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We formulate a perturbation expansion for the effective action in a new approach to the functional
renormalization group method based on the concept of composite fields for regulator functions being their
most essential ingredients. We demonstrate explicitly the principal difference between the properties of
effective actions in these two approaches existing already on the one-loop level in a simple gauge model.
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I. INTRODUCTION

The functional renormalization group (FRG) approach
[1–5] is a very popular method (see the recent review in
Ref. [6] and references therein) to study quantum properties
of physical models beyond the perturbation theory. The
application of this method to gauge systems meets essential
difficulties which are connected with gauge dependence of
the average effective action even on shell [7,8]. It happens
due to the presence of regulator functions which improve
the behavior of propagators in IR and UV regions but
destroy the gauge invariance of the initial classical action. It
was the main reason in Refs. [7,8] to reformulate the
standard FRG approach preserving its attractive features
with regulator functions in a way leading to gauge
independence of the effective action on its extremals.
This is achieved when regulator functions are considered
as composite fields introducing on the quantum level with
the help of additional sources. In quantum tield theory
(QFT), the effective action with composite fields was
introduced and studied within the perturbation theory by
Cornwell, Jackiw, and Tomboulis [9]. Later, it was shown
that the effective action with composite fields in Yang–
Mills theories [10] as well as in general gauge theories [11]
does not depend on the gauge on its extremals. This allows
one to consider quantum methods based on the idea of
composite fields as consistent ones. Namely, this fact was
the basis for a new approach to FRG [7,8].
In the present article, we study the properties of average

effective actions, both in the standard and new FRG
approaches in a loop approximation. Here, it should be
noted that the FRG approach has been proposed as a
method to study nonperturbative quantum effects with the
help of the so-called FRG flow equation for the average
effective action. On the other hand, all renormalization
procedures in QFT are known in the framework of

perturbation theory only. In particular, this means that
any approach to the quantum description of models in QFT
might be tested on the level of perturbation theory to satisfy
some physical requirements. Among such requirements,
the gauge independence of the effective action on shell is
very essential. Because of this circumstance, in the present
paper, we restrict ourselves to the study of properties of the
average effective action proposed in Refs. [7,8] in the loop
approximation. We find by explicit calculations the differ-
ence existing between the one-loop average effective
actions in the standard and new FRG approaches already
in the case of a simple gauge model. Moreover, the average
effective action found in this model is exact in the case of
the standard FRG approach without referring to the
perturbation theory and to the flow equation.

II. AVERAGE EFFECTIVE ACTION IN THE
STANDARD FRG APPROACH

We consider a Yang–Mills theory of fields Aa
μ with the

action S0 ¼ S0ðAÞ and assume its invariance under the
gauge transformations,

S0ðAÞ
δ⃖

δAa
μ
Dab

μ ¼ 0; δAa
μ ¼ Dab

μ ξb; ð2:1Þ

whereDab
μ ¼ δab∂μ þ facbAc

μ is the covariant derivative, ξa

is an arbitrary gauge function, and fabc are structure
constants of a Lie group. Quantization of the model via
the Faddeev–Popov method [12] involves the configuration
field space

φA ¼ fAa
μ; Ba; Ca; C̄ag; ð2:2Þ

including the ghost (Ca) and antighost (C̄a) fields and
auxiliary fields (Ba) with the following distribution of
Grassmann parities:
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εðφAÞ ¼ εA; εðAa
μÞ ¼ εðBaÞ ¼ 0;

εðCaÞ ¼ εðC̄aÞ ¼ 1: ð2:3Þ

The Faddeev–Popov action, SFPðΦÞ, can be presented in the
form

SFPðφÞ ¼ S0ðAÞ þΨðφÞd⃖; ð2:4Þ

where the nilpotent differential d⃖,

d⃖ ¼ δ⃖

δAa
μ
Dab

μ Cb þ δ⃖

δC̄a B
a þ δ⃖

δCa

1

2
fabcCcCb;

d⃖ 2 ¼ 0; ð2:5Þ

generates the Becchi-Rouet-Stora-Tyutin (BRST) trans-
formation [13,14]

δφA ¼ φAd⃖μ: ð2:6Þ

Here,ΨðφÞ is a gauge-fixing Fermion functional, and μ is a
constant Grassmann parameter. Usually, the

ΨðφÞ ¼ C̄aχaðφÞ ð2:7Þ

form of ΨðφÞ is used. One of the more popular choices of
gauge functions, χaðφÞ ¼ χaðA;BÞ, reads

χaðA;BÞ ¼ ∂μAa
μ þ

α

2
Ba; ð2:8Þ

where α is a gauge parameter. The action SFPðφÞ is BRST
invariant,

SFPðφÞd⃖ ¼ 0: ð2:9Þ

The main idea of the standard formulation of the FRG
approach is to modify from the very beginning propagators
of vector fields as well as ghost and antighost fields by
introducing the regulator Lagrangians with a momentum-
shell parameter k,

L1
kðxÞ ¼

1

2
AaμðxÞðRk;AÞabμνðxÞAbνðxÞ; ð2:10Þ

L2
kðxÞ ¼ C̄aðxÞðRk;ghÞabðxÞCbðxÞ

¼ C̄aðxÞðR̄k;ghÞabðxÞCbðxÞ; ð2:11Þ

ðR̄k;ghÞabðxÞ ¼
1

2
ððRk;ghÞabðxÞ − Rk;ghÞbaðxÞÞ; ð2:12Þ

where regulator functions Rk;A and Rk;gh do not depend on
the fields and obey the properties

lim
k→0

ðRk;AÞabμν ¼ 0; lim
k→0

ðRk;ghÞab ¼ 0: ð2:13Þ

The generating functional of the Green function is con-
structed in the form of a path integral,

ZkðJÞ ¼
1

N

Z
Dφ exp

�
i
ℏ
½SFPðφÞ þ SkðφÞ þ JAφAÞ�

�

¼ exp

�
i
ℏ
WkðJÞ

�
; ð2:14Þ

where WkðJÞ is the generating functional of the connected
Green functions; JA ¼ JAðxÞ; εðJAÞ ¼ εA; N is a normali-
zation constant,

N ¼
Z

Dφ exp

�
i
2ℏ

φAðiD−1
ABÞφB

�
¼ ðsDetðiD−1ÞÞ−1

2;

ð2:15Þ

and

iD−1
AB ¼ ~∂AðSFPðφÞ þ SkðφÞÞ∂⃖Bjφ¼0; ∂A ¼ δ

δφA :

ð2:16Þ

In Eqs. (2.14) and (2.16), SkðφÞ is the regulator action,

SkðφÞ≡ 1

2
φAððL100

k ÞAB þ ðL200
k ÞABÞφB

¼
Z

dx½L1
kðxÞ þ L2

kðxÞ�; ð2:17Þ

where

ðLi00
k ÞAB ¼ ~∂ALi

kðxÞ∂⃖B; i ¼ 1; 2; ð2:18Þ

are constant supermatrices.
The effective action, ΓkðΦÞ, is defined as the modified

Legendre transform of WkðJÞ [6] with respect to JA,

ΓkðΦÞ ¼ WkðJÞ − JAΦA − SkðΦÞ;
~δ

δJA
WkðJÞ ¼ ΦA;

ð2:19Þ

so that1

ΓkðΦÞ∂⃖A ¼ −JA − SkðΦÞ∂⃖A: ð2:20Þ

TheΓkðΦÞ satisfies the functional integrodifferential equation

1We use the same notation ∂A, meaning the derivative over
field ΦA.
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exp

�
i
ℏ
ΓkðΦÞ

�

¼ 1

N

Z
Dφ exp

�
i
ℏ
½SFPðΦþ φÞ þ SkðΦþ φÞ − SkðΦÞ

− ðSkðΦÞ∂⃖AÞφA − ðΓkðΦÞ∂⃖AÞφA�
�
: ð2:21Þ

It has been shown in Ref. [7] that the effective action (2.21)

depends on the gauge even on its extremals, ΓkðΦÞ∂⃖A ¼ 0.
This fact indicates a serious problem with the physical
interpretation of the results obtained for gauge theories in
the framework of the standard FRGmethod. And this was the
main reason to reformulate the standard FRG approach in the
form being free of gauge dependence on shell.

III. EFFECTIVE ACTION IN THE NEW FRG
FORMULATION

The new FRG approach involves external scalar sources
Σ1ðxÞ and Σ2ðxÞ, εðΣ1ðxÞÞ ¼ εðΣ2ðxÞÞ ¼ 0. The generating
functional of the Green functions for Yang–Mills theories
with composite fields is introduced as

ZkðJ;ΣÞ ¼
Z

Dφ exp

�
i
ℏ
½SFPðφÞ þ JAφA þ ΣiLi

kðφÞ�
�

¼ exp

�
i
ℏ
WkðJ;ΣÞ

�
; ð3:1Þ

where WkðJ;ΣÞ is the generating functional of the Green
functions in the presence of composite fields. Here, we
introduce the following notation:

ΣiLi
kðφÞ ¼

Z
dx½Σ1ðxÞL1

kðxÞ þ Σ2ðxÞL2
kðxÞ�: ð3:2Þ

Using the explicit structure of the regulator Lagrangians
(2.10), (2.11) and the definition (3.1), we deduce the
relations

~δ
δΣi

Zk ¼
ℏ
2i

� ~δ2

δJBδJA
Zk

�
ðLi00

k ÞABð−1ÞεB ; ð3:3Þ

or, in terms of Wk,

~δ
δΣi

Wk ¼
ℏ
2i

�� ~δ2

δJBδJA
Wk

�
þ i
ℏ

� ~δ
δJB

Wk

�� ~δ
δJA

Wk

��
× ðLi00

k ÞABð−1ÞεB : ð3:4Þ

The effective action with composite fields,
Γk ¼ ΓkðΦ;FÞ, can be introduced by means of the double
Legendre transformations

ΓkðΦ;FÞ¼WkðJ;ΣÞ−JAΦA−Σi

�
Li
kðΦÞþ

1

2
ℏFi

�
; ð3:5Þ

where

~δ
δJA

WkðJ;ΣÞ ¼ ΦA;
~δ
δΣi

WkðJ;ΣÞ ¼ Li
kðΦÞ þ

1

2
ℏFi;

i ¼ 1; 2: ð3:6Þ

From Eqs. (3.5) and (3.6), it follows that

ΓkðΦ;FÞ∂⃖A ¼ −JA − ΣiðLi
kðΦÞ∂⃖AÞ;

Γk;iðΦ;FÞ ¼ −
1

2
ℏΣi; Γk;i ¼ Γk

δ⃖

δFi : ð3:7Þ

Let us introduce the full sets of fields FA and sources
JA according to

FA ¼ ðΦA; FiÞ; JA ¼ ðJA;ΣiÞ: ð3:8Þ
From the condition of the solvability of Eqs. (3.7) with

respect to the sources J and Σ, it follows that� ~δ
δJ B

FCðJ Þ
�� ~δ

δFC J AðF Þ
�

¼ δBA: ð3:9Þ

One can express JA as a function of the fields in the form

JA ¼
�
−ðΓk∂⃖AÞ þ

2

ℏ
Γk;iðLi

kðΦÞ∂⃖AÞ;−
2

ℏ
Γk;i

�
; ð3:10Þ

and therefore

~δ

δFA J BðF Þ ¼ −ðG00
kÞAB;

~δ
δJA

FBðJ Þ ¼ −ðG00−1
k ÞAB:

ð3:11Þ

Here,

ðG00
kÞAB ¼

0
B@ ðΓ00

kÞAB − 2
ℏΓk;iðLi00

k ÞAB − 2
ℏ ð~∂AΓk;iÞðLi

kðΦÞ∂⃖BÞ 2
ℏ ð~∂AΓk;jÞ

ðΓk;i∂⃖BÞ − 2
ℏ ðΓ00

kÞijðLj
kðΦÞ∂⃖BÞ 2

ℏ ðΓ00
kÞij

1
CA; ð3:12Þ

LOOP EXPANSION OF THE AVERAGE EFFECTIVE … PHYSICAL REVIEW D 92, 085038 (2015)

085038-3



and

ðΓ00
kÞAB ¼ ~∂AΓk∂⃖B; ðΓ00

kÞij ¼
~δ
δFi Γk

δ⃖

δFj ; ð3:13Þ

ðG00
kÞACðG00−1

k ÞCB ¼ δBA; ðG00−1
k ÞACðG00

kÞCB ¼ δAB : ð3:14Þ
Let us introduce the supermatrix

WAB
k ¼

~δ
δJA

FBðJ Þ: ð3:15Þ

Then, we have

WAB
k ¼

 
WAB

k
2
ℏ ðWAj

k −WAC
k ð~∂CL

j
kðΦÞÞÞ

WiB
k

2
ℏ ðWij

k −WiC
k ð~∂CL

j
kðΦÞÞÞ

!
; ð3:16Þ

where

WAB
k ¼

~δ2Wk

δJAδJB
; WAi

k ¼
~δ2Wk

δJAδΣi
;

WiA
k ¼

~δ2Wk

δΣiδJA
; Wij

k ¼
~δ2Wk

δΣiδΣj
: ð3:17Þ

From Eqs. (3.9) and (3.16), the following relations hold:

�
ðΓ00

kÞAC −
2

ℏ
Γk;iðLi00

k ÞAC −
2

ℏ
ð~∂AΓk;iÞðLi

kðΦÞ∂⃖CÞ
�
WCB

k þ 2

ℏ
ð~∂AΓk;jÞWjB ¼ −δAB; ð3:18Þ

�
ðΓ00

kÞAC −
2

ℏ
Γk;iðLi00

k ÞAC −
2

ℏ
ð~∂AΓk;iÞðLi

kðΦÞ∂⃖CÞ
�
ðWCj

k −WCD
k ð~∂DL

j
kðΦÞÞÞ þ

2

ℏ
ð~∂AΓk;iÞðWij

k −WiC
k ð~∂CL

j
kðΦÞÞÞ ¼ 0;

ð3:19Þ
�
ðΓk;i∂⃖CÞ −

2

ℏ
ðΓ00

kÞijðLj
kðΦÞ∂⃖CÞ

�
WCB

k þ 2

ℏ
ðΓ00

kÞijWjB
k ¼ 0; ð3:20Þ

2

ℏ

�
ðΓk;i∂⃖CÞ −

2

ℏ
ðΓ00

kÞijðLj
kðΦÞ∂⃖CÞ

�
ðWCj

k −WCD
k ð~∂DL

j
kðΦÞÞÞ þ

�
2

ℏ

�
2

ðΓ00
kÞilðWlj

k −WlC
k ð~∂CL

j
kðΦÞÞÞ ¼ −δij: ð3:21Þ

In particular, from Eqs. (3.18) and (3.20), we deduce the presentation forWAB in terms of the effective action ΓkðΦ;FÞ,

WAB
k ¼ −

�
ðΓ00

kÞAB −
2

ℏ
Γk;iðLi00

k ÞAB − ð~∂AΓk;iÞðΓ−1
k ÞijðΓk;j∂⃖BÞ

�
−1
: ð3:22Þ

This allows us to present the relation (3.4) on the level of
the effective action in a closed form:

−iFi ¼ WAB
k ðLi00

k ÞBAð−1ÞεA ¼ sTrWAC
k ðLi00

k ÞCB: ð3:23Þ

Finally, we discuss the structure of supermatrices ðLi00
k ÞAB

and the inverse one. According to Eqs. (2.10) and (2.11),
we have

ðL100
k ÞAB ¼

0
B@

ðRk;AÞabμν 0 0

0 0 0

0 0 0

1
CA; ð3:24Þ

ðL200
k ÞAB ¼

0
B@

0 0 0

0 0 ðR̄k;ghÞba
0 ðR̄k;ghÞab 0

1
CA: ð3:25Þ

Then,

ΣiðLi00
k ÞAB ¼

0
BB@

Σ1ðRk;AÞabμν 0 0

0 0 Σ2ðR̄k;ghÞba
0 Σ2ðR̄k;ghÞab 0

1
CCA:

ð3:26Þ

It is useful to introduce the supermatrix

ðLk
00−1ÞAB ¼

0
BBBBB@

ðR−1
k;AÞμνab 0 0

0 0 ðR̄−1
k;ghÞba

0 ðR̄−1
k;ghÞab 0

1
CCCCCA; ð3:27Þ

where
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ðRk;AÞacμαðR−1
k;AÞανcb ¼ δabδ

ν
μ; ðR̄k;ghÞacðR̄−1

k;ghÞcb ¼ δab:

ð3:28Þ

We obtain a useful relation,

ΣiðLi00
k ÞACðLk

00−1ÞCB ¼

0
BB@

Σ1δ
a
bδ

ν
μ 0 0

0 Σ2δ
a
b 0

0 0 Σ2δ
a
b

1
CA: ð3:29Þ

It has been proven in Ref. [7] that the functional
ΓkðΦ;FÞ does not depend on the gauge on its extremals,

ΓkðΦ;FÞ∂⃖A ¼ 0; Γk;iðΦ;FÞ ¼ 0: ð3:30Þ

IV. LOOP APPROXIMATION

In this section, we consider the procedure of loop
expansions for ΓkðΦ;FÞ, following mainly Ref. [9]. Our
starting point is the relation,

exp

�
i
ℏ
ΓkðΦ;FÞ

�
¼ exp

�
−
i
2
ΣiFi

�Z
Dφ exp

�
i
ℏ
½SFPðφÞ þ JAðφA − ΦAÞ þ ΣiðLi

kðφÞ − Li
kðΦÞÞ�

�
; ð4:1Þ

which follows from (3.1), (3.5), and (3.7). Making the background-quantum splitting

φ → φþ Φ; ð4:2Þ

we present Eq. (4.1) in the form

exp

�
i
ℏ
Γ̄kðΦ;FÞ

�
¼ exp

�
−
i
2
ΣiFi

�Z
Dφexp

�
i
ℏ

�
1

2
φAððS00FPÞABþΣiðLi00

k ÞABÞφB−ðΓ̄kðΦ;FÞ∂⃖AÞφAþSintðΦ;φÞ
��

; ð4:3Þ

where the notations

Γ̄kðΦ;FÞ ¼ ΓkðΦ;FÞ − SFPðΦÞ; ð4:4Þ

SintðΦ;φÞ ¼ SFPðΦþ φÞ − SFPðΦÞ

− ðSFPðΦÞ∂⃖AÞφA −
1

2
φAðS00FPÞABφB; ð4:5Þ

iD−1
ABðΦÞ ¼ ~∂ASFPðΦÞ∂⃖B ≡ ðS00FPÞAB ð4:6Þ

and the relations (3.7) are used.
Then, we assume the average effective action in the

form

Γ̄kðΦ;FÞ ¼ ℏΓð1Þ
k ðΦ;FÞ þ Γk2ðΦ;FÞ: ð4:7Þ

Here, Γð1Þ
k ðΦ;FÞ is the one-loop effective action for the set

of fields ΦA, taking into account composite fields Fi. The
term Γk2ðΦ;FÞ includes all the two-particle-irreducible
vacuum graphs in a theory with vertices determined by
SintðΦ;φÞ and propagators set equal to Fi. Note that
Γk2ðΦ;FÞ by itself is of order ℏ2 [9].
To calculate the one-loop contribution Γð1Þ

k ðΦ; FÞ, we
have to omit in the functional integral (4.3) all terms of
order more than φ2. Then, we have

expfiΓð1Þ
k ðΦ;FÞg ¼ exp

�
−
i
2
ΣiFi

�Z
Dφ exp

�
i
2ℏ

φAððS00FPÞAB þ ΣiðLi00
k ÞABÞφB − iðΓð1Þ

k ðΦ;FÞ∂⃖AÞφA

�
: ð4:8Þ

The last term in the exponent of the functional integral reproduces one-particle-reducible diagrams and should be omitted in
calculating the vertex functions. More systematically, we have the representation of the exponent

exp

�
−iðΓð1Þ

k ðΦ;FÞ∂⃖AÞφA

�
¼ 1 − iðΓð1Þ

k ðΦ;FÞ∂⃖AÞφA −
1

2
ðΓð1Þ

k ðΦ;FÞ∂⃖AÞðΓð1Þ
k ðΦ;FÞ∂⃖BÞφBφA þ � � � : ð4:9Þ

After integration over φA, the first term on the right-hand side (4.9) takes the one-loop contribution to the average effective
action; the second term vanishes as the Gaussian integral of an odd function; the third term is responsible for the cancelation
of tadpole diagrams. As a result, we arrive at the relation
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Γð1Þ
k ðΦ;FÞ − Γð1Þ

k;i F
i ¼ i

2
sTr lnðiD−1

ABðΦÞ − 2Γð1Þ
k;i ðLi00

k ÞABÞ:
ð4:10Þ

At the lower order in ℏ, the relation (3.23) reads

fðiD−1
ABðΦÞ − 2Γð1Þ

k;j ðLj00
k ÞABÞ−1ðLi00

k ÞBAgð−1ÞεA ¼ −iFi:

ð4:11Þ

From Eq. (4.11), it follows that

Γð1Þ
k;jðLj00

k ÞAB ¼ −
i
2
njðFjÞ−1ðLj00

k ÞAB þ i
2
D−1

ABðΦÞ; ð4:12Þ

where2

n1 ¼ Trδμνδba; n2 ¼ −2Trδba: ð4:13Þ

Then, we find

Γð1Þ
k;1 ¼ −

i
2
n1ðF1Þ−1 þ 1

2n1
TrðiD−1ÞacμαðR−1

k;AÞανcb; ð4:14Þ

Γð1Þ
k;2 ¼

i
4
n2ðF2Þ−1 þ 1

2n2
TrðiD−1ÞacðR̄−1

k;ghÞcb: ð4:15Þ

These relations can be presented in the form

Γð1Þ
k;j ¼ −

i
2
mjðFjÞ−1 þ 1

2mj
sTriD−1

ACðLk
00−1ÞCB; ð4:16Þ

where in the first term on the left-hand side of (4.16) there is
no summation over index j and n1 ¼ m1, n2 ¼ −2m2,

Γð1Þ
k ðΦ;FÞ ¼ 1

2mj
sTriD−1

ACðLk
00−1ÞCBFj þ i

2
sTr lnðinjðFjÞ−1ðLj00

k ÞABÞ þ const; ð4:17Þ

where “const” is used to collect all terms independent on the background fields.
Let us consider the equation for Γk2ðΦ;FÞ,

Γk2ðΦ;FÞ − Γk2;jðΦ;FÞFj ¼ −ℏðΓð1Þ
k ðΦ;FÞ − Γð1Þ

k;jðΦ;FÞFjÞ

− iℏ ln
Z

Dφ exp

�
i
2ℏ

φA

�
iD−1

ABðΦÞ þ ð−2Γð1Þ
k;jðΦ;FÞ −

2

ℏ
Γk2;jðΦ;FÞÞðLj00

k ÞAB
�
φB

−
i
ℏ
ðΓ̄kðΦ;FÞ∂⃖AÞφA þ i

ℏ
SintðΦ;φÞ

�
; ð4:18Þ

or, taking into account Eqs. (4.12), (4.16), (4.17), one can rewrite the last equation in the form

Γk2ðΦ;FÞ − Γk2;jðΦ;FÞFj ¼ −
iℏ
2
sTr ln ½injðFjÞ−1ðLj00

k ÞAB� − iℏ ln
Z

Dφ exp

�
i
2ℏ

φAðinjðFjÞ−1 − 2

ℏ
Γk2;jðΦ;FÞÞðLj00

k ÞABφB

−
i
ℏ
ðΓ̄kðΦ;FÞ∂⃖AÞφA þ i

ℏ
SintðΦ;φÞ

�
: ð4:19Þ

Further analysis of this equation requires the explicit form
of SintðΦ;φÞ, supported by the additional restriction on
Γk2;jðΦ;FÞ, which comes from the consistency condition
(3.23). We are going to study in the future these equations
and their solutions using some special field models.

V. GAUGE (IN)DEPENDENCE:
A SIMPLE EXAMPLE

In this section, we illustrate the problem of gauge
dependence using a simple example. To this end, we

consider the average effective action Γ̄kðΦ;FÞ up to first
order in ℏ,

Γ̄kðΦ;FÞ ¼ ℏΓð1Þ
k ðΦ;FÞ; ð5:1Þ

where Γð1Þ
k ðΦ;FÞ is defined in Eq. (4.17). Note that in

consistent gauge theories the effective action does not
depend on the gauge on its extremals. First, we check the
gauge dependence of the effective action (5.1). Consider

the quantum equations of motion Γð1Þ
k;jðΦ;FÞ ¼ 0. Because

of Eqs. (4.12) and (4.16), we have

2Here, we do not discuss a suitable definition of the functional
traces, but we assume their existence only.
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−
i
2
njðFjÞ−1ðLj00

k ÞAB þ 1

2
iD−1

ABðΦÞ ¼ 0;

−
i
2
mjðFjÞ−1 þ 1

2mj
sTriD−1

ACðLk
00−1ÞCB ¼ 0: ð5:2Þ

Substituting (5.2) into (4.17) and keeping in mind the
definition (4.6), we obtain

Γð1Þ
k ðΦ;FÞ ¼ i

2
sTr ln S00FPðΦÞ: ð5:3Þ

In this approximation, the average effective action (5.3)
coincides with the one-loop answer for effective action in a
given Yang–Mills theory. It is well-known fact (see, for
example, Ref. [15]) that it does not depend on the gauge
when the fields ΦA satisfy the quantum equations of
motion. The one-loop contribution to the average effective

action, Γð1Þ
k ðΦÞ, in the standard FRG approach reads

Γð1Þ
k ðΦÞ ¼ i

2
sTr lnðS00FPðΦÞ þ S00kðΦÞÞ: ð5:4Þ

This action depends on the gauge even on its extremals. To
illustrate this feature explicitly, we restrict ourselves to the
case of the electromagnetic field in flat space-time. The
classical action of the model is

S0ðAÞ¼−
1

4

Z
d4xFμνFμν; Fμν ¼ ∂μAν−∂νAμ: ð5:5Þ

We choose the gauge-fixing function in the form

χðA; BÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p ∂αAα þ B: ð5:6Þ

Integrating over field B yields the gauge fixing action

SgfðAÞ ¼ −
1

2ð1þ λÞ
Z

d4xð∂αAαÞ2: ð5:7Þ

The action for ghosts reads

SghðC̄; CÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p
Z

d4xC̄ð∂α∂αÞC: ð5:8Þ

The effective action of the model in the standard approach
[12] to gauge theories is3

ΓðΦÞ ¼ SðΦÞ þ iℏΓð1ÞðλÞ;
SðΦÞ ¼ S0ðAÞ þ SgfðAÞ þ SghðC̄; CÞ; ð5:9Þ

where

Γð1ÞðλÞ¼ 1

2
Tr ln

�
□δαβ −

λ

1þλ
∂α∂β

�
−Tr ln

�
1ffiffiffiffiffiffiffiffiffiffi
1þλ

p □

�
:

ð5:10Þ

The dependence of the effective action ΓðΦÞ (5.9) on the
gauge parameter λ is described by the relation

δΓðΦÞ ¼ δSðΦÞ
δΦ

δΦþ iℏ
∂Γð1ÞðλÞ

∂λ δλ: ð5:11Þ

Using the quantum equations of motion, which in our case
coincide with classical ones,

δΓðΦÞ
δΦ

¼ δSðΦÞ
δΦ

¼ 0; ð5:12Þ

we see that all dependence on λ comes from Γð1ÞðλÞ. In turn,

Γð1ÞðλÞ ¼ Γð1Þð0Þ þ 1

2
Tr ln

�
δαβ −

λ

1þ λ

∂α∂β

□

�

− ln
1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p Tr1

¼ Γð1Þð0Þ þ 1

2
ln

1

1þ λ
Tr

∂α∂β

□

− ln
1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p Tr1 ¼ Γð1Þð0Þ; ð5:13Þ

where the relation Trð∂α∂β
□
Þ ¼ Tr1 is used. Therefore,

δΓðΦÞ
				δΓðΦÞ

δΦ ¼0

¼ 0: ð5:14Þ

According to Eq. (5.3), the same result is valid for the
average effective action in the new FRG approach [7,8].
Calculation of the one-loop effective action of the model

within the standard FRG method gives

ΓkðΦÞ ¼ SðΦÞ þ iℏΓð1Þ
k ðλÞ; ð5:15Þ

where the action SðΦÞ is defined in Eq. (5.9). The regulator
action SkðA; C̄; CÞ for the model under consideration has
the form

SkðΦÞ ¼
1

2

Z
d4xAαðRk;AÞαβAβ þ

Z
d4xC̄Rk;ghC; ð5:16Þ

and the one-loop contribution (5.4), Γð1Þ
k ðλÞ, reads3In this case, ΦA ¼ ðA; C̄; CÞ.

LOOP EXPANSION OF THE AVERAGE EFFECTIVE … PHYSICAL REVIEW D 92, 085038 (2015)

085038-7



Γð1Þ
k ðλÞ ¼ 1

2
Tr ln

�
□δαβ −

λ

1þ λ
∂α∂β þ ðRk;AÞαβ

�

− Tr ln

�
1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p □þ Rk;gh

�
: ð5:17Þ

As in the previous case, the quantum equations of
motion,

δΓkðΦÞ
δΦ

¼ δSðΦÞ
δΦ

¼ 0; ð5:18Þ

coincide with the classical ones, and the gauge dependence
of the effective action ΓkðAÞ (5.15) on its extremals comes

essentially from Γð1Þ
k ðλÞ, which can be presented in the form

Γð1Þ
k ðλÞ ¼ Γð1ÞðλÞ þ 1

2
Tr lnð1 −Gα

γ ðλÞðRk;AÞγβÞ

− Tr ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ λ
p Rk;gh

□

�
: ð5:19Þ

Here, ηαβ ¼ diagð1; -1; -1; -1Þ is the Minkowski metric,
Γð1ÞðλÞ ¼ Γð1Þð0Þ is defined in Eq. (5.10), and Gα

γ ðλÞ is the
Green function�

□δαγ −
λ

1þ λ
∂α∂γ

�
Gγ

βðλÞ ¼ −δαβ;

Gγ
βðλÞ ¼ −

δγβ
□

− λ
∂γ∂β

□
2
: ð5:20Þ

The last two terms on the right-hand side (5.19) explicitly
depend on the gauge-fixing parameter λ. Using the follow-
ing property of cutoff functions RkðpÞ → 0 when k → 0,
we can approximate the trace of the logarithm by a linear
term:

Γð1Þ
k ðλÞ ≈ Γð1Þð0Þ þ 1

2
Tr
�ðRk;AÞαβ

□
þ λ

∂α∂γðRk;AÞγβ
□

2

�

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p
Tr

�
Rk;gh

□

�
: ð5:21Þ

It is clear that

∂Γð1Þ
k ðλÞ
∂λ ≠ 0; ð5:22Þ

and one meets the gauge dependence of the average
effective action within the standard FRG approach even
on shell.

VI. DISCUSSIONS

In this paper, we have studied the procedure of loop
expansion in the new FRG approach based on the idea to
consider regulator functions being main ingredients of
standard FRG method as composite fields [7,8]. We have
derived an explicit formula at leading order in ℏ for the
average effective action. We have explicitly demonstrated
the gauge dependence of the average effective actions
constructed within the standard and new FRG methods,
using a simple gauge model of Abelian vector fields. This
example confirmed the general statement of Refs. [7,8]
concerning the gauge dependence of the standard average
effective action even on shell. It is very important to note
that, in fact, the average effective action for the model
(5.5)–(5.8) is exact in the case of the standard FRG
approach without referring to perturbation theory and to
solutions of the flow equation. In our opinion, this result
indicates at least that the gauge dependence problem within
the standard FRG approach remains open up to now.
Perhaps not all the hidden features of the modified
Slavnov–Taylor identities (among recent studies, see, for
example, Ref. [16]) and the FRG flow equation are used to
respect the BRST symmetry.
The main feature of the FRG approach is its non-

perturbative character, encoding into the FRG flow equa-
tion for the average effective action. This equation is a very
complicated nonlinear functional differential equation for
which exact solutions are not known and different approx-
imations have been developed (for details, see Ref. [6]). In
turn, the structure of the FRG flow equation in the new
approach [7,8] is also very complicated but differs from the
standard one. This means that solutions to the new FRG
equation require serious efforts to develop new approxi-
mation methods. We plan in the future to present our study
of the problem.
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