,

~Sn;m ¼
Xm−1

k¼0

�
1

kþ 1þ αn
þ 1

kþ 1 − αn
−

1

kþ 1
−

1

kþ 2

�
¼ ψðmþ 1þ αnÞ − ψð1þ αnÞ
þ ψðmþ 1 − ανÞ − ψð1 − ανÞ − ψðmþ 2Þ
þ ψð2Þ − ψðmþ 1Þ þ ψð1Þ

has been introduced, with ψðaÞ the digamma function. This
new variable change maps the exterior region of the black
hole to 0 ≤ s ≤ 1. The line s ¼ 0 corresponding to the
event horizon and s ¼ 1 corresponds to the asymptotic
region.
The derivatives with respect to r are given by

d
dr

hn ¼
2

rh
ð1 − sÞ3=2½ ~FnðsÞ þ s ~Fn

0ðsÞ� ð3:42Þ
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d
dr

kn ¼
2

rh
ð1 − sÞ3=2

�
ð1þ ln sÞ ~FnðsÞ þ s ln s ~Fn

0ðsÞ

þ
X∞
m¼0

ð1þ αnÞmð1 − αnÞm
ð2Þmm!

ðmþ 1ÞsmSn;m
�
;

ð3:43Þ

where the following notation has been introduced for
simplicity:

~FnðsÞ≡ 2F1ð1þ αn; 1 − αn; 2; sÞ; ð3:44Þ

~Fn
0ðsÞ≡ ð1 − α2nÞ

2 2F1ð2þ αn; 2 − αn; 3; sÞ: ð3:45Þ

The behavior far from the horizon r ≫ rh or s → 1 is not
easily seen from (3.39)–(3.40) or (3.42)–(3.43). For in-
stance, factor ð1 − sÞ3=2 in (3.42)- goes to zero at the
infinite but the combination inside the parentheses is
divergent, so there is a 0:∞ ambiguity. But the result of
this limit can be inferred from (3.34)–(3.35), since hn and
kn are linear combinations of the functions fn or gn, which
are centered at the infinite. Since gn ∼ − logðrÞ is divergent
at the infinite it follows that

hn ∼ logðrÞ → ∞; r → ∞; ð3:46Þ

kn ∼ logðrÞ → ∞; r → ∞: ð3:47Þ

The behavior from the derivatives follows from (3.28)–
(3.29), since kn and hn are linear combinations of fn and gn
and the last two have finite derivatives at the asymptotic
region. From this simple fact it follows that

d
dr

hn ∼
1

r
→ 0; r → ∞; ð3:48Þ

d
dr

kn ∼
1

r
→ 0 r → ∞: ð3:49Þ

On the other hand, the behavior of the new solutions (3.39)
and (3.40) at the horizon s → 0 is directly seen from its
definitions. It is given by

hn ∼ sFðsÞ → 0; s → 0 ð3:50Þ

kn → s logðsÞFðsÞ − 1

α2n
→ −

1

α2n
; s → 0: ð3:51Þ

The behavior of their derivatives is

d
dr

hn ∼
2

rh
ðFðsÞ þ sF0ðsÞÞ → 2

rh
; s → 0 ð3:52Þ

d
dr

kn ∼
2

rh
½ð1þ log sÞFðsÞ þ s log sF0ðsÞ þ s� → −∞;

s → 0: ð3:53Þ

Therefore, we have reached our goal, namely, to find a basis
for which one of the eigenfunctions behave regularly at the
horizon. It will be more convenient for our purposes to
work with solutions satisfying (3.50)–(3.49) than using the
ones satisfying (3.23)–(3.33). For this reason the following
calculations will be referred to the set constituted by hn
and kn.

D. The unphysical solutions

After elucidating the behavior of the solutions of
Eq. (3.5) for the potential At, the next step is to discuss
the boundary conditions for the electrostatic problem. The
particularities of the BTZ geometry discussed in the
previous sections make the analysis different than in
ordinary electrostatic in flat spaces since the geometry is
not asymptotically flat. In addition, the behavior of the
distance dðr; rþ 1Þ given in (2.15) does not hold in a flat
geometry. As a consequence of this behavior, when the
usual boundary conditions of the electrostatics in flat space
are applied to this case, the electric field is not uniquely
defined. This is an artifact which suggests that the new
types of boundary conditions should be considered for the
nonasymptotically flat geometry.
The problems described above can be illustrated with an

heuristic argument as follows. Consider a perfect dipole in
flat space R3, constituted by two charges q and −q
separated by a distance d. An elementary result in the
electrostatic states is that the dipolar momenta p of such a
configuration is independent of the origin O of the
coordinates. Thus, this dipolar moment is the same near
the origin or far away from it. This situation is radically
different in the BTZ geometry. As was discussed in (2.15),
the distance dðrÞ between two points lying on a circle of
radius r and rþ 1 and on the same line θ ¼ θ0 tends to zero
when r → ∞. Consider now two charges q and −q located
at these points. If these charges are translated simulta-
neously in the radial direction to r → ∞, since their mutual
distance is dðrÞ → 0, these charges become superposed on
one another. It may then seem plausible that all the
multipolar momenta tend to zero in this limit. The same
reasoning holds for radially directed finite charged lines
with total charge equal to zero.
The discussion given above suggests that one can send to

the asymptotic region any finite number of radially directed
neutral configurations, which will seem to disappear at the
infinite. But if an arbitrary number of configurations is sent,
then the result is ambiguous, since the resulting multipoles
are an indetermination of the form 0:∞.
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These facts can be visualized by considering the multi-
pole expansion of these radially directed neutral configu-
rations. This expansion is expected to be of the form

Aðx; x0Þ ¼
X∞
j¼1

Mj
i1…ij

ðxÞσi1ðx; x0Þ…σijðx; x0Þ
σnjðx; x0Þ ; ð3:54Þ

where σiðx; x0Þ is a function which reduces to the usual
difference σi ¼ ðx − x0Þi in a flat space. In addition,
Mi1…ijðxÞ are by definition multipolar momenta, and nj
are positive numbers, whose explicit value is of no
importance in this discussion. This is the essence of the
Synge calculus [31], to be discussed in detail in the next
sections. Here x is some characteristic point of the charged
body and x0 is the observation point. The sum starts at j ¼ 1
since the zero multipole, which is the total charge, is
assumed to be zero.
Now, if the expansion (3.54) is applied to theBTZcase, one

encounters the following ambiguity. When a neutral radially
directed configuration whose center is at r0 is sent to the
asymptotic region, then r0 takes large values and the
denominator tends to zero in a small neighborhood. This
follows from the fact that σaðr0; rÞ → 0 when r → ∞,
r0 → ∞ such that r − r0 < ∞. On the other hand, when
r0 → ∞, the size of the system tends to zero, which follows
from the behavior of dðrÞ in a BTZ geometry. It is plausible
then that the multipolesMj

i1…ij
are also zero in this limit, but

this affirmation is to be taken with care. For instance, one can
consider a dipole composed by two charges q and−q, which
is sent to the asymptotic regionwhile adding opposite charges
at increasing positions in such a way that when the dipole is
centered at r, the charges are qðrÞ and −qðrÞ, with qðrÞ an
arbitrary function of r. This function may be fixed to give a
nonzero value for the multipolesMj

i1…ij
at the infinite. In any

case, if the multipoles are zero, then there is an indetermi-
nation of the form 0:∞ for the potential (3.54). If instead the
multipoles are finite or even infinite, then a divergence located
at the infinite appears, which may give as a result a finite
remanent electric field at finite r values. These arguments are,
of course, heuristic but suggest that the appropriate boundary
conditions are not as straightforward as in the flat case.
The problems discussed in the previous paragraphs are

reflected in the calculations as follows. The separation of
variables for At shows that the general electrostatic poten-
tial outside the source in a nonrotating BTZ black hole
admits an expansion of the form

Atðr; θÞ ¼
X∞
n¼1

expðinθÞðAnhnðrÞ þ BnknðrÞÞ

þ α logðrÞ þ β: ð3:55Þ
Generally, one expects the electric field Ei to vanish
asymptotically and to be finite at the horizon. This field

is obtained by taking derivatives of At. More precisely, one
expects the invariant

FμνFμν ¼ −ð∂rAtÞ2 −
1

r2ðr2l2 −M2Þ ð∂θAtÞ2 ð3:56Þ

to vanish at the infinite and to be finite at the horizon.
Consider the simplest configuration first, namely, the one
without charges. In this case, Bn should be zero since the
derivatives of knðrÞ are infinite at the horizon by (3.53).
Thus, if Bn were not zero, then the first term in (3.56)
would be divergent. On the other hand, the derivatives of
hnðrÞ are well behaved at both the horizon and the
asymptotic region. Nevertheless, its value is divergent at
the infinite and since the derivative ∂θAt contains terms
proportional to hn, it follows that ∂θAt → ∞ at the
asymptotic region. But this derivative is divided in
(3.56) by a factor which diverges when r → ∞ faster than
h0nðrÞ. In fact, from (3.46) it follows that

1

r2ðr2l2 −MÞ ð∂θAtÞ2 ∼
1

r4
log2ðrÞ → 0; r → ∞: ð3:57Þ

So the invariant tends to zero at the infinite and, thus, the
electric field. The other term to be careful with is the
denominator in the second term in (3.56), which gives a
potential divergence at the horizon. But taking into account
(3.50), it follows that

1

r2ðr2l2 −MÞ ð∂θAtÞ2 ∼
�

1

r4s

�
s2F2ðsÞ → 0; r → rh:

ð3:58Þ

Thus, the presence of hn is not dangerous at the horizon
either. The Gauss law fixes α ¼ 0. Therefore, it is con-
cluded that in the absence of charges, the most general
potential is

Atðr; θÞ ¼
X∞
n¼1

An expðinθÞhnðrÞ; ð3:59Þ

with An the arbitrary coefficients.
At first sight, this result may lead to the awkward

conclusion that there exists an electric field, corresponding
to (3.59), in the absence of a charge. The interpretation to
be adopted in this work is that this conclusion is not true;
instead, the solution (3.59) is unphysical and corresponds
to the electrostatic potential of “configurations in the
infinite” of the type mentioned above. These configurations
are characteristic in a BTZ geometry due to the pathological
behavior of the radial distance dðr; rþ 1Þ explained in
(2.15). Therefore, in an electrostatic problem in BTZ
geometry, our criteria for discarding solutions will not
be the request that the radial solutions go to zero at the
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infinite, which is customary in ordinary electrodynamics in
flat space. The task of determining appropriate boundary
conditions is described in the next section.

IV. ELECTROSTATIC FIELD OF BTZ BLACK
HOLE AND WORMHOLE

Having derived the eigenfunctions of the electrostatic
problem in the BTZ geometry, the next step is the
calculation of the electrostatic potential of a point charge
q in front of the BTZ black hole and wormhole. The static
charge is located at the position r0 > rh, θ ¼ 0. Its
electrostatic potential can be expressed as

AI
tðr; θÞ ¼

X∞
n¼1

expðinθÞðAnhnðrÞ þ BnknðrÞÞ

þ α logðrÞ þ β; ð4:1Þ

AII
t ðr; θÞ ¼

X∞
n¼1

expðinθÞðCnhnðrÞ þDnknðrÞÞ

þ γ logðrÞ þ δ: ð4:2Þ

The potential AI
t is the one in the region between the charge

position r0 and the horizon rh, and the AII
t corresponds to

the region between r0 and the asymptotic boundary. In the
first region, Bμ ¼ 0 should be imposed; this is due to the
fact that the derivatives of kμðrÞ and the invariant (3.56)
would not be bounded at the horizon. For the second
region, the discussion below (3.59) suggests that if the
coefficients Cn multiplying hnðrÞ are nonvanishing, then
the nontrivial charge configurations at the infinite are
turned on. This leads us to the following:
First type of boundary conditions: In order to avoid the

residual electric field above, one may impose that Cn ¼ 0
in the region between the charge and the asymptotic
boundary. Note that if this boundary condition is imposed,
then (3.59) is automatically zero. This is expected by
intuition namely, it implies the absence of electric field in
absence of charges. The resulting potential for the charge
now has the form

AI
tðr; θÞ ¼

X∞
n¼1

expðinθÞAnhnðrÞ þ α logðrÞ þ β; ð4:3Þ

AII
t ðr; θÞ ¼

X∞
n¼1

expðinθÞDnknðrÞ þ γ logðrÞ þ δ: ð4:4Þ

However, there is some unpleasant detail concerning this
choice of boundary conditions. First, it is not the only type
of condition that insures a vanishing electric field in the
absence of charges. One may add to (4.3)–(4.4) a solution
of the homogeneous Maxwell equation with the form
(3.59) and with the coefficients An proportional to the

charge q, which will vanish when q → 0. This shows that
there is an ambiguity for the choice of the boundary
conditions.
Second type of boundary conditions: There exists a

unique privileged type of boundary condition, which is
seen as follows. The derivative of the functions knðrÞ, as
shown in (3.49), decays as 1=r at the asymptotic region.
Instead, the derivatives of fnðrÞ, as seen by (3.28), decay as
1=r3. In view of this, it may look strange that the
asymptotic behavior of (4.4) goes like 1=r and not like
1=r3. In other words, it may be reasonable to expect that,
for a localized system of charges, the potential decays as
fast as possible at the asymptotic region. This is, of course,
what happens in an ordinary problem in electrostatics. And
the boundary conditions imposing Cn ¼ 0 and leading to
the solution (4.3)–(4.4) do not respect this behavior.
Therefore, one may consider the possibility of working
with the base ðhn; fnÞ instead of ðhn; knÞ. In these terms the
electrostatic potential in the absence of charges is

AII
t ðr; θÞ ¼

X∞
n¼1

expðinθÞðαnhnðrÞ þ βnfnðrÞÞ

þ γ logðrÞ þ δ: ð4:5Þ

The requirement for fast decay at the asymptotic implies
αn ¼ α ¼ 0; otherwise, the derivative of the potential
would decay as 1=r instead of as 1=r3. The regularity at
the horizon requires βn ¼ 0 since the derivatives of fnðrÞ
are not bounded at the horizon. Thus, these boundary
conditions give a constant potential δ and no electric field in
the absence of charges.
It should be remarked that there are many boundary

conditions giving no electric field when no charges are
present, but only the second type gives a decay of the form
1=r3. This follows since the radial function fnðrÞ is the
unique between the four fnðrÞ, gnðrÞ, hnðrÞ, and knðrÞ
which this fast decay and therefore, the addition of other of
these functions in the region II will spoil this behavior. In
any case, it may be instructive to consider both types of
conditions separately, and this will be done in the following
subsection.

A. The black hole electrostatics for the first type
of boundary condition

Consider the conditions requiring Cn ¼ 0 first. We call
these the “wrong” conditions since they are nonunique,
although this name will be justified better when studying
the charge self-force. The matching conditions for the
coefficients An and Dn are the request of continuity of the
potential and the request of discontinuity of the electric
field when crossing the surface r0 along the radial line
where the charge is located. These conditions are translated
into the following linear equations for the unknown
coefficients:
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Anhnðr0Þ ¼ Dnknðr0Þ;
Anh0nðr0Þ −Dnk0nðr0Þ ¼

q
r0

;

γ ¼ −q; α ¼ 0; β ¼ −q logðr0Þ þ δ:

The constant δ can be fixed to zero without losing general-
ity. The solution of this system is

An ¼
qknðr0Þ
r0Wnðr0Þ

; Dn ¼
qhnðr0Þ
r0Wnðr0Þ

;

with

Wðr0Þ ¼ knðr0Þh0nðr0Þ − k0nðr0Þhnðr0Þ ð4:6Þ

the Wronskian of the two solutions kn and hn at the charge
radial position r0. Therefore, the electrostatic potential is
given by

AI
tðr; θÞ ¼ −q logðr0Þ þ

X∞
n¼0

qknðr0ÞhnðrÞ
r0Wnðr0Þ

expðinθÞ;

ð4:7Þ

AII
t ðr; θÞ ¼ −q logðrÞ þ

X∞
n¼0

qhnðr0ÞknðrÞ
r0Wnðr0Þ

expðinθÞ:

ð4:8Þ

TheWronskian (4.6) can be calculated as follows. Consider
two arbitrary linearly independent solutions y1n and y2n of
the hypergeometric equation

uð1 − uÞy00in ðuÞ þ ð1 − uÞy0inðuÞ −
n2yinðuÞ
4M

¼ 0:

By multiplying the equation for y1n by y2n and by doing the
opposite procedure for the equation for y2n and thensubtract-
ing the resulting terms, the following equation if obtained:

u eW0ðuÞ þ eWðuÞ ¼ 0;

for the Wronskian

eWðuÞ ¼ y1ny02n − y01n y2n:

If the Wronskian eWðvÞ at a point v is known, then the
solution of the last equation is

eWðuÞ ¼ v eWðvÞ
u

:

TheWronskian just considered is referred to derivatives in u.
The Wronskian WðrÞ referred to derivatives of r is obtained
by multiplying eW by u0ðrÞ, and the result is

WðrÞ ¼ r0Wðr0Þ
r

; ð4:9Þ

with r0 an arbitrary fixed point. Therefore, once the
Wronksian at a given point r0 is known, its values at a
generic point r are determined by the last formula. For the
case in consideration, it is convenient to calculateWðhn; knÞ
at rh, which corresponds to s ¼ 0. The value follows directly
from (3.50)–(3.53), and the result is

WnðrhÞ ¼
2Fnð0Þ
rhα2n

: ð4:10Þ

Taking into account the definition of the hypergeometric
function

2F1ðα; β; γ; sÞ ¼
X∞
n¼0

ðαÞnðβÞn
ðnÞðγÞn

sn;

it is concluded that

2F1ðα; β; γ; 0Þ ¼ 1:

By this and (3.44), the Wronskian (4.10) takes the following
form:

WnðrhÞ ¼
8M
rhn2

: ð4:11Þ

In these terms, (4.7)–(4.8) become

AI
tðr; θÞ ¼ −q logðr0Þ þ

X∞
n¼1

qn2knðr0ÞhnðrÞ
8M

expðinθÞ;

ð4:12Þ

AII
t ðr; θÞ ¼ −q logðrÞ þ

X∞
n¼1

qn2hnðr0ÞknðrÞ
8M

expðinθÞ:

ð4:13Þ

This is the electrostatic potential corresponding to the first
type of boundary conditions.

B. The black hole electrostatics for the second type
of boundary conditions

The second boundary conditions, which will be called of
“right” type state that the region II should be described in
terms of the fast decaying radial functions fnðrÞ, while the
region I should be described by hnðrÞ, which are regular at
the horizon. The electrostatic potential satisfying this
requirement is generically

AI
tðr; θÞ ¼

X∞
n¼1

expðinθÞAnhnðrÞ þ α logðrÞ þ β; ð4:14Þ
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AII
t ðr; θÞ ¼

X∞
n¼1

expðinθÞDnfnðrÞ þ γ logðrÞ þ δ: ð4:15Þ

The analysis of the boundary conditions at the charge position r0 is completely analogous to the one performed in the
previous section. For the case M ¼ 1, the Wronskian constructed in terms of ðhnðrÞ; fnðrÞÞ is given by

r0Wnðr0Þ ¼
2

Γð1þ in
2
ÞΓð1 − in

2
Þ :

The electrostatic potential in this case is

AI
tðr; θÞ ¼ −q logðr0Þ þ

q
2

X∞
n¼1

Γ
�
1þ in

2

�
Γ
�
1 −

in
2

�
fnðr0ÞhnðrÞ expðinθÞ; ð4:16Þ

AII
t ðr; θÞ ¼ −q logðrÞ þ q

2

X∞
n¼1

Γ
�
1þ in

2

�
Γ
�
1 −

in
2

�
hnðr0ÞfnðrÞ expðinθÞ: ð4:17Þ

This is the unique potential with the right discontinuity at
the charge position, the right behavior at the horizon, and
the fastest decaying conditions.

C. The wormhole electrostatic field

In order to find the electrostatic potential of a charge in
front of a BTZ wormhole, it is convenient to divide the
spacetime in the following three regions:

region I∶ r− < rg;

region II∶ rg < rþ < r0;

region III∶ rþ < r0:

Here rg indicates the throat position. The electrostatic
solution in any of these regions is of the form

AIII
n ¼−qlogðrÞþ

X∞
n¼1

ðAnhnðrÞþBnknðrÞÞexp½nðθ−θ0Þ�;

AII
n ¼−qlogðr0Þþ

X∞
n¼1

ðCnhnðrÞþDnknðrÞÞexp½nðθ−θ0Þ�;

AI
n¼−qlogðr0Þþ

X∞
n¼1

ðEnhnðrÞþFnknðrÞÞexp½nðθ−θ0Þ�:

ð4:18Þ

The coefficients An;…; Fn are given by the boundary
conditions of the problem, which are the following:
(1) The potential is continuous in rþ ¼ r0,

AIIIðrþ → rþ0 Þ ¼ AIIðrþ → r−0 Þ: ð4:19Þ

(2) The potential is continuous in r− ¼ rþ ¼ rg

AIIðrþ → rþg Þ ¼ AIðr− → r−g Þ: ð4:20Þ

(3) The continuity of the field in r− ¼ rþ ¼ rg

∂rþA
IIðrþ → rþg Þ ¼ −∂r−A

Iðr− → r−g Þ: ð4:21Þ

(4) The discontinuity of the electric field in rþ ¼ r0

∂rþA
IIIðrþ → rþ0 Þ − ∂rþA

IIðrþ → r−0 Þ

¼ −
2πq
r0

δðθ − θ0Þ: ð4:22Þ

(5) The correct asymptotic behavior in M− and Mþ.
The last condition is related to the two boundary conditions
discussed in the previous section for the black hole case.
For the first type of boundary condition,

Bn ¼ Fn ¼ 0: ð4:23Þ

The other four conditions imply that

Anhnðr0Þ ¼ Cnhnðr0Þ þDnknðr0Þ;
Anh0nðr0Þ ¼ Cnh0nðr0Þ þDnk0nðr0Þ þ

q
r0
;

EnhnðrgÞ ¼ CnhnðrgÞ þDnknðrgÞ;
−Enh0nðrgÞ ¼ Cnh0nðrgÞ þDnk0nðrgÞ:

This is a system of four equations with four undetermined,
whose solution gives
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AIII
t ¼ −q logðrÞ þ

X∞
n¼1

�
qknðr0Þ
r0Wnðr0Þ

−
qhnðr0Þ

2r0hnðrgÞh0nðrgÞ
�
WnðrgÞ þ 2hnðrgÞk0nðrgÞ

Wnðr0Þ
��

hnðrÞ exp½nðθ − θ0Þ�: ð4:24Þ

Attention will be paid only to the potential in the third region since it is the one to be used for calculating the charge self-
force. It can be decomposed further as

AIII
t ¼ Abh

t −
1

2

X∞
n¼1

�
qhnðr0Þ

rghnðrgÞh0nðrgÞ
þ qn2hnðr0Þk0nðrgÞ

8Mh0nðrgÞ
�
hnðrÞ exp½nðθ − θ0Þ�; ð4:25Þ

with Abh
t the potential corresponding to the black hole solution (4.12)–(4.13).

For the second type of boundary condition, the resulting potential is

AIII
t ¼ Abh

t −
1

2

X∞
n¼1

�
qhnðr0Þ

rghnðrgÞh0nðrgÞ
þ Γ

�
1þ in

2

�
Γ
�
1 −

in
2

�
qhnðr0Þk0nðrgÞ

2h0nðrgÞ
�
hnðrÞ exp½nðθ − θ0Þ�; ð4:26Þ

where now Abh
t is the potential corresponding to the black

hole solution (4.16)–(4.17). The remaining sum is due to
the effect of the throat at rg, which deforms the electric field
lines. This shows that both geometries, which are locally
the same, can be distinguished by electrostatic effects.

V. COINCIDENT POINTS LIMITS AND TAYLOR-
LIKE EXPANSIONS IN CURVED SPACETIMES

The electrostatic potential At for the static charge q in
any geometry is singular at the position where the charge is
located. In a flat space, this charge does not experience any
self-force; this is clear due to the rotational symmetry of the
electrostatic field. In a curved space, this argument is not
true, since the nontrivial curvature of the geometry deforms
the electric lines and gives a net force on the charge. A
seminal work about electrostatics in curved space is the one
of Haddamard [32], who started a program for calculating
the singular part for At in static geometries.
The electrostatic vector potential Atðx; x0Þ is an example

of a bivector since it depends on two arguments, the
position of the charge x and the position of the observer
x0. The self-force on the charge is determined by the
behavior of Atðx; x0Þ in an infinitesimal neighborhood
of x, and the analogous of a Taylor expansion in a curved
space plays an important role in determining this behavior.
In the present section the main properties of these expan-
sions are described, which require Synge calculus [31].
References [17,19,20,32–37] are more detailed and contain
more information. Nevertheless, a concise but self-
contained description of the Synge calculus is given in
the following subsections.

A. The Synge world function and its main properties

Our task is to calculate the self-force of a static charge in
front of a BTZ black hole. This requires us to calculate its
electrostatic field E and to subtract the part that is divergent

at the position of the charge. There are several methods to
extract this singular part. The one to be implemented here,
which is better adapted to static geometries, has as a basic
ingredients the parallel propagator bitensor gβαðx; x0Þ and
the Synge world function σðx; x0Þ [31]. To define them,
consider a spacetime (g,M) and choose an einbein basis ea

for the metric g such that

gμνðxÞ ¼ ηabeaμðxÞebνðxÞ:

There is an SOðn − 1; 1Þ freedom for choosing this basis,
since SOðn − 1; 1Þ rotations Ra

b induce new one-forms,

e0aðxÞ ¼ Ra
be

bðxÞ;

which are still an einbein for the metric gμν. In particular,
since always ∇gab ¼ 0 one may choose an einbein eaðxÞ at
x such that for any x0 lying in the injectivity radius of x, it is
parallel transported along the unique geodesic γ joining the
two points.
Now given a vector field AμðxÞ defined at TMx, one can

express it in the basis eaðxÞ as

AμðxÞ ¼ AaeaμðxÞ:

If this vector is parallel transported to x0 along γ, then its
components at that point are

Aμðx0Þ ¼ Aaeaμðx0Þ;

and it follows that

Aμðx0Þ ¼ gνμðx; x0ÞAνðxÞ

with

gνμðx; x0Þ ¼ eaμðxÞeνaðx0Þ: ð5:1Þ
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The object (5.1) then relates the components of the vector
field Aμ at x and x0. This object is by definition the parallel
transport bitensor of the geometry.
Let us turn our attention to the Synge world function

σðx; x0Þ. This function is defined as half of the square of the
geodesic distance dðx; x0Þ between x and x0∶

σðx; x0Þ ¼ 1

2
dðx; x0Þ2: ð5:2Þ

This distance dðx; x0Þ can be represented in integral form as

dðx; x0Þ ¼
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab _xa _xb

q
dλ; xð0Þ ¼ x; xð1Þ ¼ x0;

ð5:3Þ

with _xa satisfying the geodesic equation

_xa∇a _xb ¼ 0: ð5:4Þ
The bivector,

na ¼ ∇adðx; x0Þ; na0 ¼ ∇a0dðx; x0Þ; ð5:5Þ
constructed by taking derivatives of the distance dðx; x0Þ
with respect to the initial or final point x or x0 has unit
length. This can be seen explicitly by calculating the
variation of the distance,

δd ¼ dðxþ δx; x0Þ − dðx; x0Þ;
with δx subject to the boundary conditions

δxð0Þ ¼ δx0; δxð1Þ ¼ 0:

Now the integral (5.3) represents the distance dðx; x0Þ as an
action with Lagrangian

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab _xa _xb

q
; ð5:6Þ

and the standard Hamilton-Jacobi theory implies that the
last variation is

δd ¼ naδxa; ð5:7Þ
with na the momentum corresponding to the coordinate xa
calculated with the Lagrangian (5.6), which is given by

na ¼ −
∂L
∂ _xa ¼

gabðxÞ_xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab _xa _xb

p :

Clearly, this is the bivector (5.5) and it follows from the last
expression that

gabnanb ¼ 1; ð5:8Þ

which proves that na has unit length, as stated. In addition,

na0 ðx; x0Þ ¼ −gaa0 ðx; x0Þnaðx; x0Þ; ð5:9Þ

which follows from the definition of the parallel transport
bitensor. Furthermore, the norm gab _xa _xb is constant along a
geodesic γ, which follows from the Levi-Civita condition
∇cgab ¼ 0 together with the geodesic equation (5.4). This
implies that the Synge function can be expressed in integral
form as

σðx; x0Þ ¼ 1

2

Z
1

0

gab _xa _xbdλ; xð0Þ ¼ x; xð1Þ ¼ x0;

ð5:10Þ

and their derivatives σa ¼ ∇aσ also satisfy some useful
identities analogous to (5.8). One of them is

gabσaσb ¼ ga
0b0σa0σb0 ¼ σ; ð5:11Þ

whose proof follows directly from the action representation
(5.10) and the Hamilton-Jacobi theory. Note that for the flat
metric σ ¼ ηabðx − x0Þaðx − x0Þb and the identity, (5.11) is
immediate. In addition the following relation takes place

ga
0

a ðx; x0Þσaðx; x0Þ ¼ −σa0 ðx; x0Þ; ð5:12Þ

which is the analogous of (5.9). In the following the
notation σi1…in ¼ ∇1…∇nσ will be employed. With this
notation the formula (5.11) can be differentiated with
respect to the coordinate x, giving

σa
0

a σ
a ¼ σa

0
: ð5:13Þ

At this point it is convenient to introduce more formally the
definition of a bitensor, since this is a notion to be used
recurrently in the following.

B. Taylor expansions of bitensors

Consider an arbitrary manifold M and choose two of its

points xyx0. A bitensor T
β1…βkβ

0
1
…β0l

α1…αmα
0
1
…α0n

is a linear application

of the form

T∶ TMx × � � � × TMx × TMx0 × � � � × TMx0 × TM�
x × � � � × TM�

x × TM�
x0 × � � � × TM�

x0 → C;
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with TMp the tangent space at the point p and TM�
p its

dual. In particular, n ¼ l ¼ 0 corresponds to a tensor m
times covariant and k times contravariant. A bitensor field
is a rule that assigns to the pair of points ðx; x0Þ ∈ M ×M

the bitensor T
β1…βkβ

0
1
…β0l

α1…αmα
0
1
…α0n

ðx; x0Þ. Such objets can be differ-

entiated with respect to x or x0. The derivative

∇aT
β1…βkβ

0
1
…β0l

α1…αmα
0
1
…α0n

is obtained by considering x0 frozen and

taking its covariant derivative by pretending that it is an m
times covariant and k times contravariant tensor. As a
simple example, consider the object σðx; x0Þ, which is a
biscalar. The covariant derivative σaðx; x0Þ is a bivector and
by taking successive derivatives one can construct a
bitensor of arbitrary order.
When the points of a generic bitensor of rank two

Tα0β0 ðx; x0Þ are close enough, one may make a Taylor-like
expansion of the form

Tα0β0 ðx; x0Þ ¼ Aα0β0 ðx0Þ þ Aα0β0γ0 ðx0Þσγ0 ðx; x0Þ
þ Aα0β0γ0δ0 ðx0Þσγ0 ðx; x0Þσδ0 ðx; x0Þ þOðϵ3Þ;

ð5:14Þ

with ϵ a characteristic value of σα
0
and Ai1…inðx0Þ the

ordinary tensors defined at x0. This is analogous to an
ordinary Taylor expansion in a flat space. Assuming that
Tα0β0 ðx; x0Þ is known, the task is to calculate the coefficients
Ai1…inðx0Þ of (5.14). This requires the analysis of the
coincident points limit in (5.14) and all its derivatives
[31,36]. Given an arbitrary bitensor Uðx; x0Þ this limit is
defined by the formula

½U�ðx0Þ ¼ lim
x→x0

Uðx; x0Þ:

In these terms it follows directly that the first coefficient of
the expansion (5.14) is simply

Aα0β0 ðx0Þ ¼ ½Tα0β0 �: ð5:15Þ

The calculation of the higher-order terms Ai1…in in (5.14)
requires the knowledge of the coincident point limits of the
covariant derivatives σi1…in . These limits can be calculated
as follows. First, it is true that

½σ� ¼ 0 ð5:16Þ

since the distance between two points when x → x0 goes to
zero. This condition together with (5.11) implies that

½σα� ¼ 0: ð5:17Þ

Besides, one has

½σαβ� ¼ ½σα0β0 � ¼ gαβðx0Þ; ½σα0β� ¼ ½σαβ0 � ¼ −gαβðx0Þ:
ð5:18Þ

The last relations are intuitive by considering the flat case
and can be established by use of the last two formulas
together with (5.13). Now, in order to calculate the other
higher-order coincident limits, it is convenient to take two
covariant derivatives in (5.11) to obtain

σαβγ ¼ σδαβγσδ þ σδαβσδγ þ σδαγσδβ þ σδασδβγ: ð5:19Þ

Taking into account (5.16)–(5.18), it follows that

½σαβγ� ¼ ½σδαβ�gγ0δ0 ðx0Þ þ ½σδαγ�gδ0β0 ðx0Þ þ ½σδβγ�δδ0α0 ; ð5:20Þ

from which it is obtained that

½σγαβ� þ ½σβαγ� ¼ 0: ð5:21Þ

Also, since σ is a biscalar, it follows that σαβ ¼ σβα. By use
of this and the Ricci identity, it follows that

2½σαβγ� ¼ Rδ
αβγðx0Þ½σδ�:

This, together with (5.17), shows that

½σαβγ� ¼ 0: ð5:22Þ

Analogously, it can be shown that

½σαβγ0 � ¼ ½σαβ0γ0 � ¼ ½σα0β0γ0 � ¼ 0: ð5:23Þ

To proceed further requires us to take the covariant
derivative of (5.19) to obtain

σαβγδ ¼ σϵαβγδσϵ þ σϵαβγσϵδ þ σϵαβδσϵγ þ σϵαγδσϵβ þ σϵαβσϵγδ

þ σϵαγσϵβδ þ σϵαδσϵβγ þ σϵασϵβγδ: ð5:24Þ

The limit of the coincident points in (5.24) shows that

½σαβγδ� þ ½σαδβγ� þ ½σαγδβ� ¼ 0: ð5:25Þ

The last expression can be worked further by taking the
derivative of the Ricci identity,

σαβγ ¼ σαγβ − Rδ
αβγσδ;

with respect to xϵ and taking the coincident point limit. The
result is

½σαβγδ� ¼ ½σαγβδ� þ Rα0δ0γ0β0:

Besides, the Ricci identity implies that

σαβγδ ¼ σαβδγ − Rϵ
αγδσϵβ − Rϵ

βγδσϵα;
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and this, together with the symmetry properties of the
curvature tensor, gives

½σαβγδ� ¼ ½σαβδγ�:

In these terms it follows that (5.25) leads to

½σαβγδ� ¼ −
1

3
ðRα0γ0β0δ0 þ Rα0δ0β0γ0 Þ: ð5:26Þ

In an analogous way, the following identities,

½σ;αβγδ0 � ¼
1

3
ðRα0γ0β0δ0 þ Rα0δ0β0γ0 Þ; ð5:27Þ

½σ;αβγ0δ0 � ¼ −
1

3
ðRα0γ0β0δ0 þ Rα0δ0β0γ0 Þ; ð5:28Þ

½σ;αβ0γ0δ0 � ¼ −
1

3
ðRα0γ0β0δ0 þ Rα0δ0β0γ0 Þ; ð5:29Þ

½σ;α0β0γ0δ0 � ¼ −
1

3
ðRα0γ0β0δ0 þ Rα0δ0β0γ0 Þ; ð5:30Þ

can be proven.
Once the limits (5.16)–(5.30) are known, the coefficients

Ai1…inðx0Þ of (5.14) can be calculated to the third order. The
coincident point limit in (5.14) and (5.16)–(5.30) give the
following recurrence formula:

Aα0β0 ¼ ½Tα0β0 �; ð5:31Þ

Aα0β0γ0 ¼ ½Tα0β0;γ0 � − Aα0β0;γ0 ; ð5:32Þ

Aα0β0γ0δ0 ¼ ½Tα0β0;γ0δ0 � − Aα0β0;γ0δ0 − Aα0β0γ0;δ0 − Aα0β0δ0;γ0 :

ð5:33Þ

If Tαβ is known, these formulas allow us to determine the
expansion coefficients up to order three.
The expansion (5.31)–(5.33) is valid for a bitensor with

indices referred to the point x0. Consider now the expansion
of a bitensor of the form Tα0βðx; x0Þ. In this case, one can
construct an associated tensor ~Tα0β0 ðx; x0Þ given by

~Tα0β0 ðx; x0Þ ¼ gββ0 ðx; x0ÞTα0βðx; x0Þ; ð5:34Þ

which can be expanded by use of (5.31)–(5.33)
and (5.14) as

~Tα0β ¼ Bα0β0 þ Bα0β0γ0σ
γ0 þ Bα0β0γ0δ0σ

γ0σδ
0 þOðϵ3Þ: ð5:35Þ

The formula (5.34) can be inverted,

Tα0βðx; x0Þ ¼ gβ
0

β ðx; x0Þ ~Tα0β0 ðx; x0Þ;

and this together with (5.35) gives

Tα0β ¼ gβ
0

β ðBα0β0 þ Bα0β0γ0σ
γ0 þ Bα0β0γ0δ0σ

γ0σδ
0 Þ þOðϵ3Þ:

ð5:36Þ

The evaluation of the coefficients Bi1…in of this expansion
requires the use of (5.16)–(5.30) and also the coincident

point limit of the parallel propagator gβ
0

α ðx; x0Þ and its
derivative. These can be calculated as follows. First of all, it
is evident from the definition that

½gα0β � ¼ δα
0

β :

Besides, the parallel transport propagator can be con-
structed as gα

0
β ¼ eα

0
a eaβ with eaβ an einbein basis which is

parallel transported along a geodesic, which means that

eαa;βσ
β ¼ 0:

This implies that

gα
0

β;γσ
γ ¼ 0: ð5:37Þ

A differentiation of the last formula gives

gα
0

β;γδσ
γ þ gα

0
β;γσ

γ
δ ¼ 0;

and taking the coincidence limit and using (5.16)–(5.18)
gives

½gα0β;γ� ¼ ½gα0β;γ0 � ¼ 0: ð5:38Þ

Further differentiation gives

gα
0

β;γδϵσ
γ þ gα

0
β;γδσ

γ
ϵ þ gα

0
β;γϵσ

γ
δ þ gα

0
β;γσ

γ
δϵ ¼ 0:

The coincident limit of this relation is

½gα0β;γδ� þ ½gα0β;δγ� ¼ 0;

and the use of the Ricci identity gives

2½gα0β;γδ� þ Rα0β0;δ0γ0 ¼ 0;

from which it follows that

½gαβ0;γδ� ¼ −
1

2
Rα0
β0γ0δ0 : ð5:39Þ

In an analogous way it can be shown that

½gαβ0;γ0δ� ¼ −
1

2
Rα0
β0γ0δ0 ; ð5:40Þ

½gαβ0;γδ0 � ¼
1

2
Rα0
β0γ0δ0 ; ð5:41Þ
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½gαβ0;γ0δ0 � ¼
1

2
Rα0
β0γ0δ0 : ð5:42Þ

With the help of (5.37) and (5.42) together with (5.16) and
(5.30), the limit of coincident (5.36) can be calculated in a
straightforward manner. The result is

Bα0β0 ¼ ½Tα0β�; ð5:43Þ

Bα0β0γ0 ¼ ½Tα0β;γ0 � − Bα0β0;γ0 ; ð5:44Þ

Bα0β0γ0δ0 ¼ ½Tα0β;γ0δ0 � þ
1

2
Bα0ϵ0Rϵ0

β0;γ0δ0 − Bα0β0;γ0δ0

− Bα0β0γ0;δ0 − Bα0β0δ0;γ0 ; ð5:45Þ

from which the coefficients Bi1…in and consequently the
expansion (5.36) are determined. Finally, in the case that
Tαβðx; x0Þ is a tensor referred to x, one may construct the
auxiliary tensor,

~Tα0β0 ðx; x0Þ ¼ gββ0g
α
α0Tαβðx; x0Þ;

and expand it using (5.31)–(5.33) together with (5.14) for
~Tαβðx; x0Þ,

Tαβ ¼ gα
0

α g
β0
β ðCα0β0 þ Cα0β0γ0σ

γ0 þ Cα0β0γ0δ0σ
γ0σδ

0 Þ þOðϵ3Þ;
ð5:46Þ

with

Cα0β0 ¼ ½Tα0β�; ð5:47Þ

Cα0β0γ0 ¼ ½Tα0β0;γ0 � − Cα0β0;γ0 ; ð5:48Þ

Cα0β0γ0δ0 ¼ ½Tα0β0;γ0δ0 � þ
1

2
Cα0ϵ0Rϵ0

β0;γ0δ0 þ
1

2
Cϵ0β0Rϵ0

α0;γ0δ0

− Cα0β0;γ0δ0 − Cα0β0γ0;δ0 − Cα0β0δ0;γ0 : ð5:49Þ

These formulas determine the expansion to order two and
can be continued to arbitrary order.
The formulas described above are valid for an arbitrary

bitensor Tabðx; x0Þ. To give a concrete example, consider
for instance Tab ¼ σab. The coincident point limits of this
bitensor can be calculated directly from (5.16)–(5.30). By
use of this and the recurrence (5.31)–(5.33), it follows that

σab ¼ gaa
0
gbb

0
�
ga0b0 −

1

3
Ra0c0b0d0σ

c0σd
0

þ 1

4
Ra0c0b0d0;e0σ

;c0σd
0
σe

0 þOðϵ4Þ
�
; ð5:50Þ

σa0b ¼ −gb0b
�
ga0b0 þ

1

6
Ra0c0b0d0σ

c0σd
0 þOðϵ3Þ

�
ð5:51Þ

σa0b0 ¼ ga0b0 −
1

3
Ra0c0b0d0σ

c0σd
0 þOðϵ3Þ ð5:52Þ

and also that

gab0;c ¼
1

2
gaa0g

c0
c Ra0

b0c0d0σ
d0 þOðϵ2Þ: ð5:53Þ

Finally, we quote without proof the expansion for a bivector
Kaðx; x0Þ,

Kaðx; x0Þ ¼ ga
0

a

�
Ka0 − Ka0;c0σ

c0 þ 1

2
Ka0;c0d0σ

c0σd
0 þOðϵ3Þ

�
:

ð5:54Þ

We turn now our attention to the application of these
formulas to the calculation of the singular part of the Green
function.

VI. GREEN FUNCTION FOR STATIC
GEOMETRIES IN THREE DIMENSIONS

The divergences of the electrostatic potential At at the
position of the charge arise due to the fact that the source in
the Maxwell equations (3.1) has a Dirac delta type of
singularity. Something analogous happens when a charge is
in front of a perfect conductor, which deforms the field
lines and gives a net force on the charge. The net force is
calculated by subtracting terms in the electrostatic field
which are divergent at the charge position. The analogous
procedure for curved geometries was started by Haddamard
[32]. This technique is the one employed in our calculation
of the charge self-force in a BTZ geometry. The Taylor-like
expansions described in the previous section are specially
suited for this purpose.

A. The Haddamard ansatz

TheMaxwell equations (3.1) for a static charge in a static
geometry can be written in the following form:

gijs ∇i∇jAt − Ni∂iAt ¼ −2πgttjt: ð6:1Þ

Here gijs ðxÞ is the spatial part of the metric and∇i the spatial
Levi-Civita connection, both evaluated at the observation
position x. In addition,

Na ¼ ∂a log
ffiffiffiffiffiffiffiffi
−gtt

p
: ð6:2Þ

By expressing the potential as

At ¼ −q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðx0Þ

p
Gðx; x0Þ; ð6:3Þ

it follows that Gðx; x0Þ satisfies the equation,

gijs ∇i∇jGt − Ni∂iGt ¼ −2πδðx; x0Þ: ð6:4Þ
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Here δðx; x0Þ represents the spatial Dirac delta in curved
space. It is characterized by the property thatZ

fðx0Þδðx; x0Þ ffiffiffiffi
gs

p
dVs ¼ fðxÞ;

with fðx0Þ an arbitrary test function defined in a neighbor-
hood of x. The Haddamard Green functionGðx; x0Þ [32] is a
solution of (6.4) which has the singularity structure
enforced by the Dirac delta source, but does not necessarily
respect the boundary conditions of the problem (such as the
behavior in the asymptotic region) [32]; see also [16]. Our
strategy will not consist in calculating the electrostatic
potential for the BTZ case by the Haddamard method since
it has been already calculated in (4.12)–(4.13). But the
Haddamard calculation will be useful to identify the
singular part of this potential. Once this singular part is
removed, the resulting renormalized potential will give
directly an expression of a possible self-force on the static
charge q. Nevertheless, it should be remarked that there
exist other regularization methods for the static self-force
such as [18] or [17], which at the present have not been
proven to coincide with this one in three dimensions. For
this reason we do not claim that the same self-force to be
calculated below is the only possible one. We will call our
self-force the “Haddamard self-force” in order to remind us
that there are other possibilities.
The spacetime dimension will be kept generically in the

following, and we denote it as d ¼ nþ 2. If this dimension
n is even, then the static solution can be expressed as

Gðx; x0Þ ¼ 1

n − 1

Uðx; x0Þ
ð2σÞðn−1Þ=2 ; ð6:5Þ

while when n is odd one has [32]

Gðx; x0Þ ¼ 1

n − 1

Uðx; x0Þ
ð2σÞðn−1Þ=2 þ Vðx; x0Þ log 2σ

λ
þWðx; x0Þ:

ð6:6Þ

Here x0 is the position of the charge singularity. In both
cases, one has that Uðx; xÞ ¼ 1. The functional form for U,
V, and W depends on the spacetime in consideration. For
even n one can postulate an expansion of the form

Uðx; x0Þ ¼
X∞
p¼0

Upðx; x0Þð2σÞp;

which, when inserted into (6.4), gives the following
recurrence formula,

ð2σa∇a − Naσa þ∇2σ þ 2p − n − 1ÞUp

¼ −
2p − nþ 1

ðn − 1Þ2 ð∇2 − Na∇aÞUp−1: ð6:7Þ

For odd n instead it is postulated that

Uðx; x0Þ ¼
X12ðn−3Þ
p¼0

Upðx; x0Þð2σÞp ð6:8Þ

Vðx; x0Þ ¼
X∞
p¼0

Vpðx; x0Þð2σÞp;

Wðx; x0Þ ¼
X∞
p¼0

Wpðx; x0Þð2σÞp; ð6:9Þ

and subtitution into (6.6) and (6.4) gives instead the
following recurrence,

ð2σa∇a − Naσa þ∇2σ − 2ÞV0

¼ −
1

2ðn − 1Þ ð∇
2 − Na∇aÞU1

2
ðn−3Þ; ð6:10Þ

ð2σa∇a − Naσa þ∇2σ þ 2p − 2ÞVp

¼ −
1

2p
ð∇2 − Na∇aÞVp−1; ð6:11Þ

together with

ð2σa∇a − Naσa þ∇2σ þ 2p − 2ÞWp

¼ −
1

p
ð2σa∇a − Naσa þ∇2σ þ 4p − 2ÞVp

−
1

2p
ð∇2 − Na∇aÞWp−1: ð6:12Þ

These equations should be supplemented with (6.7), which
also applies to the odd case. The freedom in choosing the
parameter λ or W0ðx; x0Þ corresponds to the gauge trans-
formations in the model. In four dimensions, these type of
recurrences where already considered in [37].

B. Singular terms of the Green function
in 2þ 1 dimensions

The recurrence described in the previous subsection has
been analyzed in several situations, for instance in the
context of black holes in five dimensions [19].
Nevertheless, to the best of our knowledge, it was not
applied to three-dimensional cases. For this reason we
made an independent analysis by use of the Synge calculus
and the Hadamard ansatz described in the previous section.
Our analysis goes as follows. From (6.6) it is inferred that
for 2þ 1 dimensions, which corresponds to n ¼ 1, the
biscalar Uðx; x0Þ can be set to zero redefining Wðx; x0Þ.
Thus, the recurrence (6.12) does not play any role in this
case. Equations (6.10) for V0 and (6.11) for V1 are reduced
in this case to
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ð2σa∇a − Naσa þ∇2σ − 2ÞV0 ¼ 0: ð6:13Þ

ð2σa∇a − Naσa þ∇2σÞV1 ¼ −
1

2
ð∇2 − Na∇aÞV0: ð6:14Þ

The singular part of the Green function we are interested in
is not just the collection of terms which are divergent when
x → x0, but also those whose first derivatives are divergent
in that limit since they give an infinite force. To solve (6.13)
one may postulate

V0 ¼ 1þ aa0σa
0 þ 1

2
aa0b0σa

0
σb

0 þ 1

2
aa0b0c0σa

0
σb

0
σc

0 þOðϵ4Þ;
ð6:15Þ

with ai1…in coefficients to be determined. In the following
our attention will be restricted to terms of order three since
they will contain all the singular pieces. By introducing
(6.15) into (6.13) and taking into account the identities
deduced in (5.50)–(5.53), it follows that

aa0 ¼ −
1

2
Na0 ; ð6:16Þ

aa0b0 ¼
1

2
Na0;b0 þ

1

4
Na0Nb0 þ

1

6
Ra0b0 ; ð6:17Þ

aa0b0c0 ¼ −
1

2
Nða0;b0c0Þ −

3

4
Nða0Nb0;c0Þ −

1

8
Na0Nb0Nc0

−
1

4
Nða0Rb0c0Þ −

1

4
Rða0b0;c0Þ: ð6:18Þ

In deriving this result, one has to take into account the
following result,

Na ¼ ga
0

a

�
Na0 − Na0;c0σ

c0 þ 1

2
Na0;c0d0σ

c0σd
0 þOðϵ3Þ

�
;

ð6:19Þ

which follows from (5.54) by identifying Ka with Na.
Consider now (6.14). To solve it, it is enough to consider
the following terms:

V1 ¼ bþ ba0σa
0 þOðϵ2Þ: ð6:20Þ

By introducing (6.20) into (6.14), and taking into account
(5.50)–(5.53), (6.15) and (6.16)–(6.18) the following result
is obtained,

b ¼ 1

4
aa

0
a0 −

1

4
Na0aa0 ;

ba0 ¼ −
1

2
bNa0 −

1

8
ab

0
b0 þ

1

12
ab0Rb0

a0 −
1

8
Nb0ab0a0 þ

1

8
ab0Nb0

;a0 ;

which, by (6.16)–(6.18) can be finally expressed as

b ¼ −
1

8

�
Na0

;a0 −
1

2
Na0Na0 þ

1

3
R0
�

ð6:21Þ

ba0 ¼
1

16

�
∇02Na0 þ Nb0

;b0Na0 − Nb0Na0;b0 þ
1

2
Nb0Nb0Na0

þ 1

3
R0Na0 þ

1

3
R0
;a0

�
: ð6:22Þ

The equations (6.12) for Wi are not relevant for us since
they do not contain any singularity. Therefore, from (6.13)–
(6.14) it follows that the Green function is of the form

Gðx; x0Þ ¼
�
1þ 2bσ þ aa0σa

0 þ 2ba0σa
0
σ þ 1

2
aa0b0σa

0
σb

0

þ 1

2
aa0b0c0σa

0
σb

0
σc

0
�
log

σðx; x0Þ
λ

þ � � � ; ð6:23Þ

with the coefficients given by (6.16)–(6.18) and (6.21)–
(6.22). This expression is valid for any 2þ 1-dimensional
static spacetime.
The terms in this expansion whose derivatives are

divergent when x → x0 are

Gsingðx; x0Þ ¼
�
1 −

gtt;a0

4gtt
σa

0
�
log

σðx; x0Þ
λ

þ � � � ; ð6:24Þ

and the other terms give no singularities. This formula
combined with (6.3) gives the part of the electrostatic
potential which is singular or has singular derivatives. This
is the expression we were looking for. We turn our attention
to the application of this formula for the electrostatic
problem in the BTZ geometry.

VII. ELECTROSTATIC HADDAMARD
SELF-FORCE IN BTZ GEOMETRIES

The singular terms of theGreen function calculated in (7.5)
are generic for any static three-dimensional geometry. In the
present section, theGreen function formalism is specialized to
the nonrotating BTZ geometry and applies to the calculation
of the electrostatic self-force of a static charge q in the outer
region. The differences between the black hole andwormhole
case are a theoretical experiment for distinguishing both cases
without reaching the throat or the horizon.
In order to solve this task, it is necessary to find a

singular part of the Green function (7.5) for the nonrotating
BTZ geometry. At first sight, the formula requires the
calculation of σðx; x0Þ corresponding to the BTZ metric.
However, symmetry arguments show that charge self-force
is radial in the BTZ geometry. Thus, it seems reasonable to
limit oneself to the case in which x and x0 lie on the same
radial line, which can be chosen as θ ¼ 0 without loosing
generality. The distance corresponding to this situation was
calculated already in (2.13) for the case M ¼ 1, and it
follows that
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r ¼ l cosh dðr; rhÞ;
with dðr; rhÞ the distance between the point r and the point
of the horizon rh located at the same radial line θ ¼ 0. In
fact, by introducing the coordinate s defined by

r ¼ l cosh s; s ¼ log

0@r
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
− 1

s 1A; ð7:1Þ

the spatial BTZ metric with M ¼ 1,

g2 ¼
dr2

r2

l2 − 1
þ r2dθ2;

is transformed into

g2 ¼ l2ðds2 þ cosh2 sdθ2Þ; ð7:2Þ

from which it follows that the distance between two points
on the same radial line is simply

dðr2; r1Þ ¼ lðs2 − s1Þ; ð7:3Þ

or in radial coordinates

dðr; r0Þ ¼ l log

0@r
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
− 1

s 1A − l log

0@r0

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s 1A:

ð7:4Þ

In these terms the singular part of the Green function for
two points on the same radial line θ ¼ 0 is given by

Gsingðr; r0Þ ¼
241 − r

2lðr2l2 − 1Þ3=2

0@log

0@r
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
− 1

s 1A − log

0@r0

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s 1A1A35 log

0@1

λ
log

0@r
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
− 1

s 1A
−
1

λ
log

0@r0

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s 1A1Aþ � � � : ð7:5Þ

The regular or renormalized potential for the BTZ black
hole is

Aa
renðr; r0Þ ¼ Atðr; r0Þ − Aa

singðr; r0Þ; ð7:6Þ

where the singular part,

Aa
singðr; r0Þ ¼ −q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s
Gsingðr; r0Þ;

follows from (6.3) and (7.5), and Atðr; r0Þ is the black hole
solution (4.13) evaluated at θ ¼ 0, namely,

AI
tðr; θÞ ¼ −q logðr0Þ þ

X∞
n¼1

qn2knðr0ÞhnðrÞ
8M

; ð7:7Þ

for r < r0 and

AII
t ðr; θÞ ¼ −q logðrÞ þ

X∞
n¼1

qn2hnðr0ÞknðrÞ
8M

; ð7:8Þ

for r > r0. The self-force for the charge q is calculated by

Fr0 ¼ −qFðr0Þ
ðtÞ u

ðtÞ ¼ −qðeðr0ÞÞr0Fr0
t ut

¼ −q
ffiffiffiffiffiffiffiffi
gr0r0

p
gr

0r0Fr0t
1ffiffiffiffiffiffiffiffi−gtt

p ¼ −q∂r0Arenðr0Þ; ð7:9Þ

with

Arenðr0Þ ¼ lim
r→r0

Arenðr; r0Þ:

Although the expressions found above seem to be easy to
deal with, there is a problem when limiting oneself to radial
lines. The calculation for the self-force involves taking the
coincident limit r → r0. The complication is that the
electrostatic potential Aa

singðr; r0Þ has a singularity in this
limit, which is explicitly seen by looking at (7.5). The full
potential (7.7)–(7.8) has the same singularity with the
opposite sign and the combination (7.6) is free of singu-
larities by construction. However, one expression is given
as an infinite series and the other is a single-term ex-
pression, and this is not suitable for solving the ∞−∞
indetermination. One approach may be to sum the series.
This can be done in four dimensions, and the resulting
potential is a simple algebraic expression [2]. Unfortu-
nately, we ignore if there exists such summation formulas
in three dimensions. Thus, a different approach should be
employed. The one to be used below is based on the
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following observation: if one is able to expand the Green
function as a Fourier series of the form

Gsðx; x0Þ ¼ G0ðr; r0Þ
2

þ
X∞
n¼1

Gs
ncðr; r0Þ cosðnθÞ

þ
X∞
n¼0

Gs
nsðr; r0Þ sinðnθÞ; ð7:10Þ

then both (7.10) and (4.13) can be combined into a single
nondivergent series, which can be approximated to an
arbitrary order to obtain the approximated self-force. The

symmetry argument requires us to take the limit θ → 0 and
r → r0 in order to calculate it. However, this Fourier
expansion can be performed only if we know σðx; x0Þ
for points on the spacetime with arbitrary θ values. This
function can be calculated explicitly for the BTZ geometry,
and the calculation is performed in Appendix A. It is
given by

σðr; r0; θ; θ0Þ ¼ 1

2
d2ðr; r0; θ; θ0Þ

with

dðx1;x2Þ ¼ lcosh−1
"
r1r2
r2h

coshðθ2 − θ1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r1
rh

�
2

− 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2
rh

�
2

− 1

s #
: ð7:11Þ

An important consistency test of (7.11) is to recover the radial distance (7.3) when θ2 → θ1, that is, when both points lie on
the same radial line. For this, it is convenient to express (7.11) in terms of the coordinates ðs; θÞ defined in (7.1). The result is

dðx1;x2Þ ¼ l cosh−1 ½cosh s1 cosh s2 coshðθ2 − θ1Þ − sinh s1 sinh s2�: ð7:12Þ
From the last expression it follows that when the points are on the same radial line, then α ¼ 0 and the distance becomes

dðx1;x2Þ ¼ l cosh−1 ½cosh s1 cosh s2 − sinh s1 sinh s2� ¼ l cosh−1 ½coshðs2 − s1Þ� ¼ lðs2 − s1Þ:

Thus, the radial distance (7.3) has been recovered in this
limit, as expected. Since the expression (7.11) for the
geodesic distance between two arbitrary points in the BTZ
geometry is explicit, the calculation of the singular Green
function (7.5) for the electrostatic problem is immediate.
Unfortunately, the expression that is obtained is very
complicated, and we were not able to find a closed
expression for the Fourier coefficients of the expansion.
However, there is a numerical trick that can be employed,
which will allow us to approximate the real value of the
self-force to an arbitrary order. We turn our attention to this
trick in the next section.

A. Fourier expansion of the singular Green function

In the previous section the singular part of the Green
function has been found explicitly, but not its Fourier
expansion. The analytic form of this expansion turns out to
be of our computational methods. In these situations, the
following observation may be useful. In some mathematical
applications it may be of interest to study a given function
fðxÞ not in the full domain, but in a small interval ðx0 −
ϵ; x0 þ ϵÞ around a point x0. For example, this may be
because the points around x0 are the ones that considerably
influence the value of some integral. In these situations it may
be valid to find a trial function gðxÞ such that gðx0Þ ¼ fðx0Þ
and such that they values are very close in the mentioned

interval. If this new function gðxÞ has the additional property
that its Fourier expansion is simpler, then it may be advanta-
geous to work with it by considering a large number of terms
of the Fourier expansion. For example, one can approximate
the function fðxÞ around x0 with a rectangle function with
small width andwith fðx0Þ as its height. Note that if all terms
are considered, both the exact and the approximated Fourier
expansions have the same value at x0, under suitable con-
ditions for fðxÞ and gðxÞ.
Based on this idea, our goal is to construct an approxi-

mated Green Gaðr; r0; θ; θ0Þ function which coincides with
the exact one when the two points x and x0 lay on the same
radial line θ ¼ θ0. Since the symmetry of the problem
implies that the force is obtained taking the limit r → r0 for
points lying on the same radial line, then the fact that this
approximated Green function does not coincide with the
exact one outside this line is not relevant for the calculation.
This approximated Green function is found in terms of an
approximated distance daðx; x0Þ which coincide with (7.3)
for two points located on the same radial line.
At first sight there are a large number of possible choices

for the approximated Green function, and the idea is to
choose one that is simple to work with. A physically
motivated one is given in Appendix B for mass value
M ¼ 1. The approximated geodesic distance that is
obtained is
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daðx; x0Þ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðθ − θ0Þ2

ðtan−1 tanh s
2
− tan−1 tanh s0

2
Þ2

s
ðs − s0Þ; 0 < jθ − θ0j < π; ð7:13Þ

daðx; x0Þ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2π − θ þ θ0Þ2

ðtan−1 tanh s
2
− tan−1 tanh s0

2
Þ2

s
ðs − s0Þ; π < jθ − θ0j < 2π: ð7:14Þ

We will employ this expression in the following by
choosing the θ values in the range −π < θ < π. By
construction (7.14) is not strictly true, but tends to (7.3)
when θ1 ¼ θ2, and it is even under the interchange
θ ↔ −θ, which is a property of the true distance. Note,
in addition, that the limit

lim
s→s0

ðs − s0Þ2
ðtan−1 tanh s

2
− tan−1 tanh s0

2
Þ2 ¼ cosh2ðs0Þ ð7:15Þ

implies that the distance (7.13) is perfectly regular when
θ ≠ θ0. The same argument holds for (7.14).
The approximated world function σaðx; x0Þ can be found

directly by taking the square of the distance element (7.13). It
is convenient to locate the charge at θ0 ¼ 0 for simplicity.
Then the singular Green function (7.5) takes the following
form:

Ga
singðx;x0Þ ¼ ½fðr; r0Þθ2þ gðr; r0Þ� log½aðr; r0Þθ2þ bðr; r0Þ�;

ð7:16Þ

with

aðr; r0Þ ¼ ðs − s0Þ2
2ðtan−1 tanh s

2
− tan−1 tanh s0

2
Þ2 ;

bðr; r0Þ ¼ ðs − s0Þ2
2

;

fðr; r0Þ ¼ −
r
2

d
dr0

� ðs − s0Þ2
ðtan−1 tanh s

2
− tan−1 tanh s0

2
Þ2
�
:

gðr; r0Þ ¼ 2 −
r
2

d
dr0

ðs − s0Þ2: ð7:17Þ

Here s0ðr0Þ is given by (7.1). It is convenient to expand this
function in the basis expðinθÞ as

Ga
singðx; x0Þ ¼

G0ðr; r0Þ
2

þ
X∞
n¼1

Ga
ncðr; r0Þ cosðnθÞ þ

X∞
n¼0

Ga
nsðr; r0Þ sinðnθÞ; ð7:18Þ

with the radial coefficients given by

Ga
ncðr; r0Þ ¼ 2

Z
π

0

Gðx; x0Þ cosðnθÞdθ;

and the analogous definition for Ga
msðx; x0Þ. The explicit value of these integrals is

Ga
ncðr; r0Þ ¼

2i
an3

Ψc
n

"
Ci

 
nπ − in

ffiffiffi
b
a

r !
− Ci

 
nπ þ in

ffiffiffi
b
a

r !
− Ci

 
−in

ffiffiffi
b
a

r !
þ Ci

 
in

ffiffiffi
b
a

r !#

þ 4

an3
Ψs

n

"
Si

 
nπ þ in

ffiffiffi
b
a

r !
− Si

 
−nπ þ in

ffiffiffi
b
a

r !#
þ 2

an3
½4afnπ cosðnπÞðlogðaπ2 þ bÞ þ 1Þ�; ð7:19Þ

where we have introduced

Ψc
n ¼ ð2af − agn2 þ bfn2Þ sinh

 
n

ffiffiffi
b
a

r !
− 2

ffiffiffiffiffiffi
ab

p
fn cosh

 
n

ffiffiffi
b
a

r !
;

Ψs
n ¼ ð2af − agn2 þ bfn2Þ cosh

 
n

ffiffiffi
b
a

r !
− 2

ffiffiffiffiffiffi
ab

p
fn sinh

 
n

ffiffiffi
b
a

r !
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for simplicity. For n ¼ 0 one has

Ĝa
0ðr; r0Þ ¼ 2 logðaπ2 þ bÞ

�
gπ þ fπ3

3

�
þ 4

�
g −

fb
3a

�� ffiffiffi
b
a

r
tan−1

�
π

ffiffiffi
a
b

r �
− π

�
− 4

fπ3

g
:

This is the part we will be interested in if the charge is at θ ¼ 0 since sinðnθÞ vanishes at this location. The notations SiðxÞ
and CiðxÞ denote the integral sine and cosine, whose definitions are given by

SiðxÞ ¼
Z

x

0

sin t
t

dt; CiðxÞ ¼ −
Z

∞

x

cos t
t

dt:

Taking this and (6.3) into account, it follows that the singular term of the potential Aa
sing is given by

Aa
singðx; x0Þ ¼

A0ðr; r0Þ
2

þ
X∞
n¼1

Ancðr; r0Þ cosðnθÞ þ
X∞
n¼0

Ansðr; r0Þ sinðnθÞ; ð7:20Þ

with

Ansðr; r0Þ ¼ −q
ffiffiffiffiffiffiffiffiffiffi
−gt0t0

p
Gnsðr; r0Þ ¼ −q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s
Ga

nsðr; r0Þ;

Ancðr; r0Þ ¼ −q
ffiffiffiffiffiffiffiffiffiffi
−gt0t0

p
Gncðr; r0Þ ¼ −q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s
Ga

ncðr; r0Þ;

and it is completely determined by (7.19).

B. Analysis of the Haddamard self-force

After calculating the singular terms in the electrostatic
potential At, the renormalized potential Aa

renðr; r0Þ is found as

Aa
renðr; r0Þ ¼ Atðr; r0Þ − Aa

singðr; r0Þ;

with Atðr; r0Þ given by (4.12)–(4.13) for the BTZ black hole
and by (4.25) for the BTZwormhole, andAa

singðr; r0Þ is given
by (7.20). As shown in (7.9), the self-force is simply

Fr0 ¼ −q∂r0Arenðr0Þ; ð7:21Þ

with

Arenðr0Þ ¼ lim
r→r0

Arenðr; r0Þ:

For the black hole it follows from (4.13) that

Aa
ðbkÞren ¼ −q logðr0Þ þ q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s
G0ðr; r0Þ

þ q
X∞
n¼1

"
n2hnðr0Þknðr0Þ

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s
Gncðr0Þ

#

with

Gncðr0Þ ¼ lim
r→r0

Ga
ncðr; r0Þ: ð7:22Þ

The calculation of (7.22) requires knowledge of the follow-
ing limits,

lim
r→r0

aðr; r0Þ ¼ 2cosh2s0 ¼ 2r02

l2
;

lim
r→r0

bðr; r0Þ ¼ 0;

lim
r→r0

fðr; r0Þ ¼ −cosh2s0 ¼ −
r02

l2
;

lim
r→r0

gðr; r0Þ ¼ 2;

which follows directly from the definitions (7.17). From this
it follows that (7.22) is

Gncðr0Þ ¼ ð−1Þn 4π
n2

r2

r2h

�
2 log

�
r
rh

�
þ logð2π2Þ þ 1

�
þ 2

n

�
2

n2
r2

r2h
− 1

�
SiðnπÞ; ð7:23Þ

where in this case rh ¼ l. For n ¼ 0 one has
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G0ðr0Þ ¼ 2

�
2 log

�
r
rh

�
þ logð2π2Þ

��
π þ π3

3

r2

r2h

�
− 4π −

4π3

9

r2

r2h
: ð7:24Þ

It is important to remark that from (7.23)–(7.24), it follows
that the Green function at θ ¼ 0 is given by

GðrÞ ¼ 2

�
2 log

�
r
rh

�
þ logð2π2Þ

��
π þ π3

3

r2

r2h

�
− 4π

−
4π3

9

r2

r2h
þ S1

r2

r2h

�
2 log

�
r
rh

�
þ logð2πÞ þ 1

�
þ S2

r2

r2h
þ S3

with the series Si given by

S1 ¼ 4π
X∞
n¼1

ð−1Þn 1

n2
; S2 ¼ 4

X∞
n¼1

1

n3
;

S3 ¼ 2
X∞
n¼1

SiðnπÞ
n

:

The first two are convergent, and the third is divergent. This
is as expected since this is the part of the Green function
which is singular at coincident point limits. We turn now our
attention to the self-force corresponding to the two boundary
conditions discussed in Sec. IV.

1. The self-force first type of boundary
condition

The results discussed above together with the potential
(4.12)–(4.13) give the following renormalized potential for
the black hole:

Aa
bhðrÞ ¼ q

X∞
n¼1

(
n2hnðrÞknðrÞ

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2h
− 1

s �
ð−1Þn 4π

n2
r2

r2h

�
log

�
2π2

r2

r2h

�
þ 1

�
þ 2

n

�
2

n2
r2

r2h
− 1

�
SiðnπÞ

�)

− q log

�
r
rh

�
þ q

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2h
− 1

s �
2 log

�
2π2

r2

r2h

��
π þ π3

3

r2

r2h

�
− 4π −

4π3

9

r2

r2h

�
: ð7:25Þ

The wormhole potential follows from (4.25) and the last
expression (7.25); the result is

Aa
ðwhÞrenðrÞ ¼ Aa

ðbkÞrenðrÞ −
q
2

X∞
n¼1

�
1

rghnðrgÞ
þ n2k0nðrgÞ

8

�
×
h2nðr0Þ
h0nðrgÞ

: ð7:26Þ

These expressions are a combination of two series which
are divergent at r → r0, but whose divergent behavior
cancel exactly. Therefore, when evaluated at the radial
line θ ¼ θ0, (7.25)–(7.26) are finite and have finite deriv-
atives, which give the self-force.
The Figs. 1–4 show the approximate behavior for

the force Ft, for some values of n between n ¼ 15 and
n ¼ 45 for the black hole case. These graphs were
obtained by use of Mathematica. The graphs show the
behavior for a large value of r, which corresponds to
s ∼ 1. The functional form of the force is always the
same in all the orders we considered, namely, it starts
to grow from the horizon s ¼ 0 until it attaches to
some maximum value and then decays to zero at s ¼ 1
(the asymptotic region). But as larger orders are
considered, the maximum starts to grow and to move
closer to the asymptotic region s ¼ 1. This suggests
that when all the series are summed up, this maximum

becomes infinitely large, and the line s ¼ 1 is an
asymptote for the function. In other words, the
decaying part is just an artifact of the truncation. If
this is correct and is not related to a numerical
problem in the program we are using, then it follows
that the self-force is repulsive and grows indefinitely
as the charge goes to the asymptotic region. The
repulsive nature is the same as in the Schwarzschild
four-dimensional counterpart [2], but it is mandatory to
interpret the strange behavior at the infinite. The
explanation for such nontypical behavior may be that
the boundary conditions considered are not correct and
include extra charges at the asymptotic region. Thus, it
is convenient to analyze the “right” boundary con-
ditions to see if this behavior is improved.
We have also considered the wormhole case. The

effect of the throat is to give a contribution to the force
of the opposite sign for the black hole. This effect is
also seen in the Schwarzschild case [10]. In that case,
this contribution changes the sign of the force in some
regions of the spacetime. However, with the numerical
precision we are working with, we did not find such a
change in the behavior of the BTZ geometry; the net
effect of the throat is just a change in the numerical
value of the force. But this is not conclusive, and
perhaps this effect may appear by considering higher
orders in the series.
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2. The self-force corresponding to the second type of boundary condition

For this type of boundary condition, the potential follows from (4.17) instead of (4.13). The result is

Aa
bhðrÞ ¼

q
2
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n¼1
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Γ
�
1þ in

2

�
Γ
�
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in
2

�
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�
r
rh

�
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��
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4π3

9

r2
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�
: ð7:27Þ

The wormhole potential follows from (4.26) and the last expression (7.25); the result is

Aa
ðwhÞrenðrÞ ¼ Aa

ðbkÞrenðrÞ −
q
2

X∞
n¼1

�
hnðrÞ

rghnðrgÞh0nðrgÞ
þ Γ

�
1þ in

2

�
Γ
�
1 −

in
2

�
hnðrÞk0nðrgÞ
2h0nðrgÞ

�
hnðrÞ: ð7:28Þ
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FIG. 2 (color online). The behavior of the self-force near the
boundary s ¼ 1. It reaches a maximum and then goes to zero. We
argue that this is just an effect of the truncation of the series and
that the line s ¼ 1 is, in fact, an asymptote.
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FIG. 3 (color online). The force for n ¼ 45 in the interval from
s ¼ 0 to s ¼ 0.9.
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FIG. 4 (color online). The behavior near the horizon s ¼ 1 with
n ¼ 45. The qualitative form of the curve is similar to the case
n ¼ 25 but the maximum is again more pronounced and closer to
s ¼ 1. This suggests that when all the series are summed, the
maximum will tend to the infinite and the vertical line s ¼ 1 will
be the asymptote. See below for an explanation of this seemingly
strange result.
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FIG. 1 (color online). The black hole self-force function of
s ¼ 1 − r−2, from s ¼ 0 to s ¼ 0.9 to order n ¼ 25. The force
seems to grow, but the next figure shows that it attaches to a
maximum.
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Figures 5–8 show the self-force behavior for the black hole
case and Figs. 9,10 for the wormhole case. It is surprising to
see that the self-force is again divergent at the asymptotic
boundary and also at the horizon. From a formal point of
view, this divergent behavior can be seen directly by
looking at (7.27). The logarithmic terms are multiplied
for functions of r, and there are terms proportional to r2 as
well in this expression. The derivatives with respect to r of
all these terms are not bounded for large r. This may seem
the cause for the growth of the force at large values. On the
other hand, the terms proportional to hnðrÞfnðrÞ go fast to
zero since, as discussed in previous sections, the derivative
of fnðrÞ goes as 1=r3 and the one of hnðrÞ goes as 1=r.
Thus, these terms do not influence what happens at large r.
However, they are arguably the cause of the divergence
near the horizon. As also discussed in the previous section,
the function fnðrÞ possesses the fastest decaying condi-
tions. However, the behavior of fnðrÞ at the horizon is
highly nonregular and, even though hnðrÞ → 0, the full
contribution is not bounded. In other words, the fastest
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FIG. 5 (color online). The black hole self-force function of
s ¼ 1 − r−2, from s ¼ 0 to s ¼ 0.9 to order n ¼ 20. The force
seems to be positive and divergent near the horizon and at the
asymptotic boundary, and there is an intermediate values of s
where it is negative.
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FIG. 6 (color online). The behavior of the self-force near the
boundary s ¼ 1, which shows that it is divergent.
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FIG. 7 (color online). The behavior of the self-force near the
horizon s ¼ 0, which shows that it is also divergent.
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FIG. 8 (color online). The black hole self-force function of
s ¼ 1 − r−2, from s ¼ 0 to s ¼ 0.9 to order n ¼ 40. The result is
qualitative lythe same as for n ¼ 20.
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FIG. 9 (color online). The wormhole self-force when the throat
is rg ¼ 3, with s varying from s ¼ 0 to s ¼ 0.9. The effect of the
throat is to increase the slope of the asymptote. It is not clearly
seen in this graph if there is a region where the force is negative.
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decaying conditions also give the worst behavior at the
horizon.
The other surprising behavior is that the self-force is

repulsive near the horizon and far away, but at intermediate
radial positions, it is attractive. This is in contrast with the
Schwarzschild case in four dimensions, where it is always
repulsive [2]. However, without a proper understanding of
the origin of the divergences, this analysis does not make
any sense. We turn to this point below.

VIII. OTHER METHODS FOR CALCULATING
THE SELF-FORCE

The procedure of the previous section computes a regular
Green function. However, there may exist other regular
Green functions as well, since the addition to a solution of
the homogeneous equation is still a full solution of the
problem. Therefore, the statement that the calculated self-
force is the real one must be taken with care. To give an
example, the half-advanced–half-retarded Green function
and the regularized (“R”) force of the Detweiler-Whiting
decomposition [17] are regular at the location of the
particle. Nevertheless, only the “R” force corresponds to
the correct expression for the self-force. In four dimensions
the Haddamard regularization procedure we just applied
and the Detweiler-Whiting one are known to be equivalent
[20]. However, there is not a proof in three dimensions that
the same thing happens. Thus, it is of interest to consider
other regularization methods as well.
We were unable to make the calculations by use of

the Detweiller-Whiting method. There exists a further
regularization method, based on the axiomatic approach
presented in [18], which was applied recently for static five-
dimensional spacetimes in [19]. We are able to perform the
calculations with this regularization, and we have found

that they introduce extra terms in our calculation. These
terms vanish in four dimensions and do not spoil the results
obtained in [10]. But in odd dimensions, this may not be the
case. A further motivation for studying these terms is that
they may cure the divergent behavior at the asymptotic
boundary found in the previous section. However, it will be
shown below that this is not the case.
The self-force calculated in the previous sections was

given by

Fa ¼ ∂aA − ∂aAsing;

with A the full potential satisfying the specific boundary
conditions of the problem and Asing the part of the potential
whose values, and the values of whose derivatives ∂aAsing,
are divergent when the position x of the observation point
tends to the charge position x0. The approach of [18] states
instead that the self-force should be calculated as

Fa ¼ ∂aA − ∂aAsing þ h∂aAsingi; ð8:1Þ

where h∂aAsingi is the average of the quantity inside over a
small surface with s ¼ cte in the limit s → 0, from which
all the contributions that are divergent in the limit s → 0 are
removed. As will be shown below, this average will pick
some additional quantities in the calculation. The derivative
∂a is taken on a point of that surface. Now, since the
singular part is given by

Asing ¼ −q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

l2
− 1

s
Gsingðx; x0Þ;

and the derivatives are taken at x, it follows that the relevant
derivative to be taken is

∂aGsingðx; x0Þ

¼ ha
0

a

��
1 −

gtt;b
4gtt

σb
�
σa0

σ
−
gtt;a0

4gtt
log

σðx; x0Þ
λ

þ � � �
�
;

up to a factor which is evaluated at the charge position. In
order to make the average, it is convenient to use the
Riemann normal coordinates xa. This procedure is exten-
sively reviewed in [36], and we quote only the main
ingredients. These coordinates are characterized in terms
of the Synge world function as follows. The derivative
σa

0 ¼ −xa, and

2σ ¼ −2δabxaxb ¼ s2

is the squared proper distance from the point x0. The
parallel propagator in these coordinates is approximated by

ha
0

b ¼ δba −
1

6
Ra0
b0c0d0x

bxc þOðs3Þ:
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FIG. 10 (color online). The wormhole self-force when the
throat is rg ¼ 3, with s varying from s ¼ 0.4 to s ¼ 0.5. Here
it is seen that there is a negative force at some region. The
difference with the black hole is the point where the sign change
is closer. So the location of that turning point may be a clue for
distinguishing the geometries.
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By denoting xa ¼ sΩa, with Ωa some angular variables, it
follows that

∂aGsingðx; x0Þ ¼
2Ωa

s
−
gtt;b
2gtt

ΩaΩb −
gtt;a0

4gtt
log

s2

λ
þ � � � :

In particular, one has that Ωa ¼ δabΩb. The average along
the surface s ¼ const is defined by

h…i ¼
R ð:…ÞdAR

dA
;

with dA the area element of the surface. If this surface is
parametrized by polar angles θa, then this and the relation
xa ¼ sΩa imply that the metric is

ds2 ¼ s2habΩa
iΩb

jdθ
idθj;

where

Ωa
i ¼

∂Ωa

∂θi :

The area element is then calculated as

dA ¼ s2
�
1 −

s2

6
Ra0b0ΩaΩb −

s3

12
Ra0b0;c0ΩaΩbΩc

þOðs4Þ
�
dΩn: ð8:2Þ

Here dΩn is the area element for the sphere Sn, which
satisfies

Ωn ¼
Z
Sn
dΩn ¼

2πðnþ2Þ=2

Γðnþ1
2
Þ :

The following identities take place [36]:

1

Ωn

Z
ΩadΩn ¼ 0;

1

Ωn

Z
ΩaΩbdΩn ¼

δab

nþ 1
:

By use of these identities and the definition of the area
element (8.2), it follows that

hΩai ¼ −
s3

6ðnþ 1Þðnþ 3Þ∇
a0RþOðs4Þ

hΩaΩbi ¼ −
1

ðnþ 1Þ
�
δab −

s2

6ðnþ 3ÞR
a0b0 þ s2

3ðnþ 1Þðnþ 3ÞRδ
a0b0
�
þOðs4Þ: ð8:3Þ

Then the expression of the averaged singular Green function is

h∂aGsingðx; x0Þi ¼
2hΩai
s

−
gtt;b
2gtt

hΩaΩbi − gtt;a0

4gtt
log

s2

λ
þ � � � :

By taking into account the identities (8.3), it follows that in
the limit s → 0 the surviving terms are

h∂aGsingiðx0Þ ¼ −
gtt;a0

6gtt
−
gtt;a0

4gtt
log

s2

λ
þ � � � : ð8:4Þ

Thus, as in five dimensions [19], this average picks an extra
term which is divergent as log s. This term cannot be
absorbed by a redefinition of the parameters of the
problem. The nature of this divergence is different than
the one of the previous section; it suggests that in odd
dimensions the calculating is sensible to the size of the
particle. The limit s → 0 gives a global divergence of the
self-force, while the divergence of the previous section is
just asymptotic.
We would like to remark that we have considered the

effect of the first term in (8.4) in our calculation, since this
term is regular. However, we have found that this term it is
not enough for avoiding the divergent behavior at the

infinite. Thus, another interpretation is required. We turn to
this point in the next section.

IX. INTERPRETATION OF THE DIVERGENCES

The most striking point of the results presented above is
the behavior of the charge self-force at the asymptotic
region and at the horizon. For the black hole solution, it
grows indefinitely when approaching both regions. For the
wormhole, it diverges at the asymptotic boundary.
The physical origin of these divergencies is not easy to

visualize. At first sight, it is not strange that the force does
not vanish at the asymptotic region. In fact, when the
geometry is not asymptotically flat, this situation may
happen, as shown for four dimensions in [38]. When
M ¼ 1, on dimensional grounds, it is expected that the
asymptotic self-force should be proportional to

F∞ ∼
e2

l
:
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Now, the problem of the divergence at r → ∞ may come
from the expression (7.13)–(7.14) for the distance, namely,

daðx; x0Þ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðθ − θ0Þ2

ðtan−1 tanh s
2
− tan−1 tanh s0

2
Þ2

s
ðs − s0Þ;

0 < jθ − θ0j < π;

and the analogous formula for negative angle values. Recall
that this distance is a fake one, but it reduces to the true
radial distance when θ ¼ θ0. The expressions that have
been obtained for the self-force are based on this fake
distance. However, since the radial limit is correct, the
resulting expressions coincide with the true self-force when
all the series is summed up. The choice of the fake distance
was for simplicity, since the Fourier expansion for the
potential is nontractable when the exact distance is con-
sidered (the true distance is derived in Appendix A).
Nevertheless, an inspection of the formula daðx; x0Þ shows
the following potential numerical problem. This formula, as
shown in Appendix B, is similar to the real one when the
points x and x0 are almost on the same circle s ∼ s0, and it
coincides with the real one when θ ¼ θ0. The distance
when the points are at different circles s ≪ s0 or s ≫ s0 is
more complicated, and it turns out that the expressions
differ considerably. Denote these distances as dcaðx; x0Þ and
draðx; x0Þ, respectively. Both distances are the same when
evaluated on the line θ ¼ θ0, but when θ ¼ θ0 þ ϵ they
may differ considerably. Moreover, their difference is a
function of the radial coordinate jdraðx; x0Þ − dcaðx; x0Þj ¼
fðr; ϵÞ. The series expansion presented above is convergent
to the real solution, but due to the mentioned dependence in
r, the convergence may be highly nonuniform. In other
words, one has that

jAn
regðrÞ − AregðrÞj < ϵ ⟷ n > n0ðrÞ;

with An
reg corresponding to a truncation of the series of Areg

to order n. This means that, depending on the values of r,
lower or higher orders may be required. We interpret that
the divergence at r → ∞ arises due to the fact that for large
r values higher orders are required, and it is then an artifact
of the truncation.
Another fact that suggests that this numerical problem is

the cause of the divergence is the fact that when r and n take
large values the slope of the asymptote seems to grow
indefinitely and it moves to the right of the graph (s → 1).
Arguably when n → ∞, this asymptote moves to r → ∞
(s ¼ 1) with infinite slope. Note that the point s ¼ 1, since
it corresponds to r → ∞, is not a point in the manifold.
Thus, we argue that when the series is summed up, the
divergence is an artifact and the limit Fr when r → ∞ is
well defined. We were unable to overcome the problems
described above since the real distance leads to a Fourier
expansion which is beyond our calculation technology.

It may be mentioned that employing the approximate
distance may be useful if a powerful summation formula
were available, allowing a closed analytical expression for
the full potential A. This is the situation in four dimensions,
as explained in [10] and references therein. But, if this
formula does exist, we ignore it.
There is a further point to be discussed. When r ≫ lM,

then one may consider M ∼ 0. For this situation, it follows
by dimensional analysis that

Fr ¼
e2

l
f

�
r
l

�
:

If the function fðxÞ is bounded, then when l → ∞ the self-
force goes to zero. This is the situation in four-dimensional
anti–de Sitter spaces [38]. In this limit the geometry is flat
and the self-force vanishes. However, in three dimensions,
such a limit does not correspond to a flat geometry; instead,
for M ¼ 1 and J ¼ 0 the BTZ metric (2.4) reduces to

g3 ¼ −dr2 þ dt2 þ r2dθ2

in the limit l → ∞. Note that r now is a “time” coordinate
and the compact radius is “r-time” dependent. Thus, the
derivatives ∂rA do not make sense as a self-force, and
perhaps this divergence is not signaling anything wrong.
However, our opinion is that the behavior of the infinite is
more likely a numerical artifact. This is suggested by the
divergence at the horizon, for which we have no explan-
ation. Thus, it is arguably a numerical problem that is
causing the divergent behavior. Our results are, of course,
inconclusive, and further research is mandatory to elucidate
the real behavior at r ≫ l.

X. SUMMARY

In the present work the particularities of the electrostatics
of point charge in front of a BTZ black hole and wormhole
were considered. This geometry is neither flat nor asymp-
totically flat, and this results in several unexpected features.
For instance, every radial function for the electrostatic
problems goes to zero at the asymptotic horizon. This
complicates the boundary condition analysis since there is
no a clear criteria of which radial function discarding at the
region between the charge position and the asymptotic
infinite. We argue that, although both radial functions are
well behaved, the right choice of the boundary condition is
to choose the radial function which has the fastest decay
when the radial coordinate is large. This situation is the one
which imitates better the electrostatics in flat space or in
asymptotically flat spaces.
After discussing the boundary condition for the problem,

we followed the program [9–16] in order to calculate the
self-force of a charge in front of the BTZ black hole horizon
and compare it to the corresponding wormhole geometry.
The regularization method we followed is based on the
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Haddamard Green function [32]. In addition we have
considered the axiomatic approach of [18]. The regularized
electrostatic potential is presented as a Fourier expansion,
and we had no available summation formula for obtaining a
closed analytical formula for such potential. As a conse-
quence, we were forced to use an approximated geodesic
distance which reduces to the real one when the two
comparison points are on the same radial line. The use
of such a distance allows a series expansion which
converges to the real vector potential, but arguably the
convergence is highly nonuniform. This is reflected in the
obtained diagrams for the self-force, which have an
asymptotic divergence when truncated to a given order.
We interpret this as fictitious, arising from the fact that a
large number of orders are needed for large radial values.
However, it is not clear which behavior should be expected
in this geometry at asymptotic values since it is neither
asymptotically flat nor does it admit a flat limit.
However, there is another possibility. The boundary

conditions that we have chosen are the ones that decay
faster at the asymptotic region. This condition imitates
ordinary electrostatics and is the one that is more com-
fortable to our intuition. However, there may be some
symmetries of the BTZ spacetime similar to those in
higher-dimensional black holes [39]. We do not know
how to implement this symmetry in the BTZ geometry and
how it is reflected in the Green function, but perhaps the
result does not respect this boundary condition.
Nevertheless, it is clearly of interest to find the self-force
corresponding to the Detweiller-Whiting method [17]. We
leave this for a future investigation.
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APPENDIX A: EXACT BTZ GEODESIC
DISTANCE

Our next task is to find the geodesic distance
dðr; r0; θ; θ0Þ between two arbitrary points of the spacetime.

This distance should reduce to (7.3) or (7.4) when θ0 → θ.
The geodesic curve joining two points x and x0 on the BTZ
geometry is describe by the Euler-Lagrangian equations
derived with the following action:

dðx1;x2Þ ¼
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

r2 − rh2

�
dr
dλ

�
2

þ r2
�
dθ
dλ

�
2

s
dλ: ðA1Þ

The geodesic parameter can be chosen as λ ¼ θ. The
corresponding Lagrangian is

Lð_r; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 _r2

r2 − rh2
þ r2

s
:

The value of (A1) evaluated at the geodesic curve is by
definition the geodesic distance. Since L does not depend
explicitly on the “time” parameter λ ¼ θ, there exists a
conserved quantity, the Hamiltonian

H ¼ ∂L
∂ _r _r − L ¼ −r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 _r2

r2−rh2
þ r2

q : ðA2Þ

In terms of this constant, the Lagrangian evaluated in the
physical trajectory is

L2 ¼ grr _r2 þ g−1θθH
2L2;

from which it follows that

L2 ¼ grrgθθ _r2ðgθθ −H2Þ−1: ðA3Þ

In these terms the geodesic distance is given as

dðx1;x2Þ ¼
Z

λ2

λ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrgθθ

ðgθθ −H2Þ
r

_rdλ;

and since _rdλ ¼ dr, by taking into account the explicit
expression for the metric tensor, it follows that

dðx1;x2Þ ¼ l
Z

r2

r1

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − rh2Þðr2 −H2Þ

p ¼ l log

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 − rh2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 −H2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 − rh2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 −H2

p #
: ðA4Þ

The distance (A4) is not completely determined unless the value ofH is given in terms of the two positions x and x0. This is
achieved as follows. From (A2) and (A3) it is deduced that�

dr
dθ

�
2

¼ L2

grrgθθ
ðgθθ −H2Þ

�
gθθ
HL

�
2

¼ r2

H2l2
ðr2 −H2Þðr2 − rh2Þ;

and since _r2 > 0 and r > rh, then H2 < r2. From the last equation it follows that
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θ2 − θ1 ¼ �lH
Z

r2

r1

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −H2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − rh2

p :

The last integration is elementary, and the result is

θ2 − θ1 ¼ log

"
r1
r2

 
rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 −H2

p
þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 − rh2

p
rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 −H2

p
þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 − rh2

p !#
: ðA5Þ

The expression just obtained can be worked out further by defining

eα ¼ eθ2−θ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r2−2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh−2 − r2−2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r1−2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh−2 − r1−2

p :

This definition is equivalent to

eα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r1−2

q
− e−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r2−2

q
¼ e−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh−2 − r2−2

q
− eα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh−2 − r1−2

q
;

and by taking the square of both members it follows after
some algebra that

~Λ ¼ ~ηþ ðH−2 − rh−2Þ cosh α; ðA6Þ
where the following quantities

~Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r2−2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−2 − r1−2

q
;

~η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh−2 − r1−2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh−2 − r2−2

q
;

have been introduced. On the other hand, (A4) implies that

ed=l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 − rh2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 −H2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 − rh2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 −H2

p ;

and a procedure analogous to the one made above shows
that

Λ ¼ ηþ ðrh2 −H2Þ cosh d
l
; ðA7Þ

where in this case

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 −H2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 −H2

q
;

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 − rh2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 − rh2

q
:

By noticing the relations

η ¼ r1r2r2h ~η; Λ ¼ r1r2H2 ~Λ;

a comparison between (A6) and (A7) shows that

rh2 cosh
d
l
¼ r1r2 cosh α − η:

From the last expression, the explicit geodesic distance d
can be obtained, and the result is

dðx1;x2Þ ¼ lcosh−1
"
r1r2
r2h

coshðθ2 − θ1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r1
rh

�
2

− 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2
rh

�
2

− 1

s #
:

This is the formula (7.11) obtained in the text.

APPENDIX B: APPROXIMATE
GEODESIC DISTANCE

In the following our attention will be restricted to BTZ
geometries with mass values M ¼ 1. Based on the argu-
ments given above and from the fact that the calculation of
the self-force requires us to take the limit θ → 0, our next
task is to find an approximated distance function daðx; x0Þ
which is equal to dðx; x0Þ when θ → 0 and satisfy the

mandatory periodicity conditions. The upper index a
enforces the fact that the distance is not exact and this
notation will be used repeatedly in the following. At first
sight there is a variety of candidates for daðx; x0Þ, but one
that is physically motivated is the following. Consider the
spatial BTZ metric (7.2) in the coordinates ðs; θÞ. The
geodesic distance is

d ¼ l
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s02 þ cosh2 s
p

dθ; ðB1Þ
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with s0 the derivative of sðθÞ with respect to θ. The
conserved quantity H related to the θ independence on
the Lagrangian is expressed in these coordinates as

H ¼ l cosh2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s02 þ cosh2 s

p :

It is important for the following to discuss the physical
significance of this quantity. When the geodesic line is
close to a circle, then s0 ∼ 0 andH are essentially the radius
of the circle r ¼ l cosh s. Instead, when the geodesic is
close to a radial line, s0 → ∞ and H → 0. The definition of
H implies that

s02 ¼ l2 cosh4 s
H2

− cosh2 s; ðB2Þ

and for nearly radial lines one can neglect the second term
in (B2) since H ≪ 1, thus concluding that

s02 ∼
l2 cosh4 s

H2
:

For nearly circular geodesics, one has that

H2 ∼ ðl2 − ϵ2Þ cosh2 s;
with ϵ2 ≪ l2, and within this approximation (B2) becomes

s02 ∼
ϵ2

2l2
cosh2 s: ðB3Þ

We have explicitly checked that Eq. (B3) leads to the
simplest expression for daðx; x0Þ. The equation (B3) implies
that

1

c
ds
dθ

¼ � coshðsÞ; ðB4Þ

with c being a constant related to ϵ2 whose value is fixed by
the initial conditions of the problem. Equation (B4) can be
integrated in elementary form to give

θ − θ0 ¼ � 1

c

�
tan−1 tanh

s
2
− tan−1 tanh

s0
2

�
:

This shows that the constant c is given in terms of the initial
and final positions by

c ¼ ½tan−1 tanh s
2
− tan−1 tanh s0

2
�

ðθ − θ0Þ
: ðB5Þ

Inserting (B4) and (B5) into (B1) gives a result for the
following expression for the approximated geodesic
distance:

daðx; x0Þ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðθ − θ0Þ2

ðtan−1 tanh s
2
− tan−1 tanh s0

2
Þ2

s
ðs − s0Þ; 0 < jθ − θ0j < π;

daðx; x0Þ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2π − θ þ θ0Þ2

ðtan−1 tanh s
2
− tan−1 tanh s0

2
Þ2

s
ðs − s0Þ; π < jθ − θ0j < 2π:

This is the expression (7.13)–(7.14) found in the text.
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