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Using superconformal methods we derive an explicit de Sitter supergravity action invariant under
spontaneously broken local N ¼ 1 supersymmetry. The supergravity multiplet interacts with a nilpotent
Goldstino multiplet. We present a complete locally supersymmetric action including the graviton and the
fermionic fields, gravitino and Goldstino, no scalars. In the global limit when the supergravity multiplet
decouples, our action reproduces the Volkov-Akulov theory. In the unitary gauge where the Goldstino
vanishes we recover pure supergravity with the positive cosmological constant. The classical equations
of motion, with all fermions vanishing, have a maximally symmetric solution: de Sitter space.
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I. INTRODUCTION

The cosmological constant is known to be negative or
zero in pure supergravity, if there are no scalar fields [1].
Pure supergravity with a positive cosmological constant
without scalars was not previously known. In this paper we
present the locally N ¼ 1 supersymmetric action and
transformation rules of such a theory. De Sitter space is
a homogeneous solution of the bosonic equations of
motion. Supersymmetry is spontaneously broken, so there
is no conflict with no-go theorems that prohibit linearly
realized supersymmetry [2].1

The main motivation for this work is an increasing
amount of observational evidence for an accelerating
Universe where a positive cosmological constant is a good
fit to data. The next step toward a better understanding of
dark energy is not expected before the ESA space mission
Euclid launches in 2020. It is therefore desirable to find a
simple version of de Sitter supergravity as a natural source
for the positive cosmological constant.
The Kachru, Kallosh, Linde and Trivedi (KKLT) uplifting

procedure for constructing de Sitter (dS) vacua in string
theory was proposed in [3]. It was recently updated to the
status of a manifestly supersymmetric uplifting using the
D3-brane on top of an O3-plane at the bottom of a warped
throat [4,5]. It corresponds to a globally supersymmetric

Volkov-Akulov (VA) Goldstino theory [6] coupled to a
supergravity background. The global supersymmetry is
realized nonlinearly. This recent development indicates that
a scalar independent de Sitter supergravity might exist.
Another indication of the existence of such a supergravity
was presented in [7], where the proposal to couple the VA
Goldstino theory [6] to supergravity was made. However, a
complete action and transformation rules that describe this
coupling have never been presented. The supersymmetric
coupling of the gravitino and Goldstino in D ¼ 10 at the
quadratic level in fermions was studied in [8,9]. The curved
superspace formulation of the VA Goldstino theory was
studied soon after the discovery of this theory; see for
example a review paper [10] or an application of the
constrained superfield formalism in superspace in [11].
The relation between the superspace approach and non-
linearly realized supersymmetries was investigated in [12].
All earlier theories were not yet developed to the level

of a component supergravity action with spontaneously
broken local supersymmetry, generalizing the globally
supersymmetric VA model. To construct such an action
is the purpose of our paper. We will do this by decoding
the superconformal action underlying dS supergravity,
proposed in [13]. Such a decoding procedure, in addition
to a standard gauge-fixing of local Weyl, R-symmetry
and special supersymmetry requires an elimination of the
auxiliary field F of the Goldstino multiplet from the action
which has a non-Gaussian dependence on F.
The important step for our ability to derive the complete

action of a pure dS supergravity is the observation made in
[14,15] that VA theory can be described using a chiral
superfield Sðx; θÞ ¼ X þ ffiffiffi

2
p

θχ þ θ2F of global N ¼ 1
supersymmetry that satisfies the nilpotent constraint
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S2ðx; θÞ ¼ 0. The constraint sets X ¼ χ̄PLχ=2F and thus
eliminates the would-be fundamental scalar partner of the
Goldstino χ. The Komargodski–Seiberg (KS) model con-
structed in this way [15] is equivalent to the original VA
geometric model. That model with the action detE, where
E is a supersymmetric 1-form, is related to the model of
[15] by the nonlinear change of variables presented in [16].
The fact that X is Grassmann valued so that XPLχ ¼ 0
greatly simplifies the construction of [15] and of our locally
supersymmetric extension.
The superconformal approach to pure de Sitter super-

gravity suggested in [13] is the following: The model at the
superconformal level contains the chiral compensatingmulti-
plet fX0;χ0;F0g; a chiral Goldstino multiplet fX1;χ1;F1g;
and a Lagrange multiplier multiplet fΛ; χΛ; FΛg, interacting
with the Weyl gravitational multiplet. The action is

L ¼ ½NðX; X̄Þ�D þ ½WðXÞ�F þ ½ΛðX1Þ2�F; ð1:1Þ
where the notation of Chapter 16 of [17] is used2 and all three
chiral supermultiplets are unconstrained. All supersymme-
tries in (1.1) are linearly realized andmanifest. Models of this
type differ from the generic models in [17], and in other
textbooks, in that theKählermanifold of the embedding space
NðX; X̄Þ does not depend on the superfieldΛ but does depend
on XI, I ¼ 0, 1. Therefore the equation of motion for Λ is
algebraic and can be solved producing the superfield con-
straint ðX1Þ2 ¼ 0. This in turn leads to a nongeneric super-
gravity: the elimination of the auxiliary field F1 requires a
more complicated procedure since its algebraic equation of
motion contains both positive and negative powers ofF1, the
latter due to the relation X1 ¼ χ̄1PLχ

1=2F1 which arises as
the solution of the constraint. Therefore, the knowledge of the
Kähler potential K and the superpotential W at the super-
gravity level is not sufficient in the presence of the nilpotent
Goldstino multiplet to produce the full fermionic action.3

At the superconformal level, the dynamics of our pure
dS supergravity model is specified by a quadratic Kähler
potential and cubic superpotential:

N ¼ ηIJXIX̄J ¼ −X0X̄0 þ X1X̄1;

W ¼ a

�
X0ffiffiffi
3

p
�

3

þ b

�
X0ffiffiffi
3

p
�

2

X1: ð1:2Þ

After the superfield constraint ðX1Þ2 ¼ 0 is implemented,
the last term in the action (1.1) vanishes. The parameters a,
b are dimensionless as they must be in a conformal theory.

One passes to the physical form of the theory by fixing
the conformal gauge using X0 ¼ ffiffiffi

3
p

=κ, thus introducing
Newton’s constant κ2 ¼ 8πG ¼ M−2

Pl . It is then convenient
4

to redefine our parameters as follows: a ¼ κm and b ¼ κ2f.
The new parametersm and f have mass dimension 1 and 2,
respectively, and we take them to be real.5 The cosmo-
logical constant Λ and the Lagrangian mass term of the
gravitino are

Λ ¼ f2 − 3m2M2
Pl; Lm ¼ m

2κ2
ψ̄μγ

μνψν; ð1:3Þ

where ψμ has dimension 1=2.
The physics of the model depends on the relation

between these quantities. When m ¼ 0, f ≠ 0, we have
the pure de Sitter model with nonlinearly realized super-
symmetry discussed above. When m ≠ 0, f ¼ 0, which
requires that the fermion of the nilpotent multiplet vanishes,
χ1 ¼ 0; for consistency, we have the basic anti–de Sitter
supergravity theory with linearly realized supersymmetry
[1,7]. In all other cases there is nonlinearly realized
supersymmetry, and the sign of Λ determines whether the
homogeneous bosonic geometry is de Sitter, Minkowski, or
anti–de Sitter spacetime. Nonlinearly realized supersym-
metry (essentially the same as spontaneous breaking) means
that the vacuum expectation value of the SUSY transform
of the Goldstino field χ does not vanish, hδχi ≠ 0.
In Sec. II of the paper we present the main result, the

novel pure dS supergravity action and its local supersym-
metry. In Sec. III we explain the main logical steps in the
derivation of the supergravity theory from the supercon-
formalmodel in [13], with the details given in theAppendix.
In Sec. IV we study features of dS supergravity. We perform
the limit of our new supergravity theory to flat spacetime,
where fields of the gravity multiplet are decoupled and
m → 0. We show how the VA theory is recovered via its
KS version. In the same section we look at the possible
gauge-fixing of the local supersymmetry. In the unitary
gauge with χ1 ¼ 0 the gravitino wave operator in Euclidean
signature has no zero modes. In Sec. V we point out that the
assumption of the mere existence of the nilpotent Goldstino
multiplet signifies a natural unavoidable spontaneous super-
symmetry breaking, without the need for engineering, as
e.g. in the O’Raifeartaigh type models. Finally we note that
the VA theory, when embedded in supergravity, leads to a
positive cosmological constant term LSG ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
f2.

2The superconformal action (1.1) without the Lagrange multi-
plier superfield Λ was studied in application to inflation and in a
de Sitter background in [18].

3See Eqs. (2.4)–(2.6) in [19] where the first supergravity model
of this kind was presented. The fermion terms in this reference are
incomplete, which gives an example of a supergravity where K
and W are not sufficient for the determination of the complete
action; only the bosonic part can be deduced from K and W.

4In cosmological applications one often works with Planck
units, MPl ¼ κ−1 ¼ 1; however, here we would like to study also
the flat space limit. Therefore we keep κ consistently, in agree-
ment with [17].

5In Sec. III and the Appendix we give the formulas for complex
a and b (or m and f). Then b ¼ κ2f̄. One can take these two
parameters to be real and positive after chiral rotations of the fields.
If a¼jajeiθa and b ¼ jbjeiθb , the phases are removed by replacing
PLψμ by PLψμeiθa=2, PLχ by PLχeiðθa=2−θbÞ, and corresponding
rotations on the composite expressions X ¼ X1 and FI .
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Without coupling to gravity and gravitino, without local
supergravity, the vacuum energy term in the VA action
LVA ¼ −f2 þ � � � is a hint but not a reliable origin of the
dark energy/cosmological constant; now in the context
of dS supergravity it is a cosmological constant.

II. PURE DSN ¼ 1 SUPERGRAVITY ACTION AND
ITS LOCAL SUPERSYMMETRY

The action invariant under spontaneously broken local
supersymmetry is given by the following expression

e−1L ¼ 1

2κ2
½RðωðeÞÞ − ψ̄μγ

μνρDð0Þ
ν ψρ þ LSG;torsion� þ 3

m2

κ2
− f2

þ fffiffiffi
2

p ψ̄μγ
μχ þ m

2κ2
ψ̄μγ

μνψν þ
κ2

24
χ2χ̄2

−
1

2
χ̄Dð0Þχ −

1

32
ie−1εμνρσψ̄μγνψρχ̄γ�γσχ −

1

2
ψ̄μPRχψ̄

μPLχ

þ χ̄2

2f
A
χ2

2f
−
�
χ2

2f
B̄þ χ̄2

2f
B

�
−
χ2χ̄2

16f4

�
□χ2

f
− 2B

��
□χ̄2

f
− 2B̄

�
; ð2:1Þ

where

χ2 ≡ χ̄PLχ; Dð0Þ
μ ¼ ∂μ þ

1

4
ωμ

abðeÞγab;

LSG;torsion ¼ −
1

16
½ðψ̄ργμψνÞðψ̄ργμψν þ 2ψ̄ργνψμÞ − 4ðψ̄μγ · ψÞðψ̄μγ · ψÞ�: ð2:2Þ

A ¼ □þ itμ∂μ þ
1

2
ie−1∂μðetμÞ þ r; □ ¼ 1ffiffiffi

g
p ∂μ

ffiffiffi
g

p
gμν∂ν; ð2:3Þ

tμ ¼ 1

4
iψ̄νγ�γνρμψρ; r ¼ −

1

6
½RðωðeÞÞ − ψ̄μγ

μνρDð0Þ
ν ψρ þ LSG;torsion − 8κ2f2�;

B ¼ 1ffiffiffi
2

p
�
−e−1∂μðeψ̄νγ

μγνPLχÞ −
2

3
χ̄PLγ

μνDμψν

�
þ f

�
2
m
κ
þ 1

2
ψ̄μγ

μνPLψν

�
; ð2:4Þ

Dμψν ¼
�
∂μ þ

1

4
ωμ

abðe;ψÞγab
�
ψν: ð2:5Þ

The auxiliary fields F and Aμ of the supergravity multiplet were eliminated by their algebraic equations of motion. The
cosmological constant in the first line is Λ ¼ f2 − 3 m2

κ2
. In the second line the gravitino couples to fγμχ which is the linear

part of the supercurrent of the VA theory; nonlinear corrections are contained in B in (2.4). There is also a quadratic
gravitino masslike term and a quartic χ2χ̄2 originating from elimination of Aμ. The third line of the action includes a
Goldstino kinetic term and quartic fermion interactions. The fourth line presents nonlinear Goldstino terms.
The supersymmetry transformations of the fields χ and eaμ, ψμ can be obtained from, respectively, (16.33), (16.45), and

(16.47) of [17]. For the fields of the gravity multiplet we have

δeaμ ¼
1

2
ϵ̄γaψμ; ð2:6Þ

δPLψμ ¼ PL

�
∂μ þ

1

4
ωðe;ψÞμabγab −

3

2
iAμ þ

1

2
iγμAþ κ

2
ffiffiffi
3

p γμF̄0

�
ϵ: ð2:7Þ

with

F0 ¼ W̄0 ¼
ffiffiffi
3

p m
κ
þ 2ffiffiffi

3
p fX ¼

ffiffiffi
3

p m
κ
−

1ffiffiffi
3

p χ2ð1 −AÞ ð2:8Þ

and

Aμ ¼ i
κ2

6

�
ðX̄∂μX − X∂μX̄Þ −

1

2
½

ffiffiffi
2

p
ψ̄μðPLχX̄ − PRχXÞ þ χ̄PLγμχ�

�
: ð2:9Þ
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Here

X ¼ −
χ2

2f
ð1 −AÞ; ð2:10Þ

A ¼ χ̄2

2f3

�
A
χ2

2f
− B

�
: ð2:11Þ

The local supersymmetry transformation for the
Goldstino is

δPLχ¼
1ffiffiffi
2

p PL

�
−fþð∂−mÞX−fA

�
1−3Ā−

χ2

2f3
B̄

��
ϵ

−
1

2
PLγ

μϵψ̄μPLχ: ð2:12Þ

III. DERIVATION OF PURE DS SUPERGRAVITY

In this section we present the main steps in the derivation
of dS supergravity from the underlying superconformal
theory with linearly realized supersymmetry and Lagrange
multiplier, as shown in Eqs. (1.1), (1.2). Details are given in
the Appendix.
We will often use the notation for the physical multiplet

fX1; χ1; F1g≡ fX; χ; Fg. The role of the compensator
multiplet fX0; χ0; F0g is to fix the local Weyl and R-

symmetry via the choice X0 ¼ X̄0 ¼
ffiffi
3

p
κ and to fix the

special local supersymmetry using χ0 ¼ 0. But in a super-
conformal setting where equations depend covariantly on
both multiplets fXI; χI; FIg, I ¼ 0, 1 we will use the
original notation.
We first consider the component form of the Lagrange

multiplier term in the action in (1.1) and solve the algebraic
equations of motion for the superfield fΛ; χΛ; FΛg. The
ΛðxÞ field equation is given in (A5); its solution fixes

X ¼ χ2

2F
; ð3:1Þ

provided that F ≠ 0. The equations of motion for χΛ, FΛ

are also satisfied without further constraints.
The detailed form of the first two terms in the super-

conformal action (1.1) is given in (A7)whichwe thenwrite as

L ¼ ηIJX̄I

�
∂μ

ffiffiffi
g

p
gμν∂ν þ ietμc∂μ þ

1

2
i∂μðetμcÞ þ erc0

�
XJ

þ eηIJX̄IBJ
c þ eηIJXIB̄J

c þ eCc
0 þ eL1;F þ eLW;ferm;

ð3:2Þ

(up to total derivatives). The indices I ¼ 0, 1 and the
subscript c are a reminder that we are still in the super-
conformal setting with local conformal symmetry (and other
symmetries) unbroken:

tμc¼−2Aμþ1

4
iψ̄νγ⋆γνρμψρ;

rc0¼−
1

6
RðωðeÞÞþ1

6
ψ̄μγ

μνρDð0Þ
ν ψρ

−AμAμ−
1

6
LSG;torsion;

BI
c¼

1ffiffiffi
2

p ½−e−1∂μðeψ̄νγ
μγνPLχ

IÞ−2

3
χ̄IPLγ

μνDμψν

þ iAμψ̄μPLχ
I�;

Cc
0¼ηIJ

�
−
1

2
χ̄IDð0ÞχJþ1

4
iχ̄Iγ�γμχJAμ

−
1

32
ie−1εμνρσψ̄μγνψρχ̄

Iγ�γσχJ−
1

2
ψ̄μPRχ

Iψ̄μPLχ
J

�
;

L1;F¼ηIJFIF̄JþWIFIþW Ī F̄
I ;

LW;ferm¼−
1

2
WIJ χ̄

IPLχ
Jþ 1ffiffiffi

2
p ψ̄μγ

μWIPLχ
I

þ1

2
ψ̄μPRγ

μνψνWþH:c:; ð3:3Þ

where Dð0Þ
μ and LSG;torsion are defined in (2.2) and Dμψν

in (2.5).
The nilpotent fields X and X̄ can appear in the

Lagrangian (3.2) either linearly or as the bilinear XX̄.
Thus we look for a new form of L in which this behavior is
manifest. This form is

e−1LðX;FÞ ¼ ðF þ W̄1ÞðF̄ þW1Þ − W̄1W1 þ X̄AcX

þ XB̄c þ BcX̄ þ Cc: ð3:4Þ

Several simplifications based on the superconformal prop-
erties of the equations of motion were required to derive
this form, as explained in Appendix A 2.
The main difference between dS supergravity and

standard supergravities is now clear. In a generic theory
the auxiliaries FI appear as

ηIJFIF̄J þWIFI þW Ī F̄
I : ð3:5Þ

This behavior applies to F0 in our theory, and this allows us
to eliminate it via Gaussian integration; we give details and
the forms of the coefficients in (3.4) in Appendix A 3.
The auxiliary field Aμ is also eliminated in this way (see

Appendix A 4); its on-shell value, after superconformal
gauge-fixing

X0 ¼ X̄0 ¼ κ−1
ffiffiffi
3

p
; χ0 ¼ 0; ð3:6Þ

is given in (2.9). The Grassmann properties of X, X̄ imply
that on-shell effects of Aμ are far simpler than in a generic
supergravity. Thus Aμ vanishes in BI

c above, and the
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quadratic AμAμ term in rc0 with the term in Cc
0 produces the

quartic χ2χ̄2 in the second line of (2.1).
The action (3.4) reduces to the form

e−1L ¼ ðF þ fÞðF̄ þ f̄Þ − f̄f þ X̄AX þ XB̄þ BX̄ þ C;

ð3:7Þ

where, with (1.2) and (3.6),

f ¼ W̄1 ¼ κ−2b̄; ð3:8Þ

and, for f and m real, A and B are the expressions in (2.3)
and (2.4), and C is given in (A22).
The elimination of F1 ¼ F is a more complicated matter

because the generic form no longer holds. To see this, one

substitutes X ¼ χ2

2F in (3.7) to obtain

e−1L ¼ ðF þ fÞðF̄ þ f̄Þ − f̄f þ χ̄2

2F̄
A
χ2

2F
þ χ2

2F
B̄

þ B
χ̄2

2F̄
þ C: ð3:9Þ

A closed form solution for the equations of motion for F, F̄
is derived in Appendix A 5. We find that the equation of
motion for F is solved by

F ¼ −f
�
1þA

�
1 − 3Ā −

χ2

2f2f̄
B̄
��

; ð3:10Þ

where X and A are given in (2.10) and (2.11), respectively.
On shell, the action (3.7) becomes

L ¼ −ff̄ þ χ̄2

2f̄
A
χ2

2f
−
�
χ2

2f
B̄þ χ̄2

2f̄
B

�
þ C

−
χ2χ̄2

16ðff̄Þ2 ðf
−1
□χ2 − 2BÞðf̄−1□χ̄2 − 2B̄Þ: ð3:11Þ

This leads to our final result in (2.1).

IV. FEATURES OF DS SUPERGRAVITY

In this section we discuss several features of the dS
supergravity theory we constructed in the previous two
sections. In the first subsection we discuss the flat space-
time limit and show that the theory reduces to the global
Volkov-Akulov theory. In a next subsection we confirm that
the de Sitter solution of the theory has no Killing spinors;
i.e. there is no residual supersymmetry. Finally, in a third
subsection we gauge-fix the local supersymmetry and
show that the gravitino operator in a de Sitter background
is well defined.

A. The flat spacetime limit

In the limit of the locally supersymmetric theory in
which gravitational effects vanish, we expect to recover the
Komargodski-Seiberg version [15] of the global VA theory.
This is the limit in which the parameters κ, mκ−1; the
curvature R; and the fields ψμ, Aμ all vanish. In this limit
the action (2.1) reduces to

L ¼ −f2 −
1

2
χ̄∂χ þ 1

4f2
χ̄2□χ2 −

1

16f6
χ2χ̄2ð□χ2Þð□χ̄2Þ;

ð4:1Þ
which is equivalent to Eq. (3.6) of [15].
It is worth noting that the global limit of the fields of the

constrained Goldstino multiplet is given by

�
X¼ χ2

2F
;χ;F¼−f

�
1þ 1

4f4
χ̄2□χ2−

3

16f8
χ2χ̄2□χ2□χ̄2

��
:

ð4:2Þ

These constrained components of the Goldstino multiplet
in (4.2) transform as though they are elementary, i.e.

δX ¼ 1ffiffiffi
2

p ϵ̄PLχ; ð4:3Þ

δχ ¼ 1ffiffiffi
2

p PLð∂X þ FÞϵ; ð4:4Þ

δF ¼ 1ffiffiffi
2

p ϵ̄∂PLχ: ð4:5Þ

This shows, above and beyond the call of duty, that the
constraint X2 ¼ 0 is compatible with supersymmetry.6

B. No Killing spinors in dS

We assume that Λ ¼ f2 − 3m2=κ2 > 0. Then the
homogenous bosonic solution of the equations of motion
of the theory defined by the action (2.1) is de Sitter space
with curvature tensor

Rab
μν ¼ ðeaμebν − eaνebμÞH2 and H2 ¼ κ2Λ=3: ð4:6Þ

It is obvious that this solution has no residual supersym-
metry. To see this one need only inspect the fermionic
transformation rules (2.7) and (2.12). When ψμ and χ
vanish, these rules simplify and give the conditions

6Note that the transformation rule (4.4) is exactly the flat limit
of the transformation rule (2.12). This description of the global
supersymmetry of the KS model appears to be new; an approxi-
mate form of δχ up to quadratic terms in χ was derived in Eq. (15)
of [16]. Our formula (4.4) is exact; it terminates at eighth order
because of the Grassmann properties. Since F in (4.2) has been
evaluated on shell, the SUSY transformation (4.5) must be
checked using the equation of motion for ∂PLχ.
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δψμ ¼ D̂μϵ≡
�
∂μ þ

1

4
ωμabγ

ab þm
2
γμ

�
ϵ ¼ 0; ð4:7Þ

δχ ¼ −
fffiffiffi
2

p ϵ ¼ 0: ð4:8Þ

The second condition immediately tells us that there are no
(nonvanishing) Killing spinors, indicating that the super-
symmetry of the bosonic background is spontaneously
broken.
The same conclusion follows from the integrability

condition for (4.7). It may be useful to contrast this situation
with the traditional Killing spinor analysis in anti–de Sitter
space (see Sec 2.2.3 of [20]). The integrability condition
for (4.7) is

½D̂μ; D̂ν�ϵ ¼
�
1

4
Rμνabγ

ab þm2

2
γμν

�
ϵ

¼ 1

2
ðH2 þm2Þγμνϵ ¼ 0; ð4:9Þ

which shows again that there are no nonvanishing solutions.

C. Gauge-fixing local supersymmetry
and gravitino in dS

The action (2.1) is locally supersymmetric. We now
impose the unitary gauge condition χ ¼ 0 and the action
becomes

e−1Lχ¼0 ¼
1

2κ2
½Rðe;ωðeÞÞ − ψ̄μγ

μνρDð0Þ
ν ψρ þ LSG;torsion�

þ 3m2

κ2
− f2 þ m

2κ2
ψ̄μγ

μνψν: ð4:10Þ

In this Lagrangian, f is the measure of spontaneous
supersymmetry breaking. When f ¼ 0 the theory reduces
to the well-known AdS4 supergravity [1]. The action (4.10)
is locally supersymmetric uniquely in this case, so that the
Lagrangian with m ≠ 0 and Λ ¼ −3m2=κ2 has effectively
zero physical gravitino mass [7]. The concept of the “mass
spectrum” in AdS space is somewhat tricky; see for example
a discussion of this issue with regard to the gravitino in
[21]. It is suggested there that the spin 3=2 particle is
massless in AdS space not whenm ¼ 0 but whenever gauge
invariance appears. In the AdS case above, the gauge
symmetry in the action (4.10) appears in case that f ¼ 0

which means Λ ¼ −3m2=κ2.
For Λ ¼ f2 − 3m2=κ2 > 0 we have dS supergravity with

a positive cosmological constant. In this case, as long as
Λ > 0 there is no criterion to distinguish between
“Lagrangian” mass m and a more “physical” mass. The
reason is that at f ≠ 0 the action in (4.10) never acquires a
local supersymmetry unless the numerous Goldstino de-
pendent terms are added to the action and it becomes the

expression in (2.1). In particular the restoration of gauge
invariance requires a coupling between γμψμ and a
Goldstino χ. Therefore the wisdom accumulated in studies
of the gravitino in AdS space, although nontrivial, cannot
be applied for dS supergravity in (2.1). Of course, Λ ¼
f2 − 3m2=κ2 > 0 describes a useful relation between the
“Lagrangian” gravitino mass, the supersymmetry breaking
scale and the cosmological constant.
We will confirm that the gravitino propagator7 is well

defined in dS space by showing that the wave operator in
Euclidean signature has no zero modes. Towards this end
we consider the wave equation on S4 which is the Wick
rotation of dS4. The radius of the sphere is given by
H2 ¼ κ2Λ=3. Consider now the mode equation

γμνρD̂νψρ ¼ λψμ; ð4:11Þ

D̂ν ≡ ∂ν þ
1

4
ωνabγ

ab þm
2
γν: ð4:12Þ

We have moved the mass term into the definition of the
traditional AdS covariant derivative [1] but note that ωνab is
the spin connection on S4. To clarify covariance issues
below we include the Christoffel connection, and thus
replace D̂ν → ∇̂ν.
Our goal is to show that λ ¼ 0 is not an allowed

eigenvalue, so that the wave operator is invertible. The
first step is to multiply Eq. (4.11) by γμ, obtaining

γνρ∇̂νψρ ¼
1

2
λγ · ψ : ð4:13Þ

We next apply ∇̂μ on (4.11), obtaining

1

2
γμνρ½∇̂μ;∇̂ν�ψρ¼

1

2
γμνρ

�
1

4
Rμνabγ

abþm2

2
γμν

�
ψρ¼ λ∇̂ ·ψ ;

−
3

2
ðH2þm2Þγ ·ψ ¼ λ∇̂ ·ψ : ð4:14Þ

We used Rab
μν ¼ ðeaμebν − eaνebμÞH2 and some γ-algebra to

obtain the last equality.
The original mode equation in (4.11) can be decomposed

to read

½γμγνρ∇̂νψρ þ γν∇̂νψ
μ − ∇̂μγ · ψ � ¼ λψμ: ð4:15Þ

If we now suppose that ψμ is a putative zero mode, this
equation simplifies markedly. The right side vanishes and
(4.13) and (4.14) imply that the first and third terms on the
left side vanish as well. Thus a zero mode must satisfy the
simple equation

7See [21] for an application of gravitino propagators in dS
and AdS spacetime to the problem of discontinuities in the
massless limit.
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γν∇̂νψ
μ ¼ ðγν∇ν þ 2mÞψμ ¼ 0: ð4:16Þ

To finish the job we square the operator obtaining

γργν∇̂ρ∇̂νψ
μ ¼ 0;

½∇̂ν∇̂νψ
μ − 3ðH2 þm2Þψμ −H2ðψμ − γμγ · ψÞ� ¼ 0:

ð4:17Þ

The last (…) comes from the Christoffel term in ∇̂, in
which γ · ψ vanishes since λ ¼ 0. To see where we are
going, let us make the temporary simplifying assumption
that m ¼ 0. We then multiply (4.17) by ψ�

μ, integrate over
the sphere, and integrate by parts to obtain

Z
d4x

ffiffiffi
g

p ½∇νψ
�
μ∇νψμ þ 4H2ψ�

μψ
μ� ¼ 0: ð4:18Þ

Since each term is non-negative we learn that any zero
mode ψμðxÞ vanishes identically.
When m ≠ 0, there is a small complication. The first

term in (4.17) becomes

∇̂ν∇̂νψ
μ ¼

�
∇ν þm

2
γν
��

∇ν þ
m
2
γν

�
ψμ

¼ ð∇ν∇ν −m2Þψμ; ð4:19Þ

after (4.16) is used. We can then rewrite (4.17) as

½∇ν∇νψ
μ − 4ðH2 þm2Þ�ψμ ¼ 0: ð4:20Þ

The same “multiply and integrate” argument then implies
that any zero mode vanishes identically.
In the unitary gauge the local supersymmetry of the

supergravity action (2.1) is broken. The validity of this
gauge-fixing in a dS background for the gravitino field
equations in Euclidean signature of space-time was dem-
onstrated above: there are no zero modes. In Lorentzian
signature it means that the gravitino differential operator in
dS space is invertible, by analytic continuation from the
Euclidean signature.
Much more is known about the gravitino field equations

in dS space, since the gravitino is one of the important
factors in cosmology. During inflation the background is
near dS and during the current acceleration, if caused by a
cosmological constant, the background is a dS space.
The classical gravitino equations which also follow from
our gauge-fixed action (4.10) were studied in [18,22]
in a Friedmann-Lemaître-Robertson-Walker metric as well
as in a de Sitter background. The relatively simple form of
the solution was obtained in the metric, conformal to flat,
ds2 ¼ a2ðdη2 − d~x2Þ. The solutionwas found in the form of

an expansion in momentum modes ψμ ∼
R
d3ke−i~k·~xψμ

~k
ðηÞ

where an explicit dependence on the conformal time

η enters via Hankel functions depending on jkηj; see for
example Eq. (10.5) in [18].

V. DISCUSSION

In this paper we have derived the component Lagrangian
and local SUSY transformation rules describing the cou-
pling of the nonlinear Volkov-Akulov theory [6] to super-
gravity complete in all orders in fermions. The two keys to
our construction were

(i) the reformulation [14,15] of the global VA theory in
terms of a chiral superfield X ¼ fX; χ; Fg subject to
the constraint X2 ¼ 0, and

(ii) the superconformal approach to N ¼ 1, D ¼ 4
supergravity in the form largely developed in [18]
and described in Chapter 16 of [17] where earlier
references from the 1980s on the superconformal
approach to supergravity are also given.

The combination of these two methods is successful
because the Lagrange multiplier that enforces the constraint
[13] maintains linearly realized local off-shell supersym-
metry, so that superconformal methods govern the initial
stages of the supergravity construction.
Nevertheless, one may distinguish between generic

models of [17] in which a model is completely specified
by its holomorphic superpotential WðzαÞ and Kähler
potential Kðzα; z̄ᾱÞ and models with one or more con-
strained superfields. In the first case the Fα appear in a
universal quadratic fashion and they are easily eliminated.
When there are constraints the dependence on the Fα is still
algebraic, but more complicated. [See (3.5), (3.9) above.]
Nevertheless, one can find F in closed form because the
scalar component of the constrained multiplet is quadratic
in the Grassmann valued Goldstino, X ¼ −ð1=2fÞχ2 þ � � �,
where f controls the cosmological constant.
The striking feature of our model is that it yields a pure

de Sitter N ¼ 1 supergravity action in which the physical
fields consist of the graviton, gravitino, and Goldstino, but
no scalars and no gauge multiplets.8 Previous constructions
of de Sitter supergravities require either a Uð1Þ gauge
multiplet with Fayet-Illiopoulos coupling and a charged
gravitino [25] with consequent anomaly problems, or
O’Raifeartaigh-type models with multiple chiral multiplets,
engineered to arrange a potential positive at a local
minimum. In our model de Sitter space is obtained as
the homogeneous solution because spontaneous supersym-
metry breaking is unavoidable in the presence of a
fermionic Goldstino. We hope that it will be helpful for
describing dark energy.
Since supersymmetry is broken in our model there are

no Killing spinors. There is a significant simplification of

8In [23] it has been shown that other superconformal con-
structions of such theories are dual to ours. In [24] the same
method as ours was used, but using a different gauge-fixing than
the one given in Eq. (3.6).
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the action in the unitary gauge in which the Goldstino
vanishes and the nonlinearities associated with it disappear.
We then find a very simple form of supergravity with the
cosmological constant Λ ¼ f2 − 3 m2

κ2
. The equation of

motion for the gravitino in a de Sitter background has
no zero modes and its solutions are known [18,22].
Another feature of our new dS supergravity model is that

it reduces in the flat space limit to the VA global theory [6]
in the form given in [15]. We emphasize that the con-
strained components of the Goldstino multiplet transform
as a conventional chiral multiplet after elimination of F.
There is a curious question for future work. The elegant

geometric Lagrangian of the original form of the VA theory
involves the determinant of a quadratic form in the
Goldstino, L ¼ Detðδμν þ χ̄γμ∂νχÞ. It is known how to
couple it to a supergravity background in the D-brane
actions; however, the corresponding supersymmetry upon
gauge-fixing local κ-symmetry is still a rigid supersym-
metry [4,5]. It would be useful to know whether de Sitter
supergravity with local supersymmetry presented in this
paper may be brought to the geometric form of the global
VA theory: this could generate further insights into the
nature of fundamental symmetries and the origin of the
positive cosmological constant.
So far we have explicitly constructed only the complete

pure dS supergravity action with local supersymmetry.
More general explicit supergravity models with constrained
superfields interacting with general matter multiplets, to
all orders in fermions, still have to be constructed. The
corresponding superconformal action was already pro-
posed in [13], for any number of chiral multiplets XI ,
with generic Kähler manifold and generic superpotential
together with constraints on functions of chiral multiplets
determined by Lagrange multipliers Λk:

L ¼ ½NðX; X̄Þ�D þ ½WðXÞ�F þ ½ΛkAkðXÞ�F: ð5:1Þ
None of the Λk can appear in the Kähler potential and the
AkðXÞ must be algebraic functions of XI . The super-
conformal action in (5.1) must be decoded and the theory
expressed in physical form. Extension of the procedures of
this paper will be needed to investigate the physics of this
more general framework.
In closing we note that pure and complete anti–de Sitter

supergravity [1] was first formulated in 1977, but the pure
and complete de Sitter supergravity is first constructed now,
38 years later. The action and its local supersymmetry
transformation are presented in Sec. II of this paper.
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APPENDIX: FROM SUPERCONFORMAL
ACTION TO SUPERGRAVITY

In order to write the D terms in (1.1), we use the relation
that for a chiral multiplet ðX;PLχ; FÞ of Weyl weight 1, the
D-action can be written in the form of an F-action:

½XX̄�D ¼ 1

2
½XF̄�F; ðA1Þ

where F̄ is the lowest component of a chiral multiplet of
Weyl weight 2 since it transforms only under PLϵ. The
components of this multiplet are given in [[17], (16.36)]:

ðF̄;DPRχ;□CX̄Þ: ðA2Þ
The explicit expression of the superconformal covariant
derivative is given in [[17], (16.34)] and of the super-
conformal d’Alembertian on a scalar field of Weyl weight 1
in [[17], (16.37)]. These steps are performed separately for
the X0 multiplet and for the X1 multiplet. Therefore, we
write the Lagrangian as

L ¼
�
1

2
ηIJXIF̄J

�
F
þ ½WðXIÞ�F þ ½ΛðX1Þ2�F: ðA3Þ

The superconformal F-type action is given in [[17],
(16.35)]. The first term of (A3) is identical to [[17],
(16.39)], where pure N ¼ 1 supergravity was explained,
and the W term was written in [[17], (17.19)].

1. Solution of the Lagrange multiplier constraints

Let us look at the term ½ΛðX1Þ2�F
e−1LΛ ¼ FΛðX1Þ2 þ Λð2X1F1 − χ̄1PLχ

1Þ − 2χ̄ΛPLχ
1X1

þ 1ffiffiffi
2

p ψ̄μγ
μð2ΛX1PLχ

1 þ ðX1Þ2PLχ
ΛÞ

þ 1

2
ψ̄μPRγ

μνψνΛðX1Þ2 þ H:c: ðA4Þ

The field equation of Λ is
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2X1F1 − χ̄1PLχ
1 þ

ffiffiffi
2

p
ψ̄μγ

μX1PLχ
1

þ 1

2
ψ̄μPRγ

μνψνðX1Þ2 ¼ 0: ðA5Þ

This is solved as in the rigid case by

X1 ¼ χ̄1PLχ
1

2F1
≡ χ2

2F
; F1 ≡ F; χ1 ≡ χ; ðA6Þ

since this kills all components of the chiral multiplet ðX1Þ2.
It follows that the remaining equations for χΛ and FΛ are
also satisfied.

2. Details of ½12 ηIJXIF̄J�F and ½WðXIÞ�F
Using [17] as described above, the first two terms of (A3)

can be written as

e−1L¼ 1

2
ηIJðFIF̄JþXI

□
CX̄J− χ̄IPLDχJÞ

þWIFI −
1

2
WIJ χ̄

IPLχ
J

þ 1ffiffiffi
2

p ψ̄μγ
μ

�
1

2
ηIJðPLχ

IF̄JþXIDPRχ
JÞþWIPLχ

I

�

þ1

2
ψ̄μPRγ

μνψν

�
1

2
ηIJXIF̄JþW

�
þH:c: ðA7Þ

The superpotential and its first and second derivatives
which we need in (A7) are

W ¼ a

�
X0ffiffiffi
3

p
�

3

þ b

�
X0ffiffiffi
3

p
�

2

X1;

W0 ¼ 3a
ðX0Þ2
ð ffiffiffi

3
p Þ3 þ

2

3
bX0X1; W1 ¼

1

3
bðX0Þ2;

W00 ¼ 6a
X0

ð ffiffiffi
3

p Þ3 þ
2

3
bX1; W01 ¼

2

3
bX0: ðA8Þ

This action can be written in the form of Eqs. (3.2), (3.3) in
Sec. III (after noting that the Weyl connection bμ terms
cancel).
The next major step is the elimination of auxiliary fields,

but it is useful to first make some simplifications in our
superconformal action. This will facilitate the derivation of
(3.4). The simplifications are possible because we know
that all the gauge connections recombine in covariant
derivatives in order to make field equations supercovariant.
It saves a lot of work to recognize this structure. In
particular, the equation of motion for X1 should be a
conformally covariant equation modulo other field equa-
tions. We start by writing the X̄1 field equation, before
imposing the constraint:

e−1
δL1

δX̄1
¼ □

CX1 þW01F̄0 −
1

2
W001χ̄

0PRχ
0 þ 1ffiffiffi

2
p ψ̄μγ

μ

�
DPLχ

1 þW01PRχ
0 þ 1ffiffiffi

2
p ðF1 þW1ÞPRγ

νψν

�

−
1

2
ψ̄μPLψ

μ½F1 þW1�: ðA9Þ

Note that the expression in square brackets in the first line is the field equation of PRχ
1, while the one in the second line is

the field equation of F̄1. Writing out some covariant derivatives leads to further simplifications. One of these is that terms
with F1 all cancel. These simplifications lead to

e−1
δL1

δX̄1
¼ □

0CX1 þW01F̄0 −
1

2
W001χ̄

0PRχ
0 þ 1ffiffiffi

2
p ψ̄μγ

μW01PRχ
0 þ 1ffiffiffi

2
p ψ̄μγ

μνPLD0
νχ

1 þ 1

2
ψ̄μγ

μνPLψνW1: ðA10Þ

One can see that this allows us to identify the terms AcX1 þ Bc in (3.4). The modified conformal derivatives that appear in
(A10) are given by

□
0CX ¼ eaμ

�
∂μDaX − 2bμDaX þ χμabDbX þ 2fμaX þ iAμDaX þ 1ffiffiffi

2
p ϕ̄μγaPLχ

�
;

DaX ¼ eμa

�
∂μX − bμX − iAμX −

1ffiffiffi
2

p ψ̄μPLχ

�
;

PLD0
μχ ¼ PL

��
∂μ þ

1

4
ωμ

bcγbc −
3

2
bμ þ

1

2
iAμ

�
χ −

1ffiffiffi
2

p ðDXÞψμ −
ffiffiffi
2

p
Xϕμ

�
: ðA11Þ

As stated above the explicit bμ terms cancel with those in the spin connection ωμ
ab ¼ ωμ

abðe; b;ψÞ and in fμμ [given in [17]
[(16.26)]].
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3. Gaussian integration of auxiliary field F0

SinceF1 occurs in the expression forX1, we cannot use its
field equation immediately. But the other auxiliary fields,F0

and Aμ, are eliminated quite simply. We start with F0; its
elimination preserves the general structure of (3.4).
In order to eliminate the auxiliary field F0, we first

collect the terms in the action with FI . We write L1;F as

L1;F ¼ ηIJðFI þ ηIKWK̄ÞðF̄J þ ηJLWLÞ −WIη
IJW J̄ :

ðA12Þ

We eliminate F0 and thus remain with

L1;F≈ðF1þW1ÞðF̄1þW1Þ−W1W 1̄þW0W 0̄: ðA13Þ

Note that the term quadratic inW0 adds an additional term
to the Ac term, so that now after elimination of F0 we have
the following entries for (3.4)

Ac ¼
�
∂μ

ffiffiffi
g

p
gμν∂ν þ ietμc∂μ þ

1

2
i∂μðetμcÞ þ erc

�
; ðA14Þ

rc ¼ rc0 þW01W01 ¼ −
1

6
RðωðeÞÞ þ 1

6
ψ̄μγ

μνρDð0Þ
ν ψρ − AaAa −

1

6
LSG;torsion þ

4

9
jbX0j2; ðA15Þ

Bc ¼ B1 þ W̄01½W0�X1¼0 −
1

2
WIJ1χ̄

IPRχ
J þ 1ffiffiffi

2
p WI1ψ̄μγ

μPRχ
I þ 1

2
W1ψ̄μPLγ

μνψν

¼ 1ffiffiffi
2

p ½−e−1∂μðeψ̄νγ
μγνPLχ

1Þ − 2

3
χ̄1PLγ

μνDμψν þ iAμψ̄μPLχ
1�

þ b̄
3

�
2

1ffiffiffi
3

p aðX0Þ2X̄0 − χ̄0PRχ
0 þ

ffiffiffi
2

p
ψ̄ · γPRχ

0X̄0 þ 1

2
ðX̄0Þ2ψ̄μγ

μνPLψν

�
: ðA16Þ

Cc ¼ −e−1X̄0

�
∂μ

ffiffiffi
g

p
gμν∂ν þ ietμc∂μ þ

1

2
i∂μðetμcÞ þ erc0

�
X0 − X̄0B0 − X0B̄0 þ C0 þ ½W0�X1¼0½W0�X̄1¼0

þ
��

−
1

2
WIJ χ̄

IPLχ
J þ 1ffiffiffi

2
p ψ̄μγ

μWIPLχ
I þ 1

2
ψ̄μPRγ

μνψνW
�

X1¼0

þ H:c:

�
ðA17Þ

4. Gaussian integration of auxiliary field Aμ

Then we turn to the elimination of Aμ. We write as in [[17], (17.21)]

e−1
δL1

δAμ ¼ i½ðDμXIÞηIJX̄J̄ − H:c:� þ 1

2
iηIJ χ̄IPLγμχ

J̄

¼ 2AμXIηIJX̄J þ i

��
∂μXI þ 1ffiffiffi

2
p ψ̄μPLχ

I

�
ηIJX̄J̄ − H:c:

�
þ 1

2
iηIJ χ̄IPLγμχ

J̄ ; ðA18Þ

where 1
N ¼ − 1

X0X̄0 − X1X̄1

ðX0X̄0Þ2. The solution for Aμ is

Aμ ¼ Aμ þAF
μ;

Aμ ¼ i
1

2N
ηIJðXI∂μX̄J − X̄I∂μXJÞ ¼ A0

μ þA1
μ;

A0
μ ¼ i

1

2N
ð−X0∂μX̄0 þ X̄0∂μX0Þ;

A1
μ ¼ i

1

2X0X̄0
ð−X1∂μX̄1 þ X̄1∂μX1Þ;

AF
μ ¼

1

4N
iηIJ½

ffiffiffi
2

p
ψ̄μðPLχ

JX̄I − PRχ
JXIÞ þ χ̄IPLγμχ

J� ¼ AF0
μ þAF1

μ ;

AF0
μ ¼ −

1

4N
i½

ffiffiffi
2

p
ψ̄μðPLχ

0X̄0 − PRχ
0X0Þ þ χ̄0PLγμχ

0�;

AF1
μ ¼ −

1

4X0X̄0
i½

ffiffiffi
2

p
ψ̄μðPLχ

1X̄1 − PRχ
1X1Þ þ χ̄1PLγμχ

1�: ðA19Þ
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The terms A0
μ and AF0

μ vanish after gauge-fixing (3.6), and
the on-shell value of Aμ simplifies to

Aμ ¼ i
κ2

6

�
ðX̄∂μX − X∂μX̄Þ

−
1

2
½

ffiffiffi
2

p
ψ̄μðPLχX̄ − PRχXÞ þ χ̄PLγμχ�

�
: ðA20Þ

After elimination, the entire effect of Aμ resides in a
contribution to the Lagrangian

LA ¼ eNAμAμ ¼
κ2

24
χ2χ̄2: ðA21Þ

This simple form arises only from the last term of (A20)
after Fierz rearrangement. It contributes to the expression C
in (3.7), which is

C¼ 1

2κ2
½RðωðeÞÞ−ψ̄μγ

μνρDð0Þ
ν ψρþLSG;torsion�þ3

m2

κ2
−f2

þ 1ffiffiffi
2

p fψ̄μγ
μχþ m

2κ2
ψ̄μγ

μνψνþ
κ2

24
χ2χ̄2

−
1

2
χ̄Dð0Þχ−

1

32
ie−1εμνρσψ̄μγνψρχ̄γ�γσχ−

1

2
ψ̄μPRχψ̄

μPLχ:

ðA22Þ

5. Non-Gaussian integration of auxiliary field F

Here we give the detailed derivation of results in the last
part of Sec. III. We start with the action (3.7) where X ¼ χ2

2F

and X̄ ¼ χ̄2

2F̄. Then we solve for the fields F and F̄ using
their algebraic equations of motion. The field equation for
F is

δLðX;FÞ
∂F̄ −

X̄
F̄
δLðX;FÞ

∂X̄ ¼ 0 → F þ f −
X̄
F̄
ðAX þ BÞ ¼ 0:

ðA23Þ

This implies that

F ¼ −f þOðχ̄2Þ; F̄ ¼ −f̄ þOðχ2Þ; ðA24Þ

where e.g. Oðχ̄2Þ means that the correction terms are
proportional to an undifferentiated χ̄2. The complete
expression is

F ¼ −f
�
1 −

X̄
fF̄

ðAX þ BÞ
�
: ðA25Þ

Since X̄ is nilpotent, we have also

F−1 ¼ −
1

f

�
1þ X̄

fF̄
ðAX þ BÞ

�
: ðA26Þ

This allows us to write the following expression for X

X ¼ χ2

2
F−1 ¼ −

χ2

2f

�
1þ X̄

fF̄
ðAX þ BÞ

�

¼ −
χ2

2f

�
1þ χ̄2

2ff̄2

�
A
χ2

2F
þ B

��

¼ −
χ2

2f

�
1 −

χ̄2

2ff̄2

�
A
χ2

2f
− B

��
; ðA27Þ

where the second line is obtained using (A24) and for the
third line we observe that the two derivatives in Amust both
act on χ2 in order not to be killed by the overall factor χ2.9

We define now for convenience

A ¼ χ̄2

2ff̄2

�
A
χ2

2f
− B

�
: ðA28Þ

The quantity A is thus fully determined by the functions
A, B and f that appear in the action and the fermionic
composite scalar χ2 (and their complex conjugates). The

dependent field X is X ¼ − χ2

2f ð1 −AÞ. In order to find F
we have to consider

X̄½AX þ B� ¼ ð1 − ĀÞ χ̄
2

2f̄

�
A

�
χ2

2f
ð1 −AÞ

�
− B

�

¼ ð1 − ĀÞ
�
ff̄A −

χ̄2

2f̄
A

�
χ2

2f
A
��

: ðA29Þ

In the last term, the A should fully act on the leading factor
of A in (A28) in order that this factor does not clash with
the leading χ̄2. It should also fully act as the□ factor, which
means that we can write A also as Ā in order to get the
following elegant equation:

χ̄2

2f̄
A

�
χ2

2f
A
�

¼ χ̄2χ2

4ff̄

�
Ā

χ̄2

2ff̄2

��
A
χ2

2f
− B

�

¼ A
χ2

2f
Ā
χ̄2

2f̄
¼ A

�
ff̄ Āþ χ2

2f
B̄

�
: ðA30Þ

Introducing this in (A29) and using the nilpotency ofA and
Ā ¼ Oðχ2Þ gives

X̄½AX þ B� ¼ Aff̄

�
1 − 2Ā −

χ2

2f2f̄
B̄

�
: ðA31Þ

9In fact, we could move f outside of the A operator, and even
replace the A by only its part □, but this is not convenient for
what follows below.
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We find therefore with (A25)

F ¼ −f
�
1 −

f̄
F̄
A
�
1 − 2Ā −

χ2

2f2f̄
B̄

��
: ðA32Þ

This implies e.g.

−
f̄
F̄
¼ 1 − ĀþOðχ2χ̄2Þ; ðA33Þ

which gives as a final expression for F:

F ¼ −f
�
1þA

�
1 − 3Ā −

χ2

2f2f̄
B̄

��
: ðA34Þ

Due to the orders of nilpotent quantities, we also obtain

ðF þ fÞðF̄ þ f̄Þ ¼ ff̄AĀ: ðA35Þ
Also, the other quantity that appears in the action
simplifies:

X̄ðAX þ BÞ þ XB̄ ¼ Aff̄½1 − 2Ā� − χ2

2f
B̄: ðA36Þ

Observe that

ff̄A ¼ χ̄2

2f̄
A
χ2

2f
−
χ̄2

2f̄
B; ðA37Þ

where the first term is real up to a total derivative, such that
the expression (A36) leads to a real action. We can write the
whole Lagrangian (3.7) as

e−1L ¼ ff̄ð−1þA −AĀÞ − χ2

2f
B̄þ C

¼ −ff̄ þ χ̄2

2f̄
A
χ2

2f
−
�
χ2

2f
B̄þ χ̄2

2f̄
B

�
þ C

−
χ2χ̄2

16ðff̄Þ2 ðf
−1
□χ2 − 2BÞðf̄−1□χ̄2 − 2B̄Þ:

ðA38Þ

[1] P. K. Townsend, Cosmological constant in supergravity,
Phys. Rev. D 15, 2802 (1977).

[2] K. Pilch, P. van Nieuwenhuizen, and M. F. Sohnius,
De Sitter superalgebras and supergravity, Commun. Math.
Phys. 98, 105 (1985); J. Lukierski and A. Nowicki, All
possible de Sitter superalgebras and the presence of ghosts,
Phys. Lett. 151B, 382 (1985).

[3] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, De
Sitter vacua in string theory, Phys. Rev. D 68, 046005 (2003);
S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P.
McAllister, and S. P. Trivedi, Towards inflation in string
theory, J. Cosmol. Astropart. Phys. 10 (2003) 013.

[4] E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen,
and T. Wrase, D3 and dS, J. High Energy Phys. 05 (2015)
058; R. Kallosh and T. Wrase, Emergence of spontaneously
broken supersymmetry on an anti-D3-brane in KKLT dS
vacua, J. High Energy Phys. 12 (2014) 117.

[5] R. Kallosh, F. Quevedo, and A. M. Uranga, String theory
realizations of the nilpotent Goldstino, arXiv:1507.07556.

[6] D. Volkov and V. Akulov, Is the neutrino a Goldstone
particle?, Phys. Lett. 46B, 109 (1973).

[7] S. Deser and B. Zumino, Broken supersymmetry and
supergravity, Phys. Rev. Lett. 38, 1433 (1977).

[8] E. Dudas and J. Mourad, Consistent gravitino couplings
in nonsupersymmetric strings, Phys. Lett. B 514, 173
(2001).

[9] G. Pradisi and F. Riccioni, Geometric couplings and brane
supersymmetry breaking, Nucl. Phys. B615, 33 (2001).

[10] D. V. Volkov, Supergravity before and after 1976,
arXiv:hep-th/9404153.

[11] S. Samuel and J. Wess, A superfield formulation of the
nonlinear realization of supersymmetry and its coupling to

supergravity, Nucl. Phys. B221, 153 (1983); K. Choi, A.
Falkowski, H. P. Nilles, and M. Olechowski, Soft super-
symmetry breaking in KKLT flux compactification, Nucl.
Phys. B718, 113 (2005).

[12] E. A. Ivanov and A. A. Kapustnikov, Geometry of sponta-
neously broken local N ¼ 1 supersymmetry in superspace,
Nucl. Phys. B333, 439 (1990).

[13] S. Ferrara, R. Kallosh, and A. Linde, Cosmology with
nilpotent superfields, J. High Energy Phys. 10 (2014) 143.

[14] M. Rocek, Linearizing the Volkov-Akulov Model,
Phys. Rev. Lett. 41, 451 (1978); E. A. Ivanov and A. A.
Kapustnikov, General relationship between linear and non-
linear realizations of supersymmetry, J. Phys. A 11, 2375
(1978); U. Lindstrom and M. Rocek, Constrained local
superfields, Phys. Rev. D 19, 2300 (1979); R. Casalbuoni, S.
De Curtis, D. Dominici, F. Feruglio, and R. Gatto, Nonlinear
realization of supersymmetry algebra from supersymmetric
constraint, Phys. Lett. B 220, 569 (1989).

[15] Z. Komargodski and N. Seiberg, From linear SUSY to
constrained superfields, J. High Energy Phys. 09 (2009)
066.

[16] S. M. Kuzenko and S. J. Tyler, Relating the Komargodski-
Seiberg and Akulov-Volkov actions: Exact nonlinear field
redefinition, Phys. Lett. B 698, 319 (2011).

[17] D. Z. Freedman and A. Van Proeyen, Supergravity
(Cambridge Univ. Pr., Cambridge, UK, 2012), p. 607.

[18] R. Kallosh, L. Kofman, A. D. Linde, and A. Van Proeyen,
Superconformal symmetry, supergravity and cosmology,
Classical Quantum Gravity 17, 4269 (2000); Classical
Quantum Gravity 21, 5017 (2004); R. Kallosh, L. Kofman,
A. D. Linde, and A. Van Proeyen, Gravitino production
after inflation, Phys. Rev. D 61, 103503 (2000).

BERGSHOEFF et al. PHYSICAL REVIEW D 92, 085040 (2015)

085040-12

http://dx.doi.org/10.1103/PhysRevD.15.2802
http://dx.doi.org/10.1007/BF01211046
http://dx.doi.org/10.1007/BF01211046
http://dx.doi.org/10.1016/0370-2693(85)91659-4
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1088/1475-7516/2003/10/013
http://dx.doi.org/10.1007/JHEP05(2015)058
http://dx.doi.org/10.1007/JHEP05(2015)058
http://dx.doi.org/10.1007/JHEP12(2014)117
http://arXiv.org/abs/1507.07556
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://dx.doi.org/10.1103/PhysRevLett.38.1433
http://dx.doi.org/10.1016/S0370-2693(01)00777-8
http://dx.doi.org/10.1016/S0370-2693(01)00777-8
http://dx.doi.org/10.1016/S0550-3213(01)00441-2
http://arXiv.org/abs/hep-th/9404153
http://dx.doi.org/10.1016/0550-3213(83)90622-3
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.032
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.032
http://dx.doi.org/10.1016/0550-3213(90)90046-G
http://dx.doi.org/10.1007/JHEP10(2014)143
http://dx.doi.org/10.1103/PhysRevLett.41.451
http://dx.doi.org/10.1088/0305-4470/11/12/005
http://dx.doi.org/10.1088/0305-4470/11/12/005
http://dx.doi.org/10.1103/PhysRevD.19.2300
http://dx.doi.org/10.1016/0370-2693(89)90788-0
http://dx.doi.org/10.1088/1126-6708/2009/09/066
http://dx.doi.org/10.1088/1126-6708/2009/09/066
http://dx.doi.org/10.1016/j.physletb.2011.03.020
http://dx.doi.org/10.1088/0264-9381/17/20/308
http://dx.doi.org/10.1088/0264-9381/21/21/C01
http://dx.doi.org/10.1088/0264-9381/21/21/C01
http://dx.doi.org/10.1103/PhysRevD.61.103503


[19] I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti,
The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B
733, 32 (2014).

[20] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[21] S. Deser and A. Waldron, (Dis)continuities of
massless limits in spin 3=2 mediated interactions
and cosmological supergravity, Phys. Lett. B 501, 134
(2001).

[22] G. F. Giudice, A. Riotto, and I. Tkachev, Thermal and
nonthermal production of gravitinos in the early Universe,
J. High Energy Phys. 11 (1999) 036.

[23] E. Dudas, S. Ferrara, A. Kehagias, and A. Sagnotti, Proper-
ties of nilpotent supergravity, arXiv:1507.07842.

[24] F. Hasegawa and Y. Yamada, Component action of nilpotent
multiplet coupled to matter in 4 dimensional N ¼ 1 super-
gravity, arXiv:1507.08619.

[25] D. Z. Freedman, Supergravity with axial gauge invariance,
Phys. Rev. D 15, 1173 (1977).

PURE DE SITTER SUPERGRAVITY PHYSICAL REVIEW D 92, 085040 (2015)

085040-13

http://dx.doi.org/10.1016/j.physletb.2014.04.015
http://dx.doi.org/10.1016/j.physletb.2014.04.015
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://dx.doi.org/10.1016/S0370-2693(01)00109-5
http://dx.doi.org/10.1016/S0370-2693(01)00109-5
http://dx.doi.org/10.1088/1126-6708/1999/11/036
http://arXiv.org/abs/1507.07842
http://arXiv.org/abs/1507.08619
http://dx.doi.org/10.1103/PhysRevD.15.1173

