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In this paper, using a (2þ 1)-dimensional field theory approach, we study the Aharonov-Bohm (AB)
scattering with Lorentz symmetry breaking. We obtain the modified scattering amplitude to the AB effect
due to the small Lorentz violation correction in the breaking parameter and prove that up to one loop the
model is free from ultraviolet divergences.
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I. INTRODUCTION

The study of the Lorentz-symmetry-breaking theories
suggested by Kostelecky et al. [1] has been intensively
considered and constitutes a fundamental tool in several
fields. The original motivation for this idea arose from the
fact that the superstring theories suggest that Lorentz
symmetry should be violated at higher energies. In
Ref. [2], Carrol et al. studied the Lorentz symmetry breaking
in field theory. One of the interesting problems related to the
Lorentz-symmetry-breaking QED was analyzed in Ref. [3].
In Ref. [4] a spacetime with torsion interacting with a
Maxwell field by means of a Chern-Simons-like term has
been introduced. The authors in Ref. [5], using a scalar-
vector-tensor theorywithLorentz violation, have obtained an
exact Lorentz-violation inflationary solution without an
inflaton potential. The Aharonov-Bohm-Casher problem
with a nonminimal Lorentz-violating coupling was studied
in Ref. [6], and the authors have shown that the Lorentz
violation is responsible by the lifting of the original degen-
eracies in the absence of magnetic fields, even for a neutral
particle. Works have also been done on topological defects
with Lorentz symmetry violation [7]. Investigations about
monopoles and vortices due to Lorentz violation were
conducted in Ref. [8]. Also, the problem of Lorentz-
symmetry-violation gauge theories in connection with grav-
ity models was analyzed [9]. In another work, Kostelecky
and Mewes [10] studied the effects of Lorentz violation in
neutrinos [11]. The authors in Ref. [12] successfully realized
the dimensional reduction of the Carrol-Field-Jackiw model
to (2þ 1) dimensions. The study of some phenomenological
implications of the three-dimensional “mixed” scalar-vector
quadratic term has been analyzed [13].
In planar physics, the Aharonov-Bohm (AB) effect [14]

has been the object of several investigations. This effect is
essentially the scattering of charged particles by a flux tube
and has been experimentally confirmed by Tonomura [15]
(for review, see Ref. [16]). In quantum field theory the effect
has been simulated, for instance, by using a nonrelativistic

field theory describing bosonic particles interacting through
a Chern-Simons (CS) field [17]. It was also found to have
analogues in several physical systems such as gravitation
[18], fluid dynamics [19], optics [20] and Bose-Einstein
condensates [21] appearing in a vast literature. The non-
commutative AB effect has been studied in the context of
quantum mechanics [22,23] and in the quantum field theory
approach [24,25]. In Ref. [22], it was shown that the cross
section for the scattering of scalar particles by a thin solenoid
does not vanish even if the magnetic field assumes certain
discrete values. In the context of quantum field theory, the
effect was simulated, as in the commutative situation [17], by
a nonrelativistic field theory of spin-0 [24,25] and spin-1=2
[24] particles interacting through a CS field. The Aharonov-
Bohm effect for neutral particles based on the Lorentz-
symmetry-violation background in the context of quantum
mechanics was studied in Ref. [26]. However, a study of the
AB effect with Lorentz symmetry breaking in the context of
quantum field theory has not yet been realized.
Recently, it was shown in Ref. [27] that the scattering of

planar waves by a draining bathtub vortex describes a
modified AB effect which depends on two dimensionless
parameters associated with the circulation and draining rates
[28]. In addition, we consider the acoustic black hole metrics
obtained from a relativistic fluid in a noncommutative
spacetime [29] via the Seiberg-Wittenmap and also obtained
from the Lorentz-violating Abelian Higgs model [30]. More
recently in Ref. [31], we have extended the analysis made in
Ref. [27] to a Lorentz-violating and noncommutative back-
ground [32] which allows us to have persistence of phase
shifts even if circulation and draining vanish.
In this work we will further investigate the changes on

the AB effect [14] due to the Lorentz symmetry breaking in
(2þ 1)-dimensional quantum field theory. We find a small
Lorentz violation correction to the amplitude scattering.

II. THE MODEL

The starting point of our studies is based on the (2þ 1)-
dimensional model with Lorentz violation in the gauge
sector described by the action*anacleto@df.ufcg.edu.br
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S½A;ϕ� ¼
Z

d3x

�
κ

2
ϵμνλAμ∂νAλ þ φϵμνλvμ∂νAλ

− 1

2ξ
∂iAi∂jAj þ iϕ†Dtϕ − 1

2m
ðDiϕÞ†ðDiϕÞ

− λ0
4
ϕ†ϕ†ϕϕþ 1

2
∂μφ∂μφ

�
; ð1Þ

where the greek letters μ run from 0 to 2 and i; j ¼ 1; 2. The
covariant derivatives in Eq. (1) are given by

Dtϕ¼ ∂tϕþ igA0ϕþ igφϕ; Diϕ¼ ∂iϕþ igAiϕ: ð2Þ

In the action we have considered the field ϕ interacting with
the field φ, and the inclusion of a quartic self-interaction of
the scalar field ϕ (a nonrelativistic scalar field) is necessary
to secure the ultraviolet renormalizability of the model. The
term φϵμνλvμ∂νAλ, responsible for the Lorentz symmetry
breaking, was obtained by dimensional reduction in
Ref. [12], considering the following model in (3þ 1)
dimensions:

L3þ1 ¼ − 1

4
Fμ̂ ν̂Fμ̂ ν̂ þ 1

2
ϵμ̂ ν̂ ρ̂ λ̂vμ̂Aν̂Fρ̂ λ̂; ð3Þ

where the greek letters μ̂ ¼ 0, 1, 2, 3. The dimensional
reduction is obtained by applying the following prescrip-
tion to the gauge 4-vector, Aμ̂, and to the fixed external 4-
vector, vμ̂:

Aμ̂ → ðAμ;φÞ; ð4Þ

vμ̂ →ðvμ; κÞ; ð5Þ

where Að3Þ ¼ φ, vð3Þ ¼ κ and μ ¼ 0, 1, 2. Thus the model
in (2þ 1) dimensions is obtained:

L2þ1 ¼ − 1

4
FμνFμν þ κ

2
ϵμνλAμ∂νAλ þ φϵμνλvμ∂νAλ

− 1

2ξ
ð∂μAμÞ2 þ 1

2
∂μφ∂μφ; ð6Þ

where the last term represents the gauge-fixing term, and
that gives varying weight to the Lorentz gauge condition.
The φ field also works out as the coupling constant in the
term that mixes the gauge field to the fixed 3-vector, vμ.
Further, the scalar field, φ, exhibits a typical Klein-Gordon
massless dynamics. As in quantum field theory, the
Aharonov-Bohm effect is simulated by a nonrelativistic
field theory describing bosonic particles interacting via a
CS field, so for the model described by action (1), we
consider a scalar field nonrelativistic, ϕ, interacting with
the fields A0, Ai and φ, the Lagrangian (6) without the
Maxwell term.

Now neglecting divergence terms, the action (1) can be
rewritten as

S½A;ϕ� ¼
Z

d3x

�
Aμ

�
κ

2
ϵμλν∂λ þ 1

2ξ
∂i∂jδ

i
μδ

j
λ

�
Aν

þ ϕ†
�
i∂0 þ

∂i∂i

2m

�
ϕþ 1

2
φ½ϵμλνvμ∂λ�Aν

þ 1

2
Aμ½ϵνλμvν∂λ�φ −

1

2
φ∂μ∂μφ − gϕ†A0ϕ

− gϕ†φϕþ ig
2m

½ϕ†Aj∂jϕ − ð∂jϕ
†ÞAjϕ�

− g2ϕ†AjAjϕ − λ0
4
ϕ†ϕ†ϕϕ

�
: ð7Þ

Initially in our calculations, we shall choose vμ to be purely

timelike, vμ ¼ ðv; ~0Þ, in the laboratory frame. Moreover, in
our calculations for simplicity, we will work in a Coulomb
gauge obtained by letting ξ → 0. We will use a graphical
notation where the CS field, the matter field ϕ, the field φ,
and the mixed propagators are represented by wavy,
continuous, dashed, and dashed-wavy lines, respectively.
The matter field and CS field propagators are (Fig. 1)

DðpÞ ¼ i

p0 − p2

2m þ iε
; ð8Þ

Di0ðkÞ ¼ −D0iðkÞ ¼
ϵijkj

κk2
; ð9Þ

ΔðpÞ ¼ i
p2

; ð10Þ

the mixed field propagators are (Fig. 2)

hAiφi ¼ −hφAii ¼ − vϵjikj

k4
; ð11Þ

and the vertices are given by (Figs. 3 and 4)

Γ0 ¼ −ig; ð12Þ

Γφ ¼ −ig; ð13Þ

FIG. 1. Propagators.

p k

FIG. 2. Field φ and mixed propagators.

M. A. ANACLETO PHYSICAL REVIEW D 92, 085035 (2015)

085035-2



Γi ¼ ig
2m

ðpþ p0Þi; ð14Þ

Γij ¼ − ig2

m
δij; ð15Þ

Γ ¼ −iλ0: ð16Þ

At this point, we will realize a computation of the two-
particle scattering at tree level in the center-of-mass frame.
Thus, for small v, we retain terms at first order in the
parameter v. In the tree approximation, the two-body
scattering amplitude is presented graphically in Figs. 5
and 6, corresponding to the following analytical
expression:

A0ðθÞ ¼ − 2ig2

mκ
cot θ − 16ig2v̄

m
cot2 θ
sinð2θÞ − λ0; ð17Þ

where θ is the scattering angle between the incoming ðpÞ
and the outgoing ðp0Þ momenta, and v̄ ¼ v

p2. Note that the

second term in this amplitude (17) displays a small Lorentz
violation correction in first order in the parameter v and
presents a different angular dependence of the result
obtained in Refs. [24,25] in the noncommutative case.
The expressions for the contributions in one loop of the

box and triangle graphs are shown in Figs. 7 and 8. The
other diagrams, correspoding to graphs [Fig. 7(a)] with
wavy lines exchanged by dashed-wavy lines, were not
drawn. To compute the four-point function associated with
the scattering of two identical particles, we separate their
v-independent and v-dependent contributions:

AaðθÞ ¼ A1
aðθÞ þAavðθÞ; ð18Þ

AbðθÞ ¼ A1
bðθÞ þAbvðθÞ; ð19Þ

AcðθÞ ¼ A1
cðθÞ þAcvðθÞ: ð20Þ

One should notice that AbðθÞ does not present corrections
in the parameter v, i.e., AbvðθÞ ¼ 0.
The calculations of the v-independent contributions are

standard, so we just quote the results: after performing
the k0 integration, for the triangle graph [Fig. 7(a)] we
have [17]

FIG. 3. Vertices.

p p
,

FIG. 4. Vertices.

(a) (b)

FIG. 5. Tree-level scattering.

FIG. 6. Tree-level scattering.
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A1
aðθÞ ¼ − g4

mκ2

Z
d2k
ð2πÞ2

k · ðk − qÞ
k2ðk − qÞ2 þ ðp3 → −p3Þ;

¼ g4

2πmκ2

�
ln

�
Λ2

p2

�
− lnð2 sin θÞ

�
: ð21Þ

The result for the bubble diagram [Fig. 7(b)] reads

AbðθÞ ¼
mλ20
8π

Z
∞

0

dðk2Þ 1

k2 − p2 − iϵ
;

¼ −
mλ20
8π

�
ln
�
Λ2

p2

�
þ iπ

�
; ð22Þ

and that for the box graph [Fig. 7(c)] is

A1
cðθÞ ¼

4g4

mκ2

Z
∞

0

d2k
ð2πÞ

ðp1 × kÞ · ðp3 × kÞ
ðk − p1Þ2ðk − p3Þ2ðk2 − p2 − iεÞ

þ ðp3 → −p3Þ;

¼ g4

2πmκ2
½lnð2 sin θÞ þ iπ�; ð23Þ

where Λ is an ultraviolet cutoff.
Let us turn now to the computation of the v-dependent

contributions. The lowest v-dependent correction to (21) is
given by Fig. 8(a); after performing the k0 integration, it is
given as

AavðθÞ ¼ A1
avðθÞ þA2

avðθÞ; ð24Þ

where

A1
avðθÞ ¼ − v2g4

m

Z
d2k
ð2πÞ2

k · ðk − qÞ
k4ðk − qÞ4 þ ðp3 → −p3Þ; ð25Þ

A2
avðθÞ ¼

−v2g4
2m2

Z
d2k
ð2πÞ2

ðp1 × kÞðp3 × kÞ þ ðp1 × kÞðp1 × p3Þ
k4ðk − qÞ4 þ ðp3 → −p3Þ: ð26Þ

Here q ¼ p1 − p3 is the momentum transferred, and k × p≡ ϵijkipj is a “vector” product of the two-dimensional
spatial vectors which, however, in two-dimensional space is not a vector but a scalar. Both integrals can be evaluated
analytically, i.e.

A1
avðθÞ ¼ − v2g4

2m

Z
∞

0

dk2

ð2πÞ
ðk2 þ q2Þ2
k2ðk2 − q2Þ3 þ ðp3 → −p3Þ; ð27Þ

(a)

(c)

(b)

FIG. 7. One-loop scattering diagrams.
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A2
avðθÞ ¼

−v2g4
4m2

Z
∞

0

dk2

ð2πÞ
½p2 cos θðk2 þ q2Þ2 þ q2k2ð3p2 − q2Þ�

k2ðk2 − q2Þ4 þ ðp3 → −p3Þ: ð28Þ

Here k2 ≡ ~k2. The v-dependent correction to (23) is given by Fig. 8(b). Following the same steps described for the previous
case, we get

AcvðθÞ ¼
g4v2

4m

Z
∞

0

dk2

ð2πÞ
½8p2 cos θðk2 þ p2Þ2k2 þ k2ð2 − 4p2q2 þ q4Þ�

ðk2 − p2Þ8ðk2 − p2 − iεÞ þ ðp3 → −p3Þ: ð29Þ

It is interesting to note that the amplitudes (27), (28) and
(29) are ultraviolet finite.
Thus, summing all the results in the one loop, we get

AðθÞ ¼ 1

2πm

�
g4

κ2
−m2λ20

4

��
ln

�
Λ2

p2

�
þ iπ

�
þOðv2Þ:

ð30Þ

For the special values, λ0 ¼ � 2g2

mκ, the ultraviolet divergen-
ces vanish. Taking this λ0, we get the total amplitude one
loop [¼ tree contribution ð17Þ þ ð30Þ] in the form

AðθÞ¼A0ðθÞþAaðθÞþAbðθÞþAcðθÞ;

¼−
2ig2

mκ

�
cotθþ8κv̄

cot2θ
sinð2θÞ

�
∓2g2

mκ
þOðv2Þ: ð31Þ

The Aharonov-Bohm scattering with Lorentz symmetry
breaking is successfully obtained up to the one-loop order.
The choice of the lower or upper sign in (31) corresponds to
an attractive or repulsive quartic self-interaction. For a
small angle θ, Eq. (31) becomes

AðθÞ ¼−2ig2

mκ

�
1

θ
− θ

3
þOðθÞ2þ 8κv̄

�
1

2θ3
− θ

30
þOðθÞ3

��

∓2g2

mκ
þOðv2Þ: ð32Þ

Now the scattering amplitude at small angles, in the limit
θ → 0, is dominated by

AðθÞ ¼ − 8ig2

m
v̄
θ3

: ð33Þ

Thus, the differential scattering cross section for small
angles is

dσ
dθ

¼ jAðθÞj2 ≈ ð8g2Þ2
m2

v̄2

θ6
: ð34Þ

Thus, in the limit of θ → 0, the result for the differential
cross section is due to only the contribution of v̄2

Lorentz symmetry breaking. This result is similar to that
obtained in Ref. [31]. On the other hand, considering vμ

to be purely spacelike vμ ¼ ð0; vÞ, the mixed field
propagators are

hφA0i ¼ −hA0φi ¼
ϵjikjvi

k4
; ð35Þ

hφAii ¼ −hAiφi ¼
ϵij0vjk0

k4
: ð36Þ

In this case, the scattering amplitude in the tree approxi-
mation reads

A0ðθÞ ¼ − 2ig2

mκ
cot θ þ ig2

jp∥vj
4p4

�
sin α − sin β
sin4ðθ=2Þ

þ sin αþ sin β
cos4ðθ=2Þ

�
− λ0; ð37Þ

and that for a small θ angle becomes

(a) (b)

FIG. 8. One-loop scattering.
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A0ðθÞ¼−2ig2

mκ

�
1

θ
−θ

3
þOðθÞ2

�

þ ig2
jp∥vj
4p4

�
ðsinα− sinβÞ

�
16

θ4
þ 8

3θ2
þ11

45

þ 31θ2

1890
þOðθÞ3

��

þ ig2
jp∥vj
4p4

�
ðsinαþ sinβÞ

�
1þθ2

2
þOðθÞ3

��
−λ0;

ð38Þ

where α is the angle between p1 and v, and β is the angle
between p3 and v. Furthermore, the amplitude v dependent,
in the one loop order, does not present ultraviolet diver-
gences. However, the AB amplitude in the limit θ → 0, is
dominated by

AðθÞ ¼ 4ig2jp∥vj
p4θ4

ðsin α − sin βÞ: ð39Þ

In this case, the differential scattering cross section for
small angles becomes

dσ
dθ

¼ jAðθÞj2 ≈ 16g4v2

p6θ8
ðsin α − sin βÞ2: ð40Þ

Note that the differential scattering cross section vanishes
for any angles satisfying α ¼ β and 0 ≤ j sin α − sin βj ≤ 1.
Now, for example, if α ¼ 0 and β ¼ π=2, or α ¼ π=2 and
β ¼ 0, we have

dσ
dθ

≈ ð16g4v2Þ=ðp6θ8Þ: ð41Þ

This correction vanishes in the limit v2 → 0 so that no
singularities are generated. A contribution occurring in
second order in the breaking parameter of the Lorentz
symmetry to the cross section was also obtained in
Ref. [31]. This correction (∼v2) due to the effect of
Lorentz symmetry breaking may be relevant at high
energies.

III. CONCLUSION

In this paper, we find that the scattering amplitude in the
tree approximation displays a small Lorentz violation
correction in first order in the parameter v and contains
an angular dependence. Moreover, we have found that the a
v-dependent amplitude, in the one-loop order, does not
present ultraviolet divergences. Also, we have shown that
the correction to the amplitude in the one-loop order occurs
only in the second order in the parameter v. The AB
amplitude with Lorentz symmetry breaking in the limit
v → 0 agrees with the usual result [17]. In addition, we
show for each case, timelike and spacelike v, that the
differential cross section at the small-angle limit is essen-
tially due to the effect of the Lorentz symmetry breaking.
Thus, in this limit the breaking of Lorentz symmetry
strongly contributes to the AB effect. However, our results
allow an experimental verification of detecting Lorentz-
symmetry-breaking signals via the Aharonov-Bohm effect.
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