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Using superconformal methods we derive an explicit de Sitter supergravity action invariant under
spontaneously broken local A" = 1 supersymmetry. The supergravity multiplet interacts with a nilpotent
Goldstino multiplet. We present a complete locally supersymmetric action including the graviton and the
fermionic fields, gravitino and Goldstino, no scalars. In the global limit when the supergravity multiplet
decouples, our action reproduces the Volkov-Akulov theory. In the unitary gauge where the Goldstino
vanishes we recover pure supergravity with the positive cosmological constant. The classical equations
of motion, with all fermions vanishing, have a maximally symmetric solution: de Sitter space.
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I. INTRODUCTION

The cosmological constant is known to be negative or
zero in pure supergravity, if there are no scalar fields [1].
Pure supergravity with a positive cosmological constant
without scalars was not previously known. In this paper we
present the locally N =1 supersymmetric action and
transformation rules of such a theory. De Sitter space is
a homogeneous solution of the bosonic equations of
motion. Supersymmetry is spontaneously broken, so there
is no conflict with no-go theorems that prohibit linearly
realized supersymmetry [2].

The main motivation for this work is an increasing
amount of observational evidence for an accelerating
Universe where a positive cosmological constant is a good
fit to data. The next step toward a better understanding of
dark energy is not expected before the ESA space mission
Euclid launches in 2020. It is therefore desirable to find a
simple version of de Sitter supergravity as a natural source
for the positive cosmological constant.

The Kachru, Kallosh, Linde and Trivedi (KKLT) uplifting
procedure for constructing de Sitter (dS) vacua in string
theory was proposed in [3]. It was recently updated to the
status of a manifestly supersymmetric uplifting using the
D3-brane on top of an O3-plane at the bottom of a warped
throat [4,5]. It corresponds to a globally supersymmetric
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Volkov-Akulov (VA) Goldstino theory [6] coupled to a
supergravity background. The global supersymmetry is
realized nonlinearly. This recent development indicates that
a scalar independent de Sitter supergravity might exist.
Another indication of the existence of such a supergravity
was presented in [7], where the proposal to couple the VA
Goldstino theory [6] to supergravity was made. However, a
complete action and transformation rules that describe this
coupling have never been presented. The supersymmetric
coupling of the gravitino and Goldstino in D = 10 at the
quadratic level in fermions was studied in [8,9]. The curved
superspace formulation of the VA Goldstino theory was
studied soon after the discovery of this theory; see for
example a review paper [10] or an application of the
constrained superfield formalism in superspace in [11].
The relation between the superspace approach and non-
linearly realized supersymmetries was investigated in [12].

All earlier theories were not yet developed to the level
of a component supergravity action with spontaneously
broken local supersymmetry, generalizing the globally
supersymmetric VA model. To construct such an action
is the purpose of our paper. We will do this by decoding
the superconformal action underlying dS supergravity,
proposed in [13]. Such a decoding procedure, in addition
to a standard gauge-fixing of local Weyl, R-symmetry
and special supersymmetry requires an elimination of the
auxiliary field F of the Goldstino multiplet from the action
which has a non-Gaussian dependence on F.

The important step for our ability to derive the complete
action of a pure dS supergravity is the observation made in
[14,15] that VA theory can be described using a chiral
superfield S(x,0) =X + V20y + 6*F of global N =1
supersymmetry that satisfies the nilpotent constraint
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S%(x,0) = 0. The constraint sets X = yP;y/2F and thus
eliminates the would-be fundamental scalar partner of the
Goldstino y. The Komargodski—Seiberg (KS) model con-
structed in this way [15] is equivalent to the original VA
geometric model. That model with the action det E, where
E is a supersymmetric 1-form, is related to the model of
[15] by the nonlinear change of variables presented in [16].
The fact that X is Grassmann valued so that XP;y =0
greatly simplifies the construction of [15] and of our locally
supersymmetric extension.

The superconformal approach to pure de Sitter super-
gravity suggested in [13] is the following: The model at the
superconformal level contains the chiral compensating multi-
plet {X°,4° FO}; a chiral Goldstino multiplet {X"',»', F'};
and a Lagrange multiplier multiplet {A, y*, F}, interacting
with the Weyl gravitational multiplet. The action is

L=[NX.X)lp+WX)p+ AKX (1D

where the notation of Chapter 16 of [17] is used’ and all three
chiral supermultiplets are unconstrained. All supersymme-
tries in (1.1) are linearly realized and manifest. Models of this
type differ from the generic models in [17], and in other
textbooks, in that the Kéhler manifold of the embedding space
N(X, X) does not depend on the superfield A but does depend
on X!, I =0, 1. Therefore the equation of motion for A is
algebraic and can be solved producing the superfield con-
straint (X')? = 0. This in turn leads to a nongeneric super-
gravity: the elimination of the auxiliary field F! requires a
more complicated procedure since its algebraic equation of
motion contains both positive and negative powers of F', the
latter due to the relation X! = 7' P, ' /2F" which arises as
the solution of the constraint. Therefore, the knowledge of the
Kihler potential K and the superpotential W at the super-
gravity level is not sufficient in the presence of the nilpotent
Goldstino multiplet to produce the full fermionic action.”

At the superconformal level, the dynamics of our pure
dS supergravity model is specified by a quadratic Kihler
potential and cubic superpotential:

N = nIJXIXJ = _XOXO +X1X1,

X0\ 3 X0\ 2
W=al—=) +bl—=) X".
Gt
After the superfield constraint (X')? = 0 is implemented,

the last term in the action (1.1) vanishes. The parameters a,
b are dimensionless as they must be in a conformal theory.

(1.2)

The superconformal action (1.1) without the Lagrange multi-
plier superfield A was studied in application to inflation and in a
de Sitter background in [18].

3See Egs. (2.4)—(2.6) in [19] where the first supergravity model
of this kind was presented. The fermion terms in this reference are
incomplete, which gives an example of a supergravity where K
and W are not sufficient for the determination of the complete
action; only the bosonic part can be deduced from K and W.
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One passes to the physical form of the theory by fixing
the conformal gauge using X° = v/3/«, thus introducing
Newton’s constant k> = 8zG = M2, It is then convenient®
to redefine our parameters as follows: @ = xm and b = *f.
The new parameters m and f have mass dimension 1 and 2,
respectively, and we take them to be real.” The cosmo-
logical constant A and the Lagrangian mass term of the
gravitino are

A= f2 - 3’712]‘4123‘17 L, = %Wﬂyﬂulﬂw (13)
where y, has dimension 1 /2.

The physics of the model depends on the relation
between these quantities. When m =0, f # 0, we have
the pure de Sitter model with nonlinearly realized super-
symmetry discussed above. When m # 0, f = 0, which
requires that the fermion of the nilpotent multiplet vanishes,
' = 0; for consistency, we have the basic anti—de Sitter
supergravity theory with linearly realized supersymmetry
[1,7]. In all other cases there is nonlinearly realized
supersymmetry, and the sign of A determines whether the
homogeneous bosonic geometry is de Sitter, Minkowski, or
anti—de Sitter spacetime. Nonlinearly realized supersym-
metry (essentially the same as spontaneous breaking) means
that the vacuum expectation value of the SUSY transform
of the Goldstino field y does not vanish, (5y) # 0.

In Sec. II of the paper we present the main result, the
novel pure dS supergravity action and its local supersym-
metry. In Sec. III we explain the main logical steps in the
derivation of the supergravity theory from the supercon-
formal model in [13], with the details given in the Appendix.
In Sec. IV we study features of dS supergravity. We perform
the limit of our new supergravity theory to flat spacetime,
where fields of the gravity multiplet are decoupled and
m — 0. We show how the VA theory is recovered via its
KS version. In the same section we look at the possible
gauge-fixing of the local supersymmetry. In the unitary
gauge with y! = 0 the gravitino wave operator in Euclidean
signature has no zero modes. In Sec. V we point out that the
assumption of the mere existence of the nilpotent Goldstino
multiplet signifies a natural unavoidable spontaneous super-
symmetry breaking, without the need for engineering, as
e.g. in the O’Raifeartaigh type models. Finally we note that
the VA theory, when embedded in supergravity, leads to a
positive cosmological constant term Lg; = —/— det gf>.

“In cosmological applications one often works with Planck
units, Mp; = k! = 1; however, here we would like to study also
the flat space limit. Therefore we keep « consistently, in agree-
ment with [17].

°In Sec. Il and the Appendix we give the formulas for complex
a and b (or m and f). Then b = «>f. One can take these two
parameters to be real and positive after chiral rotations of the fields.
If a=|ale'’ and b = |b|e'%, the phases are removed by replacing
Pry, by PLt//Meigu/z, P,y by P yei®/2=%) and corresponding
rotations on the composite expressions X = X' and F'.
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Without coupling to gravity and gravitino, without local ~ IL. PURE DS N = 1 SUPERGRAVITY ACTION AND
supergravity, the vacuum energy term in the VA action ITS LOCAL SUPERSYMMETRY
Lya = —f>+---is a hint but not a reliable origin of the
dark energy/cosmological constant; now in the context
of dS supergravity it is a cosmological constant.

The action invariant under spontaneously broken local
supersymmetry is given by the following expression

1 _ m?
'L = N2 [R(w(e)) - l//ﬂyﬂprl(/())l/Ip + [’SG,torsion] +3 2 f2
2K K
+L,,7 PX A+ A rw, + 2){ va
ﬁ K a2 T g
1 . 1_ _
- EXD x— 3—216 L PN Y TV Y X — ZWMPR)(WﬂPL)(
2 =2
7o (x X Ly Uy
£ AZ_ B+%2-B —2B )| —=2--2B 2.1
ETRY (2f +2f> 16f4<f )(f ) 21)
where
L 1
X E){PL)(v a +4wﬂ (e)Yabv
| _ _ _ _
'CSG,torsion == E [(Wpyﬂwu)(l//py,ul//y + 21//;)71/[///4) - 4(W/47 : l//) (1//”7 : l//)] (22)
1
A=0+ir9, +zie7'9,(et") + r, 8M\/_g Yo, (2.3)
2 TV
1. 1 (0
= Zu//ﬂ/*y pﬂl//pv r= _8 [R((u(e)) - W/ﬁ’” le(l )Wp + ’CSG,torsion - 8K2f2}’
1 ~ o 2 ) m o 1_
B = vl 10, (ew,y"r"Pry) — APy Dﬂwy} +f (2; W Pupy), (2.4)
1
Dﬂl// <a +4w/4 (67 W)yab> Y- (25)

The auxiliary fields F and A, of the supergravity multiplet were eliminated by their algebraic equations of motion. The
cosmological constant in the first line is A = f> — 3 ’:—22 In the second line the gravitino couples to fy*y which is the linear
part of the supercurrent of the VA theory; nonlinear corrections are contained in B in (2.4). There is also a quadratic
gravitino masslike term and a quartic y27> originating from elimination of A,. The third line of the action includes a
Goldstino kinetic term and quartic fermion interactions. The fourth line presents nonlinear Goldstino terms.

The supersymmetry transformations of the fields y and ey, w, can be obtained from, respectively, (16.33), (16.45), and
(16.47) of [17]. For the fields of the gravity multiplet we have

1

ey = Eéy“wﬂ, (2.6)
1 3 _
8Py, =Pr| 0, +4w(e W)t 21A + 7 A+ \/§7/”F €. (2.7)
with
2 m 1
:\/gﬂ+— X=V3———(1-A 2.8
p \/gf P4 ( ) (2.8)
and
2
A, = g [(Xa X -X0,X) ——[\/_l//,,(PL)(X PryX) —I—)(PL}/”;(]} (2.9)
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Here
e
X=-2-(1-A), 2.10
=4 (2.10)
-2 2
X X
A== (AZ=-B|. 2.11
2f? ( 2f ) @10
The local supersymmetry transformation for the

Goldstino is

5PL)(:\/L§PL {—f—f—(ﬁ—m)X—fA(l—&Zl—;(—;B’)]e

1 _
—EPLyf‘el//”PL;(. (2.12)

III. DERIVATION OF PURE DS SUPERGRAVITY

In this section we present the main steps in the derivation
of dS supergravity from the underlying superconformal
theory with linearly realized supersymmetry and Lagrange
multiplier, as shown in Egs. (1.1), (1.2). Details are given in
the Appendix.

We will often use the notation for the physical multiplet
{X',4",F'} ={X,y,F}. The role of the compensator
multiplet {X°, 4%, F°} is to fix the local Weyl and R-
symmetry via the choice X* = X0 = \/g and to fix the
special local supersymmetry using ¥° = 0. But in a super-
conformal setting where equations depend covariantly on
both multiplets {X', y/,F'}, I =0, 1 we will use the
original notation.

We first consider the component form of the Lagrange
multiplier term in the action in (1.1) and solve the algebraic
equations of motion for the superfield {A,y", F}. The
A(x) field equation is given in (A5); its solution fixes
e

X ===
2F°

(3.1)

provided that F # 0. The equations of motion for y%, FA
are also satisfied without further constraints.

The detailed form of the first two terms in the super-
conformal action (1.1)is givenin (A7) which we then write as

_ 1
L =nyX"9,1/99"0, + ietid, +§i8M(et’é) +er§| X’

+ en X'Bl + en; X'BL + eC5 + L + €Ly ferm>
(3.2)

(up to total derivatives). The indices / =0, 1 and the
subscript ¢ are a reminder that we are still in the super-
conformal setting with local conformal symmetry (and other
symmetries) unbroken:
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T
fe==2A" 42,y "y,

1 |
1 ==cR(@()) + iDL,

1
_A#Au - 6£SG.torsion ’

_ 2_
B! =7 [—e™'0, (e, 7"y PrLy") —gx’ Py Dy,
+iAMg, Pry'],

1_ 1._
Cs=n1y <—5 POy’ +' A,

1. —1 auvpo,s, =1 J 1— Y J
3l LYY ok _EWﬂPRZ WPy ).
;CLFZT’]I‘/F]FJ‘FWIF[‘FW]F[,
1 _ 1 _
‘CW.ferm:_EWIJ)(IPL)(J+7§WyyﬂWIPL)(I

1
+§l/7MPR}/””l//yW+H.C., (3.3)

where D,(,O) and LG torsion are defined in (2.2) and Dy,

in (2.5).

The nilpotent fields X and X can appear in the
Lagrangian (3.2) either linearly or as the bilinear XX.
Thus we look for a new form of £ in which this behavior is
manifest. This form is

e 'LX,F) = (F+W))(F+W)) - WW, + XA X
+XB. + B.X + C.. (3.4)

Several simplifications based on the superconformal prop-
erties of the equations of motion were required to derive
this form, as explained in Appendix A 2.

The main difference between dS supergravity and
standard supergravities is now clear. In a generic theory
the auxiliaries F! appear as

ﬂ]JF]FJ+W1FI+WjFI. (35)
This behavior applies to F¥ in our theory, and this allows us
to eliminate it via Gaussian integration; we give details and
the forms of the coefficients in (3.4) in Appendix A 3.

The auxiliary field A, is also eliminated in this way (see
Appendix A 4); its on-shell value, after superconformal
gauge-fixing

X0 =X0=x13, =0, (3.6)
is given in (2.9). The Grassmann properties of X, X imply
that on-shell effects of A, are far simpler than in a generic
supergravity. Thus A, vanishes in Bl above, and the
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quadratic A*A,, term in rj with the term in Cjj produces the

quartic y*%* in the second line of (2.1).
The action (3.4) reduces to the form

e \L=(F+f)(F+f)—ff+XAX +XB+BX + C,
(3.7)

where, with (1.2) and (3.6),

f=W, =«x7b, (3.8)
and, for f and m real, A and B are the expressions in (2.3)
and (2.4), and C is given in (A22).

The elimination of F! = F is a more complicated matter
because the generic form no longer holds. To see this, one

substitutes X = g—; in (3.7) to obtain

| T AV A
e £:(F+f)(F+f)—ff+2FA2F+2FB
)?2
BZ_+1cC. .
+Bi=+C (3.9)

A closed form solution for the equations of motion for F, F
is derived in Appendix A 5. We find that the equation of
motion for F' is solved by

- )(2 _
F= —f[l +A(1 —3A—2f2fB>],

(3.10)

where X and A are given in (2.10) and (2.11), respectively.
On shell, the action (3.7) becomes

B (s 7
_ AT (im0 - 2B (1)
16077 -G

This leads to our final result in (2.1).

IV. FEATURES OF DS SUPERGRAVITY

In this section we discuss several features of the dS
supergravity theory we constructed in the previous two
sections. In the first subsection we discuss the flat space-
time limit and show that the theory reduces to the global
Volkov-Akulov theory. In a next subsection we confirm that
the de Sitter solution of the theory has no Killing spinors;
i.e. there is no residual supersymmetry. Finally, in a third
subsection we gauge-fix the local supersymmetry and
show that the gravitino operator in a de Sitter background
is well defined.

PHYSICAL REVIEW D 92, 085040 (2015)
A. The flat spacetime limit

In the limit of the locally supersymmetric theory in
which gravitational effects vanish, we expect to recover the
Komargodski-Seiberg version [15] of the global VA theory.
This is the limit in which the parameters x, mx~'; the
curvature R; and the fields y,, A, all vanish. In this limit
the action (2.1) reduces to

1 1 1
—_f2__5 —2D2_ 2—2|:|2 |:|—2’
L=-~f 2;(8;(+—4f2;( Vs 716][6)()(( ) (B77)

(4.1)
which is equivalent to Eq. (3.6) of [15].

It is worth noting that the global limit of the fields of the
constrained Goldstino multiplet is given by

2
1
{X:"—,x,Fz—f<1+ 707~

- 2—2|:| 2|:|—2 .
°F 4f4)( 7 Uy x)}

(4.2)

16/

These constrained components of the Goldstino multiplet
in (4.2) transform as though they are elementary, i.e.

5X = éépw, (4.3)

1
o = 5P (FX + F)e. (4.4)
SF = %EHPL;(. (4.5)

This shows, above and beyond the call of duty, that the
constraint X?> = 0 is compatible with supersymmetry.6

B. No Killing spinors in dS

We assume that A = f>—3m?/k?> > 0. Then the
homogenous bosonic solution of the equations of motion
of the theory defined by the action (2.1) is de Sitter space
with curvature tensor

ab __ a, b a, b 2
R, = (eqe, —eje,)H

a and H? = «k*A/3.

(4.6)

It is obvious that this solution has no residual supersym-
metry. To see this one need only inspect the fermionic
transformation rules (2.7) and (2.12). When y, and y
vanish, these rules simplify and give the conditions

®Note that the transformation rule (4.4) is exactly the flat limit
of the transformation rule (2.12). This description of the global
supersymmetry of the KS model appears to be new; an approxi-
mate form of dy up to quadratic terms in y was derived in Eq. (15)
of [16]. Our formula (4.4) is exact; it terminates at eighth order
because of the Grassmann properties. Since F in (4.2) has been
evaluated on shell, the SUSY transformation (4.5) must be
checked using the equation of motion for AP y.
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~ 1 m
51///4 = DﬂG = (8ﬂ + Zw/mbyab + 57”> € = 07 (47)

Sy =—-——=e=0. (4.8)

V2

The second condition immediately tells us that there are no
(nonvanishing) Killing spinors, indicating that the super-
symmetry of the bosonic background is spontaneously
broken.

The same conclusion follows from the integrability
condition for (4.7). It may be useful to contrast this situation
with the traditional Killing spinor analysis in anti—de Sitter
space (see Sec 2.2.3 of [20]). The integrability condition
for (4.7) is

(4.9)

which shows again that there are no nonvanishing solutions.

C. Gauge-fixing local supersymmetry
and gravitino in dS

The action (2.1) is locally supersymmetric. We now
impose the unitary gauge condition y = 0 and the action
becomes

N2 [R(e’ a)(e)) - II_I,MVWPDL(/O)W/) + 'CSG,torsion]
2

+ 3K—"§ — P4 S e (4.10)
In this Lagrangian, f is the measure of spontaneous
supersymmetry breaking. When f = 0 the theory reduces
to the well-known AdS, supergravity [1]. The action (4.10)
is locally supersymmetric uniquely in this case, so that the
Lagrangian with m # 0 and A = —3m?/x? has effectively
zero physical gravitino mass [7]. The concept of the “mass
spectrum” in AdS space is somewhat tricky; see for example
a discussion of this issue with regard to the gravitino in
[21]. It is suggested there that the spin 3/2 particle is
massless in AdS space not when m = 0 but whenever gauge
invariance appears. In the AdS case above, the gauge
symmetry in the action (4.10) appears in case that f =0
which means A = —3m?/x>.

For A = f2 —3m? /x> > 0 we have dS supergravity with
a positive cosmological constant. In this case, as long as
A >0 there is no criterion to distinguish between
“Lagrangian” mass m and a more “physical” mass. The
reason is that at f # O the action in (4.10) never acquires a
local supersymmetry unless the numerous Goldstino de-
pendent terms are added to the action and it becomes the

PHYSICAL REVIEW D 92, 085040 (2015)

expression in (2.1). In particular the restoration of gauge
invariance requires a coupling between y'y, and a
Goldstino y. Therefore the wisdom accumulated in studies
of the gravitino in AdS space, although nontrivial, cannot
be applied for dS supergravity in (2.1). Of course, A =
% —3m?/k* > 0 describes a useful relation between the
“Lagrangian” gravitino mass, the supersymmetry breaking
scale and the cosmological constant.

We will confirm that the gravitino propagator7 is well
defined in dS space by showing that the wave operator in
Euclidean signature has no zero modes. Towards this end
we consider the wave equation on $* which is the Wick
rotation of dS,. The radius of the sphere is given by
H? = k*A/3. Consider now the mode equation

r Doy, = Ay, (4.11)

o 1 m
Dl/ = au + _a)vabyab + SV

1 5 (4.12)

We have moved the mass term into the definition of the
traditional AdS covariant derivative [1] but note that @, is
the spin connection on S$*. To clarify covariance issues
below we include the Christoffel connection, and thus
replace D, - @,,.

Our goal is to show that A =0 is not an allowed
eigenvalue, so that the wave operator is invertible. The
first step is to multiply Eq. (4.11) by y,, obtaining

P, = ir v (4.13)
We next apply @ﬂ on (4.11), obtaining
1 s A 1 1 m? A
o1 V. V.]w, = ZR;wabyab Y | Wy =AV
—%(H2+m2)y«,/=N-w. (4.14)

We used R4 = (edel — efeh)H? and some y-algebra to
obtain the last equality.

The original mode equation in (4.11) can be decomposed
to read

Vo, + Vot = Viy -y =yt (4.15)

If we now suppose that y, is a putative zero mode, this
equation simplifies markedly. The right side vanishes and
(4.13) and (4.14) imply that the first and third terms on the
left side vanish as well. Thus a zero mode must satisfy the
simple equation

’See [21] for an application of gravitino propagators in dS
and AdS spacetime to the problem of discontinuities in the
massless limit.
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PVt = (P*V, + 2m)y, = 0. (4.16)

To finish the job we square the operator obtaining

77V, =0,
V'Vt = 3(H? + m? )yt — H(y# — y*y -yr)] = 0.
(4.17)

The last (...) comes from the Christoffel term in @, in
which y -y vanishes since 1 = 0. To see where we are
going, let us make the temporary simplifying assumption
that m = 0. We then multiply (4.17) by v, integrate over
the sphere, and integrate by parts to obtain

/d4x\/§[vyl//;V”y/” + 4H ] = 0. (4.18)
Since each term is non-negative we learn that any zero
mode y,(x) vanishes identically.

When m # 0, there is a small complication. The first
term in (4.17) becomes

VIVt = (V” + mr") <Vy + mn) y

2 2
= (V'V, — m?)yH, (4.19)
after (4.16) is used. We can then rewrite (4.17) as
V¥Vt — 4(H? + m?)|y* = 0. (4.20)

The same “multiply and integrate” argument then implies
that any zero mode vanishes identically.

In the unitary gauge the local supersymmetry of the
supergravity action (2.1) is broken. The validity of this
gauge-fixing in a dS background for the gravitino field
equations in Euclidean signature of space-time was dem-
onstrated above: there are no zero modes. In Lorentzian
signature it means that the gravitino differential operator in
dS space is invertible, by analytic continuation from the
Euclidean signature.

Much more is known about the gravitino field equations
in dS space, since the gravitino is one of the important
factors in cosmology. During inflation the background is
near dS and during the current acceleration, if caused by a
cosmological constant, the background is a dS space.
The classical gravitino equations which also follow from
our gauge-fixed action (4.10) were studied in [18,22]
in a Friedmann-Lemaitre-Robertson-Walker metric as well
as in a de Sitter background. The relatively simple form of
the solution was obtained in the metric, conformal to flat,
ds* = a*(dn* — dx?*). The solution was found in the form of

an expansion in momentum modes y* ~ [ d3ke“'k';‘z//g (n)

where an explicit dependence on the conformal time

PHYSICAL REVIEW D 92, 085040 (2015)

n enters via Hankel functions depending on |kn|; see for
example Eq. (10.5) in [18].

V. DISCUSSION

In this paper we have derived the component Lagrangian
and local SUSY transformation rules describing the cou-
pling of the nonlinear Volkov-Akulov theory [6] to super-
gravity complete in all orders in fermions. The two keys to
our construction were

(1) the reformulation [14,15] of the global VA theory in

terms of a chiral superfield X = {X, y, F'} subject to
the constraint X* = 0, and

(ii) the superconformal approach to N =1, D=4

supergravity in the form largely developed in [18]
and described in Chapter 16 of [17] where earlier
references from the 1980s on the superconformal
approach to supergravity are also given.

The combination of these two methods is successful
because the Lagrange multiplier that enforces the constraint
[13] maintains linearly realized local off-shell supersym-
metry, so that superconformal methods govern the initial
stages of the supergravity construction.

Nevertheless, one may distinguish between generic
models of [17] in which a model is completely specified
by its holomorphic superpotential W(z”*) and Kihler
potential K(z% z%) and models with one or more con-
strained superfields. In the first case the F* appear in a
universal quadratic fashion and they are easily eliminated.
When there are constraints the dependence on the F* is still
algebraic, but more complicated. [See (3.5), (3.9) above.]
Nevertheless, one can find F in closed form because the
scalar component of the constrained multiplet is quadratic
in the Grassmann valued Goldstino, X = —(1/2f)y* + - -,
where f controls the cosmological constant.

The striking feature of our model is that it yields a pure
de Sitter A/ = 1 supergravity action in which the physical
fields consist of the graviton, gravitino, and Goldstino, but
no scalars and no gauge multiplets.8 Previous constructions
of de Sitter supergravities require either a U(1) gauge
multiplet with Fayet-Illiopoulos coupling and a charged
gravitino [25] with consequent anomaly problems, or
O’Raifeartaigh-type models with multiple chiral multiplets,
engineered to arrange a potential positive at a local
minimum. In our model de Sitter space is obtained as
the homogeneous solution because spontaneous supersym-
metry breaking is unavoidable in the presence of a
fermionic Goldstino. We hope that it will be helpful for
describing dark energy.

Since supersymmetry is broken in our model there are
no Killing spinors. There is a significant simplification of

®In [23] it has been shown that other superconformal con-
structions of such theories are dual to ours. In [24] the same
method as ours was used, but using a different gauge-fixing than
the one given in Eq. (3.6).
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the action in the unitary gauge in which the Goldstino
vanishes and the nonlinearities associated with it disappear.
We then find a very simple form of supergravity with the
cosmological constant A = f? —3’;’—22. The equation of
motion for the gravitino in a de Sitter background has
no zero modes and its solutions are known [18,22].

Another feature of our new dS supergravity model is that
it reduces in the flat space limit to the VA global theory [6]
in the form given in [15]. We emphasize that the con-
strained components of the Goldstino multiplet transform
as a conventional chiral multiplet after elimination of F.

There is a curious question for future work. The elegant
geometric Lagrangian of the original form of the VA theory
involves the determinant of a quadratic form in the
Goldstino, £ = Det(8, + gy*d,x). It is known how to
couple it to a supergravity background in the D-brane
actions; however, the corresponding supersymmetry upon
gauge-fixing local x-symmetry is still a rigid supersym-
metry [4,5]. It would be useful to know whether de Sitter
supergravity with local supersymmetry presented in this
paper may be brought to the geometric form of the global
VA theory: this could generate further insights into the
nature of fundamental symmetries and the origin of the
positive cosmological constant.

So far we have explicitly constructed only the complete
pure dS supergravity action with local supersymmetry.
More general explicit supergravity models with constrained
superfields interacting with general matter multiplets, to
all orders in fermions, still have to be constructed. The
corresponding superconformal action was already pro-
posed in [13], for any number of chiral multiplets X',
with generic Kihler manifold and generic superpotential
together with constraints on functions of chiral multiplets
determined by Lagrange multipliers A*:

L=[NX.X)lp+ WX)p+ [MAX)p (5.1)

None of the A¥ can appear in the Kihler potential and the
Ar(X) must be algebraic functions of X!. The super-
conformal action in (5.1) must be decoded and the theory
expressed in physical form. Extension of the procedures of
this paper will be needed to investigate the physics of this
more general framework.

In closing we note that pure and complete anti—de Sitter
supergravity [1] was first formulated in 1977, but the pure
and complete de Sitter supergravity is first constructed now,
38 years later. The action and its local supersymmetry
transformation are presented in Sec. II of this paper.
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APPENDIX: FROM SUPERCONFORMAL
ACTION TO SUPERGRAVITY

In order to write the D terms in (1.1), we use the relation
that for a chiral multiplet (X, Py, F) of Weyl weight 1, the
D-action can be written in the form of an F-action:

(A1)

where F is the lowest component of a chiral multiplet of
Weyl weight 2 since it transforms only under P e. The
components of this multiplet are given in [[17], (16.36)]:

(F,DPgy,[X). (A2)
The explicit expression of the superconformal covariant
derivative is given in [[17], (16.34)] and of the super-
conformal d’ Alembertian on a scalar field of Weyl weight 1
in [[17], (16.37)]. These steps are performed separately for
the X° multiplet and for the X! multiplet. Therefore, we
write the Lagrangian as

i WD+ [AX)]

1 -
L= {5 ’YUXIFJ} (A3)

The superconformal F-type action is given in [[17],
(16.35)]. The first term of (A3) is identical to [[17],
(16.39)], where pure N’ =1 supergravity was explained,
and the VW term was written in [[17], (17.19)].

1. Solution of the Lagrange multiplier constraints
Let us look at the term [A(X")?],

e Ly = FAMX')2 + ARX'F' = 7'Pry') = 272 P ' X!

1
+—= " 2AX Pyt + (XN)AP )

V2

1
+ _l/_/;tPRy’wl//vA(Xl)z +H.c.

. (A4)

The field equation of A is
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2X'F' — 7 Pyt + \/iy‘/ﬂ}/ﬂ X'Py! The superpotential and its first and second derivatives
1 which we need in (A7) are
+ EV_I/JPRY#DWL/(XI)Z =0. (AS)
XO 3 XO 2 .
This is solved as in the rigid case by W=a <7§) +b ( \/g) X,
5§ AP A Fl_F - Aq  Wo=3a (Xo)z +IbXOX!, W, == b(X0)2,
— 2F1 = ﬁ ’ =1L, X =X ( ) (\/§> 3
X0 2.4 2. o

since this kills all components of the chiral multiplet (X')2. ~ Wqo = 6a W + 3 bX", Wor = 3 bX". (A8)

It follows that the remaining equations for y* and F* are

also satisfied.
This action can be written in the form of Egs. (3.2), (3.3) in

2. Details of [%,11 JXF), and (WX Sec. III (after noting that the Weyl connection b, terms
cancel).

The next major step is the elimination of auxiliary fields,
but it is useful to first make some simplifications in our
e\ L — 1’111( FIF + X'O°KX! - 7' P, Dy’ superconformal a.ction.. This will faqilitate the derivation of

2 (3.4). The simplifications are possible because we know
that all the gauge connections recombine in covariant
derivatives in order to make field equations supercovariant.

1 1 _ It saves a lot of work to recognize this structure. In

+%‘/_’u7’” [5’711 (Pry'F! +X"DPry’) + W, P L)(I] particular, the equation of motion for X' should be a

conformally covariant equation modulo other field equa-

—1—11/7” Per*y, (l,mxl 2 +W) L Hec. (A7)  tions. We start by writing the X! field equation, before
2 2 imposing the constraint:

Using [17] as described above, the first two terms of (A3)
can be written as

1 _
+W,F! _EWIJZIPL)(J

0L,

1 _ 1 _
S = 0X" + W, F° - *WOOIZOPR)( + =W, [ﬂPw‘ + Wor Pra’ + —= (F' + W) Prr*w,

V2 V2
1 .
= WP [FT + W, (A9)
Note that the expression in square brackets in the first line is the field equation of Pgy', while the one in the second line is

the field equation of F'!. Writing out some covariant derivatives leads to further simplifications. One of these is that terms
with F! all cancel. These simplifications lead to

5£ 1 1 1
5X1 X! + Wy, F° ——WOOMOPR)( +ﬁl/fﬂ Woi Prx” +7§WﬂyﬂyPLDl/)( + 2‘/&;7’” Py Wi (A10)

One can see that this allows us to identify the terms A X! + B, in (3.4). The modified conformal derivatives that appear in
(A10) are given by

1 -
CX = e <8ﬂDaX -2b,D,X —i—;(lmebX +2f X +1A,D X + ﬁqﬁﬂyaPL;(),

1
DX—ea 0,X — bX lAX v, P s
( VAL M)

1 3 1, 1
PLD;,{/Y - PL |:(a +4a)ﬂbcybc _Eb’u —l—ElAﬂ))(——(QDX)l//ﬂ - \/§X¢”:| . (All)

V2

As stated above the explicit b, terms cancel with those in the spin connection wﬁ"b = wﬂab (e,b,w) and in f), [givenin [17]
[(16.26)]].
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3. Gaussian integration of auxiliary field F°
Since F! occurs in the expression for X ! we cannotuse its
field equation immediately. But the other auxiliary fields, F°
and A, are eliminated quite simply. We start with F 0. its
elimination preserves the general structure of (3.4).
In order to eliminate the auxiliary field FY, we first
collect the terms in the action with F!. We write £, ;- as

Ly g =y (F'+ 0" Wg)(F +0"" W) = W Wj.
(A12)
|

. — 1 1_ 0 1 4
re =15+ WoWo = —6R(co(e)) + gll/ﬂY””ﬂDi )l//p —AA, - E‘CSG,torSion + 9 |bX°|?,

PHYSICAL REVIEW D 92, 085040 (2015)

We eliminate F° and thus remain with
Ly pm (F' W) (F' W) =W Wi +WWs.  (A13)

Note that the term quadratic in W,, adds an additional term
to the A, term, so that now after elimination of F 0 we have
the following entries for (3.4)

1
A, = |0,,/99"0, + ielcd, + Eiaﬂ(et’c‘) +er.|, (Al4)

(A15)

_ o 1 1
B. = B' + Wy [Wolyi_o - EWIJIJ(IPR)(J +—2W11W;47”PR)(I + EWlll/yPLYWV/u

1
V2

3\ V3

b(. 1 i, 1
+3 (2—a(X°)2X° —7°Prr® + V2 - yPri®X0 + 3 <X0>2V7;4}’”DPLW1/>~

v

_ 2 _ o
=—[-e710,(ew,r"r"Pry') - gx'Pw"”D,,wy + 1AM, Py

(A16)

_ 1 _ _ —
C,=—e'X0 [a”\/gg/way +iefed, + 5ic’)ﬂ(ez{‘.) + erg] X0 = XOBY — XOB + Cy + Wolx1—o[Wolx' o

1. 1 1_
+ [(—EWW{’ Pry' +—=w,"WiPLy' + EwﬂPRy””wyW>

V2

+ H.c} (A17)

X'=0

4. Gaussian integration of auxiliary field A,

Then we turn to the elimination of A,. We write as in [[17], (17.21)]

(1950
OA+

_ . 1
= ZA”XIﬂ]JXJ + 1 |:<8MXI + —=

V2

1_ 1 X'x!
where 5

= 350 T xR0 The solution for A, is

A, =A,+ AL

_ =7 | 7
l//uPL)(I> n X’ — H-Co] + EIWIJ)(IPL}’MJ’

. = . _ 5
=i[(D,X")n; X" —H.e] + 51’711)(1 Prra’

(A18)

1 o
Aﬂ = l—nIJ(XlaﬂXJ - XI(?MXJ) = ./42 + AIL’

2N

1 S0, o
A) =i—(-X°0,X° + X°9,X9),

H 2N
1
1_.
A= oz
1

(-x'9,X' +X'0,Xx"),

Ay = o iny V2, (P X! = Pre X' + 7' Py = AR + AL

HO4AN

1. _ % %
AR = = iV, (PLX0 = Pry®X%) + 2°Pry i),

1
A=~ gz

i[V20,(PLy' X" = Pry' X") + 7' Pryx'].

(A19)
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The terms A9 and Af° vanish after gauge-fixing (3.6), and
the on-shell value of A, simplifies to

K‘2

1 ]
-5 V2, (PLyX — PryX) + 7Pryxl|.  (A20)

resides in a

After elimination, the entire effect of A,
contribution to the Lagrangian

2

Ly = eNAMA, = % . (A21)

This simple form arises only from the last term of (A20)
after Fierz rearrangement. It contributes to the expression C
in (3.7), which is

1 _ 0 "
C:Z—KZ[R(Q)(e)) -y, ]/lwpDr(/ )l//p+£SG,t0rsion] _‘_3’(72_]02

+\[f”’””+2 SV W, + 2411

_E)(D(O))(_ﬁle ]8# ’ YV WXV <Y X —
(A22)

5. Non-Gaussian integration of auxiliary field F
Here we give the detailed derivation of results in the last
part of Sec. III. We start with the action (3.7) where X =

and X = )‘ . Then we solve for the fields F and F usmg

their algebralc equations of motion. The field equation for
Fis

SL(X.F) XOL(X,F) X B
(A23)
This implies that
F=-f+0(7), F=-f+0(%), (A24)

where e.g. O(y?) means that the correction terms are
proportional to an undifferentiated 7. The complete
expression is

X
F=—-f|1-—(AX+B)]|. A25
fli-fpaxem| )
Since X is nilpotent, we have also
1 X
F_lz——|:1+—_ AX+B:|. A26
Sl paxem|

1_ _
EWyPR)(WﬂPL)('

PHYSICAL REVIEW D 92, 085040 (2015)

This allows us to write the following expression for X

F'= f[l—l—%(AX—l—B)]

2 2 pe
X X
=21 AZ—-+B
2 [ TP < i )]
2 -2 e
Sh-r(5-9)]
2f 2ff 2f
where the second line is obtained using (A24) and for the
third line we observe that the two derivatives in A must both

act on y2 in order not to be killed by the overall factor )(2.9
We define now for convenience

-2 2
X X

A=—L—=(A%=-B|.

2117 ( 2f )

The quantity A is thus fully determined by the functions

A, B and f that appear in the action and the fermionic

composite scalar y? (and their complex conjugates). The

dependent field X is X = —% (1 —.A). In order to find F

we have to consider

(1 —,Zl)f—z_ [A(%i(l—fl)) —B}
-=b|7a-Fa(54)]

In the last term, the A should fully act on the leading factor
of A in (A28) in order that this factor does not clash with
the leading 7. It should also fully act as the [ factor, which
means that we can write A also as A in order to get the
following elegant equation:

}?—2_A<£.A> i <Ai> <Aﬁ_3>
27\or”) T M) Mg

e
AZfAZf <ffA+2fB) (A30)

2
x =%

(A27)

(A28)

X[AX + B] =

(A29)

Introducing this in (A29) and using the nilpotency of .4 and
A= 0(y?) gives

X[AX + B] = Aff[l —2A-2 (A31)

2
f2f ]

°In fact, we could move f outside of the A operator, and even
replace the A by only its part [, but this is not convenient for
what follows below.
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We find therefore with (A25)

7 e
F=-f|1-=2A(1-2A- A32
opa(-2a-gga)| e
This implies e.g.
~L=1-Avoup), (A33)
which gives as a final expression for F:
pe
F=-f|1 1-34-—-—B A34
fea(i-aa-gze)] e

Due to the orders of nilpotent quantities, we also obtain

(F+ f)(F+7)

Also, the other quantity that appears in the action
simplifies:

= ffAA. (A35)

PHYSICAL REVIEW D 92, 085040 (2015)

X(AX + B) + XB = Aff[1 —2A] - ’2(—;3 (A36)
Observe that
r )(2 i
ffA= i ﬁ_ﬁB’ (A37)

where the first term is real up to a total derivative, such that
the expression (A36) leads to a real action. We can write the
whole Lagrangian (3.7) as

- 2_
f%:fﬂ4+A—AM—%B+C
=2

. Yo(rs X
= ff+2fA2f <2fB+2fB>+C

> (f~'0¢* = 2B)(f~'07 - 2B).

(A38)

o
16(f7)?
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