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We study the problem of decoupling of heavy chiral superfields in four-dimensional N ¼ 1 super-
symmetric field theories with Lorentz-invariant and Lorentz-violating higher-derivative terms. We
demonstrate that the earlier found effect of large logarithmic quantum corrections, due to heavy chiral
superfields, takes place not only if the theory possesses quantum divergences, but also for essentially
finite theories involving higher-derivative terms, both Lorentz-invariant and Lorentz-breaking ones.
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I. INTRODUCTION

The four-dimensional N ¼ 1 supersymmetric effective
action with chiral superfields naturally arises as a subsector
of the low-energy limit of compactified superstring theory.
In this context it is important to address the impacts of
massive modes, associated with the string theory scale
MString, on the effective four-dimensional action. In per-
turbative heterotic string theory the string scale is deter-
mined to beMString ∼ 10−2MPlanck [1]. For perturbative type
II string theory compactifications the string scale could, in
principle, be pushed all the way to the electroweak scale
[2,3]. In the effective field theory, the impacts of massive
modes are subject to the decoupling theorem [4]. Namely, if
one considers the theory involving light and heavy (super)
fields, say, with mass M which is of the order of MString,
the effective action of light fields is represented as a sum
of dimension-four operators, and terms suppressed by the
factors proportional to M−n (with n ≥ 1). The latter ones
decouple, as M → ∞. For sectors of N ¼ 1 supersymmet-
ric theory with chiral superfields, this conclusion has been
verified at the tree level in [1]. When quantum corrections
are taken into account, it turns out that there are new
corrections, which are not suppressed at large M, but
instead their contribution grows logarithmically with M
[5]. This result formally does not contradict the Appelquist-
Carazzone theorem [4], as after an appropriate definition
of physically measured couplings, the effective action
involves light superfields only, whose quantum corrections
are not suppressed [5].

TheN ¼ 1 supersymmetric field theory considered in [5]
had the following features: first, it did not involve higher
derivatives and second, at the quantum level it was
divergent, so that quantum corrections depended on the
normalization scale μ, involving terms proportional to lnM2

μ2
,

which were responsible for the above-mentioned signifi-
cant quantum corrections. In this paper we address how the
decoupling theorem manifests itself in higher-derivative
(super)field theories. Note that higher-derivative terms
naturally emerge in effective theories of compactified string
theory, cf. [6]. In this paper, we focus on the super-
symmetric higher-derivative sector with chiral superfields,
and calculate quantum corrections there. We employ the
superfield approach to calculate the effective potential
described in great details in [7], and follow the conventions
of that book. Technically, we use the methodology of a
summation over cyclelike one-loop diagrams developed for
superfield theories in [8] and further applied to different
theories in many papers, including [5]. We consider several
examples of higher-derivative terms, including those that
break Lorentz invariance. The case with Lorentz-violating
terms is of special interest: as it was argued in [9], the
presence of Lorentz-violating terms, which are of a special
form ðn · ∂ÞN , with na being a spacelike vector and N being
a positive integer umber, allows for an implementation of
higher derivatives without ghosts. In this paper, such terms
are implemented in a superfield context for the first time,
thus developing a methodology for Lorentz-violating
extension to superfield models, proposed earlier in [10].
In the superfield formalism, these Lorenz-violating terms
are added to a classical action in a manifestly super-
symmetric way, i.e. without deformations of supersym-
metry algebra or an introduction of new superfields.
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Our key result is that the presence of higher derivatives in
an effective action introduces large, typically logarithmic,
quantum corrections, independent of whether the theory is
finite or divergent.
The structure of the paper is the following. In Sec. II, we

summarize the results in N ¼ 1 supersymmetric theories
with massive superfields without higher derivatives, where
the renormalization gives rise to large logarithmic quantum
corrections. In Sec. III, we consider N ¼ 1 supersymmetric
theories with different examples of higher-derivative
terms, which are superficially finite, and derive how large
quantum corrections arise in such theories. In Sec. IV we
summarize the results and discuss implications.

II. QUANTUM CORRECTIONS IN THEORIES
WITHOUT HIGHER DERIVATIVES

We start our study by considering the four-dimensional
N ¼ 1 supersymmetric theory with chiral superfield,
without higher derivatives. The simplest superfield model
involving both light (massless) and heavy superfields is
given by the classical action

S¼
Z

d8zðϕϕ̄þΦΦ̄Þ

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
:

ð1Þ

Here ϕ is a light chiral superfield, which for the sake
of simplicity we choose to be a massless chiral superfield.
Φ is a heavy superfield with a large mass M. As a concrete
example we choose M to be of the order of MString ∼
10−2MPlanck in perturbative heterotic string theory com-
pactification, as in [1,5]. Note that in perturbative type II
string compactification MString could be chosen to be many
orders of magnitude smaller than MPlanck.
The above tree-level action slightly differs from the one

considered in [1], and in [5], where the vertex proportional
to f was absent. We introduced it here to couple heavy
and light superfields in a manner convenient for our study.
Nevertheless, the tree-level situation is not qualitatively
different from [1]. Indeed, one can find the equation of
motion for Φ:

−
1

4
D̄2Φ̄þ ðM þ fϕÞΦþ λ

2
ϕ2 ¼ 0; ð2Þ

so we can write the solution forΦ via an iterative method as
Φ ¼ Φ0 þ Φ1 þ � � �, where the zero approximation is

Φ0 ¼ −
λϕ2

2ðM þ fϕÞ ; ð3Þ

being of first order in 1
M, and for kth order one has

Φkþ1 ¼
1

4

1

M þ fϕ
D̄2Φ̄k; ð4Þ

i.e. the kth order is suppressed at least asM−ðkþ1Þ. The same
situation occurred within the study of the tree-level effec-
tive action in [1].
However, the situation turns out to be much more

delicate if we consider quantum corrections. Although
we restrict ourselves to the one-loop order, the results
are remarkable. In this case it is very easy to illustrate the
origin of significant quantum corrections.
For the calculation of the one-loop corrections, we

employ the loop expansion formalism. To do this, we
split the superfields fϕ;Φg into a sum of the background
(classical) superfields fϕ0;Φ0g and the quantum ones
fϕq;Φqg, via the rule ϕ → ϕ0 þ ϕq, and Φ → Φ0 þ Φq.
It is well known that within the one-loop approximation,
we must keep only the second order in quantum superfields
over which we should then integrate.
For the sake of simplicity,we choose that the light fieldϕ is

purely a background one, while the heavy one Φ is a purely
quantumone. (Indeed, aswe already noted, the contributions
that arise due to the presence of background heavy fields
yield only corrections suppressedbyM−n, withn ≥ 1, cf. [5],
so we can neglect the background Φ within the lower-order
approximation.) The quadratic action of the quantum field
Φq ¼ Φ takes the form

Sq ¼
Z

d8zΦΦ̄þ
�
1

2

Z
d6zðM þ fϕÞΦ2 þ H:c:

�
: ð5Þ

We incorporate the mass into the background field
Ψ≡M þ fϕ. As a result, the propagator of Φ has the
usual form [7]:

hΦΦ̄i ¼ −
D̄2D2

16□
δ8ðz1 − z2Þ:

Therefore, the one-loop effective potential is contributed
to by a sum of supergraphs depicted in Fig. 1.
We note that this set of supergraphs completely describes

the one-loop effective potential in a generic chiral super-
field theory whose quadratic action is

S ¼
Z

d8zΦT̂ Φ̄þ 1

2

�Z
d6zΨΦ2 þ H:c:

�
; ð6Þ

where Ψ is any background chiral superfield, Φ is a
quantum one, and T̂ is any operator commuting with

FIG. 1. The double legs denote alternatingΨ and Ψ̄ background
fields. The single internal line denotes hΦΦ̄i propagators.
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supercovariant derivatives. Actually, it must be a function
of space-time derivatives only, being in the Lorentz-
invariant case a function of □. In the standard case, T̂ ¼ 1.
In these diagrams, depicted in Fig. 1, the double line is

for the background alternating Ψ and Ψ̄ fields. The
supergraph of such structure with 2n legs represents itself
as a ring containing n links of the form depicted in Fig. 2.
In this case the calculations are the same as in [8], so

we merely quote the result. After a subtraction of the
divergence, we obtain the one-loop corrected Kählerian
potential:

Kð1Þ ¼ −
1

32π2
ΨΨ̄ ln

ΨΨ̄
μ2

: ð7Þ
Adding this contribution to the classical action (1), we get
the following one-loop corrected low-energy effective
action:

Γ ¼ Sþ
Z

d8zKð1Þ: ð8Þ

Note that the one-loop chiral effective potential is zero and
the auxiliary field effective potential contributes only to
higher terms in the derivative expansion; see [7]. Therefore
the explicit form of (8) is

Γ¼
Z

d8z
�
ϕϕ̄þΦΦ̄−

ℏ
32π2

ðMþfϕÞðMþfϕ̄Þ

×ln
ðMþfϕÞðMþfϕ̄Þ

μ2

�

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
:

ð9Þ
Here we kept the Planck constant ℏ explicitly. We expand
this expression in series of M (recall that M is large) and
obtain

Γ¼
Z

d8z

�
ϕϕ̄þΦΦ̄−

ℏ
32π2

f2ϕϕ̄

�
2þ ln

M2

μ2

��

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
þOðM−1Þ: ð10Þ

Then we eliminate Φ by its equation of motion which in the

lower order in 1
M yields Φ ¼ − λϕ2

2M þOðM−2Þ, cf. [5]. It is
sufficient to conclude that in lower (zero) order, the low-
energy effective action is

Γ ¼
Z

d8z

�
ϕϕ̄ −

ℏ
32π2

f2ϕϕ̄

�
2þ ln

M2

μ2

��

þ
�Z

d6z
g
3!
ϕ3 þ H:c:

�
þOðM−1Þ: ð11Þ

There is a significant correction proportional to lnM2

μ2

which was a key result of [5]. As mentioned in [5],
if one adds quantum fluctuations of the light field ϕ,
there would be also an additional contribution to the
effective action (the Coleman-Weinberg potential): Γmin ¼
− 1

32π2

R
d8zg2ϕϕ̄ ln g2ϕϕ̄

μ2
, so that the whole low-energy

effective action would be the sum Γþ Γmin. If one fixes
the normalization parameter μ to be μ ¼ αM, this will
imply that the contribution of the one-loop action increases
with the growing of M, as the one-loop contribution is

of the form − 1
32π2

R
d8zg2ϕϕ̄ ln g2ϕϕ̄

M2 . We therefore conclude
that neither fixing the renormalization scale μ to be of the
order ofM nor leaving it arbitrary will avoid the appearance
of large quantum corrections in the one-loop corrected
effective action.
It was demonstrated in [5] that these large quantum

corrections take place in a wide class of theories involving
fields with very large masses. We note that suggesting
that the heavy field Φ has a nontrivial background part will
not essentially modify the situation since in any case the
solution for Φ is proportional at least to M−1, and hence
all terms involving Φ in the effective action will be
suppressed by M−1, cf. [5]. Thus, the presence of large
quantum corrections is a universal effect in renormalizable
quantum field theories with heavy fields. Note that the
presence of the factors proportional to lnM2

μ2
implies that this

effect occurs in renormalizable theories, where the scale μ2

signifies the renormalization scale.
A natural question arises whether there is a way to get

large quantum correction in finite theories, where the
effective action cannot depend on an arbitrary renormal-
ization scale μ. We consider this in the subsequent section.

III. HIGHER-DERIVATIVE THEORIES
AND HEAVY STATES

In this section, we discuss the decoupling effects of
heavy states which take place due to supersymmetric
higher-derivative terms. We consider the following three
prototypical examples. First, we study a minimal model
where the derivative term is purely of the higher-derivative
form, and the usual two-derivative kinetic energy term is
absent; this is only a “warm-up” toy model to study general

FIG. 2. The link composed by superfield propagators and
background fields. Repeating these links forms the one-loop
graphs.
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impacts in the presence of higher derivatives. Second, we
study a nonminimal model involving both the higher-
derivative terms, along with the standard two-derivative
kinetic energy term. This is considered as a subsector of an
effective theory, arising from an ultraviolet complete one,
such a superstring theory. Third, we study examples of
supersymmetric higher-derivative terms that break Lorentz
invariance.

A. Minimal case

We start this section with a minimal case in order to give
the simplest illustration of how large quantum corrections
can arise for higher-derivative theories. Of course, the
model is only a toy example, as the heavy fields do not have
a standard two-derivative kinetic energy term.
The corresponding theory is a higher-derivative N ¼ 1

supersymmetric model with light and heavy superfields,
given by

S¼
Z

d8z

�
ϕ
□

Λ2
ϕ̄þΦ

□

Λ2
Φ̄

�

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
;

ð12Þ
which is a simple generalization of (1). A similar theory of
only one chiral superfield has been studied in [11,12]. Here,
however, we introduce a mass dimension one scale param-
eter Λ which enforces that the components of the chiral
superfields have a correct dimension; effectively, Λ plays a
role of the energy scale at which the higher derivatives
become important, cf. [13]. In string theory compactifica-
tions this scale is naturally Λ ¼ OðMPlanckÞ.
Again, to simplify the study, we suggest that ϕ is purely

external and Φ purely quantum. (In full analogy with the
previous section, we can argue that if we suggest that Φ has
a nontrivial background part, the situation will not be
essentially different since already the lowest approximation
for Φ is proportional to M−1.) The quadratic action of Φ is
of the form

Sq¼
Z

d8zΦ
□

Λ2
Φ̄þ

�
1

2

Z
d6zðMþfϕÞΦ2þH:c:

�
: ð13Þ

This quantum action is similar to the one considered in
[11]. We can introduce again the superfield Ψ ¼ M þ fϕ.
The propagator can be obtained by a straightforward
generalization of the usual Wess-Zumino case [7] and
has the form

hΦðz1ÞΦ̄ðz2Þi ¼
Λ2

□
2
δ8ðz1 − z2Þ; ð14Þ

with again, as in the Wess-Zumino model, the chiral vertex
carrying the factor − D̄2

4
and the antichiral one, the factor

− D2

4
. Following [7], we can calculate the superficial degree

of divergence for this theory:

ω ¼ 2 − 2P − Pc − Ec; ð15Þ
where P is a number of all propagators in the theory, Pc is a
number of chiral propagators, i.e., hΦΦi and hΦ̄ Φ̄i propa-
gators only, and Ec is a number of external chiral lines. (It is
easy to show that the nonminimal theory we are consid-
ering possesses the same superficial degree of divergence,
since the Wess-Zumino kinetic term yields only subleading
contributions to propagators of Φ, Φ̄.)
It is clear that for any Ec ≥ 1 and P ≥ 1, one has ω < 0,

so the theory is ultraviolet finite. At the same time, in the
usual Wess-Zumino model one has ω ¼ 2 − Pc − Ec, so, if
the Feynman supergraph involves no chiral propagators but
only hΦ̄ Φ̄i propagators, it can yield divergent corrections
to the kinetic term, while in our case there are no divergent
corrections at all. We emphasize that within this study we
treat Λ as a finite parameter of the (effective) field theory;
thus there is no need to introduce counterterms as Λ → ∞.
The low-energy effective action presented by a sum over

the supergraphs depicted in Fig. 1 is

Γ1 ¼
Z

d8z
X∞
n¼1

1

2n

�
ΨΨ̄Λ4

□
4

D̄2D2

16

�n
δ8ðz − z0Þjz¼z0 : ð16Þ

This sum is analogous to the one used in the usual
Wess-Zumino and super-Yang-Mills cases [8], with the
only difference being the fact that we have □2 in the
denominator instead of the usual □. To obtain the low-
energy (Kählerian) contribution to the effective action, we
disregard all terms where derivatives act on background
fields. In order to sum contributions, we use the property of
the projection operator ðD̄2D2

16□
Þn ¼ D̄2D2

16□
. Subsequently, we

employ “the shrinking of the loop to a point” via the well-
known identity D̄2D2

16
δ8ðz − z0Þjz¼z0 ¼ 1, and, finally, employ

the sum
P∞

n¼1 a
n ¼ − lnð1 − aÞ. We arrive at the following

result for the Kählerian effective potential, analogous to that
in [11]:

Kð1Þ ¼ 1

2

Z
d4k
ð2πÞ4

1

k2
ln

�
1þ jΨj2Λ4

k6

�
; ð17Þ

which, by removing the field independent part, takes the
form

Kð1Þ ¼ 1

2

Z
d4k
ð2πÞ4

1

k2
ln

�
k6

Λ4
þ jΨj2

�
; ð18Þ

which yields

Kð1Þ ¼ c0
32π2

ðΨΨ̄Λ4Þ1=3; ð19Þ

where c0 is a finite dimensionless constant whose value can
be found in [11]. We can again expand the low-energy
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effective action in series ofM (recall thatΨ ¼ M þ fϕ). As
a result, we obtain

Kð1Þ ¼ c0
288π2

Λ4=3

M4=3 f
2ϕϕ̄þO

�
Λ4=3

M7=3

�
: ð20Þ

It is clear that after the rescaling ϕð1þ c0
288π2

Λ4=3

M4=3f2Þ1=2→ϕ,
together with the rescalings of constant parameters, the one-
loop corrected effective action Γ ¼ Sþ R

d8zKð1Þ reprodu-
ces the classical action of the theory involving light super-
fields only. Thus, the decoupling theorem is formally
satisfied. However, the key point in interpreting this result
relies on themagnitude of the scaleΛ.We see that ifΛ ≪ M,
the perturbative contribution to the effective action is
strongly suppressed, as ðΛMÞ−4=3. However, forΛ≃M, when
there is only one energy scale in the theory, the quantum
correction becomes compatible with the tree-level effective
action. The case Λ > M has a natural occurrence in string
theory, where Λ ¼ OðMPlanckÞ and M < MPlanck, e.g.,
in perturbative heterotic string theory M ≃MString ¼
10−2MPlanck. In this case quantum contributions begin to
dominate.
We also note that the mechanism of large quantum

corrections described in Sec. II cannot be applied to the
case with finite quantum contributions, discussed in this
section, since now quantum corrections do not depend on
the arbitrary normalization parameter μ which can arise
only as a consequence of subtractions of divergences. In the
higher-derivative field theory models, instead of μ, there is
another natural energy scaleΛ, which describes a character-
istic energy scale at which the higher derivatives become
important. However, despite essentially different mecha-
nisms for the quantum corrections in divergent and higher-
derivative finite theories, the general structure of quantum
corrections turns out to be rather similar in both cases; the
logarithmic quantum corrections, proportional to μ, in
renormalizable theories, and toΛ, in finite higher-derivative
theories, are very analogous.
We can generalize these studies to a generic theory whose

action of quantum fields is given by (6), instead of (13). In
this case, T̂ is a generic scalar operator commuting with
supercovariant derivatives. In particular,we can have the case
T̂ ¼ 1 which corresponds to the usual Wess-Zumino model.
Indeed, wewould have the same background fieldsΨ and Ψ̄,
but our propagator hΦΦ̄i will be of the form

hΦðz1ÞΦ̄ðz2Þi ¼
1

T̂□
δ8ðz1 − z2Þ; ð21Þ

so we can adapt the results given by (16)–(17) and find

Kð1Þ ¼ 1

2

Z
d4k
ð2πÞ4

1

k2
ln½T2ðkÞk2 þ jΨj2�; ð22Þ

where TðkÞ is a Fourier transform of the operator T̂. In the
simplest case TðkÞ ¼ k2n

Λ2n (n ≥ 1), where Λ again plays a

role of an energy scale at which the higher derivatives
dominate, it is easy to find this integral. The result is

Kð1Þ ¼ 1

32π2
Γ
�

1

2nþ 1

�
Γ
�

2n
2nþ 1

��jΨj2
Λ2

� 1
2nþ1

: ð23Þ

Again, definingΨ ¼ M þ λϕ and expanding this expression
as a power series in λ, we obtain

Kð1Þ ¼ k0ðΛ4nM2Þ 1
2nþ1

�
λ2ϕϕ̄

M2
þOðM−3Þ

�
; ð24Þ

where k0 is a purely numerical constant which does not
depend on any physical scale. Therefore the scale of this
expression is completely characterized by ðΛMÞ4n=ð2nþ1Þ.
If we takeΛ≃M, namely if the theory involves only one

characteristic energy scale, we have

Kð1Þ ¼ k0
ð2nþ 1Þ2 λ

2ϕϕ̄þOðM−1Þ: ð25Þ

Then the quantum correction caused by coupling of a light
superfield ϕ with heavy ones is not suppressed, as in the
previous example, although we again can argue that this
result is formally consistent with the decoupling theorem.
And if we suggest that Λ ≫ M, as e.g. in the above-
mentioned case, when M ≃MString ≃ 10−2Λ, this correc-
tion begins to dominate. Namely, for Λ ¼ γM, with γ ≫ 1,
we have

Kð1Þ ¼ γ
4n

2nþ1
k0

ð2nþ 1Þ2 λ
2ϕϕ̄þOðM−1Þ: ð26Þ

Thus, the quantum correction is large since γ
4n

2nþ1 ≃ 104.

B. Nonmimimal case

Another example of the higher-derivative superfield
theory that includes the standard kinetic energy terms
has been discussed in [11,12]. The action is of the form

S¼
Z

d8z

�
ϕϕ̄þΦ

�
1þ □

Λ2

�
Φ̄

�

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
:

ð27Þ

For simplicity we take ϕ chiral superfield to be massless.
Again, we choose ϕ to be a purely external one and Φ to be
a purely internal one. [For the sake of simplicity we do not
introduce higher derivatives for the light superfields. In the
effective theory of light fields only, these terms are sup-
pressed by OðΛ−1Þ and decouple.] We carry out a summa-
tion over the supergraphs depicted in Fig. 1. The result,
after the Wick rotation, is given by
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Kð1Þ ¼ 1

2

Z
d4k
ð2πÞ4

1

k2
ln

�
k2
�
1þ k2

Λ2

�
2

þ jΨj2
�
: ð28Þ

The explicit result for this expression is cumbersome.
Nevertheless, we can proceed with this integral in some
characteristic cases.
We proceed by considering the object J ¼ dKð1Þ

dðΨΨ̄Þ. A
replacement d4k → π2tdt, with t ¼ k2, yields

J ¼ 1

32π2

Z
∞

0

dt
Λ4

tðtþ Λ2Þ2 þ Λ4jΨj2

¼ 1

32π2

Z
∞

0

dt
Λ4

ðtþ AÞðtþ BÞðtþ CÞ ; ð29Þ

where A, B, C are three roots of the denominator,
taken with opposite signs, i.e., tðtþ Λ2Þ2 þ Λ4jΨj2 ¼
ðtþ AÞðtþ BÞðtþ CÞ. Then we can write

1

tðtþΛ2Þ2þΛ4jΨj2 ¼
1

Q

�
B−C
tþA

þC−A
tþB

þA−B
tþC

�
; ð30Þ

where Q ¼ ABðA − BÞ þ BCðB − CÞ þ CAðC − AÞ. It is
clear therefore that at least one of the numbers A − B,
B − C, C − A will be negative, and hence at least one of the
residua of the propagator (30) will be negative. Thus the
action (27) unavoidably involves ghosts.
We should however note that a fundamental, ultraviolet

complete theory, such as string theory, should be ghost free.
Therefore, we can treat our result in the following manner.
First, one can suppose that the specific higher-derivative
terms also represent themselves as contributions in the
effective theory where the higher derivatives arise as a
consequence of an integration over additional matter fields
as it occurs, e.g., in gravity theories coupled to additional
matter fields [14]. Second, we can treat higher-derivative
terms as a next approximation in a derivative expansion of a
fundamental nonlocal theory where the ghosts are avoided
[15]. We note that if we abandon the Lorentz invariance, the
higher derivatives can be introduced in a unitary manner
through appropriate contractions with Lorentz-breaking
vectors or tensors [9]. We consider this situation later.
The straightforward integration of (29) allows one to

obtain the explicit result in terms of roots A, B, C:

J ¼ Λ4

16π2Q

�
A ln

B
C
þ ln

C
A
þ C ln

A
B

�
: ð31Þ

In principle, one can use here the explicit expressions for
A, B, C. They are given in the appendix, along with their

explicit asymptotic behavior in W jΨj2
Λ2 ≪ 1 and jΨj2

Λ2 ≫ 1

regimes. The explicit form of (29) in these regimes can also
be analyzed directly, by introducing the dimensionless

quantity R2 ¼ jΨj2
Λ2 , i.e., by writing (29) as

J ¼ 1

32π2

Z
∞

0

du
1

uðuþ 1Þ2 þ R2
; ð32Þ

and finding the asymptotic behavior of this integral in
R ≪ 1 and R ≫ 1 regimes. The case R ≪ 1 effectively
corresponds to M ≪ Λ and results in the expansion

JjR→0 ¼−
1

32π2

�
lnR2þ 1þR2

�
4 lnR2þ 19

3

��
þOðR3Þ:

ð33Þ

The case R ≫ 1 corresponds to M ≫ Λ and results in

JjR→∞ ¼ −
1

96π2
lnR2

R4=3 þOðR−2Þ: ð34Þ

Thus, by integrating these expressions, respectively, we
obtain

Kð1Þ
R→0 ¼ −

1

32π2

�
jΨj2 ln jΨj2

Λ2
þ 2

jΨj4
Λ2

ln
jΨj2
Λ2

þ 13

6

jΨj4
Λ2

�
þ � � � ;

Kð1Þ
R→∞ ¼ −

1

32π2
jΨj2=3Λ4=3

�
ln
jΨj2
Λ2

þ 3

2

�
þ � � � ; ð35Þ

where again Ψ ¼ M þ fϕ. Further expansion of the above
expressions in terms of the small field ϕ ≪ M, and
disregarding field independent terms (whose contribution
to the effective action vanishes because of properties of the
integral over Grassmannian variables), yields the following
expressions:

Kð1Þ
M≪Λ ¼ −

1

32π2
f2ϕϕ̄ ln

M2

Λ2
þ � � � ;

Kð1Þ
M≫Λ ¼ −

1

288π2

�
Λ
M

�
4=3

f2ϕϕ̄ ln
M2

Λ2
þ � � � : ð36Þ

Note that in the second case M ≫ Λ the correction is
suppressed. It is however the first case M ≪ Λ that one
encounters in typical string theory compactifications. In
particular, in perturbative heterotic string compactification
Λ ¼ OðMPlanckÞ and M ¼ OðMStringÞ, where MString ¼
10−2MPlanck. Note that in this case there are large loga-
rithmic corrections.

C. Lorentz-breaking case

In this subsection we address the study of Lorentz-
violating terms due to heavy superfields. As a first step
we introduce supersymmetric higher-derivative terms that
break Lorentz invariance. For specific choices of the
Lorentz-breaking vector in the higher-derivative terms,
as proposed in [16], the theory can still maintain unitarity.
As a prototype, we consider the following extension of
the Wess-Zumino model:
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S¼
Z

d8z

�
Φ̄

�
1−

1

Λ2
ðn ·∂Þ2

�
Φþ ϕ̄ϕ

�

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
:

ð37Þ

Here, na is a dimensionless Lorentz-breaking vector which
in principle can be chosen to be spacelike (nana ¼ 1), to
avoid higher time derivatives which spoil the unitarity. (In
reality, we do all calculations in the Euclidean space, and
hence this problem is avoided.) This is a Myers-Pospelov-
like extension to the case of the Wess-Zumino model.
Here we introduced ðn · ∂Þ2 to simplify the integration. We
note that the introduction of the higher-derivative Lorentz-
breaking terms in this manner, i.e. through terms ðn · ∂ÞN
with different values of N, was discussed in [16].
Again, we consider the same type of graph as in Fig. 1.

We repeat the calculations, given by (16)–(17), along the
lines discussed earlier. Actually, the only difference is in
the replacement of Λ2

□
2 by ½□ð1 − 1

Λ2 ðn · ∂Þ2Þ�−1. Repeating
the summation, we arrive at

Kð1Þ ¼ 1

2

Z
d4k
ð2πÞ4

1

k2
ln

�
k2
�
1þðn ·kÞ2

Λ2

�
2

þjΨj2
�
: ð38Þ

We make a replacement kakb ¼ 1
4
ηabk2, which is valid

within any integral over momenta of the formR
ddk
ð2πÞd fðkÞka1ka2…k2m. For example, in the simplest case

m ¼ 1, with arbitrary values of d and N, one has

Z
ddk
ð2πÞd

kakb
ðk2 þM2ÞN

¼ 1

d
ηab

Z
ddk
ð2πÞd

k2

ðk2 þM2ÞN

¼ 1

2ð4πÞd=2 ðM
2Þd=2þ1−N ΓðN − 1 − d=2Þ

ΓðNÞ ;

and for larger even m this formula can be naturally
generalized. (We note that since the effective potential is
a scalar, the Lorentz-breaking vector na can enter only
through a contraction nana which is equal to 1; moreover,
since our effective potential is finite, it has no singularities,
and therefore its behavior will not be modified qualitatively
by changing the vector na.)
We proceed, as in the previous section, by calculating

the asymptotic form of the exact integrals in jΨj2 ≪ Λ2

(effectively, M ≪ Λ) and in jΨj2 ≫ Λ2 (effectively,
M ≫ Λ) regime. The result is, for jΨj2 ≪ Λ2,

Kð1Þ ¼ −
13Ψ4

768π2Λ2
−
Ψ2 lnðΨ2

4Λ2Þ
32π2

−
Ψ4 lnðΨ2

4Λ2Þ
64π2Λ2

þ � � � ; ð39Þ

and for jΨj2 ≫ Λ2,

Kð1Þ ¼ Ψ2ðΛ2

Ψ2Þ2=3
422=3

ffiffiffi
3

p
π
−
Λ2 lnðΨ2

4Λ2Þ
12π2

þ � � � : ð40Þ

Expanding the above expressions in power series for the
small ϕ, we have

Kð1Þ
M≪Λ¼−

λ2ϕϕ̄

32π2

�
3þ ln

M2

4Λ2

�
þO

�
M
Λ
;
1

M

�
þ�� � ; ð41Þ

and

Kð1Þ
M≫Λ ¼

�
Λ2

M2

�
2=3 1

22=335=2π
λ2ϕϕ̄þO

�
Λ
M

;
1

M

�
þ � � � ;

ð42Þ
respectively.We see again that in the second case corrections
are suppressed. It is however the first case with Λ ≫ M that
one encounters in the string theory compactification. In this
case the corrections have logarithmic enhancement.
It is instructive to compare our results with another type

of Lorentz-violating supersymmetric theory, discussed in
[10], where the classical action of the form

S¼
Z

d8zΦð1þρΔz−1ÞΦ̄þ
�Z

d6zWðΦÞþH:c:

�
ð43Þ

was considered, with WðΦÞ ¼ m
2
Φ2 þ λ

3!
Φ3. There, for the

same Ψ ¼ mþ λϕ (where, however, the mass m was not
enforced to be large as in our case), the result was

Kð1Þ ¼ cρ−1=zðΨΨ̄Þ1=z; ð44Þ
where z is a critical exponent, ρ is a small constant whose
mass dimension is −2ðz − 1Þ, and c is a some number of
the order of 1. We can modify this theory within the
framework of our approach, so that the action would be

S¼
Z

d8zðϕϕ̄þΦð1þρΔz−1ÞΦ̄Þ

þ
�Z

d6z

�
1

2
ðMΦ2þλΦϕ2þfϕΦ2Þþ g

3!
ϕ3

�
þH:c:

�
:

ð45Þ
In this case, one has Ψ ¼ M þ fϕ. Repeating the calcu-
lations, and introducing a cutoff scale Λ so that we can
estimate ρ ¼ α

Λ2z−2 by dimensional analysis, with α being a
number of the order of 1, we arrive at the result (44), which,
for our choice of Ψ, can be expanded as

Kð1Þ ¼ c
α−1=z

z2

�
M
Λ

�2
z−2

f2ϕϕ̄þ � � � ; ð46Þ

where dots are for higher orders in expansion in M−1.
(All the dependence on Λ is concentrated in the factor
ðMΛÞ

2
z−2, so dots are for essentially smaller terms.) We see
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that for Λ and M of the same order, this correction is not
suppressed. Moreover, since typically z > 1, and 2

z − 2 < 0,
we see that forM < Λ (which is a natural regime as already
argued) the low-energy effective action increases as M
grows. Moreover, in this case the factor ðMΛÞ

2
z−2 is large,

tending to 104 for a large z.

IV. SUMMARY

In this paper we discussed the problem of decoupling
heavy states in the four-dimensional N ¼ 1 supersymmetric
field theory sector with light and heavy chiral superfields.
We encountered an essential difference between the renor-
malizable theories, exhibiting divergent quantum contribu-
tions, and effective theories with higher-derivative terms
which have finite quantum corrections. In renormalizable
quantum field theories, after subtraction of divergences,
quantum corrections at the L-loop level can have contribu-

tions proportional to jϕj2ðln jϕj2
μ2
ÞL, where μ is the renorm-

alization scale. Since the only dimensional scale in the theory
is a large massM, it is natural to fix μ ¼ M, so one will have
significant contributions which, moreover, increase as M
grows. Of course, by changing the μ to be a low-energy scale,
this would then result in renormalized couplings, in front
of such terms, which are defined at a low-energy scale μ.
In effective theories with higher-derivative terms the

quantum corrections are finite and thus do not involve the
renormalization scale. However, if one considers higher-
derivative extensions, one introduces the scale Λ character-
izing the energy at which the higher-derivative terms become
important [13]. As we have shown, if this scale is large
enough, i.e. of the order of the mass of the heavy superfield,
the quantum corrections due to these terms also become
significant. Therefore, we found that instead of the mecha-
nism based on the renormalization the effects of higher-
derivative terms result in large finite quantum corrections.
This effect is realized for bothLorentz-invariant andLorentz-
breaking higher-derivative examples. In principle, this result
can be formally understood if we treat higher-derivative
terms as a type of a higher-derivative “regularization” that
ensures finiteness of quantum corrections. It is therefore
clear that in the absence of the regularization the one-loop
effective action will diverge. However, within our approach
the higher-derivative terms are treated not as a regularization
but are a fundamental ingredient of the effective theory.
Therefore, we have large quantum corrections which,
following [9], can be interpreted as a sign of a fine-tuning
in a corresponding effective theory of light fields only.
Furthermore, for an example of an effective theory of the
perturbative heterotic string compactification, M ≃ 10−2Λ,
and thus large quantumcorrections proportional to lnðM2

Λ2 Þ are
unavoidable. These results also imply that theories with
heavy superfields, both those with higher derivatives and
those without them, possess quantum corrections that can

significantly modify the low-energy effective theory of light
fields. We also expect that the presence of the fields with a
large mass could have cosmological impact since the
presence of large quantum corrections would strongly
modify the observable values of physical variables. Also,
since the Galileon models naturally involve higher deriva-
tives [17], it is natural to expect that studies of the higher-
derivative field theory models, in particular those with finite
quantum corrections, can be relevant within the context of
Galileon cosmology.
A generalization of this study would involve higher-

derivative couplings of chiral superfields to gauge super-
fields. However, up to now, the only models studied in this
manner involve higher derivatives in the gauge sector [18].
Another direction for future studies should involve a more
general and systematic study of Lorentz-breaking super-
symmetric theories, in particular more generic models for
chiral matter, e.g., Lorentz-breaking extensions of models
discussed in [5], as well as superfield analogues of the
models discussed in [16].
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APPENDIX

Here we give explicit expressions for the roots A, B, C of
the denominator of (29). Using the Cardano formula, we
can write

A¼ 1

3
ð2Λ2þQþ Q̄Þ;

B¼ 1

3

�
2Λ2þ

�
−1þ i

ffiffiffi
3

p

2

�
Qþ

�
−1− i

ffiffiffi
3

p

2

�
Q̄

�
;

C¼ 1

3

�
2Λ2þ

�
−1− i

ffiffiffi
3

p

2

�
Qþ

�
−1þ i

ffiffiffi
3

p

2

�
Q̄

�
; ðA1Þ

where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27Λ4jΨj2 − 2Λ6 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
729Λ8jΨj4 − 108Λ10jΨj2

p
2

3

s
;

Q̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27Λ4jΨj2 − 2Λ6 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
729Λ8jΨj4 − 108Λ10jΨj2

p
2

3

s
:

ðA2Þ
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It remains only to find these roots in the approximation:
Λ2 ≪ jΨj2 (i.e. R≡ jΨj

Λ ≫ 1) and for Λ2≫ jΨj2 (i.e. R ≪ 1).
It is more convenient to consider the dimensionless objects
~A≡ A

Λ2, ~B≡ B
Λ2, ~C≡ C

Λ2. Actually, ~A, ~B, ~C are the roots of
the denominator of Eq. (32) multiplied by −1. (This factor
is needed to return to the form of the roots corresponding
to the Minkowski space.)
For R ≪ 1, we find

~A ¼ OðR2Þ;
~B ¼ 1þOðRÞ;
~C ¼ 1þOðRÞ: ðA3Þ

For R ≫ 1, we have

~A ¼ R2=3 þ 2

3
þOðR−1=3Þ;

~B ¼ R2=3 þ 2

3
þOðR−1=3Þ;

~C ¼ R2=3 þ 2

3
þOðR−1=3Þ: ðA4Þ

We see that the roots are positive, so there are no tachyons
in the theory; however, as we already mentioned, the ghosts
are unavoidable.
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