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We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the
type introduced by Gibbons andWells [G. W. Gibbons and C. G. Wells, Classical and Quantum Gravity 11,
2499 (1994)]. It is found that if such a wall exists within our observable Universe, it would be absurdly
thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields.
We conclude that it is highly improbable that any such wall is physically realized.
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I. INTRODUCTION

Starting from a five-dimensional Kaluza-Klein theory,
which is toroidally compactified to yield an effective
four-dimensional dilaton-Maxwell theory, we find exact
background solutions describing a dilatonic domain wall
which entraps magnetic flux, which has previously been
described by Gibbons and Wells [1]. This type of domain
wall is interesting, not only because it traps magnetic
flux, but also because it is nontopological in origin, i.e.,
the solution is not stabilized by a nontrivial topology of
the vacuum manifold. (However, this stability issue was
examined in [2], where it was determined that the Gibbons-
Wells wall is indeed stable against small fluctuations in the
scalar and magnetic fields.) Particles, including both
fermions and bosons, can scatter from a topological domain
wall in various ways (see [3–5] for example). In particular,
the scattering of scalar bosons from such walls has been
examined in [6]. In addition, a coupling of a scalar dilaton
field (with a simple quartic potential) to matter and electro-
magnetic fields has been studied in [7], where it was
proposed that the existence of a dilaton domain wall might
give rise to spatial variations in the fine structure constant α.
We do not concern ourselves with specifics of such a type of
scenario involving a Gibbons-Wells wall, but simply point
out that interactions of dilatonic walls with matter and
electromagnetic fields may indeed be of physical importance.
The main focus here is on the propagation of electromag-

netic waves in the dilaton-Maxwell domain wall.
Exact solutions for the wave equation are found, and it is
determined that there is a critical frequency above which
there are transmitted traveling waves which are damped in
amplitude as the distance jxj from the core of thewall tends to
infinity. We argue, however, that the wall is transparent to
essentially all electromagnetic waves if the effective

dielectric function is to have very small spatial variation.
We speculate on some observable consequences of the
existence of such a domain wall. The existence of such a
solitonic structure would support the possibility of the
existence of extra compactified space dimensions.
However, what we infer is that the wall’s magnetic field is
either too large in comparison to an intergalactic field
strength, or else the thickness of the wall is absurdly large.
We conclude that it seems improbable that a Gibbons-Wells
wall is physically realized in our observable Universe.

II. THE DILATON-MAXWELL DOMAIN WALL

A. Equations of motion

We start with a 5d action, using a 5d metric described by
d~s25¼ ~gμνdxμdxν−b2ðxμÞdy2 with signature ðþ;−;−;−;−Þ
which is dimensionally reduced by toroidal compactifica-
tion and rewritten in a 4d Einstein conformal frame,
subsequently taking the form (see, e.g., Ref. [8] for details)

S ¼
Z

d4x
ffiffiffi
g

p �
1

2κ2
R½gμν� þ

1

2
∂μφ∂μφþ e2~κφ

�
L −

Λ
κ2

��

ð1Þ
where κ2 ¼ 8πG, g ¼ j det gμνj with gμν being the Einstein
metric, and L is the matter Lagrangian written in terms of
the 4d Jordan frame metric ~gμν. Here 2~κ ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
κ is a

constant, we have assumed ∂5 ¼ ∂=∂y ¼ 0 (no Kaluza-
Klein modes), and we use natural units with ℏ ¼ c ¼
kB ¼ 1. The extra dimensional scale factor is denoted by
b ¼ e−2~κφ and the relation between the 4d Jordan frame
metric ~gμν and the 4d Einstein frame metric gμν is given by

gμν ¼ b~gμν ¼ e−2~κφ ~gμν; ~gμν ¼ e−2~κφgμν: ð2Þ
The Lagrangian forming L is taken to be

L ¼ −
1

4
~Fμν ~Fμν ¼ −

1

4
e−4~κφFμνFμν ¼ −

1

2
e−4~κφðB2 −E2Þ

ð3Þ
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where ~Fμν ¼ ~gμα ~gνβFαβ, with ~Fμν ¼ Fμν ¼ ∂μAν − ∂νAμ.
Also, following [1], we focus on the flat space version
where the Ricci scalar R½gμν� ¼ 0 and the metric is
Minkowski, gμν ¼ ημν, and we set the cosmological con-
stant to zero, Λ ¼ 0.
Now, the equations of motion that follow from (1), along

with the Bianchi identity, are given by

□φþ 1

2
~κe−2~κφFμνFμν ¼ 0 ð4Þ

∇μðe−2~κφFμνÞ ¼ 0; ∇μð�FμνÞ ¼ 0 ð5Þ

where □ ¼ ∂2
t −∇2 and the electromagnetic dual tensor is

�Fμν ¼ 1
2
ϵμνρσFρσ. The set of equations in (5) is just the set

of Maxwell equations

∇ ·D ¼ 0; ∇ ×H − _D ¼ 0;

∇ ·B ¼ 0; ∇ ×Eþ _B ¼ 0 ð6Þ

with D ¼ ϵE and B ¼ μH, where the effective dielectric
and permeability functions are ϵ ¼ μ−1 with

μ ¼ ϵ−1 ¼ e2~κφ ð7Þ

and the index of refraction is
ffiffiffiffiffi
ϵμ

p ¼ 1. We can rewrite (4)
now in terms of D and H:

∇2φ − ∂2
tφ ¼ −~κe2~κφðH2 −D2Þ: ð8Þ

B. The background ansatz

An exact, static solution set can be found for the above
equations of motion. This solution set then serves as a
background for the scattering of electromagnetic (EM)
waves. The background solution is that of a dilatonic
domain wall entrapping magnetic flux, originally discov-
ered by Gibbons and Wells [1]. For this static solution, we
set D ¼ 0, E ¼ 0, H ¼ ð0; 0; HÞ, where H is a constant,
and B ¼ ð0; 0; BÞ ¼ μH. We find that the Maxwell equa-
tions (6) are then satisfied, and the equation of motion for
the dilaton field φ of (8) then reduces to

ð∂2
x þ ∂2

yÞφ ¼ −~κH2e2~κφ ð9Þ

where we assume that ∂zφ ¼ 0. This equation is recognized
as the 2D Euclidean Liouville equation [9] whose solution
is given by [1,2,9,10]

μðζÞ ¼ e2~κφðζÞ ¼ 4

~κ2H2

jf0ðζÞj2
ð1þ jfðζÞj2Þ2 ð10Þ

where ζ ¼ xþ iy and fðζÞ is a holomorphic function of ζ
and f0ðζÞ ¼ dfðζÞ=dζ. Let us choose fðζÞ to take the form
fðζÞ ¼ eMζ. Then (10) produces a static domain wall
solution [1,2,11]

μðxÞ ¼ e2~κφðxÞ ¼
�
M
~κH

�
2 1

cosh2ðMxÞ ¼
�
M
~κH

�
2

sech2ðx̄Þ;

x̄≡Mx: ð11Þ

The constant M has a canonical dimension of mass, so
that the coordinate x̄ ¼ Mx is dimensionless, as is the factor
ðM=~κHÞ. This domain wall solution depends only upon x,
and not upon y, and the width of the wall is represented by
a ¼ M−1. The magnetic field is BðxÞ ¼ μðxÞH ∝ sech2x̄,
which maximizes in the wall’s core and falls to zero
asymptotically. The magnetic flux per unit length of the
domain wall is [1,2,11]

Φmag

Ly
¼ 1

Ly

Z
∞

−∞

Z
Ly

0

BðxÞdxdy ¼ 2M
~κ2H

: ð12Þ

III. ELECTROMAGNETIC WAVE PROPAGATION

A. Wave equations and exact solutions

We now examine the scattering of electromagnetic (EM)
waves from the wall background ansatz of (11), except now
we denote the static magnetic B and H fields of the wall by
B0 andH0, and denote those of electromagnetic waves by B
and H. The basic formalism for EM scattering from a
dilatonic wall (with normal incidence) with arbitrary ϵðxÞ
and γðxÞ ¼ ln ϵðxÞ is described in Sec. IVa of [12]. We use
results presented there to describe EM wave fields with
nonvanishing components Eyðx; tÞ and Bzðx; tÞ propagat-
ing in the�x direction. The electromagnetic field equations
can be reduced to [12]

∂2
xBz − ∂2

t Bz þ ð∂2
xγÞBz þ ð∂xγÞ∂xBz ¼ 0 ð13Þ

and we assume fields of the form

Eyðx; tÞ ¼ Eðx;ωÞe−iωt; Bzðx; tÞ ¼ Bðx;ωÞe−iωt:
ð14Þ

From the field equations we then have

E ¼ −
i
ω
½∂xBþ ð∂xγÞB�: ð15Þ

We again define the dimensionless coordinate x̄ ¼ Mx, and
using ∂xγ ¼ 2M tanh x̄ and ∂2

xγ ¼ 2M2sech2x̄, (13) can be
written as

∂2
x̄Bþ 2ðtanh x̄Þ∂ x̄Bþ

�
ω2

M2
þ 2sech2x̄

�
B ¼ 0: ð16Þ

Now we change coordinates according to

x̄ðuÞ ¼ arctanhðuÞ; B½x̄ðuÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p
B̂ðuÞ: ð17Þ
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This renders our Eq. (16) in the form

ð1 − u2Þ2B̂00ðuÞ − 2uB̂0ðuÞ

þ
�
M2ð2u2 − 1Þ − ω2

M2ðu2 − 1Þ
�
B̂ðuÞ ¼ 0; ð18Þ

where here the prime denotes differentiation with respect to
the argument u. The general solution to this equation is
given by

B̂ðuÞ ¼ c1P
μ
1ðuÞ þ c2Q

μ
1ðuÞ; μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2

M2

r
: ð19Þ

After reverting the change of coordinate (17), the latter
solution takes the form

B ¼ sechðx̄Þ½c1ðωÞPμ
1ðξÞ þ c2ðωÞQμ

1ðξÞ� ð20Þ

where P and Q are Legendre functions; c1ðωÞ and c2ðωÞ
are x̄ independent parameters, which, in general, can
depend upon the frequency ω; and

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2

M2

r
; ξ ¼ tanh x̄; ð21Þ

where the index μ of (21) is not to be confused with
the permeability function defined earlier. Due to the fact
that the lower index on both P and Q is an integer, the
solution (20) degenerates to an elementary function, which
is given by

B ¼ sechðx̄Þ
�
c1

ðξ − μÞð1þ ξÞμ=2
Γð2 − μÞð1 − ξÞμ=2

þ c2
πð1 − ξ2Þ−μ=2½ð1þ ξÞμðξ − μÞ cosðπμÞ − ð1 − ξÞμðξþ μÞ�

2 sinðπμÞΓð2 − μÞ
�
: ð22Þ

The behavior of the solution (22) can be described as
follows. First we observe that the factor sechðx̄Þ is
responsible for damping, as jx̄j tends toward infinity.
The term inside the curly brackets is in general complex
valued. Its qualitative behavior depends principally on the
quantity μ, which depends upon ω=M. We can distinguish
two cases, assuming without restriction that c1 and c2 are
real valued.
(1) ω ≤ M, i.e., real root, ð1 − ω2=M2Þ ≥ 0: The sol-

ution (22) is real, bounded everywhere, has two
zeros (one positive, one negative) and goes to zero as
jxj tends to infinity. These properties are indepen-
dent of c1 and c2. These solutions are nonoscillatory
outside of the domain wall.

(2) ω > M, i.e., imaginary root, 1 − ω2=M2 < 0: The
solution (22) is complex. Both real and imaginary
parts are bounded everywhere, have an infinite
number of zeros and go to zero as jx̄j tends to
infinity. The set of zeros is unbounded from both
below and above. These properties are independent
of c1 and c2.

B. An estimate for the domain wall mass
parameter M and width a ¼ M−1

Since dilatonic-matter effects are expected to be nearly
negligible and nearly undetectable at this time, we focus
on the case where the effective dielectricity in vacuum
ϵðx̄Þ does not wander far from unity. We define ϵ0 ¼ 1
for the case of no dilaton coupling to EM fields, i.e.,
ordinary electrodynamics, and consider the case where

Δϵðx̄Þ ¼ ϵðx̄Þ − ϵ0 ≪ 1. Furthermore, we consider the
possibility where there is just one dilaton-Maxwell wall
within the observable Universe, and we roughly estimate
the width of the wall to be on the order of the Hubble
length, a ∼ jxCj ∼ lH ∼ 1010 light-years ∼1026 m. The
distance jxCj serves as a long distance cutoff, as the
wall’s surface energy density (tension) ΣðxÞ diverges with
distance away from the wall according to [2] ΣðjxjÞ ¼
ðM=~κ2Þjxj, so that

ΣðjxCjÞ ¼
M
~κ2
jxCj: ð23Þ

Our expression for the effective dielectric constant is

ϵðx̄Þ ¼ e−2~κφ ¼
�
~κH0

M

�
2

cosh2ðx̄Þ ð24Þ

where −2~κ ¼ ffiffiffiffiffiffiffiffi
2=3

p
κ and x̄ ¼ Mx ¼ x=a. We therefore

examine the limit where κjφj ≪ 1 and ϵðx̄Þ ≪ 1þ ϵ0 ¼ 2.
We therefore want to consider jx̄Cj to be not far from order
unity so that the cosh2ðx̄Þ term has little variance, even over
large distances. (We expect standard classical EM theory
and QED to hold to a high degree of precision everywhere
within the observable Universe, with dilatonic effects being
extremely small.) We choose to set j ~κH0

M j ¼ 1, which fixes
H0 in terms of M, so that

ϵðx̄Þ ¼ cosh2ðx̄Þ ¼ 1þ x̄2 þOðx̄4Þ ≈ 1þ x̄2: ð25Þ

We then have that Δϵðx̄Þ¼ ϵðx̄Þ−1¼ x̄2¼ðMxÞ2≪ 1.
Setting jx̄j ¼ jx̄Cj ¼ MjxCj≲ 1 we have M ≲ 1=jxCj and
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therefore a wall thickness a ¼ M−1 ≳ jxCj ∼ lH ∼ 1026 m,
where lH is the Hubble length. So for a ∼ jxCj on the order
of the Hubble length, we have a very thick wall, extending
through the observable Universe. EM radiation of essen-
tially all wavelengths is much smaller than the wall thick-
ness, i.e., λ ≪ a ¼ M−1 ∼ lH for essentially all radiation
with wavelength smaller than the Hubble length, and
therefore we have ω=M > 1 for essentially all radiation.
Therefore, all radiation travels through a very thick wall
(λ ≪ a ¼ M−1) where ϵðxÞ varies very slowly.

IV. WAVE PROPAGATION THROUGH
A THICK WALL

A. Wave equations and approximate solutions

The propagation of EM waves through a thick wall with
arbitrary, but slowly varying, ϵðxÞ has been described in
[12]. Instead of repeating the calculational details presented
there, we simply recap some of the highlights. We define
the function γðxÞ ¼ ln ϵðxÞ and consider ∂xϵ and ∂xγ to be
sufficiently small. Let us now examine the scattering of
electromagnetic (EM) waves from the wall background
ansatz of the dilaton-Maxwell wall, except now we denote
the static magnetic B andH fields of the wall by B0 andH0,
and denote those of electromagnetic waves by B and H.
The basic formalism for EM scattering from a dilatonic
wall (with normal incidence) with arbitrary ϵðxÞ and γðxÞ ¼
ln ϵðxÞ is described in Sec. IVa of [12], and the reader is
referred there for calculational details. We use results
presented there to describe EM wave fields with non-
vanishing components Eyðx; tÞ and Bzðx; tÞ propagating in
the�x direction. For notational simplicity, we simply write
E ¼ Ey and B ¼ Bz. The electromagnetic field equations
can be reduced to [12]

B00 − B̈þ γ00Bþ γ0B0 ¼ 0; E ¼ −
i
ω
½B0 þ γ0B� ð26Þ

where we assume the fields to have the time dependence
e−iωt and a prime stands for differentiation with respect
to x.
We now take the magnetic field Bðx; tÞ to be of the form

Bðx; tÞ ¼ AeiϕðxÞe−iωt ð27Þ
where the amplitude A is a real constant and ϕðxÞ is a
phase function, which may be complex valued, in general.
The wave equation for B then gives an equation for the
function ϕ,

iϕ00 − ϕ02 þ ω2 þ γ00 þ iϕ0γ0 ¼ 0: ð28Þ
For the expectedly small dilatonic effect on the wave

equations for E and B, we note that for the case ϵ ¼ const
and γ0 ¼ 0 we have the usual solution ϕ0 ¼ �ω and
ϕ ¼ �ωx. The þð−Þ solution describes waves traveling

in the þxð−xÞ direction. Approximations can be made for
the case of slowly varying ϵðxÞ which lead to the approxi-
mate solutions for the EM fields [12]

B�ðx; tÞ ¼ A

�
ϵ

ϵ0

�
−1=2

e�iωxe−iωt ð29Þ

and

E�ðx; tÞ ¼
�
�1 − i

γ0

2ω

�
A

�
ϵ

ϵ0

�
−1=2

e�iωxe−iωt ð30Þ

where ϵ0 is just a constant which can be set to unity. Note
that the effective amplitude of the magnetic field is
Að ϵϵ0Þ−1=2. Since we assume that Δϵ ≪ 1, the effective
amplitude varies only mildly over any distance of interest.

B. Reflection and transmission coefficients

The Poynting vector is given by S ¼ ReðE ×H�Þ ¼
ϵReðE ×B�Þ. This can be applied to each of the �
propagating waves, which after some algebra, yields [12]

ðSxÞ� ¼ ϵReðE� × B�
�Þ ¼ �ϵjB�j2

¼ �ϵ

�
A2

ϵ0
ϵ

�
¼ �ϵ0A2: ð31Þ

This shows that ðSxÞ� is x independent, which by
Poynting’s theorem, indicates that no energy or momentum
is lost by either the þ or − traveling waves, which in turn
implies that the transmission and reflection coefficients
are given by T ¼ 1 and R ¼ 0, respectively, for waves with
ω ≫ jγ0j ¼ Mj tanhðx̄Þj, i.e., ω=M ≫ j tanhðx̄Þj. We have
argued that, within the scenario considered here, ω=M > 1
for all EM waves of interest, and in fact, due to the extreme
smallness of M, we have ω=M ≫ 1 for all frequencies of
interest. The wall is therefore transparent to all EM radiation.

V. OBSERVATIONAL CONSEQUENCES

Since T ¼ 1 and R ¼ 0, it would therefore seem that
there would be few observational consequences. However,
we recall that the setting j ~κH0

M j ¼ 1 will fix the value of the
wall-entrapped H0 field in terms of the mass parameter M.
We therefore have

jH0j ¼
M
j~κj ¼

2Mffiffiffiffiffiffiffiffi
2=3

p
κ
¼ 2

ffiffiffi
3

2

r
M
κ
¼ 2

ffiffiffi
3

2

r
Mffiffiffiffiffiffiffiffiffi
8πG

p ∼MMP

ð32Þ
where MP ¼ 1=κ ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
∼ 1018 GeV is the reduced

Planck mass. Our estimate of M−1 ∼ 1026 m gives M ∼
10−26 m−1 ∼ 10−42 GeV, so that

jH0j ∼MMP ∼ 10−24 GeV2 ∼ 10−4 G ð33Þ
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where we have used the conversion that 1 Tesla (T) is 104

Gauss (G), approximately given by 1 T ¼ 10;000 G∼
200 eV2, or 1 GeV2 ∼ 1016 T ∼ 1020 G. This value of
jH0j in the center of the wall is much larger than an
intergalactic magnetic field strength of ∼10−15 G [13].
Therefore, setting a ∼ lH results in a magnetic field in space
that is larger than that observed in intergalactic regions.
If, on the other hand, we set jH0j ∼ 10−15 G ∼

10−35 GeV2 and use M ∼ jH0j=MP, we can determine
a ¼ M−1. Doing this, we have

M ∼
jH0j
MP

∼ 10−53 GeV;

a ¼ M−1 ∼ 1053 GeV−1 ∼ 1037 m: ð34Þ

Since a characteristic Hubble length is lH ∼ 1026 m, this
estimate gives a ∼ 1011lH, i.e., 1011 Hubble lengths. In this
case the wall is ridiculously thick, spanning many observ-
able universes.

VI. SUMMARY AND CONCLUSIONS

In summary, it is found that for a single dilaton-Maxwell
wall, the setting of j ~κH0

M j ¼ 1 along with a ∼ lH results in a
magnetic field that is too strong, while setting jH0j to the
value of an intergalactic magnetic field results in a domain
wall spanning many observable universes, with a ∼ 1011lH.
On the other hand, if j ~κH0

M j ≠ 1, we have a value of ϵðxÞ that
wanders too far from unity in at least some regions of space,
even if cosh2ðx̄Þ ∼ 1, which does not seem to be supported
by observation. If there were many thinner walls where ϵðxÞ
could differ from unity for jxj=a > 1, one would expect
some observed periodic spatial variation in the fine struc-
ture constant α, which does not seem reasonable.
(However, other topological dilaton domain wall models
that do not require a large distance cutoff may possibly
allow for a mild variation of α [7].) We conclude that a
dilaton-Maxwell domain wall is not likely to be physically
realized within our observable Universe.

[1] G.W. Gibbons and C. G. Wells, Flux confinement in
dilatonic cosmic strings, Classical and Quantum Gravity
11, 2499 (1994).

[2] J. R. Morris, Short note on the stability of a dilatonic wall,
Quantum Stud.: Math. Found. 1, 167 (2014).

[3] A. Vilenkin, Cosmic strings and domain walls, Phys. Rep.
121, 263 (1985).

[4] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and
Other Topological Defects (Cambridge University Press,
Cambridge, England, 1994).

[5] See, for example, R. Rajaraman, Solitons and Instantons
(North-Holland Publishing Co., Amsterdam, 1982).

[6] See, for example, Section 13.4 of Ref. [4].
[7] K. A. Olive, M. Peloso, and J.-P. Uzan, The wall of

fundamental constants, Phys. Rev. D 83, 043509 (2011).

[8] J. R. Morris, Domain bubbles of extra dimensions, Phys.
Rev. D 67, 025005 (2003).

[9] J. Liouville, Sur l’equation aux differences partielle
d2 log λ
dudv � λ

2a2 ¼ 0, Journal de Mathématiques Pures et Appli-
quées 18, 71 (1853).

[10] D. G. Crowdy, General solutions to the 2D Liouville
equation, Int. J. Eng. Sci. 35, 141 (1997).

[11] J. R. Morris, Generalized Dilaton-Maxwell cosmic string
and wall solutions, Phys. Lett. B 641, 1 (2006).

[12] N. De Leon and J. R. Morris, Reflection and transmission
at dimensional boundaries, Phys. Rev. D 74, 045033 (2006).

[13] W. Essey, S. Ando, and A. Kusenko, Determination of
intergalactic magnetic fields from gamma ray data,
Astropart. Phys. 35, 135 (2011).

LIGHT WAVE PROPAGATION THROUGH A DILATON- … PHYSICAL REVIEW D 92, 085026 (2015)

085026-5

http://dx.doi.org/10.1088/0264-9381/11/10/009
http://dx.doi.org/10.1088/0264-9381/11/10/009
http://dx.doi.org/10.1007/s40509-014-0021-7
http://dx.doi.org/10.1016/0370-1573(85)90033-X
http://dx.doi.org/10.1016/0370-1573(85)90033-X
http://dx.doi.org/10.1103/PhysRevD.83.043509
http://dx.doi.org/10.1103/PhysRevD.67.025005
http://dx.doi.org/10.1103/PhysRevD.67.025005
http://dx.doi.org/10.1016/S0020-7225(96)00080-8
http://dx.doi.org/10.1016/j.physletb.2006.08.028
http://dx.doi.org/10.1103/PhysRevD.74.045033
http://dx.doi.org/10.1016/j.astropartphys.2011.06.010

