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We present a Yang-Mills-Higgs (YMH) gauge theory in which structure constants of the gauge group
may depend on Higgs fields. The data of the theory are encoded in the bundle E → M, where the baseM is
the target space of Higgs fields and fibers carry information on the gauge group. M is equipped with a
metric g and E carries a connection ∇. If ∇ is flat, R∇ ¼ 0, there is a local field redefinition which gives
back the standard YMH gauge theory. If R∇ ≠ 0, one obtains a new class of gauge theories. In this case,
contrary to the standard wisdom of the YMH theory, the space ðM; gÞ may have no isometries. We build a
simple example which illustrates this statement.
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I. INTRODUCTION

One way of introducing general relativity is to start from
special relativity: by rewriting equations such as the one for
the free movement of a particle in a coordinate independent
manner, one notices that this introduces Christoffel sym-
bols Γi

jkðxÞ corresponding to a connection ∇ that is flat,
R∇ ¼ 0. Dropping the latter condition on ∇, is an essential
step in the development of Einstein’s theory of gravity,
where, in general, R∇ ≠ 0.
We will use this strategy in the context of the coupled

Yang-Mills-Higgs (YMH) theory, i.e., the framework used
as the bosonic sector of the current standard model of
particle physics. We will make the theory covariant with
respect to Higgs-dependent basis changes of the structural
Lie algebra. As in the previous paragraph, there will be a
connection ∇: if flat, the theory is equivalent to an ordinary
YMH-theory, otherwise it is of new type.
Let us first collect the data used for conventional YMH

theories. We restrict to trivial bundles for simplicity. The
gauge fields or YM-connections are Lie algebra valued
1-forms A ¼ Aa ⊗ ea ∈ Ω1ðΣ; gÞ on a d-dimensional
Lorentzian spacetime manifold Σ. Their kinetic term is
given by the square of the YM-curvature Fa ¼
dAa þ 1

2
Ca
bcA

b ∧ Ac,

SYM½A� ¼
Z

Σ

1

2
κabFa ∧ �Fb: ð1Þ

Here κ is an ad-invariant metric on g, * denotes the Hodge-
duality operator induced by the metric on Σ, and Ca

bc are the
structure constants, ½ea; eb� ¼ Cc

abec.

The Higgs fields correspond to a map X: Σ → M, where
M is an n-dimensional Riemannian manifold whose metric
g is invariant with respect to g: if ea is represented by
ρa ∈ ΓðTMÞ, then Lρag ¼ 0. Choosing local coordinates
ðxiÞni¼1 on M, their pullback by X yields n scalar fields
Xi ¼ X�ðxiÞ ∈ C∞ðΣÞ. In addition to these data, conven-
tionally one also has a g-invariant function V on M, giving
rise to the Higgs potential.
The coupled YMH functional then has the form

SYMH½A; X� ¼ SYM½A� þ SHiggs½X; A� where

SHiggs½X; A� ¼
Z

Σ

1

2
gijðXÞDXi ∧ �DXj þ �VðXÞ: ð2Þ

The interaction of A and X is effectuated by means of the
covariant derivatives (minimal coupling)

DXi ¼ dXi − ρiaðXÞAa: ð3Þ

Clearly, a Higgs-dependent change of basis of the gauge
fields Aa → ðM−1ÞabðXÞAb leaves the form of (2) and (3)
unchanged, while (1) changes rather drastically. There not
only the new κ-coefficients become Higgs-field dependent,
but, most importantly, also the structure constants Ca

bc, thus
turning them into structure functions. Such a redefinition of
fields gives rise to a connection

ωa
b ¼ ðM−1ÞacdMc

b: ð4Þ

The flatness of these connection coefficients shows that the
apparent modifications of the coupled theory in terms of
SYM can be made undone again, restoring the original form
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(1) and (2) of the theory. Our interest will lie in cases, where
ω is not necessarily flat.

II. COVARIANTIZING AND CURVING THE
GRADED TARGET SPACE

An X-dependent change of Aa corresponds to an inverse
change of the basis ea, leaving A ¼ Aa ⊗ ea unchanged.
This is understood best by introducing the vector bundle
E ¼ M × g → M, turning the problem into one of finite
dimensional geometry on the target space of the theory.
Any Lie algebra element can be viewed as a section of E
now and

ea → Mb
aðxÞeb ð5Þ

corresponds to a change of the basis in E. Note that E
carries a natural flat connection. If in the original basis
∇ea ¼ 0, then after the change (5), the connection coef-
ficients become precisely as in Eq. (4). Here we used that in
a general local frame ðeaÞra¼1 of E, a connection∇: ΓðEÞ →
ΓðT�M ⊗ EÞ satisfies

∇ea ¼ ωb
a ⊗ eb: ð6Þ

We will need the transformation property of Ca
bc under a

change of basis. This can be deduced most easily from the
representation property of the fundamental vector fields ρa,
½ρa; ρb� ¼ Cc

abρc, yielding: [1]

Ca
bc → ðM−1ÞadMe

bM
f
cCd

ef − 2ðM−1ÞadMe
½bM

d
c�;iρ

i
e; ð7Þ

where on the right-hand side we recognize that the
inhomogeneous term is proportional to the connection
coefficients (4). We observe that the structure constants
turned into structure functions Ca

bcðxÞ. While we will drop
the condition on ∇ to be flat, we need to determine what
replaces the Jacobi identity in the case of such structure
functions.
For this purpose, we take recourse to a BRST-model of

the g-action on M: Consider the infinitesimal transforma-
tions δxi ≔ βaρiaðxÞ for some parameters βa. The idea of
BRST is to declare βas to be odd (i.e. anticommuting)
parameters and to make them also transform such that the
transformations square to zero. This corresponds to the
nilpotency of the following odd vector field

Q ¼ βaρia
∂
∂xi −

1

2
Ca
bcβ

bβc
∂
∂βa ; ð8Þ

which is of the standard form of the BRST charge known
from Yang-Mills gauge theories [2], replacing the field
space by a finite dimensional toy model with coordinates xi

and βa of degrees zero and one, respectively. These, in turn,
can be viewed as coordinates on E—or better on E½1�,
indicating by the notation that the fiber-linear coordinates

βa have been declared to have degree one. Corresponding
to sections in E�, they transform according to βa →
ðM−1Þabβb with respect to (5). This is also compatible
with (7).
Q is a vector field on E½1� squaring to zero:Q2 ¼ 0. This

is a coordinate independent feature, insensitive to (5) in
particular. In fact, any graded manifold described locally by
degree 0 and degree 1 coordinates takes the form of a
shifted vector bundle E½1� and any degree +1 vector field
evidently has the form of (8) for some coefficient functions
ρiaðxÞ and Ca

bcðxÞ. A vector bundle E equipped with a
nilpotent vector field (8) on E½1� is called a Lie algebroid
(cf. [3,4] on the mathematics of Lie algebroids and [5,6] for
its supergeometrical formulation).
From the present perspective, the transition from Abelian

Lie algebras, which are just vector spaces, to non-Abelian
ones together with their action on a manifold M is more
drastic than the one from Lie algebras to Lie algebroids:
The first step can be viewed as introducing the BRST
operator (8), while the second step permits besides ρia also
Ca
bc to become x-dependent. In both cases Q2 ¼ 0 contains

all the axioms of the respective notion.
The connection (6) and the Lie algebroid structure (8)

have to satisfy a compatibility condition that will be
imposed on us by gauge invariance below. To formulate
it, we first observe that the structure constants/functions
Ca
bc do not behave like tensors according to (7). This can be

cured by means of the connection coefficients (6): tabc ≔
Ca
bc − 2ρi½bω

a
c�i behaves like a tensor with respect to (5), i.e.,

t ∈ ΓðE ⊗ Λ2E�Þ. The compatibility condition is [7]

ð∇tÞabci ¼ 2ρj½bðR∇Þac�ji: ð9Þ

We observe that the curving of the Yang-Mills-Higgs
theory is completely governed by the curvature R∇ of
the connection (6): Indeed, if R∇ ¼ 0, one may choose a
locally constant frame ea such that t equals to the structure
functions, and then (9) enforces those to be constants.
Thus, locally, and that is all what we are interested in here,
R∇ ¼ 0 implies E ≅ U × g for some Lie algebra g.
The fields X and A together can be viewed as arising

from a degree preserving map a: T½1�Σ → E½1�. T½1�Σ≡
TΣ½1� indicates that fiber-linear functions on TΣ, i.e.,
elements of ΓðT�ΣÞ ≅ Ω1ðΣÞ, are considered to be of
degree one; so, general functions on T½1�Σ are just differ-
ential forms on Σ. Then a�ðxiÞ ¼ Xi ∈ Ω0ðΣÞ and
a�ðβaÞ ¼ Aa ∈ Ω1ðΣÞ reproduce the previous fields.
Thus, SYMH and its curved generalization are a kind of
“super”-sigma model, where the target is a Q-manifold
ðE½1�; QÞ corresponding to a Lie algebroid E → M. It can
deviate from E ¼ M × g only if the curvature R∇ of the
connection (6) does not vanish.
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III. GAUGE TRANSFORMATIONS AND FIELD
STRENGTH FOR THE GAUGE FIELDS

While the gauge transformations of the Higgs fields are
already covariant, δXi¼εaρiaðXÞ for any ε¼εaea∈ΓðX�EÞ,
the ones for the gauge fields take the form δAa ¼
dεa þ Ca

bcA
bεc only in a locally flat basis. With (7) and

using (4), this turns into

δAa ¼ dεa þ Ca
bcðXÞAbεc þ ωa

biε
bDXi: ð10Þ

We now postulate this formula also for a nonflat connection
(6), while for R∇ ¼ 0 and a flat frame it evidently reduces
to the standard formula. Equation (10) was found already in
[8] and [9] by other arguments. The transformations (10)
close off-shell, iff (9) holds true [10].
Next we turn to the replacement of the Yang-Mills

part (1), necessary for the curving of the theory. Again
applying our “covariantization strategy,” one finds that the
Yang-Mills curvature Fa becomes a tensor with respect to
(5): While A ∈ ΓðX�E ⊗ T�ΣÞ, its field strength F ∈
ΓðX�E ⊗ Λ2T�ΣÞ takes the form:

Fa ¼ ðDAÞa þ 1

2
tabcðXÞAb ∧ Ac

ðDAÞa ≡ dAa þ ωa
biðXÞDXi ∧ Ab: ð11Þ

In standard YM theory, A and F have the mathematical
meaning of a connection and its curvature. Here, we
call A simply a gauge field and F its field strength (cf.
also [6,11])—or “YM-connection” and “YM-curvature,”
respectively, so as to distinguish them well from the
connection ∇ and its curvature R∇: together with the target
Lie algebroid, ∇ is fixed for a given “curved YMH
theory”—like the Lie algebra g in the standard situation.
It remains to calculate the behavior of (11) with respect

to the gauge transformations (10). This calculation was
performed already in [10]: Using Eq. (9) and the structural
identities following from Q2¼0 with (8), one obtains
δFa¼ðCa

bc−ωa
ciρ

i
bÞεcFbþ1

2
Ra
bijε

bDXi∧DXj. This equa-
tion shows that the field strength defined in Eq. (11)
transforms into itself if and only if R∇ ¼ 0.
At this point one might think, as in [10], that the present

attempt for a curved generalization fails. However, there is
a way out: Let us consider the following general ansatz
starting with dA and followed by a quadratic expression in
A and dX or DX:

Ga ¼ dAa þ 1

2
C̄a
bcA

b ∧ Ac þ ω̄a
biDX

i ∧ Ab

þ 1

2
Ba
ijDX

i ∧ DXj

where the coefficients C̄a
bc, ω̄

a
bi, and Ba

ij are at this point
arbitrary functions of X. We now require thatGa transforms

into itself. Using the previous formulas for the gauge
transformations which also imply

δðDXiÞ ¼ εaðρia;j − ρibω
b
ajÞDXj; ð12Þ

a straightforward calculation yields that necessarily
C̄a
bc ¼ Ca

bc, ω̄
a
bi ¼ ωa

bi, and that

ðR∇Þab þ LρbB
a − ωc

b ∧ ιρcB
a þ ιρbðωa

cÞBc þ tabcB
c ¼ 0;

ð13Þ

where Ba ¼ 1
2
Ba
ijðxÞdxi ∧ dxj and B ¼ Ba ⊗ ea ∈

ΓðΛ2T�M ⊗ EÞ. The second, third, and fourth terms
combine into a “covariantized Lie derivative”: ð½D; ιρ�BÞab.
With this choice,

Ga ¼ Fa þ 1

2
Ba
ijðXÞDXi ∧ DXj; ð14Þ

δGa ¼ ðCa
bc − ωa

ciρ
i
bÞεcGb: ð15Þ

A gauge invariant action functional can be formed by
“squaring” the quantity G. The additional contribution to F
in (14), governed by an E-valued 2-form B on the Higgs
target manifold M, is essential: there is no nontrivial
deformation of the YMH setting without it.

IV. THE GAUGE INVARIANT,
CURVED ACTION

Now we can present the gauge invariant curved action
functional. It takes the form

SCYMH½A; X� ¼
Z

Σ

1

2
κabðXÞGa ∧ �Gb þ SHiggs½X; A�: ð16Þ

Gauge invariance of SCYMH requires the metric g on M,
entering SHiggs as in (2), as well as the fiber metric κ ∈
ΓðS2E�Þ to satisfy appropriate conditions.
To obtain the one for g, we first covariantize Lρag ¼ 0

with respect to (5). Using the replacement (4), this yields

ðLρagÞij ¼ 2ωb
aðiρjÞb; ð17Þ

where on the right-hand side the upper index of ρ was
lowered by means of the metric. This equation can be also
obtained directly from (12) for arbitrary ω-coefficients.
Equation (17) can be rewritten as ρaði;jÞ ¼ 0, where the
semicolon denotes a covariant differentiation—with respect
to both of the preceding tensor indices, using ∇ for the first
one and the Levi-Civita connection of g for the second one.
We see that if ∇ is not flat, the metric g entering the

kinetic term of the Higgs field does no more need to have
an isometry so as to ensure gauge invariance of the curved
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theory (while for R∇ ¼ 0, in a constant frame, the ρas are
local Killing vectors). Equation (17) was found already
in [9]; the present paper can be viewed as an extension of
the previous one by adding an additional kinetic term
for the gauge fields. Geometrically Eq. (17) implies that
the orbits in M generated by ρa form a Riemannian
foliation; we refer to [12] for this and further geometrical
features.
The transformation property required for κ follows

directly from (16) and (15). It can be formulated best in
terms of what is called an E-connection [13]: The Q-
structure (8) equips ΓðEÞ∋s; ~s with a Lie bracket ½s; ~s� ¼
ðsa ~sbCc

ab þ ρðsÞ~sc − ρð~sÞscÞec where ρðsÞ≡ saρa. Using
∇, this induces E∇s ~s ≔ ½s; ~s� −∇ρð~sÞs, which permits us to
perform covariant derivatives of E-tensors along sections of
E. The condition on κ is just that it should be E-covariantly
constant:

E∇κ ¼ 0:

E∇, defined canonically in any Lie algebroid E equipped
with a connection ∇, is a generalization of the adjoint
representation. Indeed, as a consequence of (9), its
E-curvature vanishes, which is tantamount to the repre-
sentation property: ½E∇ea ;

E∇eb � ¼ Cc
abðxÞE∇ec .

Finally, for gauge invariance of (16), the Higgs potential
has to be invariant, ρia∂iV ¼ 0. Note that this condition is
invariant under base changes (5).

V. A CURVED EXAMPLE
WITH LIE ALGEBRAS

For a theory of the type (16) we need to specify: A
pseudo-Riemannian manifold Σ, a Lie algebroid E → M
with a connection ∇, a function V and an E-valued 2-form
B on M, and metrics g and κ on M and E, respectively.
These data have to satisfy several compatibilities.
To not distract from the essentials, we will provide a

curved example in the context of an ordinary Lie algebra, in
fact, even an Abelian one. This illustrates within a simple
setting the qualitatively new things one can do when
permitting R∇ ≠ 0, like constructing a gauge theory in
the absence of any isometry of the metric g.
Let Σ be 4-dimensional Minkowski space and E a trivial

real line bundle over M ¼ R2∋ðx; yÞ with Q ¼ β∂y.
Furthermore, g ≔ ðdxÞ2 þ expðλxyÞðdyÞ2. One can show
that this metric has no local isometries iff λ ≠ 0; in
particular, obviously ∂y is not a Killing vector. Still y ↦
yþ const can be gauged [9], since (17) is satisfied for
ω ¼ λx

2
dy. R∇ ¼ dω is nonzero for λ ≠ 0; so here λ is a

deformation parameter of an otherwise simple Abelian
YMH theory. It remains to fix B, κ, and V: B ¼
− λy

2
dx ∧ dy and κ ¼ expðλxyÞ do the job, while V can

be an arbitrary function of x, e.g., V ¼ −μx2 þ νx4.

Although the action of two scalar fields X and Y

S0½X; Y� ¼
Z
R4

ð∂μX∂μX þ eλXY∂μY∂μY þ VðXÞÞd4σ

does not have any global symmetries except for λ ¼ 0, the
replacement ∂μY → DμY ≡ ∂μY − Aμ, turning S0 into the
form (2), has the gauge symmetry

δY ¼ εðσÞ; δAμ ¼ ∂μεþ
λ

2
εXð∂μY − AμÞ: ð18Þ

The theory SHiggs½X; Y; A� by itself is classically equivalent
to a sigma model with the target quotient R2=R ≅ R∋x,
thus here simply to S½X� ¼ R

R4 ð∂μX∂μX þ VðXÞÞd4σ. In
general the quotient M modulo the flow generated by the
vector fields ρa is not a smooth manifold; then the gauged
theory SHiggs provides a smooth, field theoretic resolution
or description of this “sigma model with singular target
space” [9].
The addition of a kinetic term for the gauge fields,

Skin ¼
Z
R4

eλXYGμνGμνd4σ;

Gμν ¼ 2∂ ½μAν� þ
λ

2
ðX∂ ½μYAν� þ YD½μY∂ν�XÞ; ð19Þ

destroys the latter feature, also for λ ¼ 0. However, it is
mandatory from the physical perspective, where a square of
dA is needed for the gauge fields to describe the propa-
gation of interaction particles like the photons.
All formulas reduce to the most standard 4d Abelian

YMH model if λ ¼ 0. R∇ ∝ λ parametrizes a nontrivial
deformation of it, consistent with gauge symmetry. Note
that the deformation is analytic in λ, but not polynomial.

VI. CONCLUSION AND OUTLOOK

Higgs-field dependent changes of the Lie algebra basis
for gauge fields are not new, they were, e.g., considered in
the context of soliton solutions or to describe field con-
figurations with symmetries. We went one step further
though: We consider also inherently Higgs-field dependent
bases. If the structural curvatureR∇ ¼ 0, we know that there
exists a frame in which the coupled system takes standard
form (at least locally). There can be two reasons for R∇ ≠ 0
(or both simultaneously): either the Higgs sector has no
ordinary type of symmetries, but the generalized invariance
discussed in [9], or the coupled YMH-system is governed
by a Lie algebroid whose structure functions Ca

bcðxÞ cannot
be “rectified” by a change of coordinates.
While in the Lie algebroid Yang-Mills theories

constructed in [14] (type I LAYM theory) the scalar
fields remain topological, in the present “Curved YMH”
(type II LAYM) theory the scalars are propagating. Also
intermediary types exist [10]. Lie algebroids contain
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information of ordinary, finite dimensional Lie algebras
living over the orbits inM. Thus, LAYM theories may glue
together different YM-theories effectively [14]. This spurs
hope to find new scenarios of WIMPs for dark matter.
The present considerations remained on the classical

level. It will be important to go one step further and to study
the behavior of the CYMH-theory on the quantum level.
Note that naive methods of power counting will not be
sufficient for proving renormalizability (say for a subclass
of the theories): Already any analytical redefinition of the
form Aa ↦ Ma

bðXÞAb of higher order in X, applied to a
theory known to be renormalizable, destroys power count-
ing renormalizability—while not changing its renormaliz-
ability. Reference [15] provides a step toward such a refined
theory of renormalization.
The B-field contribution to field strengths of Aa is

necessary for curved deformations. It can disappear with
deformation parameters as in (19) or remain also for
R∇ ¼ 0: in that case, the condition (13) reduces to g-
invariance of B, B ∈ Ω2ðM; gÞG, where LieðGÞ ¼ g. Even
without deformation, such terms, with higher derivatives
respecting the symmetries, can arise in the process of
renormalization of sigma models like (2). In higher gauge
theories, part of B can also become dynamical [6].

In the present paper, we provided a simple example of a
CYMH theory. However, one can show much more [16]:
CYMH gauge theories exist for any Lie algebroid that
integrates to a generalization of a compact group, i.e., to a
so-called proper Lie groupoid [17], provided the latter one
admits a multiplicative biconnection.
Finally, the “adapted equivalence principle” employed in

this paper can be extended easily to include fermionic
matter, as is necessary for realistic models of Nature.
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