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We analyze various aspects of pion and kaon condensation in the framework of chiral perturbation
theory. Considering a system at vanishing temperature and varying the isospin chemical potential and the
strange quark chemical potential we reproduce known results about the phase transition to the pion
condensation phase and to the kaon condensation phase. However, we obtain mesonic mixings and masses
in the condensed phases that are in disagreement with the results reported in previous works. Our findings
are obtained both by a theory group analysis and by direct calculation by means of the same low-energy
effective Lagrangian used in previous works. We also study the leptonic decay channels in the normal phase
and in the pion condensed phase, finding that some of these channels have a peculiar nonmonotonic
behavior as a function of the isospin chemical potential. Regarding the semileptonic decays, we find that
they are feeding processes for the stable charged pion state.
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I. INTRODUCTION

The properties of strongly interacting matter in an
isospin- and/or strangeness-rich medium are relevant in a
wide range of phenomena including the astrophysics of
compact stars and heavy-ion collisions. It is known that
depending on the value of the isospin chemical potential,
μI , and on the value of the strangeness chemical potential,
μS, three different phase can be realized: the normal phase,
the pion condensed (πc) phase and the kaon condensed
(Kc) phase [1–3]. The realization of a mesonic condensate
can drastically change the low-energy properties of matter,
including the mass spectrum and the lifetime of mesons.
Previous analyses of the meson condensed phases by

QCD-like theories were developed in [4,5]. Pion conden-
sation in two-flavor quark matter was studied in [2,6] and in
three-flavor quark matter in [3]. In particular, the phase
diagram as a function of μI and μS was presented in [3].
Finite temperature effects in SUð2ÞL × SUð2ÞR chiral
perturbation theory (χPT) have been studied in [7–10].
One remarkable property of quark matter with nonvanish-
ing isospin chemical potential is that it is characterized by a
real measure; thus the lattice realization can be performed
with standard numerical algorithms [11,12]. The πc phase
and the Kc phase have been studied by Nambu–Jona-
Lasinio models in [13–17] and by random matrix models in
[18]. All these models find results in qualitative and
quantitative agreement, and in particular, the phase diagram
of matter has been firmly established. However, regarding
the low-energy mass spectrum in three-flavor quark matter,
we found that it was only studied in [3]. Our results are in
disagreement with those of [3]; the most relevant difference
is in the mixing between mesonic states. Regarding the

pion decay, previous works focused on density and temper-
ature effects in standard decay channels [19–21], but not all
the decay channels have been considered.
In the present paper we analyze the πc phase and the Kc

phase in a realization of χPT [22–26] that includes only
the pseudoscalar mesons. Therefore, the considered
chiral Lagrangian approach is valid for jμBj≲ 940 MeV,
jμIj≲ 770 MeV, and jμSj≲ 550 MeV. These bounds come
from the masses of the proton, the rho meson and the
omega baryon, respectively. Moreover, χPT is valid in the
energy range E≲ 1 GeV, corresponding to the breaking
scale of the theory. For definiteness we take the following
values of the mesonic masses in vacuum: mπ ¼ 140 MeV,
mK ¼ 495 MeV and mη ¼ 547 MeV. Unless explicitly
stated, we will assume that in vacuum all the pion masses
and all the kaon masses are equal. By this model we discuss
the mixing and the masses of the pseudoscalar mesonic
octet and the most relevant pion decay channels in the
normal phase, in the πc phase and in the Kc phase.
Regarding the mesonic mixing, we discuss the disagree-
ment with the results of [3] by theory group analysis and by
explicit calculation using the χPT Lagrangian. Regarding
the decay channels, since the masses of the mesons strongly
depend on μI and μS, by changing these chemical potentials
some decay channels can become kinematically forbidden
and/or other channels that are not allowed in vacuum can be
opened.
As we shall formally see, the presence of a baryonic

chemical potential is immaterial for the chiral Lagrangian,
because mesons have no baryonic charge. However, it is
clear that at large values of μB we expect a transition
between hadronic matter and a different phase, presumably
a color superconducting phase [27–29]. In principle we
should limit ourselves to considering μI < μB; however
since the effective Lagrangian is blind to the baryonic
chemical potential, we can assume that such inequality is
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always satisfied. Although we will consider the range of
values of jμIj≲ 770 MeV, it is worth emphasizing that at
asymptotic μI the system can be studied by perturbative
QCD and the ground state is a Fermi liquid with Cooper
pairing of quarks [2,6].
One interesting topic that to the best of our knowledge

has not been previously discussed in the pion and kaon
condensed phases is the screening mass of the photon. By
the Nishijima-Nakano–Gell-Mann (NNG) formula

Q ¼ T3 þ
Y
2
; ð1Þ

it is possible to relate the electric charge, Q, to the third
component of isospin, T3, and hypercharge, Y. In particu-
lar, if the vacuum carries isospin and/or strangeness
charges, then it will be a superconductor because the
Uð1ÞQ gauge group will be broken. Thus, by the Higgs-
Anderson mechanism the photon will acquire a Meissner
mass. We evaluate the tree-level screening masses finding
that in the two meson condensed phases they have the same
formal expression. Moreover, the Debye and Meissner
masses are equal. In principle, any quark chemical potential
breaks the Lorentz symmetry; therefore the Debye and
Meissner masses of the photon can be different. However,
we will show that the tree-level Lagrangian has to lead to
equal Debye and Meissner masses.
The present paper is organized as follows. In Sec. II we

briefly review the aspects of χPT that are relevant for our
work. In Sec. III we consider two-flavor quark matter. We
discuss pion condensation driven by an isospin chemical
potential reviewing known results and generalizing the
study of the low-energy Lagrangian. In Sec. IV we consider
three-flavor quark matter, determining the mixing angles
and the masses of the pseudoscalar octet. In Sec. V we
discuss the pion decay channels in the normal phase and in
the πc phase. In Sec. VI we summarize our results. In the
Appendix we discuss some details about the π-W vertex
factor relevant for pion decays.

II. GENERAL SETTING

In this section we briefly review the aspects of chiral
symmetry that are relevant for meson condensation. The
general Oðp2Þ Lorentz invariant Lagrangian density
describing the pseudoscalar mesons can be written as

L ¼ F2
0

4
TrðDνΣDνΣ†Þ þ F2

0

4
TrðXΣ† þ ΣX†Þ; ð2Þ

where Σ corresponds to the meson fields, X ¼ 2B0ðsþ ipÞ
describes scalar and pseudoscalar external fields and the
covariant derivative is defined as

DμΣ ¼ ∂μΣ −
i
2
½vμ;Σ� −

i
2
faμ;Σg; ð3Þ

with vμ and aμ the external vectorial and axial currents,
respectively. The Lagrangian has two free parameters F0

and B0, related to the pion decay and to the quark-antiquark
condensate, respectively; see for example [22–26].
The Lagrangian density is invariant under SUðNfÞL ×

SUðNfÞR provided the meson field transforms as

Σ → RΣL†; ð4Þ

and the chiral symmetry breaking corresponds to the
spontaneous global symmetry breaking SUðNfÞL×
SUðNfÞR → SUðNfÞLþR. The combination of the N2

f−1

Nambu-Goldstone bosons (NGBs), ϕa with a ¼ 1;…;
N2

f − 1, corresponding to mass eigenstates can be identified
with the pseudoscalar mesons fields. In standard χPT, the
mass eigenstates are charge eigenstates as well. Thus
mesons are particles with a well-defined mass and charge.
The presence of a medium can change this picture. In
particular, if the vacuum carries an electric charge, then the
mass eigenstates will not typically be charge eigenstates.
The presence of a medium can be taken into account by
considering appropriate external currents in Eq. (2).
At vanishing temperature the vacuum is determined by

maximizing the Lagrangian density with respect to the
external currents. The pseudoscalar mesons are then
described as oscillations around the vacuum. We use the
same nonlinear representation of [3] corresponding to

Σ ¼ uΣ̄u with u ¼ eiT·ϕ=2; ð5Þ

where Ta are the SUðNfÞ generators and Σ̄ is a generic
SUðNfÞ matrix to be determined by maximizing the static
Lagrangian. The reasoning behind the above expression is
that under SUðNfÞL × SUðNfÞR mesons can be identified
as the fluctuations of the vacuum as in Eq. (4) with
θRa ¼ −θLa ¼ ϕa.
In the following we will assume that aμ ¼ 0, p ¼ 0,

X ¼ 2GM, where M is the Nf × Nf diagonal quark mass
matrix and G is a constant that with these conventions is
equal to B0. Moreover, we will assume that vν ¼
−2eQAν − 2μδν0, meaning that the vectorial current con-
sists of the electromagnetic field and a quark chemical
potential, with μ an SUðNfÞ × SUðNfÞ matrix in flavor
space. We first study the Nf ¼ 2 case and then the Nf ¼ 3

case. Since the two-flavor case is simpler to treat math-
ematically, it will allow us to establish a number of results
that are useful for the description of the three-flavor case.

III. TWO-FLAVOR CASE

In two-flavor quark matter the vacuum expectation value
of the fields can be expressed as

Σ̄ ¼ eiα·σ ¼ cos αþ in · σ sin α; ð6Þ

ANDREA MAMMARELLA AND MASSIMO MANNARELLI PHYSICAL REVIEW D 92, 085025 (2015)

085025-2



where α ¼ nα corresponds to the energetically favored
direction in SUð2Þ space. Assuming equal light quark
masses, mu ¼ md ¼ m, the Oðp2Þ Lagrangian can be
written as

L ¼ F2
0

4
TrðDνΣDνΣ†Þ þ F2

0m
2
π

2
TrðΣþ Σ†Þ; ð7Þ

where m2
π ¼ 2Gm=F2

0 is the pion mass for vanishing
isospin chemical potential. Expanding the covariant deriva-
tive we obtain

L ¼ F2
0

4
Trð∂νΣ∂νΣ†Þ þ F2

0m
2
π

2
TrðΣþ Σ†Þ

−
F2
0

16
Tr½vμ;Σ�½vμ;Σ†� − iF2

0

4
Tr∂μΣ½vμ;Σ�; ð8Þ

and considering the quark chemical potential

μ ¼ diagðμu; μdÞ ¼
μB
3
þ μIσ3

2
; ð9Þ

we can write

vν ¼ −2eQAν − 2μδν0 ¼ − ~Aν
I I − ~Aν

3σ3; ð10Þ

with

~Aν
I ¼

1

3
ðeA0 þ μB; eAÞ; ð11Þ

~Aν
3 ¼ ðeA0 þ μI; eAÞ: ð12Þ

Given that in Eq. (8) the interaction terms between vμ and Σ
are proportional to commutators of these two fields, the
only relevant term in vμ is the one proportional to ~Aμ

3, and
this is consistent with the fact that mesons have no baryonic
charge. Note that both μI andM explicitly break SUð2ÞL ×
SUð2ÞR chiral symmetry giving mass to the (pseudo)
NGBs. Equal light quark masses leave SUð2ÞI invariant
ensuring that pions have equal masses. The isospin chemi-
cal potential induces a further symmetry breaking, such that
SUð2ÞI → Uð1ÞLþR with the effect of removing the pion
mass degeneracy with a contribution proportional to the
isospin charge. Since pions are an isotriplet, it follows that
the contribution of the isospin chemical potential to the π0
mass vanishes and the contributions to the π� is a Zeeman-
like splitting, thus

mπ0 ¼ mπ; ð13Þ

mπ� ¼ mπ ∓ μI; ð14Þ

clearly the condensation of charged pions happens at
jμIj ¼ mπ . The only symmetry of the Lagrangian in

Eq. (7) is Uð1ÞLþR; when it is spontaneously broken it
leads to a massless NGB, corresponding to one of the two
charged pions depending on the sign of the isospin
chemical potential.
At the microscopic level, the breaking pattern induced by

the isospin chemical potential and the light quark masses is

SUð2ÞL × SUð2ÞR ×Uð1ÞB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊃½Uð1ÞQ�

→ Uð1ÞLþR ×Uð1ÞB|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊃½Uð1ÞQ�

; ð15Þ

where Uð1ÞQ corresponds to the electromagnetic gauge
symmetry. In the broken phase one of the two charged
pions condenses, spontaneously breaking the Uð1ÞQ sym-
metry, meaning that the system becomes an electromag-
netic superconductor. Formally, Q can be expressed as a
combination of the generator of Uð1ÞB and of Uð1ÞLþR;
thus the breaking of Uð1ÞLþR leads to a screening mass for
the photon by the Higgs-Anderson mechanism.
Regarding the Lorentz symmetry, the isospin chemical

potential explicitly breaks boost symmetry; however by
expressing the isospin chemical potential as the expectation
value of the ~Aμ

3 field we can formally consider a Lorentz
invariant Lagrangian. To formally preserve Lorentz sym-
metry we will as well employ the Lorenz gauge ∂μ

~Aμ
3 ¼ 0.

A. Ground state

For vanishing mesonic fluctuations the Lagrangian is a
functional of Σ̄ and ~Aμ

3; upon substituting Eq. (6) in Eq. (7)
we obtain

L0ðα; n3; ~AμÞ ¼ F2
0m

2
π cos α

þ F2
0

2
sin2α ~Aμ

3
~A3μð1 − n23Þ; ð16Þ

which is a function of the parameters α and n3 and a
functional of ~Aμ

3. For vanishing external electromagnetic
field and for μI < mπ, the global maximum is at cosα ¼ 1
and L0 is independent of n, meaning that the ground state
has an SUð2Þ global symmetry. In this case the custodial
SUð2Þ is still present and only the curvature of the potential
(the pion masses) is affected by the isospin chemical
potential. In other words, the isospin chemical potential
is not sufficient to tilt the vacuum in one direction; thus the
vacuum is the same obtained with μI ¼ 0.
The stationary point of L0ðα; n3; δμ0μIÞ corresponds to

n3 ¼ 0 and cos απ ¼ m2
π=μ2I , which is a global maximum

for μI > mπ. In this case the vacuum is tilted by an angle
απ ¼ arccosðm2

π=μ2I Þ and the ground state has only a
residual Oð2Þ symmetry [isomorphic to Uð1Þ] for rotations
n1 ¼ cos θ and n2 ¼ sin θ; the angle θ cannot be deter-
mined by maximizing the ground-state Lagrangian and is
signaling the existence of a massless NGB.
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The ground-state Lagrangian can be easily determined
and is given by

L̄0 ¼
(
F2
0m

2
π for μI < mπ

1
2
F2
0μ

2
I

�
1þ m4

π

μ4I

�
for μI > mπ

: ð17Þ

Regarding the screening masses of the electromagnetic
field, they can be inferred from Eq. (16). The electromag-
netic field has both a Debye mass and a Meissner mass,
which are equal and given by

M2
D ¼ M2

M ¼ F2
0e

2ðsin αÞ2: ð18Þ

The screening masses vanish in the unbroken phase and are
equal to F2

0e
2ð1 −m2

π=μ2I Þ2 in the broken phase, signaling
the breaking of Uð1ÞQ. In principle, the Debye and
Meissner masses could be different, because the Lorentz
symmetries are explicitly broken by μI. However, from the
fact that the isospin chemical potential can be introduced as
in Eq. (12) it is clear that both tree-level screening masses
must be equal.

1. Generic chemical potential

To properly understand the previous results regarding the
ground-state configuration we consider a more general
setting with

μ ¼ 1

2
μ · σ; ð19Þ

corresponding to a quark chemical potential pointing to an
arbitrary direction in isospin space. The ground-state
Lagrangian is obtained maximizing

L0 ¼
F2
0

2
ðsin αÞ2ðjμj2 − jμ · nj2Þ þ F2

0m
2
π cos α ð20Þ

as a function of α and n. It is clear that μ⊥n; thus n is in the
plane perpendicular to μ. This leads to the residual Oð2Þ
symmetry for rotations around μ. For jμj > mπ the ground
state is tilted by an angle απ ¼ arccosðm2

π=jμj2Þ. The
ground-state Lagrangian is the same reported in Eq. (17),
but with μI → jμj.

B. Quadratic Lagrangian

The leading order Lagrangian describing the in-medium
pions can be obtained expanding Eq. (8) at the second order
in the fields. For definiteness we consider μ ¼ ð0; 0; μIÞ
and n ¼ ðn1; n2; 0Þ ¼ ðcos θ; sin θ; 0Þ in the vacuum
expectation value (VEV) in Eq. (6). We decompose the
Oðp2Þ Lagrangian at the second order in the fields as
follows:

Leff ¼ LK þ LM þ LL; ð21Þ

where LK is the kinetic term, LM is the mass term and LL is
the term linear in the derivatives.
The kinetic part of the Lagrangian can be written as

LK ¼ F2
0

2
ðδabðcos αÞ2 þ nanbðsin αÞ2Þ∂νϕa∂νϕb

¼ F2
0

2
∂νϕaKab∂νϕb; ð22Þ

that manifestly shows meson mixing. Since K is a sym-
metric matrix, it can be diagonalized. By the transformation

ϕ1 ¼
1

F0

�
n1 ~ϕ1 −

n2 ~ϕ2

cos α

�
; ð23Þ

ϕ2 ¼
1

F0

�
n1 ~ϕ2

cos α
þ n2 ~ϕ1

�
; ð24Þ

ϕ3 ¼
~ϕ3

F0 cos α
; ð25Þ

we obtain the canonical kinetic term

LK ¼ 1

2
∂ν

~ϕa∂ν
~ϕa: ð26Þ

One of the peculiar aspects of the field redefinition above is
that in the πc phase for mπ=μI → 0 the terms proportional
to ðcos απÞ−1 diverge. In other words, for vanishing light
quark masses the above field renormalization does not
seem to work. The correct prescription for handling this
issue seems to be to consider the mπ=μI → 0 limit only in
the physical results.
Regarding the electric charge eigenstates, we find that

π∓ ¼ e�iθ

F0

ffiffiffi
2

p
�
~ϕ1 � i

~ϕ2

cos α

�
; ð27Þ

where e�iθ ¼ n1 � in2. Note that the standard definition of
the charge eigenstates is obtained for cosα ¼ 1, as
expected.
For the mass term we find

LM ¼ −
m2

π

2
F2
0 cos αϕaϕa

þ F2
0

2
~Aμ
e
~A3μ½cos2αðϕ2

1 þ ϕ2
2Þ − sin2αðn · ϕÞ2�; ð28Þ

that in the rotated basis turns out to be
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LM ¼ −
m2

π

2
cos α

�
~ϕ2
1 þ

~ϕ2
2 þ ~ϕ2

3

cos2α

�

þ
~Aμ
3
~A3μ

2
½ ~ϕ2

1ðcos2α − sin2αÞ þ ~ϕ2
2�: ð29Þ

The term with a linear dependence on the derivative is
given by

LL ¼ iF2
0

2
Tr ~Aμ

3½Σ†; ∂μΣ� ¼ −2F2
0
~Aμ
3ϕ1∂μϕ2cos2α; ð30Þ

that by the rotated basis redefinition turns into

LL ¼ −2 ~Aμ
3
~ϕ1∂μ

~ϕ2 cos α: ð31Þ

An interesting aspect is that in the πc phase this is the only
mixing term between the ~ϕ fields. Since it scales as cosαπ ,
it vanishes for mπ=μI → 0.
Note that no term of the quadratic Lagrangian depends

on n ¼ ðn1; n2; 0Þ; thus the Oð2Þ symmetry has been
absorbed in the redefinition of the fields. Assuming that
no electromagnetic field is present, we can replace in all the
Lagrangian terms ~Aμ

3 → δμ0μI, obtaining in momen-
tum space

Leff ¼ ð ~ϕ1
~ϕ2

~ϕ3Þ

0
B@ k2 −m2

π cos αþ μ2I cosð2αÞ −2ik0μI cos α 0

2ik0μI cos α k2 −m2
π= cos αþ μ2I 0

0 0 k2 −m2
π= cos α

1
CA
0
B@

~ϕ1

~ϕ2

~ϕ3

1
CA

¼ ~ΦS−1 ~Φt; ð32Þ

where k2 ¼ k20 − k2 and S−1 is the inverse propagator. The energy spectrum is obtained from the poles of the propagator and
in the πc phase we find

Eπ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2I

q
; ð33Þ

E ~πþ ¼ 1ffiffiffi
2

p
μI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m4

π þ μ4I þ 2p2μ2I −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3m4

π þ μ4I Þ2 þ 16m4
πμ

2
Ip

2

qr
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4I −m4

π

3m4
π þ μ4I

s
þOðp2Þ; ð34Þ

E ~π− ¼
1ffiffiffi
2

p
μI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m4

πþμ4I þ2p2μ2I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3m4

πþμ4I Þ2þ16m4
πμ

2
Ip

2

qr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m4

πþμ4I
p

μI
þμIp2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7m4

πþμ4I
ð3m4

πþμ4I Þ3=2

s
þOðp4Þ; ð35Þ

where ~π� are the two mass eigenstates (note that in this case the subscript does not indicate the electric charge). The
dispersion law of the massless mode ~πþ is linear in momentumwith a velocity that tends to the speed of light formπ=μI → 0
and that vanishes for mπ=μI → 1. The π� charge eigenstates can be expressed as a linear combination of the ~π� fields as
follows:

π∓ ¼ ie�iθ

ðaþ − a−Þ
ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2−

q �
1� aþ

cos α

�
~π− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2þ

q �
1� a−

cos α

�
~πþ

	
; ð36Þ

where

a� ¼ μ4I −m4
π �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ4I −m4

πÞ2 þ 16k20m
4
πμ

2
I

p
4k0m2

πμI
: ð37Þ

Given the particular expression of the a� coefficients, the
propagating particles oscillate between the two electric
charge eigenstates with a mixing angle depending on the
energy. This is a rather peculiar behavior because in the
Standard Model one typically has mixing angles that are
not energy/momentum dependent. Note that this oscillation

also means that the propagating particles oscillate between
isospin eigenstates. This is possible because in the con-
densed phase the vacuum carries isospin charge which is
related to the electric charge by the NNG formula (1); thus
neither the electric charge nor the isospin charge are
conserved.
Equation (36) can be inverted to obtain

�
~πþ
~π−

�
¼
�
U11 U12

U21 U22

��
πþ
π−

�
; ð38Þ
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and defining

s12 ¼
2m2

π

μI
; M2

2 ¼ −
m4

π − μ4I
μ2I

; ð39Þ

we find that

U ¼

0
B@ 1

n−
1
n−

M2
2
−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

2
þ4k2

0
s12

p
2ik0s12

1
nþ

1
nþ

M2
2
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

2
þ4k2

0
s12

p
2ik0s12

1
CA; ð40Þ

with

n� ¼ 8k20s
2
12 þ 2M4

2 ∓ 2M2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

2 þ 4k20s
2
12

p
4k20s

2
12

: ð41Þ

This result is important for the determination of the width
of the pion decays discussed in Sec. V.
The mixing between the charged pion states can be

simply understood in two-flavor quark matter. The π�
states are the only states having a nonvanishing value of the
third component of isospin, and since the vacuum has a
nonvanishing μI , these states can mix. In the three-flavor
case things become a little more involved.

IV. THREE-FLAVOR CASE

In three-flavor quark matter besides the isospin chemical
potential one has to consider the strange quark chemical
potential. Microscopically, strange quark states can be
occupied by electroweak processes if the light quark
chemical potential exceeds the strange quark mass. The
formal expression of the in-medium effective chiral
Lagrangian is given by Eq. (7) in which the mesonic octet
is introduced by replacing

u ¼ eiϕaλa=2 ð42Þ

in Eq. (5), where λa are the Gell-Mann matrices.
The isospin and strange quark chemical potential can be

introduced by considering

μ ¼ diagðμu; μd; μsÞ

¼ diag

�
1

3
μB þ 1

2
μI;

1

3
μB −

1

2
μI;

1

3
μB − μS

�
¼ μB − μS

3
I þ μI

2
λ3 þ

μSffiffiffi
3

p λ8; ð43Þ

where μS is the so-called strange quark chemical potential.
Note that the actual strange quark chemical potential is
μs ¼ 1

3
μB − μS; however the diagonal contribution of the

baryonic chemical potential is immaterial for mesons.
For three-flavor quark matter the spontaneous symmetry

breaking pattern is the following:

SUð3ÞL × SUð3ÞR|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊃½Uð1ÞQ�

→ SUð3ÞV|fflfflfflffl{zfflfflfflffl}
⊃½Uð1ÞQ�

; ð44Þ

and the corresponding eight NGBs are identified
with the mesonic pseudoscalar octet. The quark masses
explicitly break the chiral symmetry, giving mass to the
pseudo-NGBs. A similar effect is produced by the isospin
chemical potential and the strange quark chemical
potential, with the additional fact of breaking Lorentz
symmetry. The symmetry of the Lagrangian is thus
reduced to

Uð1ÞLþR ×Uð1ÞLþR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊃½Uð1ÞQ�

: ð45Þ

The breaking of this symmetry leads, at most, to the
appearance of one NGB and of the screening masses for
the electromagnetic field.
For the external vector current we can write

vν ¼ −2eQAν − 2μδν0

¼ −
2

3
ðμB − μSÞIδν0 − ~Aν

3λ3 − ~Aν
8λ8; ð46Þ

where

~Aμ
3 ¼ ðeA0 þ μI; eAÞ; ð47Þ

~Aμ
8 ¼ ðeA0 þ 2μS; eAÞ ð48Þ

are the relevant components of the electromagnetic
field.

A. Ground state

In the three-flavor case the most general VEV Σ̄ depends
on eight parameters, corresponding to the possible orien-
tations in SUð3Þ space. However, in the two-flavor case we
have found that rotations around the direction of the
chemical potential leave the vacuum invariant. We assume
that the same is true in the three-flavor case and therefore
the vacuum Lagrangian only depends on two angles, α and
β, corresponding to the angles between the vacuum and the
third component of the isospin, and between the isospin and
the hypercharge, respectively. This is exactly the same
assumption used in [3], in which it was found that there are
three different vacua:

(i) Normal phase:

μI < mπ; ð49Þ

μS < mK −
1

2
μI ð50Þ
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characterized by

αN ¼ 0; βN ∈ ð0; πÞ;
Σ̄N ¼ diagð1; 1; 1Þ: ð51Þ

(ii) Pion condensation phase:

μI > mπ; ð52Þ

μS <
−m2

π þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

π − μ2I Þ2 þ 4m2
Kμ

2
I

p
2μI

ð53Þ

characterized by

cos απ ¼
�
mπ

μI

�
2

; βπ ¼ 0; ð54Þ

Σ̄π ¼

0
B@ cos απ sin απ 0

− sin απ cos απ 0

0 0 1

1
CA

¼ 1þ 2 cos απ
3

I þ iλ2 sin απ

þ cos απ − 1ffiffiffi
3

p λ8: ð55Þ

(iii) Kaon condensation phase:

μS > mK −
1

2
μI; ð56Þ

μS >
−m2

π þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

π − μ2I Þ2 þ 4m2
Kμ

2
I

p
2μI

ð57Þ

characterized by

cos αK ¼
�

mK
1
2
μI þ μS

�
2

; βK ¼ π=2; ð58Þ

Σ̄K ¼

0
B@ cos α 0 sin α

0 1 0

− sin α 0 cos α

1
CA

¼ 1þ 2 cos αK
3

I þ cos αK − 1

2
ffiffiffi
3

p ð
ffiffiffi
3

p
λ3 − λ8Þ

þ iλ5 sin αK: ð59Þ

Note that the kaon condensation can only happen for

μS > μ̄S ¼ mK −
mπ

2
; ð60Þ

and μ̄S ¼ 425 MeV for our parameter choice.

1. Screening masses

As in the two-flavor case we can determine the screening
masses of the electromagnetic field. Remarkably, we find
that the screening masses are independent of the β angle
and have the same expression obtained in the two-flavor
case

M2
D ¼ M2

M ¼ F2
0e

2ðsin αÞ2: ð61Þ

The nonvanishing value of the Meissner mass implies that
in both mesonic condensed phases the system is an
electromagnetic superconductor. Note that across the first
order phase transition between the two condensed phases
the screening masses are discontinuous, because α is
discontinuous.

B. Mixing

In the presence of background isospin-rich matter or
strangeness-rich matter, the Hamiltonian carries the third
component of the isospin charge and of the strangeness
charge (or hypercharge). The corresponding charges are
explicitly broken, meaning that states with a different third
component of isospin and different hypercharge can mix.
Indeed, the effect of a nonvanishing QY and Q3 is not only
to produce a Zeeman-like splitting of the masses but also to
tilt the vacuum in a certain direction in the isospin space
corresponding to one of the nondiagonal generators of
SUð3Þ. Let us discuss this issue more in detail. Given that
the Hamiltonian has terms proportional to T3 and T8, the
SUð3Þ symmetry is explicitly broken. However, for label-
ing the mesonic states we can use T-spin, U-spin and
V-spin quantum numbers [actually only two of them are
independent, indeed T2 þU2 þ V2 is one of the SUð3Þ
Casimir operators], because T2, U2 and V2 commute with
T3 and T8. In Fig. 1 we report the weight diagram of the
pseudoscalar mesonic octet. In the top panel the axes
correspond to T3, U3, V3 and Y and the values of the
T-spin, U-spin and V-spin multiplets are reported. In the
lower panel, mesonic states that can mix are marked with a
different symbol. These diagrams are valid both in the πc
phase and in the Kc phase. For example, from the top panel
we see that charged pions can mix because they both have
T ¼ 1, U ¼ 1=2, V ¼ 1=2; however charged pions cannot
mix with kaons, because they all have T ¼ 1=2. In Table I
we report the T and U quantum numbers of the mesons
with well-defined T spin and U spin. In turn, the only
allowed mixings are the following: ðπþ; π−Þ, ðK0; K̄0Þ,
ðKþ; K−Þ, corresponding to ðϕ1;ϕ2Þ, ðϕ4;ϕ5Þ, ðϕ6;ϕ7Þ
mixing. Regarding the π0 and the η, they have no well-
definedU spin or V spin; thus a different reasoning must be
used for understanding whether they mix or not. We will
see that their mixing will depend on the particular sponta-
neously induced charge of the vacuum.
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One of the important aspects is that the third component
of the isospin and the hypercharge form the Cartan
subalgebra of SUð3Þ; thus the associated charges cannot
directly induce mixing between different states. In other
words, theQ3 andQ8 charges can induce Zeeman-like mass
splittings, but whether mixing between states will happen or
not depends on the spontaneously induced charge of the
vacuum. Note that the operator associated to this induced
charge can be described in terms of lowering and raising
operators of one of the SUð2Þ subgroups of SUð3Þ.

Let us first consider the normal phase. In the normal
phase there is no operator that can induce the mixing of the
mesonic states; thus the mesonic states remain unchanged
but the Q3 and Q8 charges will induce Zeeman-like mass
splittings.
In any of the condensed phases, there is an additional

charge that is spontaneously induced, and the correspond-
ing operator will lead to mixing.
Let us first focus on the isospin (or T spin). We have to

consider two cases. Suppose that the vacuum has a charge
that commutes with T2, as in the πc phase, say the charge
corresponding to T2 ¼ iðT− − TþÞ; see Eq. (56). The T�
operators can induce mixing among the charged pions and
among the kaons. On the other hand, T-spin conservation
does not allow the jπ0i ¼ jT ¼ 1; T3 ¼ 0i to mix with
the jηi ¼ jT ¼ 0; T3 ¼ 0i.
Suppose that the vacuum has a charge that does not

commute with T2 as in the Kc phase; see Eq. (59). Any
operator that does not commute with the isospin will
commute with the U spin or with the V spin. In the Kc
phase Q5j0i ≠ 0, then the vacuum is not invariant under
this charge. However, since ½T5; U� ¼ 0 it follows that the
U spin is conserved. The lowering and raising operator
inducing the mixings will be U�. Regarding the π0 and
the η, in this case we have that jU ¼ 1; U3 ¼ 0i and

jU ¼ 0; U3 ¼ 0i do not mix. Since jU ¼ 1; U3 ¼ 0i ¼
jπ0iþ

ffiffi
3

p jηi
2

and jU ¼ 0; U3 ¼ 0i ¼
ffiffi
3

p jπ0i−jηi
2

, these will be the
mass eigenstates.
In [3] it was found a different mixing in both condensed

phases, with just two blocks ðπþ; π−; π0; ηÞ and
ðK0; K̄0; Kþ; K−Þ, meaning that states with different T
spin, U spin and V spin mix. As we will see in the next
section, using the tree-level Lagrangian we find agreement
with the mixing reported in Table I.

C. Mesonic mass spectrum

For vanishing chemical potentials and for equal light
quark masses, the tree-level values of the mesonic octet
masses in χPT are known to be given by

m2
π ¼ 2Gm=F2

0; ð62Þ

m2
K ¼ GðmþmsÞ=F2

0; ð63Þ

+0K

K0

_
K −

π +−π 0 π T 3

V 3U  3

U
=1/2

V
=1

/2

V
=1

/2

V
=1

T=1

U
=1/2

U
=1

K

Y

η

T=1/2

T=1/2

η

0

_
K −

T 3
0 π− π π +

K+0K

Y

K

FIG. 1 (color online). Weight diagrams of the mesonic octet. In
the top panel we have reported the axes corresponding to the third
component of isospin (or T spin), U spin, V spin and hyper-
charge, Y. Any mesonic state belongs to a multiplet of T spin, U
spin and V spin as indicated in the diagram. In the bottom panel
we have indicated the mesonic states having the same T-spin,
U-spin and V-spin quantum numbers. Only the states marked
with the same symbol can mix. The π0 and the η are not
simultaneous T-spin, U-spin and V-spin eigenstates; their mixing
depends on the spontaneously induced charge of the vacuum.

TABLE I. Mixing mesons with the corresponding T-spin and
U-spin quantum numbers. These quantum numbers label the
SUð3Þ subspace spanned by the corresponding mesonic states.
The π0 and the η do not appear because they are not U-spin
eigenstates.

Mixing states ðT;UÞ
πþ, π− ð1; 1=2Þ
Kþ, K− ð1=2; 1=2Þ
K0, K̄0 ð1=2; 1Þ
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m2
η0
¼ 2Gðmþ 2msÞ=3F2

0 ¼ ð4m2
K −m2

πÞ=3; ð64Þ

wherems is the strange quark mass. In the normal phase the
effect of the isospin and strange quark chemical potential is
a Zeeman-like mass splitting by contribution proportional
to the isospin charge and strangeness,

mπ0 ¼ mπ; ð65Þ

mπ� ¼ mπ ∓ μI; ð66Þ

mη0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2

K −m2
πÞ=3

q
; ð67Þ

mK� ¼ mK ∓ 1

2
μI ∓ μS; ð68Þ

mK0=K̄0 ¼ mK � 1

2
μI ∓ μS: ð69Þ

Below we will discuss the masses of the scalar mesons in
the condensed phases. To obtain the eigenstates we follow
the same procedure used in the two-flavor case; thus we
first expand Σ in order to obtain the quadratic terms in
the fields then, if necessary, we rescale and rotate them to
have canonical kinetic terms. We will denote the mass
eigenstates with a tilde.
In Fig. 2 we report the obtained results for the pseudo-

scalar mesonic octet masses as a function of μI=mπ for three
different values of the strange quark chemical potential. In
the top panel we take μS ¼ 200 MeV that is smaller than
μ̄S ¼ 425 MeV, in the middle panel we take μS ¼
460 MeV and in the bottom panel μS ¼ 550 MeV, which
is the largest possible value of the strange quark chemical
potential that can be considered in the present realization of
χPT. The solid vertical lines correspond to the second order
phase transitions between the normal phase and a con-
densed phase. The dashed vertical lines correspond to first
order phase transitions between the Kc phase and the πc
phase. The top panel and the middle panel should be
compared with the corresponding results reported in [3] in
Figs. 4 and 5, respectively. In the normal phase our results
agree with those of [3], but in both condensed phases we
disagree with the results reported in [3]. As already
discussed, this is due to the fact that we find a different
mixing pattern, even if we use the same model of χPT of
[3]. For this reason we discuss our results in detail.

1. Pion condensation phase

We find mixing within the following pairs of states:
ðϕ1;ϕ2Þ, ðϕ4;ϕ5Þ and ðϕ6;ϕ7Þ, while the ϕ3 and ϕ8 fields
do not mix. Thus, in agreement with the discussion in
Sec. IV B, we do not find mixing between the jπ0i and the
jηi. The reason is that in the πc phase T spin is conserved
and therefore the jπ0i ¼ jT ¼ 1; T3 ¼ 0i state and the
jηi ¼ jT ¼ 1; T3 ¼ 0i state cannot mix.

Since the Lagrangian can be organized in a block
diagonal form, we can treat separately the various sectors.
By the field rescaling

ϕ1;3 → ~ϕ1;3 ¼ ϕ1;3 cos απ; ð70Þ

FIG. 2 (color online). Mass spectrum of the pseudoscalar
mesonic octet. Top panel: results obtained for μS ¼ 200 MeV.
The vertical solid line represents the second order phase transition
between the normal phase and the pion condensation phase. In
this case the strange quark chemical potential is below the
threshold value for kaon condensation, 425 MeV; thus the kaon
condensed phase does not take place for any value of μI . Middle
panel: results obtained for μS ¼ 460 MeV. The vertical solid line
represents the second order phase transition from the normal
phase to the kaon condensation phase. The vertical dotted line
corresponds to the first order phase transition between the kaon
condensed phase and the pion condensed phase. Bottom panel:
results obtained for μS ¼ 550 MeV, corresponding to the largest
value of μS. Also in this case the vertical dotted line corresponds
to the first order phase transition between the kaon condensed
phase and the pion condensed phase.
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ϕ4;5;6;7 → ~ϕ4;5;6;7 ¼ ϕ4;5;6;7 cos

�
απ
2

�
; ð71Þ

we obtain canonical kinetic terms. As in Sec. III B it is
useful to turn to momentum space, so that one can absorb
the terms linear in energy in the propagator. In this way we
obtain the canonical Lagrangian

L ¼ ~ΦtdiagðS−112 ; S−145 ; S−167 ; S−13 ; S−18 Þ ~Φ; ð72Þ

where ~Φ ¼ ð ~ϕ1; ~ϕ2; ~ϕ4; ~ϕ5; ~ϕ6; ~ϕ7; ~ϕ3; ~ϕ8Þ.
Regarding the ð ~ϕ1; ~ϕ2Þ sector, the mixing is the same

obtained in the two-flavor case; thus the results obtained in
Sec. III hold unchanged. The same applies to the ~ϕ3 sector.
For the ~ϕ8 sector corresponding to the η field we obtain

m2
~η ¼ m2

η þ
1

3
m2

π

�
m2

π − μ2I
μ2I

�
: ð73Þ

This expression is rather different from the corresponding
expression given in Eq. (27) of [3]. As already mentioned in
the πc phase we do not find tree-level mixing between the η
and any other meson, while in [3] the ηmixes with the pions.
For the ð ~ϕ4; ~ϕ5Þ sector we have

S−145 ¼
�
k2 −M2

4 −ik0s45
ik0s45 k2 −M2

5

�
; ð74Þ

where

s45 ¼ μI cos αþ 2μS; ð75Þ

M2
4 ¼ M2

5

¼ m2
k þ

1

4
μ2I − μ2S −

1

2
ðμ2I þ 2μIμSÞ cos απ: ð76Þ

The masses of the rotated kaons are given by

m ~K−= ~Kþ ¼ � 1

2

0
B@m2

π

μI
þ 2μS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

π

μI
þ 2μS

�
2

þ 4M2
4

s 1
CA:

ð77Þ

For the ð ~ϕ6; ~ϕ7Þ, we have

S−167 ¼
�
k2 −M2

6 −ik0s67
ik0s67 k2 −M2

7

�
; ð78Þ

where

s67 ¼ μI cos απ − 2μS; ð79Þ

M2
6 ¼ M2

7 ¼ m2
k þ

μ2I
4
− μ2S −

μ2I − 2μIμS
2

cos απ: ð80Þ

The masses of the rotated neutral kaons are given by

m ~K0= ~̄K
0 ¼ � 1

2

0
B@m2

π

μI
− 2μS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

π

μI
− 2μS

�
2

þ 4M2
6

s 1
CA:

ð81Þ
2. Kaon condensation phase

In agreement with the discussion in Sec. IV B, in the
kaon condensation phase we find mixing between ðϕ1;ϕ2Þ,
ðϕ3;ϕ8Þ, ðϕ4;ϕ5Þ and ðϕ6;ϕ7Þ. By the field transformation

ϕ1;2;6;7 → ~ϕ4;5;6;7 ¼ ϕ4;5;6;7 cos

�
αK
2

�
;

ϕ4 → ~ϕ4 ¼ ϕ4 cos αK;� ~ϕ3

~ϕ8

�
¼
 

−
ffiffi
3

p
2

1
2

1
2
cos αK

ffiffi
3

p
2
cos αK

!�
ϕ3

ϕ8

�
; ð82Þ

we obtain a block diagonal Lagrangian in momentum
space

L ¼ ~ΦdiagðS−112 ; S−145 ; S−167 ; S−138 Þ ~Φt: ð83Þ

As anticipated in Sec. IV B the π0 and the η mix,
and according to that discussion the mixed states are
proportional to the U-spin eigenstates, indeed j ~ϕ3i ¼
jU ¼ 0; U3 ¼ 0i, and j ~ϕ8i ¼ cos αKjU ¼ 1; U3 ¼ 0i.
For the ð ~ϕ1; ~ϕ2Þ sector we obtain

S−112 ¼
�
k2 −M02

1 −ik0u12
ik0u12 k2 −M02

2

�
; ð84Þ

where

u12 ¼
1

2
ðð3þ cos αKÞμI þ 2ðcos αK − 1ÞμSÞ;

M02
1 ¼ M02

2

¼ m2
π −

1

2
μ2I ð1þ cos αKÞ − 4μIμSðcos αK − 1Þ; ð85Þ

and we find the pion masses

m ~π� ¼∓ 1

2

 
μI
2
ð3þ cosαKÞþμSðcosαK −1Þ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
μI
2
ð3þ cosαKÞþμSðcosαK −1Þ

�
2

þ4M02
1

s !
:

ð86Þ
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For the ð ~ϕ4; ~ϕ5Þ sector we obtain

S−145 ¼
�

k2 −ik0u45
ik0u45 k2 −M02

5

�
; ð87Þ

where

M02
5 ¼ m2

k cos αK −
1

4
ðμI þ 2μSÞ2 cosð2αKÞ; ð88Þ

u45 ¼
1

4

�
1þ 3 cos αK

cos αK

�
ðμI þ 2μSÞ; ð89Þ

and the corresponding masses are given by

m ~Kþ ¼ 0; ð90Þ

m ~K− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02

5 þ u245

q
: ð91Þ

For the ð ~ϕ6; ~ϕ7Þ sector we obtain

S−167 ¼
�
k2 −M02

6 −ik0u67
ik0u67 k2 −M02

7

�
; ð92Þ

where

M02
6 ¼ M02

7

¼ m2
k þ

μI − 2μS
4

ðcos αðμI þ 2μSÞ − 2μIÞ; ð93Þ

u67 ¼
1

2
ðð−3þ cos αÞμI þ 2ð1þ cos αÞμSÞ; ð94Þ

and we find the masses of the neutral kaons

m ~̄K
0
= ~K0 ¼ � 1

2

�
u67 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u267 þ 4M02

6

q �
: ð95Þ

For the ð ~ϕ3; ~ϕ8Þ sector we have

S−138 ¼
�
k2 −M02

3 u38
u38 k2 −M02

8

�
; ð96Þ

where

M02
3 ¼ 1

24

�
cos αK

�
2m2

k þ 9m2
π þ 6

G
F2
0

ms

�

þm2
πð16 − 6cos2αKÞ

	
; ð97Þ

M02
8 ¼ 1

8 cos αK
ð2m2

k þ ð1þ 2 cos αKÞm2
π

þ 6
G
F2
0

ms cos αKÞ; ð98Þ

u38¼
1

8
ffiffiffi
3

p
�
−2m2

kþð3þ2cosαKÞm2
π −6

G
F2
0

ms

�
; ð99Þ

and we find the masses

m ~π0=~η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02

3 þM02
8 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4u238 þ ðM02
3 −M02

8 Þ2
p

2

s
: ð100Þ

Several remarks are in order:
(1) The masses are continuous across the second order

phase transition but may have a jump at the first
order phase transition line. Actually, at the first order
phase transition point all the masses are discontinu-
ous but the ~Kþ mass, which is the pseudo-NGB
associated to the superfluid mode of the Kc phase.

(2) The mass hierarchy can change dramatically with
some kaons becoming lighter than pions. This has
the effect of forbidding certain decaying process
and/or allow decay process that are not allowed for
vanishing chemical potentials. We will discuss some
of these processes in Sec. V.

(3) The light charged states can become absolutely
stable.

(4) Some mesonic masses in Fig. 2 are about the χPT
breaking scale ∼1 GeV. In this range of energies the
theory is not under quantitative control; however we
expect that the obtained mass hierarchy remains
qualitatively the same.

V. MESONIC DECAYS

In this section we discuss the decay rate of the pions in
the normal phase and in the πc phase. For definiteness we
consider μS ¼ 0; however the same results hold for any
μS < μ̄S. It is important to stress that some processes
are sensitive to the fact that matter is in electroweak
equilibrium. The weak decay processes

u → dþ lþ þ νl; ð101Þ

dþ lþ → uþ ν̄l; ð102Þ

where l� indicates a charged leptonic species and νl the
corresponding neutrino, impose that μþl ¼ μI (assuming
that neutrinos are not trapped). Therefore, for μI > 0 the
leptonic decay of positively charged mesons can be Pauli
blocked. However, if charged leptons are not trapped (as in
heavy ions), then μþl ¼ 0. In the following we will consider
both cases and compare the results obtained for μþl ¼ 0

with those obtained for μþl ¼ μI.

INTRIGUING ASPECTS OF MESON CONDENSATION PHYSICAL REVIEW D 92, 085025 (2015)

085025-11



A. Leptonic decays

We first consider the leptonic decays, which are the
dominant decay channels in vacuum. We separately
consider the normal phase and the πc phase.

1. Normal phase

In the normal phase the meson mass eigenstates are also
the charge eigenstates; thus the standard leptonic decay
channels

πþ → lþνl; ð103Þ

π− → l−ν̄l ð104Þ

are relevant and the corresponding diagrams are reported in
Fig. 3. For μlþ ¼ 0 we obtain

Γπþ→lþνl

Γ0
π→lνl

¼ mπþ

mπ

�
1 −m2

l=m
2
πþ

1 −m2
l=m

2
π

�
2

; ð105Þ

Γπ−→l− ν̄l

Γ0
π→lνl

¼ mπ−

mπ

�
1 −m2

l=m
2
π−

1 −m2
l=m

2
π

�
2

; ð106Þ

where mπ� are the masses of the charged pions in the
normal phase given in Eq. (66), and

Γ0
π→lνl

¼ G2
FF

2
0V

2
udm

2
lmπ

4π

�
1 −

m2
l

m2
π

�
2

ð107Þ

is the standard leptonic decay width, with GF the Fermi
constant and Vud the ud element of the Cabibbo-
Kobayashi-Maskawa matrix.
The behavior of the leptonic decay channels is shown in

Fig. 5; the normal phase corresponds to μI=mπ < 1. In the
top panel are reported the results obtained for μlþ ¼ 0, in
the bottom panel the results obtained for μlþ ¼ μI. Note
that the decay width in the normal phase is not affected by
the lþ chemical potential. With increasing μI the mass of

the πþ decreases and its decay width vanishes at the point
in which the available phase space shrinks to zero,
corresponding to

μI
mπ

¼ 1 −
ml

mπ
: ð108Þ

Thus the decay width πþ → μþνμ vanishes at
μI=mπ ≃ 0.245. Close to this value, for μI=mπ ≳ 0.241,
the decay πþ → eþνe becomes the dominant process. The
positron decay channel closes only for μI=mπ ≃ 0.996.
Note that with increasing μI the mass of the π− increases;
thus the width of the leptonic decay π− → μ−ν̄μ increases.

2. Pion condensation phase

In the πc phase the ~πþ field is massless; thus it will not
decay. On the other hand ~π− is a combination of πþ and π−

and it can decay in both lþνl and l−ν̄l. We can describe
this decay process as given by the linear combination of the
two charge eigenstates as in Fig. 4.
Using Eq. (40) to describe this linear combination, we

obtain the vertex factors

Γ̂μ
~π−Wþ

μ
¼ −

F0gVud

2
ffiffiffi
2

p ð−iqμÞðU�
21 cos απ þ iU�

22Þ; ð109Þ

Γ̂μ
~π−W−

μ
¼ −

F0gVud

2
ffiffiffi
2

p ð−iqμÞðU�
21 cos απ − iU�

22Þ; ð110Þ

where g is the weak coupling constant. More details on the
derivation of Eqs. (109) and (110) are given in the
Appendix. The tensorial structure of these vertices is
unchanged from the normal phase; see for example [25].
The only difference is in the appearance of the U-matrix
elements, corresponding to the mixing of the fields, and in
the cos απ coefficients arising from the normalization of the
fields. Thus, the tensorial contribution to jM2j will be
unchanged from the normal phase and we only have to take
into count the different mixing coefficients. Before giving
the results for the decay rates in the condensed phase, we
want to remark that the U matrix in Eq. (40) is q0
dependent: the mixing depends on the energy of the W

FIG. 4. Feynman diagram describing the ~π− decay channels as
superposition of the decays of the charged pion eigenstates. The
decays of the charged pions are as in Fig. 3.

FIG. 3. Feynman diagrams representing the charged pion
decays in the normal phase.
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boson (that is the energy of the decaying pion). This energy
dependence does not complicate our calculation because
when we integrate the squared amplitude to obtain the
decay width, we have to choose a frame to express the
kinematical variables: we have chosen the charged pion rest
frame, meaning that qμ ¼ ðm ~π− ; 0Þ. For this reason, U�

21

and U�
22 will depend only on μI. In turn, the leptonic decay

rates are given by

Γ ~π−→lþνl

Γ0
π→lνl

¼ jU�
21 cos αþ iU�

22j2
2

m ~π−

mπ

×

�
1 −m2

l=m
2
~π−

1 −m2
l=m

2
π

�
2

; ð111Þ

Γ ~π−→l−ν̄l

Γ0
π→lνl

¼ jU�
21 cos α − iU�

22j2
2

m ~π−

mπ

×

�
1 −m2

l=m
2
~π−

1 −m2
l=m

2
π

�
2

; ð112Þ

where Γ0
π→lνl

is given in Eq. (107).
The decay width of both channels is reported in Fig. 5;

the πc phase corresponds to μI=mπ > 1. The Pauli blocking
suppresses the lþνl channel but does not affect the l−ν̄l
channel. Regarding the latter, it is curious to note the
presence of a local minimum around μI ∼ 1.5mπ , which
corresponds to the local minimum of the ~π− mass located at
μI=mπ ¼ 31=4; see Eq. (35). The small difference between
these two values is due to the mixing angle between the ~π−
state and the π− state and to the fact that the decay width is
not a linear function of μI=mπ.

B. Semileptonic decays

Regarding the semileptonic decays, one has to consider
the mass splitting between the charged pions and the
neutral pion due to unequal light quark masses,
δmπ ¼ ðmπþ −mπ0ÞjμI¼0 ∼ 4.5 MeV, which allows the
πe3 decays πþ → π0eþν and π− → π0e−ν̄ in vacuum. It
is interesting to note that the former is kinematically
forbidden forΔmπþ ¼ ðmπþ −mπ0ÞjμI < me corresponding
to μI ≳ δmπ −me ≃ 4 MeV. Considering the Pauli block-
ing effect on positrons, the process is forbidden for
Δmπþ < μI, corresponding to μI ≳ δmπ=2≃ 2.3 MeV.
On the other hand, the π− → π0e−ν̄ is enhanced by the
isospin chemical potential and no Pauli blocking effect is
present. Neglecting the recoil of the π0 and considering the
leading order in Δmπ−=mπ and me=Δmπ− , we obtain

Γπ−→π0þeþν̄e

Γ0
π−→π0þeþν̄e

¼
�
δmπ þ μI

δmπ

�
5

; ð113Þ

meaning that the corresponding decay width is largely
enhanced with respect to the decay in vacuum. However, it

turns out that this πe3 channel is still suppressed by at least
2 orders of magnitude with respect to the corresponding
leptonic decay.
More interesting is perhaps the fact that the processes

π0 → πþ þ e− þ ν̄e ð114Þ

and

π0 → πþ þ μ− þ ν̄μ ð115Þ

are kinematically allowed for μI > δmπ þme ≃ 5 MeV
and μI > δmπ þmμ ≃ 110 MeV respectively. These semi-
leptonic decays are forbidden in vacuum, but are allowed in
isospin-rich matter. In Fig. 6 we report the semileptonic
decay rate for the process (114) in the normal phase. Note
that the decay width for μI=mπ > 0.5 leads to a mean
lifetime 1=Γ ∼ 10−10 s. In the πc phase from dimensional
analysis (neglecting the electron mass) we have that

Γπ0→πþþe−þν̄e
∝ G2

Fμ
5
I ∼ 10−11

�
μI
mπ

�
5

MeV; ð116Þ
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FIG. 5 (color online). Normalized leptonic decay rates of
charged pions in normal phase and in the condensed phase
normalized to the value in vacuum. The phase transition between
the normal phase and the pion condensed phase corresponds to
the solid vertical line. Top: results obtained for vanishing leptonic
chemical potential. Bottom: results obtained assuming weak
equilibrium. In this case the decay in positively charged leptons
is Pauli blocked. In both plots the thick solid line represents
Γμ− ν̄μ=Γ0μ

, the thin solid line represents Γμþνμ=Γ0μ
, the thick

dashed line represents Γe− ν̄e=Γ0e
and the thin dashed line

represents Γeþνe=Γ0e
.
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therefore this decay width is comparable with that of the
normal phase for μI=mπ > 0.5. From the above reasoning it
is clear that the chain of semileptonic decays

π− → π0 þ eþ ν̄e; ð117Þ

π0 → πþ þ eþ ν̄e ð118Þ

feed the πþ states, which are stable.

1. Neutral pion decay

Let us briefly comment on the

π0 → γγ ð119Þ

decay. In the normal phase this process is the dominant
decay channel for neutral pions. Since in the broken phases
the photon has a screening mass [see Eq. (61)], one might
naively expect that this channel is suppressed. However, in
the πc phase mπ0 ¼ μI [see Eq. (33)]; thus this process is
kinematically allowed if

μI > 2F0e sin απ; ð120Þ

that is always satisfied. Therefore, we expect that this decay
channel has a width of the order of the width in vacuum,
meaning that it should be larger than the semileptonic width
in Eq. (116).

VI. CONCLUSIONS

We have studied various aspects of pseudoscalar mesons
as a function of the isospin chemical potential and of the
strange quark chemical potential. We have determined the
mass eigenstates, obtaining results in disagreement with
those of [3]. In particular in Sec. IV B we have found the
mixing pattern reported in Table I and we have determined

under which circumstances the π0-η mixing happens. Since
we have obtained these results by theory group methods,
they are expected to hold in any theory describing mesonic
states in the pion condensed phase and in the kaon
condensed phase. We have substantiated these results
considering the low-energy chiral Lagrangian describing
the interaction of mesonic states with an isospin and
strangeness charged background. Note that this is the same
low-energy Lagrangian used in [3].
We have analyzed several pion decay channels finding a

nontrivial behavior across the second order phase transition
between the normal phase and the pion condensed phase.
The semileptonic decays become efficient in populating the
stable charged mesonic state, indicating that no matter the
initial pion population, only the stable charged state should
survive. We have as well discussed the Pauli blocking effect
and its relevance for leptonic decays. These decays show an
interesting nonmonotonic behavior as a function of the
isospin chemical potential. Finally, we have briefly com-
mented on the π0 → γγ decay, that is not expected to be
strongly suppressed.
We have not studied the decay channels of the kaons,

although they are certainly interesting. In particular, it
should be intriguing to study the K-short → 2π decay,
because both the initial and final states are strongly
dependent on the values of μI and μS. Regarding the
charged kaons, we have observed that given that the ~Kþ

state is massless in the kaon condensed phase and can be
very light in the pion condensed phase, it should be
possible for charged pions to decay in ~Kþ. Regarding
the ~K−, it is perhaps more interesting to study the leptonic
decays. We note that for large values of μS (see the bottom
panel of Fig. 2), the K− approaches the τ lepton mass.
However, in our model it does not become heavier than the
τ lepton; thus the K− → τν̄τ channel should remain closed.
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APPENDIX: Lint AND AMPLITUDES IN THE
CONDENSED PHASES

As shown in [25], the interaction Lagrangian relevant for
pion decay is

Lint ¼ −i
F2
0

2
Tr½lμΣ†∂μΣ�; ðA1Þ

with the left-handed current given by

I m

Log10 0 e e

0.2 0.4 0.6 0.8 1.0

22

20

18

16

14

12

FIG. 6 (color online). Semileptonic decay rates in normal phase
for the process (114). The vertical axes’ units are MeV; thus
the width changes between ∼10−22 and ∼10−11 MeV. This
decay channel becomes kinematically allowed for μI ≳ 5 MeV,
corresponding to the vertical dotted line.

ANDREA MAMMARELLA AND MASSIMO MANNARELLI PHYSICAL REVIEW D 92, 085025 (2015)

085025-14



lμ ¼ −
gffiffiffi
2

p ðWþ
μ Tþ þW−

μT−Þ; ðA2Þ

where

Tþ ¼

0
B@ 0 Vud Vus

0 0 0

0 0 0

1
CA and T− ¼ ðTþÞ†: ðA3Þ

At the leading order in the fields we obtain

Lint ¼
F0

4
Tr½lμΣ̄†ð∂μϕÞΣ̄þ lμð∂μϕÞ�; ðA4Þ

and the vertex factor in the various phase is obtained
substituting the pertinent expression of Σ̄ in Eq. (A4). In the
normal phase Σ̄ ¼ Σ̄N , and we obtain the well-known result
for π-W boson interaction; see for example [25]. For the
vertex factor in the pion condensation phase we have to use
Σ̄π given in Eq. (56), and at the leading order in the mesonic
fields we obtain

Lϕ1ϕ2

int ¼ −
F0gVud

4
ffiffiffi
2

p f∂μϕ1½2cos2ðαÞðWþ
μ þW−

μ Þ�

þ ∂μϕ2½2iðWþ
μ −W−

μ Þ�g; ðA5Þ

that is still written in terms of the unrotated mesonic states.
Using the rotated fields defined in Eq. (38) we readily
obtain

L ~πþ ~π−
int ðkÞ
¼ −

F0gVud

2
ffiffiffi
2

p ½cos αKð−ikμÞðU�
11 ~aþ þ U�

21 ~a−Þ

× ððϵþμ Þ� þ ðϵ−μ Þ�Þ þ ð−ikμÞ
× ðU�

12 ~aþ þ U�
22 ~a−Þðiðϵþμ Þ� − iðϵ−μ Þ�Þ�; ðA6Þ

where the U-matrix elements are given in Eq. (40), ϵμ is the
polarization of the Wμ boson and ~a− and ~aþ are the
destruction operator of the ~π− and ~πþ fields, respectively.
From this expression we can handily read the vertex factors
of Eqs. (109) and (110).
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