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We demonstrate that (3þ 1)-dimensional quantum electrodynamics with fermionic charges, fermionic
monopoles, and fermionic dyons arises at the edge of a (4þ 1)-dimensional gapped phase with short-range
entanglement. The ground state of this phase cannot be adiabatically connected to a product state, even in
the absence of any symmetry. Our construction provides independent evidence for the obstruction found by
Wang et al. [Science 343, 629 (2014)] to a (3þ 1)-dimensional short-distance completion of all-fermion
electrodynamics. The nontriviality of the bulk is demonstrated by a fermion number anomaly.
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I. INTRODUCTION

A. Topological phases

What properties distinguish quantum phases of matter
from each other? This question is of central importance
to the study of quantum many-body physics. Recent work
has emphasized the importance of symmetry, topology,
and entanglement in distinguishing gapped1 phases in
ways that go beyond the physics of spontaneous symmetry
breaking.
A topological phase is described, at low energies, by a

topological quantum field theory defined on a D dimen-
sional spacetime.2 Examples include Chern-Simons theo-
ries in D ¼ 2þ 1, which model the low-energy physics of
quantum hall fluids [1], as well as BF theories, which
describe some topological phases in D ¼ 3þ 1 [2].
When the matter supporting the topological phase lives

on a boundary-less space, the system is fully gapped except
for the possibility of degenerate ground states which
depend on the topology of space. Additional physics is
revealed by considering a topological phase on a space with
boundary. For example, Chern-Simons theories often host a
rational conformal field theory on the (1þ 1)-dimensional
boundary. These chiral edge modes play an important role
in the Hall response in quantum Hall states. Like the
possibility of ground state degeneracy on closed spaces,
such “edge physics” is also a characteristic feature of a
topological phase.
Among topological phases we can distinguish two

classes: phases which are “invertible” and those which
are not [3–6]. From a physics point of view, invertibility
means that within the Hilbert space H of the theory one

can identify an “inverse ground state” jðgsÞ−1i such that the
state jψi ¼ jgsijðgsÞ−1i ∈ H ⊗ H can be made from a
product state by a local unitary operator

jψi ¼ jgsijðgsÞ−1i ¼ Uj0i⊗Ld
:

Moreover this procedure should be possible on any mani-
fold on which the field theory is defined, independent of
its topology. Hence invertible phases cannot have a ground
state degeneracy which depends on the topology of space
[5] and must be distinguished by their edge physics. A
distinguishing feature of “noninvertible” phases is top-
ology-dependent ground state degeneracy, although they
may also have interesting edge physics. Noninvertible
phases are referred to as “topologically ordered” or
“long-range entangled”; see e.g. [7] for a review.
The inverse state jðgsÞ−1i itself occurs as the ground state

of an invertible topological phase sharing the same global
symmetries. Since the tensor product of two invertible
states is itself invertible, the space of invertible states form a
group under the tensor product. Furthermore, we can
declare two states to be equivalent if they can be adiabati-
cally deformed into each other while respecting a given
symmetryG. This permits us to define an interesting group,
the group of invertible states with symmetry G: the
elements are distinct phases of matter (equivalence classes
of adiabatically connected ground states) and the group
addition law (it is commutative) amounts to stacking the
two phases and allowing all possible local couplings
consistent with G symmetry which do not close the gap.3

1That is, the energy of the first excited state is strictly larger
than the energy of the ground state, even in the thermodynamic
limit.

2Following Sachdev’s convention, we will use D ¼ dþ 1 to
denote the number of spacetime dimensions.

3Sometimes one further restricts terms permissible. For exam-
ple, in the study of free-fermion theories one only allows terms
which are quadratic in the fermionic operators. These groups may
not be isomorphic to the group found when allowing all generic
interactions. The fact that interactions make equivalent some
distinct free-fermion phase is referred to as the “collapse” of the
free-fermion classification by interactions. See [8].
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Identifying the above groups is known as “classifying”
invertible topological phases and has been the subject of
much theoretical activity [3,9–11]. The phases so classified
are often referred to as “short-range entangled,” “symmetry
protected topological (SPT) phases,” though the role of
global symmetry is somewhat opaque from the discussion
thus far. Indeed, nontrivial invertible phases which do not
require a global symmetry G to be protected4 are rare and
interesting.
Much more common are examples where the topological

phase requires a nontrivial global symmetry G to be
respected in order to distinguish these phases from trivial
gapped systems. Examples include the free-fermion topo-
logical insulators protected by time reversal, the Haldane
chain in one dimension protected by SOð3Þ spin rotation
symmetry or time reversal, as well as the host of models
described in Ref. [9].
Up to now the only known examples that do not require

symmetry are (copies of) the fermionic chiral (pþ ip)
superfluid states,5 Kitaev’s E8 state of bosons [12–14] (both
in 2þ 1 dimensions), and Kitaev’s majorana chain in 1þ 1
dimensions [15] (provided we assume the fermion number
is unbreakable).
In this paper, we construct another example of a short-

range entangled topological phase not protected by any
symmetry. It is made from bosons in D ¼ 4þ 1 dimen-
sions, and its edge hosts a version of electrodynamics
where all charged objects are fermions.

B. Edge physics

Following the aforementioned examples, it is believed
that such invertible topological phases are characterized
by their edge states.6 This must be the case as the physics in
the “bulk” dimension appears trivial.7

This implies that the physics which may arise at the edge
of aD-dimensional SPT (and any low-energy effective field
theory description thereof) must have features which may
not arise intrinsically, in the absence of the extradimen-
sional bulk.
That is, there must not be a local lattice model (or other

regulator) in strictly d − 1 spatial dimensions which reg-
ulates the edge theory and preserves all of its symmetries.
For example, there is no way to regulate a chiral fermion in
one dimension, by virtue of its gravitational anomaly, and

there is no way to regulate free chiral fermions in three
dimensions due to the chiral anomaly.8

This realization [18,19] implies that the study of SPT
states may be used to identify obstructions to symmetric
regulators of quantum field theory. In simple examples,
such an obstruction can be identified with an ’t Hooft
anomaly coefficient [20], a well-known obstruction to
gauging a global symmetry of a field theory. When realized
at the edge, the bulk theory cancels the anomaly by
anomaly inflow [21]. However, there are examples, par-
ticularly for discrete symmetries, where there is no pre-
viously known anomaly.9

Examples of such obstructions which go beyond familiar
global anomalies include many interesting states in 2þ 1
dimensions, such as the algebraic vortex liquid [18], time-
reversal-invariant Z2 gauge theory where all quasiparticles
are fermions (the “all-fermion toric code”) [18,26], other
topologically ordered states in 2þ 1 dimensions [27–32],
and a simple three-dimensional example [19].
The present paper may be regarded as a sequel to [19],

which identified an obstruction to a regulator for “pure”
Uð1Þ gauge theory which manifestly preserves electromag-
netic duality.10 While this is a Gaussian model, such a no
go result is interesting given attempts to construct such
manifestly duality-symmetric realizations [34]. Further, it
shows the impossibility of gauging electromagnetic duality,
a conclusion which was argued from a very different point
of view in [35–37].
Here we point out that a stronger obstruction may be

found by adding “matter” to the bulk model studied in [19].
The model we find at the surface is (3þ 1)-dimensional
electrodynamics where all of the minimally charged
(electrically and/or magnetically) particles are fermions.
This system has been discussed recently in [38], which
demonstrated that it does not admit an interface with
vacuum—it is not “edgeable.”
To be precise, Ref. [38] showed that all-fermion electro-

dynamics cannot be realized in 3þ 1 dimensions if the
microscopic regulator consists entirely of bosonic degrees
of freedom. If we add to the microscopic physics gauge-
invariant fermion degrees of freedom, then we can bind the
gauge invariant fermion to the minimally charged fermionic
objects to produce minimally charged bosonic objects.
Bosonic electrodynamics of course can be regulated in
strict 3þ 1 dimensions, by Uð1Þ lattice gauge theory [39],
or (more locally) by a Uð1Þ toric code [40,41].
We note that the classification of [11] includes a non-

trivial state in 4þ 1 dimensions without symmetry.
Reference [42] attributes fermionic excitations to its surface

4That is, the Hamiltonian cannot be continuously/adiabatically
deformed to a trivial theory by the action of a local unitary
without closing the gap. The previous sentence is what it means
for gapped phases to be different.

5In which the Z2 symmetry is ungauged and the vortices are
not dynamical objects.

6The subject is reviewed in [16,17].
7It lacks fractionally charged excitations, always has a unique

ground state, satisfies the area law of entanglement entropy
without any interesting corrections, etc.

8Chiral in D¼1þ1 simply means left or right moving. In odd
spacetime dimensions chiral symmetry is replaced by discrete
parity symmetry.

9Formal attempts to interpret SPT obstructions in these terms
include [11,22–25].

10The edge theory of this model was studied further in [33].
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states. We anticipate that the independent construction in
this paper can be interpreted as a physics-based realization
of the machinery in that work.

C. Why is the bulk nontrivial?

That the edge of the (4þ 1)-dimensional system realizes
all-fermion electrodynamics, combined with an argument
that all-fermion electrodynamics cannot be regulated in
3þ 1 dimensions, implies that the bulk is a nontrivial
(4þ 1)-dimensional state of matter. Reference [38]
(Appendix D) has given one such argument for the absence
of a 3þ 1d regulator of all-fermion electrodynamics.
Hence the bulk is a nontrivial state of matter; any
representative ground state of which is not adiabatically
deformable to a product state. We provide two independent
demonstrations of bulk nontriviality, one from the point of
view of the edge (in Sec. II C), and one that uses directly the
bulk (in Sec. V).
Since no symmetry is required to define the bulk state,

it is a topological phase of matter which is protected
from all weak Hamiltonian perturbations. However, it is
still short-range entangled [3,5]: two copies of the bulk
state can be deformed into a product state, so it is its own
“inverse state.”
In the context of microscopic bosonic phases, the only

other known example of a short-range entangled state
which is distinct from the trivial phase in the absence of
any symmetry is the E8 state in D ¼ 2þ 1 dimensions.11

As stated above, the distinguishing feature of the E8 state
is its chiral edge modes at an interface with the vacuum. A
sharp and universal characterization of these chiral edge
modes is the thermal Hall response: heat will be transported
unidirectionally without dissipation along the boundary of
the sample. In the language of anomalies, the nontriviality
of this example is demonstrated by the chiral central charge
c− ≡ cL − cR of the edge states. c− represents a gravita-
tional anomaly of the edge conformal field theory, and this
is a construction of gravitational anomaly inflow.
In the D ¼ 4þ 1 dimensional example studied here, the

analogous signature of the nontriviality of the state seems to
be fermion number anomaly inflow, as we show in Sec. V.
We demonstrate that this effect also occurs in the

D ¼ 3þ 1 boson SPT protected by time reversal symmetry
studied in [2,18,26,28,43].12 This phase is an example of an
SPTwhich lies outside the group cohomology classification
of Ref. [9], and we refer to it as such.
A possible surface termination of this SPT consists of an

all-fermion toric code, a model which has no D ¼ 2þ 1
realization with time reversal symmetry. Our claim implies

that the preservation of time reversal in the all-fermion
toric code comes at the cost of the conservation of the
fermion number.
We emphasize that the main conclusion of this paper

pertains to models made from bosons in D ¼ 4þ 1
dimensions. As we show, the addition of microscopic
gauge-invariant fermions to the system removes any
obstruction to realizing the edge physics in strict D ¼
3þ 1 dimensions. Such a gauge-invariant local fermion
cannot arise at the edge of a bosonic system. From the point
of view of a lattice field theorist attempting to regularize the
given low-energy field theory, having to add an extra
species of massive fermion at the cutoff may not seem
like a huge price. However, we regard the demonstration
that such a step is required as fascinating and requiring a
systematic understanding.
The paper is structured as follows. First (Sec. II), we

review the physics of two-form Chern-Simons (BdC)
theory in 4þ 1 dimensions and show that it admits an
edge which supports all-fermion electrodynamics. The
group of electromagnetic duality transformations, which
can be realized as an exact symmetry of the bulk BdC
theory, plays an important role in the analysis. Second
(Sec. III), by considering the path integral of all-fermion
electrodynamics on CP2, we show that all-fermion electro-
dynamics cannot have a bosonic regulator. This constitutes
a proof of bulk nontriviality via edge nonregularizability.
Third (Sec. IV), we show how to construct the bulk
nontrivial state from layers of ordinary (e.g., with bosonic
charges) electrodynamics by condensing dyon strings.
Finally, we show how to interpret the obstruction in terms
of a fermion number anomaly of the all-fermion electro-
dynamics (Sec. V) and show that similar physics is realized
in the nontrivial time-reversal (T ) protected bosonic SPT in
3þ 1 dimensions (Sec. VI).

II. THE BdC MODEL COUPLED TO MATTER

A. BdC summary

We begin by describing the action of the BdC theory
and reviewing its basic properties [44–55]. Consider
two-forms BI

MN (I ¼ 1…NB labels the form, MN are the
spacetime indices) in 4þ 1 dimensions, with the topologi-
cal action

S½B� ¼ KIJ

2π

Z
R×Σ

BI ∧ dBJ; ð1Þ

where Σ denotes the space of interest.
To process this action, we need a little exterior algebra: a

p-form αp and a q-form βq satisfy αp∧βq¼ð−1Þpqβq∧αp
and dðαp ∧ βqÞ ¼ dαp ∧ βq þ ð−1Þpαp ∧ dβq. Hence we
have BI ∧ BJ ¼ BJ ∧ BI and

BI ∧ dBJ ¼ dðBI ∧ BJÞ − dBI ∧ BJ; ð2Þ

11As well as multiple copies of this state, which comprise an
integer classification.

12A related phenomenon was described for edge states of 3þ
1d SPTs whose protecting group contains Uð1Þ in [28]. In that
case, the anomaly occurs upon gauging the Uð1Þ.
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so, up to a total derivative, BI ∧ dBJ is antisymmetric in IJ.
Thus K is an antisymmetric 2NB × 2NB matrix. Shortly we
show that in order for (1) to govern the low-energy effective
field theory of a short-range entangled bulk state, K must
also be an integer matrix with detðKÞ ¼ 1. Also, since
B ∧ dB ¼ 1

2
dðB ∧ BÞ is a total derivative, we must have

an even number of such two-forms.
We view the topological field theory action (1) as the

extreme low-energy effective field theory for a gapped state
of matter. A self-consistency condition on this point of view
is that it is stable to perturbations by generic irrelevant bulk
terms involving these low-energy degrees of freedom. In
particular, we can consider the addition of generic irrel-
evant bulk terms like the bulk Maxwell term

τIJ
g2

Z
R×Σ

dBI ∧ ⋆dBJ ð3Þ

(where ⋆ is the Hodge duality operation). So long as KIJ in
(1) is of full rank, the term (3) does not produce a gapless
excitation in theD ¼ 4þ 1 bulk. In particular, this requires
that the number of two-forms is even.
This is analogous to the situation in D ¼ 2þ 1 for

Chern-Simons theory. The models described may be
considered as the g → ∞ limit of the nontopological
models with (“topologically massive” [56]) propagating
two-forms with action given by the sum of (1) and (3).
The local gauge transformations BI ≃ BI þ dλI are

redundancies of the model. An important further ingredient
of the definition of the model [53,55,57] is the “large
gauge” identifications,

BI ≃ BI þ nαωα; ½ωα� ∈ H2ðΣ;ZÞ; nα ∈ Zb2ðΣÞ;
ð4Þ

where the Betti number b2ðΣÞ≡ dimH2ðΣ;ZÞ is the
dimension of the second integer cohomology of Σ. This
requires the entries of K to be integers.13

The equations of motion following from (1) are, ∀I,
KIJdBJ ¼ 0: ð5Þ

When K has full rank, these equations are solved by flat
two-form fields, which are identified by local gauge
equivalences, and there are therefore no local degrees of
freedom. As a result, the gauge-inequivalent operators
(analogs of Wilson loop operators) are labeled by coho-
mology classes

FωðmÞ≡ e2πimI

R
ω
BI ð6Þ

with ½ω� ∈ H2ðΣ;ZÞ. The identification (4) on B
implies mI ∈ Z.
Using equal-time canonical commutators for BI, the flux

operators (6) satisfy a Heisenberg algebra,

Fωα
ðmÞFωβ

ðm0Þ ¼ Fωβ
ðm0ÞFωα

ðmÞe2πimα
I m

0β
J ðK−1ÞIJIαβ :

ð7Þ
Here

Iαβ ≡
Z
Σ
ωα ∧ ωβ

is the intersection form on H2ðΣ;ZÞ, which is a
b2ðΣÞ × b2ðΣÞ symmetric matrix.
In analogy with Chern-Simons theory, the algebra (7) is

realized on the space of ground states. The ground state
degeneracy is given by the dimensions of irreducible
representations of (7).
Consider the minimal case (relevant later on)

where Σ ¼ CP2, for which b2ðCP2Þ ¼ 1 and I ¼ 1.
The smallest representation of the algebra (7) is then
jPfðKÞj-dimensional. Because we wish to study invertible
systems, which have a unique ground state on all mani-
folds, we require detK ¼ Pf2ðKÞ ¼ 1 [19].
The BdC theory is a special case of (1) where we take

NB ¼ 2 and let B1 ¼ B, B2 ¼ C, and K ¼ kiσy; we must
set k ¼ 1 for this state to be short-range entangled.14

We now review its physics on a space with boundary
[19,33]. In the presence of a boundary, the solutions
of the equations of motion produce physical excitations:
a one-form field a localized at the boundary. This mode
is physical because gauge transformations which are
nontrivial at the boundary do not preserve (1).
Boundary terms (whose coefficients are nonuniversal)
produce the Maxwell action for a. In particular, the
boundary condition arising from variation of an action
with the leading irrelevant operators [i.e. the bulk
Maxwell terms (3)] is�

k
2π

B −
1

2g2
⋆4C

�����∂Σ4

¼ 0:

Upon a convenient rescaling, the identification of boun-
dary degrees of freedom is

B ¼ da; C ¼ ⋆da: ð8Þ
An important symmetry of the topological action (1) is

the group SLð2NB;ZÞ of field redefinitions that preserve
the identifications (4). We emphasize that this symmetry is
not necessary for the 4þ 1 bulk to be distinct from a trivial
phase; indeed, this symmetry may be broken by UV
physics, but it turns out to be very convenient to analyze

13In this paper we will only discuss this model on manifolds
without torsion homology. For the machinery required to lift this
restriction, see [58].

14When k > 1, the system has topological ground state
degeneracy depending on b2ðΣÞ, namely kb

2ðΣÞ ground states.
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certain topological features of the physics assuming this
symmetry holds. In the case of the BdC theory, the group is
SLð2;ZÞ and it is closely related to the group of duality
transformations on the boundary electrodynamics.
The action of SLð2;ZÞ on B;C is in the fundamental

representation �
B
C

�
→ M

�
B
C

�

with M ∈ SLð2;ZÞ. The “T” transformation T ¼
�
1 1

0 1

�
is a symmetry because B ∧ dB is a total derivative;
by (8), this transformation shifts the theta angle of
the surface gauge theory by 2π. The “S” transformation

S ¼
�

0 1

−1 0

�
is a symmetry because of (2), and acts as

electromagnetic duality on the boundary gauge field. These
two transformations generate SLð2;ZÞ. Notice that on
B;C, the Z2 center of the duality group acts nontrivially
(this is charge conjugation at the edge).

B. Coupling to strings (matter)

Just as a one-form gauge field A couples minimally to
the worldline of a charge,

R
worldline A, a two-form gauge

field B couples minimally to the world sheet of a string,R
world sheet B. Adding matter to Chern-Simons theory is
usually [59] described in terms of a statistics vector, lI ,
so that the quasiparticle (here, “quasistring”) current is the
two-form lI⋆dBI . If BI are normalized as in (1), the lI must

be integers, so that ei
H
Σ
lIBI

is periodic under shifts of the
periods of BI over all topologically nontrivial 2-cycles Σ.
Gauge invariance under BI ≃ BI þ dλI requires that

strings not end in the bulk of the sample. However, strings
can end at an interface with vacuum. Then because of the
identification (8), the ends of the strings are electric and
magnetic charges under the boundary gauge field a. Indeed,
given a string which terminates at a boundary, the couplingR
world sheet B reduces to the coupling

R
worldline a by Stokes’

theorem.
We discuss in detail below the statistics of the surface

particles arising at the ends of the bulk string matter. As a
preliminary, note that the modular group SLð2;ZÞ acts
on the string matter as well. This action is necessary to
preserve the coupling between string world sheets and
two-form fields.

C. Edge physics

We now consider an edge of the D ¼ 4þ 1 dimensional
BdC bulk which supports Uð1Þ electrodynamics in D ¼
3þ 1 dimensions [19]. As anticipated in the Introduction,
the crucial question is: what are the statistics of the basic
charged particles on the edge?
Because the edge electrodynamics is a stable phase of

matter and because the statistics of the charged particles

is topological data, these statistics must be stable to the
breaking of all symmetries in the problem. Hence to
determine the statistics we may assume extra symmetry
and be confident that we have the correct statistics even if
we later break the symmetry (for example by allowing the
electron and monopole to have different masses) to realize
the generic situation.
Thus suppose that we preserve the manifest SLð2;ZÞ

duality symmetry of the BdC theory. Duality symmetry
implies that the charge e and the monopole m have the
same statistics, since they are related by the symmetry. For
G ¼ Uð1Þ, the full duality group is SLð2;ZÞ, and it acts on
the charge vector by

�
qe
qm

�
→

�
a b
c d

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∈SLð2;ZÞ

�
qe
qm

�
:

In particular, the transformation ðTtSÞ−1 takes the charge to
the (1,1) dyon ϵ≡ em. The bound state with these quantum
numbers must therefore have the same statistics as the
charge and the monopole. Since these are particles in 3þ 1
dimensions, they may be either all bosons or all fermions.
Naively both possibilities are allowed, but in fact, if e

and m have the same statistics, then ϵ must be a fermion.
This phenomenon, illustrated in Fig. 1, is sometimes called
“spin from isospin” [60,61] [when the electrodynamics is
UV completed by SUð2Þ gauge theory with an adjoint
Higgs field]. Note that we must assume there are no gauge-
invariant fermions around; otherwise we could bind such a
fermion to the dyon without changing its charges and turn it
into a boson.
To see this efficiently, consider two identical dyons well

separated in space compared to any cutoff scales. Since
they are identical particles, moving one of them adiabati-
cally in an arc of angle π around the other results in the
same state (up to an innocuous center-of-mass translation).

FIG. 1 (color online). A depiction of the calculation of dyon
statistics. The spikes represent the flux produced by the dyon at
the center.
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The Berry phase acquired in doing so is

φ ¼ e
Z

π

0

dφAφ

�
θ ¼ π

2
;φ

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Dirac monopole field

¼Dirac πge:

If g and e have the minimal charges, saturating the Dirac
quantization condition, then

ψðx1; x2Þ ¼ eiφψðx2; x1Þ ¼ −ψðx2; x1Þ;
and these particles are fermions. The extra ℏ

2
unit of angular

momentum comes from the electromagnetic field. Note that
any exchange phase coming from the constituent e and m
particles cancels because we assumed they were both
bosons or both fermions.
Thus we reach the remarkable conclusion that the model

with a duality-symmetric spectrum of all bosons is not even
self-consistent. On the other hand, an all-fermion spectrum
is self-consistent: because of the additional ℏ

2
unit of angular

momentum in the electromagnetic fields, the dyon bound
state of two fermions is still a fermion [62].
To prove that the bulk is nontrivial we argue by

contradiction and suppose that all-fermion electrodynamics
can be realized in strict D ¼ 3þ 1 dimensions with micro-
scopic bosons only. Then we could place a field theory
realization on CP2 since the theory is bosonic and requires
no spin structure for its definition. However, something bad
happens, which we describe next, in Sec. III.
Hence there must be no UV completion in the same

dimension with only microscopic bosons. Since the BdC
theory provides a UV completion of all-fermion electro-
dynamics with only bosons at its edge, it follows that the
bulk BdC phase is necessarily distinct from the trivial
phase. Alternatively, the results of [38] also imply that
all-fermion electrodynamics cannot be realized in strict
D ¼ 3þ 1 dimensions without gauge-invariant fermions,
so again we conclude that the bulk BdC phase is distinct
from the trivial phase.

III. THE BAD THING THAT HAPPENS ON CP2

To show the impossibility of a bosonic regulator of all-
fermion QED, we show that there is no consistent way to
define the partition function on CP2. To make the argument
we suppose the following:
Postulate 1: A Uð1Þ gauge theory with gapped matter (and
hence the value of the Uð1Þ gauge theory path integral on a
closed manifold M, modulo nonuniversal garbage) is
specified by the theta angle and the coupling and by the
spectrum of charges.
But what theta angle and coupling you ask? What data

about the spectrum? More specifically, we suppose the
following:
Improved Postulate 1: The value of the gauge theory path
integral on a closed manifold M, modulo nonuniversal
garbage, depends only on the bare coupling τ ¼ θ þ 4πi

g2

(and τ̄), and on a choice of statistics for the excitations with
minimal electric and magnetic charges, e, m. We include
the dependence on the particle masses and various other
couplings in the category of “nonuniversal garbage.”
A crucial point here is that the effective theta angle (at

energies below the gap to charged excitations) may receive
contributions from integrating out the matter, as is familiar
from the study of topological insulators (e.g. [63,64]).
A useful perspective then, is that all such gauge

theories may be realized by starting with a theory of
some bosonic or fermionic matter with a Uð1Þ global
symmetry, possibly in a nontrivial SPT state, and gauging
that Uð1Þ symmetry. This is equivalent to coupling “pure”
Uð1Þ gauge theory to bosonic or fermionicmatter invarious
Uð1Þ protected SPTs. A possibility which we must also
discuss is a case with no charged matter, studied with
related intent in [19,65].
Let us consider the action of duality on the gauge

theory partition function. We are free to relabel the gauge
fields using the electric-magnetic duality group τ → aτþb

cτþd,
(a; b; c; d ∈ Z; ad − bc ¼ 1) but we must keep track of the
particle statistics as well. We will be most interested in
the T transformation which takes θ → θ þ 2π. Recall [62]
that shifting the theta angle produces a spectral flow on
the charge lattice: monopoles acquire electric charge
proportional to θ

2π.
Therefore (in the absence of other data, an absence for

which we argue below) the choice of statistics of the
charged matter gives an invariant meaning to the duality
frame. Denote the statistics labels on the gauge theory as
follows: BBF if e is a boson, m is a boson, and (therefore)
em is a fermion, BFB if e is a boson,m is a fermion, em is a
boson, etc. Note that by the spin-from-isospin argument,
this labeling is redundant (the statistics of em is determined
by those of e and m), but it will help emphasize the
important distinction between the all-fermion case and
the other cases. If we allow neutral fermions, then we have
both bosons and fermions in each charge sector, and
the labeling scheme breaks down; we assume no neutral
fermions. If there are no charged particles, then any duality
transformation in SLð2;ZÞ is a redundancy: a relabeling
of fields.
For example, the Witten effect [62] implies that for any

four-manifold M,

T∶ ZMðτ; BBFÞ ¼ ZMðτ þ 1; BFBÞ:
On the other hand, consider the case where M ¼ CP2; this
example is interesting because it has a two-cycle hwith unit
self-intersection. This means that a line bundle with c1 ¼ h
has

1

4π2

Z
CP2

F ∧ F ¼ 1:

Therefore the partition sum is
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ZCP2ðθÞ ¼
Z

DAe−S0½A�þi θ
8π2

R
CP2

F∧F

¼
X
c1¼nh

Z
Cn

½DA�ne−S0½A�þiθ
2
n2 ;

where Cn labels the sector of the gauge field configuration
space with

R
h

F
2π ¼ n. ZCP2ðθÞ is therefore periodic in θ with

period 4π. (This fact is discussed in detail in [65]; the odd
intersection form on CP2 also plays a role in the discussion
of [11].)
Since we know that ZCP2ðτ; BBFÞ is not the same as

ZCP2ðτ þ 1; BBFÞ but that it is the same as
ZCP2ðτ þ 2; BBFÞ, it follows that integrating out charged
matter which makes the monopole a fermion generates an
extra theta term with coefficient 2π (mod 4π), in agreement
with previous results [62].
Finally, let us turn to the case of Zðτ; FFFÞ. By the

Improved Postulate 1 we have

ZMðτ; FFFÞ ¼ ZMðτ þ 1; FFFÞ
for all 4-manifolds M on which the theory is defined.
However, this equation can be true only if M has an even
intersection form. If the theory had a bosonic regulator,
then we could place it on manifolds with an odd inter-
section form and no spin structure, such asCP2. The theory
cannot be placed on manifolds with an odd intersection
form; hence the theory does not have a bosonic regulator.15

In order for this periodicity in θ

ZCP2ðτ þ 1; FFFÞ ¼! ZCP2ðτ; FFFÞ
to be a consistency condition (that is, its violation is an
anomaly) we require that the modular properties of the
partition function are determined entirely by the spectrum
of electric and magnetic charges. We argue for this claim in
a series of comments, which can be regarded as an attempt
to make precise the lack of structure in Uð1Þ gauge theory:

(i) First, we emphasize that the statistics of particles in
all charge sectors ðqe; qmÞ are fixed by the elemen-
tary ones (1,0), (0,1) (the generators of the charge
lattice) and the demand that there are no neutral
fermions. For example, the spectrum of the FFF
theory cannot contain a magnetic-charge-two mo-
nopolewhich is a fermion, because then binding such

an object to the (boson) bound state of two charge
(−1) monopoles would produce a neutral fermion.

(ii) In gauge theories with more interesting gauge group
or massless matter content, other labels are required
to specify the partition function. For example, gauge
theories where a 2π-shift of θ produces a different
gauge theory were discussed recently in [67]. The
new labels there arise from extra topological invar-
iants (beyond the Pontryagin invariant) of gauge
bundles whose structure group (the gauge group) is
semisimple but not simply connected (a pedagogical
exposition of this subject can be found in Sec. 3
of [68]).

(iii) Here we are studying G ¼ Uð1Þ where this issue
does not arise. That is, the smooth topological data
of a line bundle [the structure group is Uð1Þ] on a
simply connected manifold is just the first Chern
class (for a discussion which makes this clear see
e.g. page 3 of [65]). Therefore this possibility for
modifying the periodicity of theta is not available.

(iv) Another potential source of a theta-dependent phase
in the partition function is a possible τ-dependence
in the gravitational couplings in the effective action
for the gauge fields upon integrating out the gapped
charged matter. Such couplings are crucial in com-
puting the partition function of topologically twisted
gauge theories [68] on various four-manifolds and
are discussed further in [65]. In that context, such
terms produce anomalous factors under the S trans-
formation, but not under the T transformation.

Further, to see that this is not a meaningful
loophole here, we can take the perspective described
above: we couple an SPTwith G ¼ Uð1Þ symmetry
(in curved space) to the electromagnetic field. The
gravitational effective action for the SPT is com-
pletely fixed before the coupling to the EM fields,
which is when τ is introduced. Therefore, the τ
dependence of the action below the gap is com-
pletely fixed by the matter content.

So the basic question is: what other kinds of UV
gerbils can there be in Uð1Þ gauge theory which
might affect the τ-dependence of the partition func-
tion?We can see that the answer is “none” as follows.

(v) Adding fermions restores 2π periodicity of the theta
angle. This matches nicely with the fact [69,70] that
the θ angle for a background gauge field is only
periodicmod 4π in a systemmade of bosons (since the
surface at θ ¼ 2π would have odd-integer quantum
Hall response, which is not compatible with bosonic
statistics of all neutral excitations). This argument
implies that only fermions in the charge spectrum
can change the periodicity in theta by 2π. But we
have already accounted for the fermionic charges.

(vi) As a nice corroboration of our understanding,
note that the counting of nontrivial states here is

15Note than an additional consequence of its lack of spin
structure is that CP2 cannot occur as the boundary of some
smooth, compact 5-manifold; it has a nonvanishing Stiefel-
Whitney number. See Theorem 4.10 of [66]. This theorem
prevents a contradiction with the fact that the partition function
of the all-fermion electrodynamics on M can be obtained from
the BdC theory on a space whose boundary is M. Two disjoint
copies of CP2 can occur as the boundary of e.g. CP2 × ½0; 1�. In
this case, the instanton sums in the two copies of all-fermion
electrodynamics are correlated by the fact that B ¼ da1 þ da2 is
flat in the bulk, again avoiding contradiction.
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consistent with the counting of Uð1Þ protected SPT
states [70]. In particular, absent time reversal, the
three states BBF, FBB, and BFB are smoothly
connected.

(vii) Finally, we believe that the argument described here
implies that there is no such thing as pure’ Uð1Þ
gauge theory, i.e. Uð1Þ gauge theory without any
charged matter at all.16 From the low energy point
of view, the problem with the all-fermion model is
simply that the spectrum is duality invariant, and so
it cannot be rearranged by the Witten effect. The
same is true if there are no charges, and so we have

ZMðτ þ 1;− − −Þ ¼! ZMðτ;− − −Þ
(where the dashes emphasize the absence of charged
matter). The fact that this demand is violated for
M ¼ CP2 was observed in [65]. We believe that the
above argument implies that this failure should be
regarded as an inconsistency. We note that there is
no known regulator of this model. The Uð1Þ toric
code is described at low energies by electromagnet-
ism coupled to gapped matter with spectrum BBF.
Ordinary lattice gauge theory is simply the limit of
the toric code where the electric excitations are made
infinitely heavy; in particular it still contains gapped
magnetic monopole excitations. [A term by which
one might try to lift these excitations completely, e.g.P

plaquettesΔ · ðΔ × aÞ, is not single-valued under the
equivalence al → al þ 2πnl; nl ∈ Z.]
Perhaps there exists a consistent low energy

theory where there are only magnetic charges; in
that case, we have the condition

ZMðτ þ 1;−B−Þ ¼! ZMðτ;− − BÞ
which is not falsified by the lack of a spin structure
of M.
The fact that there is an obstruction to a duality-

invariant regulator of pure electromagnetism was
argued in [19] (with hindsight, this result also
follows from the calculation of [65]). Here we are
making the further claim that there is no regulator at
all. The argument above shows that there is no
bosonic regulator. Many of the other anomalies
discussed in this paper may be cured by adding
neutral fermions. In this case, it is difficult to see how
the addition of gapped, neutral fermionic excitations
can help. In particular, the fact that the fermion is
neutral means that integrating it out does not generate
a theta term. However, the presence of microscopic
neutral fermions amounts to a refusal to put the
system on a manifold without spin structure, such as

CP2. (Since the fermions are neutral, the existence of
a spinc structure does not help.) So indeed there is no
obstruction to a fermionic regulator.

We discuss below in Sec. VI the consequences of the
analogous line of argument for the all-fermion toric code
in D ¼ 2þ 1.

IV. COUPLED LAYER CONSTRUCTION

In this section, we describe a 4þ 1d local lattice model
which realizes the continuum model above, using a coupled
layer construction (precedents for such an approach include
[13,18,71–73]). Like the edge-based proof of bulk non-
triviality, the motivation for the layer construction comes
fromedgephysics. IfSPTsareonlynontrivialbecauseof their
edge states, then we should be able to construct interesting
SPTs by sewing together pairs of edge states as follows.
First, observe that every short-range entangled state with

a nontrivial edge has an inverse short-range entangled state
(obtained by reversing the orientation) with a nontrivial
edge and with the property that the composite short-range
entangled state has a trivial edge. In other words, for every
nontrivial (anomalous) edge E there is another nontrivial
edge E−1 such that E × E−1 ∼ 1 is trivial. We then imagine a
stack of such edges, ðE1E−1

1 Þ…ðEnE−1
n Þ, which can clearly be

reduced to a trivial state by pairing Ei with E−1
i . However, we

may also pair E−1
i with Eiþ1 in such a way that the edges E1

and E−1
n are left unpaired. Assuming interactions are local

in the layer index n, these remaining actual edge states
cannot be paired with each other and we have produced a
nontrivial bulk state. More generally, we may take any
lower dimensional “layers” and try to couple them in a
similar nonintegrable fashion to produce a bulk short-
range entangled state with nontrivial edge states.
We make a coupled-layer construction of the all-fermion

electrodynamics following (very directly) the one made in
[18] for the all-fermion toric code. It produces a trivial
bosonic bulk, and the correct edge physics. As an essential
part of the construction, we are able to argue that this
bosonic bulk is well described by the BdC theory.
The method by which we construct the bulk can be

called “dyon string condensation.” It has a lot in common
with the dyon condensation mechanism of statistics
transmutation in 3þ 1 dimensions employed in [74].
The construction can also be regarded as an oblique
version of “deconstruction” of the extra dimension [75];
this will be a useful perspective for understanding the
origin of the B ∧ dC term.
First we give a brief summary of the construction:
(i) Each layer, labeled i ¼ 1;…; n, is ordinary electro-

dynamics with bosonic charges: the electron and
monopole ei; mi are gapped bosons. This model is
certainly regularizable in 3þ 1d by itself on an
ordinary Hilbert space of bosons on links and sites.
Denote the (fermionic) dyon in each layer as ϵi.

16InD ¼ 3þ 1 except, perhaps, as the boundary of aD¼4þ1
topological phase such as the BdC theory without matter.
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(ii) bi ≡ ϵ†i miþ1ϵiþ2 are mutually local bosons.
(iii) Condensing bi (obliquely) confines the layer gauge

fields aiþ1; iþ 1 ¼ 2;…; N − 1.
(iv) At the top layer: m1ϵ2; ϵ

†
1m1ϵ2; ϵ

†
1 survive, are

fermions, and are the electron, monopole, and dyon
of a surviving (Coulomb-phase) Uð1Þ gauge field.
A similar statement pertains to the bottom layer.

In the bulk, in the continuum, we will arrive at the claim
that this is the BdC theory with gapped string matter.

A. Warmup: Deconstruction of lattice electrodynamics

First consider the following toy example, which really is
“deconstruction” of 4þ 1d Uð1Þ × Uð1Þ gauge theory on
an interval, in the sense of [75]. (A quiver diagram for this
construction, more familiar in the high-energy theory
literature, appears in Fig. 2.) Collocate an even number
N of layers of (cubic, say) 3d lattices each of which hosts
Uð1Þ lattice gauge theory coupled to charge-1 lattice
bosons ei, with arbitrary hopping terms in the three spatial
dimensions.
For definiteness, we could consider each layer in the zero-

correlation length limit where it is described by a solvable
Kitaev-like model (see e.g. [59]) with a rotor on each
(oriented) link, ½El; al0 � ¼ iδl;l0 , E ∈ Z; a≃ aþ 2π, with

Hlayer ¼
X
þ
ðΔ · EÞ2 −

X
□

cos ðΔ × aÞ:

Δ is a lattice gradient operator. The first sum is over vertices
and the second over plaquettes of the square lattice. The
charged bosonic matter arises at sites where 0 ≠ Δ · E ∈ Z.
Couple together the layers by the (completely local and

gauge invariant) terms

ΔH ¼ V
X
x

X
i

ðj ~biðxÞj2 − v2Þ2: ð9Þ

Here x labels a site of the 3d lattice. Figure 2 shows the case
of N ¼ 6 layers, with ~bi; i ¼ 1;…; 4 circled. Minimizing
the potential (9) causes ~bi to condense,

~bi ≡ e†i eiþ2 ¼ veiai;iþ2 ; ð10Þ
higgsing

Q
iUð1Þi → Uð1Þeven × Uð1Þodd. The phases ai;iþ2

provide the link variables in the extra dimension. Layers
with odd i and even i are decoupled. The result is 4þ 1d
Maxwell theory with G ¼ Uð1Þeven × Uð1Þodd, with mass-
less bulk photons. So this is not the bulk state we are
looking for, but it will be instructive.
Uð1Þ lattice theory in 4þ 1 dimensions should have a

kinetic term for the link variables along the extra dimen-
sion. This E2

x;xþ4̂
term arises as follows. The conjugate

variable E to a arises from the amplitude fluctuations of ~b,

~bl ¼ eialðvþ ElÞ; ~b†
l ¼ ðvþ ElÞe−ial :

½ ~b†
i ðxÞ; ~bjðyÞ� ¼ −iδxyδij ⇒ ½al;El0 � ¼ −iδll0 :

Expanding the condenser term (9) about the minimum,
~b† ~b − v2 ¼ 2vEþ � � �, we find

ΔH ¼ V4v2
X
l

E2
l þ � � � :

The Hamiltonian should also contain terms which
suppress flux through plaquettes parallel to the extra

FIG. 2 (color online). Two representations of the (warmup)
coupled-layer construction for D ¼ 4þ 1 Maxwell theory with
gauge group Uð1Þo × Uð1Þe. The top figure is the direct analog of
the previous figure; the bottom is a “quiver” or “moose” diagram
familiar from the high energy physics literature.

FIG. 3 (color online). A representation of the coupled layer
construction, following [18]. The layers are coupled by con-
densing the objects circled in red. The objects in the box are
mutually local.
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dimension:
P

plaquettes∥x4 cosΔ × a. These terms arise from
microscopic gauge invariant terms including the hopping
term for ~b,

Δ2H ¼ −V2

X
x;i

X
μ̂≠4̂

�
~biðxþ μ̂Þei

R
xþμ̂

x
ai−i

R
xþμ̂

x
aiþ2 ~b†

i ðxÞ
þH:c:

�
;

where ai is the preexisting gauge field within layer i. Upon
condensing the ~bi, the new interlayer gauge field ai;iþ2

combines with the existing within-layer gauge fields to
form a closed Wilson loop in the μ4 plane for each term in
the μ sum.
It will be useful to remind ourselves about magnetic

monopoles in Uð1Þ lattice gauge theory (e.g. [76]). A
region R of the lattice whose boundary ∂R has

H
∂R B ¼ 2πg

contains gmagnetic monopoles, g ∈ Z. This means that the
number of monopoles is not conserved on the lattice; for
example, consider a region which is a single 3-cell V of the
lattice; we may change

H
∂V B from 0 to 2π without

changing anything, since the gauge field is periodic a≃
aþ 2π and B ¼ ~∇ × a.
To make contact with the BdC theory, it will be

illuminating to dualize the odd/even gauge fields ao=e to
two-form potentials: fo=e ¼ dao=e ¼ ⋆dCo=e. The action is

S ¼
X
α¼o;e

Z
5d

�
1

g2α
dCα ∧ ⋆dCα þ Cα ∧ ⋆jαm

�
:

By the Meissner effect, magnetic flux tubes of the broken
relative Uð1Þs collimate the monopoles into monopole
strings. They must do so, since, by construction, objects
magnetically charged under ae=o are minimally coupled to
the dual field Ce=o and must be strings. States where the
total magnetic charge in different layers is not equal do not
have finite energy. We sequester a few more details about
this to Appendix B.

B. Dyon string condensation in more detail

The actual construction of the nontrivial gapped bulk is
as follows and is depicted in Fig. 3. Again each layer is
ordinary electrodynamics with bosonic charges. We will
call ϵi ≡ eimi the dyon in each layer, which is a fermion.
The object bi ≡ ϵ†i miþ1ϵiþ2 is a boson (two fermions plus
one boson, and no net electric charge to produce extra
statistics, equals a boson).
The objects biði ¼ 1;…; N − 2Þ, for all i, are mutually

local (i.e. their charge vectors satisfy qiej − qjei ¼ 0,
∀ i; j ¼ 1;…; N − 2) under the total Uð1Þ (in particular,
they all have qTotale ¼ 0; qTotalm ¼ 1). This means that it is
possible to couple the layers so that these objects condense
[77–79].
Explicitly, we can cause them to condense by adding

the completely local gauge invariant Hamiltonian ΔH ¼
V
P

x

P
iðjbiðxÞj2 − v2Þ2. The phase of the condensate

biðxÞ ¼ veiai;iþ2 is again a link variable along the extra
dimension; unlike the simple construction of Sec. IVA, the
duality frame in which this object is the vector potential
rotates as we increase i.
Condensing bi (obliquely) confines the gauge fields in

the layers aiþ1; iþ 1 ¼ 2;…; N − 1. Objects which are not
mutually local with bi are confined. What is left? We are
condensing N − 2 objects in a theory with gauge group
Uð1ÞN , so two gauge fields remain massless. The charged
objects which are mutually local with the condensate and
therefore not confined [77–79] are as follows (just as in the
2d Z2 case [18]):

(i) At the top layer: ϵ1; m1ϵ
†
2, and their bound state

ϵ1m1ϵ
†
2 (and powers and products of these) and

(ii) At the bottom layer: ϵN;mN−1ϵ
†
N; ϵNmN−1ϵ

†
N , etc.

At the top layer, the objects ϵ1; m1ϵ
†
2 are both fermions

and have charge ðqe; qmÞ ¼ ð1; 1Þ and ð−1; 0Þ, respec-
tively. The bound state has charge (0,1) and is therefore also
a fermion, by the standard argument reviewed above,
because there is still a Maxwell field at the top layer.
To see the full effect of condensing bi, consider the blue

box in the figure at right. Although ϵ†i miþ1 is mutually local
with miϵiþ1, the constituents are not. This has the conse-
quence that condensing bi binds the monopole strings of
ae=o to electric flux lines of ao=e. This is precisely the effect
of the additional term

ΔS ¼
Z

1

2π
Ce ∧ dCo ≡

Z
1

2π
B ∧ dC

in the low-energy description.

C. Alternative description of layer construction

Here we make contact between the coupled layer con-
struction of the previous subsection and the general descrip-
tion (in the section introduction) in terms of coupled layers
of E and E−1 which guarantees the correct edge states.
Again let E denote a single copy of all-fermion electro-

dynamics. First we note that the all-fermion electrodynam-
ics is its own inverse: E ¼ E−1 in the sense that two copies
of all-fermion electrodynamics can be regularized in 3þ 1
dimensions. More specifically, E × E is deformable (by
adding local, gauge-invariant interactions) to ordinary
bosonic Uð1Þ gauge theory. To see this,17 let e and ~e
denote the electrons in E and E−1. Define b ¼ e~e†, which is
a boson. If we condense this boson, we Higgs Uð1ÞE ×
Uð1ÞE−1 to the diagonal Uð1Þ subgroup. The object e is a
fermion charged under this gauge group; it is related to ~e by
taking charges from the condensate. We should think of
this object as the dyon of ordinary BBF electrodynamics,
because all of the other excitations which are mutually local
with the condensate are bosons:

17An essentially identical argument shows that the all-fermion
toric code is its own inverse.
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(i) m; ~m; ϵ ¼ em, and ~ϵ ¼ ~e ~m are nonlocal with respect
to the condensate, so they are confined.

(ii) M≡m ~m† is a boson which differs from e by one
unit of electric charge, and so we should think of it as
the monopole. It is related by taking stuff from the
condensate to ϵ~ϵ.

(iii) Adding e to M we get another boson (since we are
combining two mutually nonlocal fermions) ϵ ~m†;
apparently we should regard this as the elementary
electrically charged boson.

We conclude that E × E−1 is separated by simple Higgs
transition from the phase Uð1ÞFBB, with a propagating
photon (if it is in the deconfined phase), and therefore has a
D ¼ 3þ 1 regulator.
It is important to note that the remaining electrodynamics

still has charged matter which may be condensed to Higgs
or confine the photon; the choice of whom to condense
means that various bulk models are possible.
So, while a single copy of all-fermion electrodynamics

cannot be regulated in 3þ 1 dimensions, a pair of copies
can be so regulated since Uð1ÞFBB can be so regulated and
E × E−1 ∼Uð1ÞFBB. The layer construction in Sec. IV B,
when applied a slab of finite thickness, provides just such a
regulator. As long as the thickness of the slab is not taken to
infinity, the two copies of all-fermion electrodynamics can
be regarded as living in 3þ 1 dimensions.
Further insight into the layer construction is obtained by

viewing the construction in terms of a stack of such slabs,
where each slab, denoted ðEE−1Þ, hosts two copies of all-
fermion electrodynamics, one on the bottom surface and
one on the top surface. The stack of slabs is denoted
ðE1E−1

1 Þ…ðEnE−1
n Þ where i ¼ 1;…; n indicates the extra

spatial dimension. Pairing up the all-fermion states within
each slab produces the trivial bulk state in 4þ 1 dimen-
sions. Pairing E−1

i with Eiþ1 across neighboring slabs
realizes the bulk nontrivial state. This way of thinking
about the layer construction realizes the motivating idea
given in the section introduction.
To be a little more explicit, condensing only bi ¼

ðei;top ~e†i;bottomÞ produces layers of ordinary FBB electrody-
namics, by the preceding argument. This returns us to the
starting point of the layer construction of the previous
section. The slabs of FBB electrodynamics can then be
confined to produce a trivial bulk state.
To produce the nontrivial bulk state, the gluing may be

performed by repairing the missing condensates at the
top and bottom of Fig. 3. In particular, think of each pair
EiE−1

i as a copy of Fig. 3. At the top we have fermionic
charges ϵ1 and m1ϵ2; at the bottom we have fermionic
charges ϵ†N−1mN and ϵ†N . If we glue the bottom to the top by
condensing

bN−1 ≡ ðϵ†N−1mNÞϵ1
and

bN ≡ ϵ†Nðm1ϵ2Þ;

then we get the BdC theory rolled up on a circle, i.e. the
coupled layer construction has translation invariance
i → iþ 1. And in particular, there is no photon in the bulk.

D. Extension to D ¼ 3þ 1 and derivation of BF theory

The logic by which we inferred the presence of the
BdC coupling from the coupled layers construction
can be applied to the original construction [18] of the
D¼3þ1 boson SPT state with time-reversal symmetry.
The string of magnetic excitations is a vortex line; the
mutual nonlocality of the constituents of the condensed
boson glues this vortex line to the electric flux lines of
the other gauge field. The result is that the bulk model
contains a term of the form 1

2πB ∧ F. That the bulk theory
admits such an effective description is well known [2].
An implication of this derivation which has not been
appreciated to our knowledge is that the all-fermion toric
code—when realized on the surface of a bosonic SPT—
suffers a fermion-number anomaly, as we discuss in the
next section.

V. FERMION NUMBER ANOMALY INFLOW

We will now interpret the obstruction studied here in
terms of global anomaly inflow. The only symmetry
involved in this system is fermion parity. We emphasize
that in the bulk there are no fermions; however, the Jackiw-
Rebbi effect demonstrates clearly that gauge fields are
capable of carrying this quantum number.
In the following we show that the fermion number

conservation on the surface of the 4þ 1d short-range-
entangled state constructed in the previous section is
violated by high-energy processes.
There is a precedent for such violation of fermion

number by quantum gauge theory. The Witten SUð2Þ
anomaly [80] can be regarded as an anomaly for the
fermion number: in a Witten-anomalous gauge theory,
instanton events create an odd number of fermions and
hence violate fermion parity conservation; this is not
something we know how to describe with a local field
theory.
In the prehistory of SPT physics, a subset of the authors

[81] studied a system where the Witten anomaly played a
crucial role in preserving the integrity of the classification
of statistics of 3þ 1d particles. In particular, the Witten
anomaly was argued to forbid a gauge theory whose
monopoles carry a single Majorana zero mode (which
monopoles, if they could be deconfined, would enjoy non-
Abelian statistics). That paper also described a 4þ 1d
dimensional model whose edge realized such a gauge
theory, and therefore could be regarded as exhibiting
“Witten anomaly inflow.”
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A. Fermion number anomaly

The all-fermion electrodynamics, as it arises on a
surface of the coupled-layer construction, exhibits crucial
differences from an intrinsically (3þ 1)-dimensional sys-
tem with a bosonic regulator. First of all, note that the slab
geometry constructed in Sec. IV harbors gauge-invariant
states with a single fermionic particle at the top layer.18

Since all femionic excitations carry some gauge charge
(either electric or magnetic)—as they must in a system
with a bosonic regulator—there is no state in a putative
(3þ 1)-dimensional realization of this form.
Further, the coupled layer construction of Sec. IV

directly shows that the fermion number can be transported
across the extra dimension, as follows. Consider a state
with an excitation of ϵ1, the dyon at the top layer. This
excitation can for free absorb bosons from the condensate,
which include objects of the form b1 ¼ ϵ†1m2ϵ3. Combining
these two objects we get something with the quantum
numbers of m2ϵ3. This looks a bit like a bulk fermion
excitation, but this object is confined (since it is not
mutually local with b2, which is condensed). Also con-
densed is b3 ¼ ϵ†3m4ϵ5; adding one of these in, we get
m2m4ϵ5. The bottom layer (for argument, we take N ¼ 6
layers, as in the figure above) supports a deconfined
fermion excitation ϵ†5m6 ¼ fbottom. The condensate plus
top-layer excitation ftop ¼ ϵ1 is related to this by

ftopb1b3 ¼ m2m4m6f
†
bottom:

With arbitrary (even) N, we have

ftopb1b3…bN=2 ¼ m2m4…mNf
†
bottom:

This equation is understood to be true modulo the crea-
tion of neutral excitations (which are all bosonic, by
assumption).

This strongly suggests that a monopole string
(m2m4m6…) (bosonic, but confined) allows fermions to
tunnel from the top layer to the bottom layer. A quantitative
statement to this effect is that there is a nonzero amplitude
in the ground state jgsi for a pair of fermions to be created
at top and bottom, connected by a monopole string,

hgsjfbottomm2m4…mNf
†
topjgsi

¼ hgsjftopf†topb1b3…bN=2jgsi ¼ vnhgsjftopf†topjgsi ≠ 0:

vn ∼ e−L decays exponentially in the thickness of the slab,
but this implies a finite tunneling amplitude.
[Here nðNÞ≡ N−2

2
.]

Since all fermions are charged either electrically or
magnetically (it is ambiguous which should be interpreted
as the electron and which as the magnetic monopole),
the fermion number anomaly also implies a discrete gauge
anomaly. That is, rotating the phase of every fermion
by π is part of the Uð1Þ gauge group (though not only the
electric group in any one duality frame). This is similar
to Goldstone’s understanding of the Witten anomaly [82]
(as cited in [83–85]).
Putting two copies of the system together removes the

anomaly. From the point of view above, it is because the
monopole strings will reconnect so that they only attach
fermions at the same surface. A similar mechanism of
reconnection was described in [81].

VI. CONSEQUENCES FOR ALL-FERMION
TORIC CODE

So far we have discussed bosonic SPTs in D ¼ 4þ 1
with no symmetry, and we have briefly mentioned bosonic
SPTs in D ¼ 3þ 1 with time-reversal (T ) symmetry.
In both cases, there is a symmetry-preserving termination
which is a gauge theory where all the matter is fermionic.
There are many illuminating connections between these
two problems. To understand them, we must now discuss
the D ¼ 3þ 1 T invariant SPT [2,18,26,28,43] in more
detail.
Briefly, the bulk 3þ 1 dimensional state is a quantum

phase of bosons protected by time reversal symmetry. The
bulk theory has a surface termination consisting of 2þ 1
dimensional Z2 gauge theory in which the charge, the
vortex, and charge-vortex composite are all fermions. As in
the case of all-fermion electrodynamics, the statistics of
the charge-vortex composite actually follows from those
of the charge and the vortex provided there are no gauge-
invariant fermions in the spectrum. What does time reversal
have to do with such a (2þ 1)-dimensional state? Naively,
the answer is not much: all topological data, e.g., fusion
rules, quantum dimensions, braiding phases, are real
numbers, so time reversal invariance does not seem to
provide a constraint on the topological data.

18Here we are assuming that the 3d geometry is noncompact,
so that the flux has somewhere to go. If the 3d spatial sections are
compact, we cannot have a single string stretching from one end
of the slab to the other because of the bulk Gauss law,

0 ¼ δS
δB

¼ ⋆jþ dCþ d⋆dB 1

g2
; ð11Þ

which is a three-form. If we integrate this over a 3d region ϒ at
fixed time and codimension 1 in space, we get

0 ¼ ðnumber of strings penetrating the region;

counted with orientationÞ þ
Z
∂ϒ
ðCþ ⋆dB=g2Þ:

The last term is the usual Gauss’ law term for a two-form
potential, but the important thing is that the dependence on the
fields on the RHS of (11) is a total derivative. So if there is no
boundary of ϒ—such as if the whole space is T3 × ð0; 1Þ and we
choose ϒ to be the T3 at some fixed position along the interval—
then the net number of strings must be zero.
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However, there is one piece of topological data which is
sensitive to T , and that is the chiral central charge, c−.
Furthermore, in a microscopic bosonic model, the value
of c− is constrained by the topological data. If we have
anyon types labeled by a with quantum dimensions da
and topological spins sa, then the chiral central charge is
determined, mod 8, by [86–88]

P
ad

2
ae2πisaffiffiffiffiffiffiffiffiffiffiffiffiP
ad

2
a

p ¼ e2πic−=8: ð12Þ

In a model of Abelian anyons, all da ¼ 1 and the total
quantum dimension, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
ad

2
a

p
, is simply the square

root of the number of anyon types (including the identity).
The fact that the central charge is only determine mod 8 is
not an accident [88]. The E8 state of bosons has no anyonic
excitations but has chiral central charge c− ¼ 8; hence we
may add layers of the E8 to any anyon model without
changing the anyon content but shifting the chiral central
charge by 8.
For the familiar Z2 gauge theory in which charges and

vortices are bosons, we have a ∈ f1; e; m; emg, da ¼ 1,
s1 ¼ se ¼ sm ¼ 0, and sem ¼ 1=2. Hence (12) gives

e2πic−=8 ¼ 3þ ð−1Þ
2

¼ 1; ð13Þ
and hence c− ¼ 0mod 8. In other words, the minimal Z2

gauge theory has no chiral edge states. However, if we
consider the all-fermion gauge theory, then we find

e2πic−=8 ¼ 1þ 3ð−1Þ
2

¼ −1; ð14Þ

and hence c− ¼ 4mod 8. Thus the all-fermion gauge
theory must have chiral edge states and hence must indeed
break T . The reason why this state can be realized in a
T -invariant manner at the surface of a T -invariant 3þ 1
bulk state is that in this case it is impossible to create an
edge for the gauge theory at which the chiral edge states can
be exposed.
Now we turn to connections between the system just

discussed and the all-fermion electrodynamics in
D ¼ 3þ 1. First, suppose all-fermion electrodynamics
did have a time reversal symmetric bosonic regulator.
Then so does the all-fermion toric code. The argument
is as follows. Condense pairs of charges in 3þ 1d (thereby
higgsing the gauge group to Z2), and place the system on
R2 × S1, where the radius of the S1 is L. TheZ2 topological
order implies that states with different Z2 flux through the
circle are split only by an amount of order Eflux ∼ e−Lj log tj=ξ
where t is a hopping amplitude for Z2 charged quasipar-
ticles, and ξ is the bulk correlation length. The regime of
interest has L ≫ ξ (so that our field theory analysis is valid)
and Eflux ≫ me;mm, whereme andmm are the rest energies
of the electric and magnetic quasiparticle excitations.

The result is then the all-fermionic toric code with, by
assumption, a time-reversal symmetric bosonic regulator.
Assuming that no such regulator exists for the all-fermion
toric code, no such regulator can exist for all-fermion
electrodynamics. (And as [38] point out, the case with time
reversal symmetry is actually the crucial case, in the sense
that the SPT-ness of the state persists even upon breaking
time reversal.)
Second, all-fermion electrodynamics does have a time

reversal symmetric fermionic regulator. Indeed, it is equiv-
alent to BBF electrodynamics by binding the neutral
fermion to the electron. (In this case there are particles
of both statistics in each charge sector; for purposes of
discussion, we label a model by the statistics of the lightest
particle in each sector.) Again condense charges and
compactify on a circle. This produces a time reversal
symmetric fermionic regulator for the all-fermion toric
code. And again, we can convert FFF toric code to BBF
toric code in the process.
It is instructive to ask what happens to the chiral central

charge formula (12). The answer is that the formula only
applies when the regulator is bosonic. This is crucial
because the mod 8 property of the formula relied on the
E8 phase being the simplest phase with chiral edge states
and no anyonic excitations. Once we add microscopic
fermions, there are simpler chiral states. The simplest is the
pþ ip state of fermions with c− ¼ 1=2. Hence while the
minimal chiral central charge, c− ¼ 4, of the all-fermion
gauge theory could not be canceled with only bosonic
short-range entangled states (which can only shift c− by 8),
the minimal central charge of the all-fermion gauge theory
can be canceled by fermionic short-range entangled states
(which can shift c− by 1=2).
In both cases adding microscopic fermions saves every-

thing, in the sense that all spectra of excitations are
adiabatically connected.

A. Fermion number anomaly

Since the structure of our coupled-layer construction is
so similar to that of the D ¼ 3þ 1 beyond-cohomology
boson SPT in [18], the same logic applies to that model
(removing daggers where necessary since charges are
binary). That is, in a slab geometry, a state with a
fermion on the top surface can tunnel to a state with a
fermion on the bottom surface, because the quasiparticle
sectors are related by bosonic operators (some of which
are condensed),

ftopb1b3…bN=2 ¼ m2m4…mNfbottom:

We therefore expect that this bosonic state can transport
the fermion number between edges.
In this case, the bulk state is protected by time-reversal

invariance. Breaking time reversal only at the surface
produces a state which is still not edgeable. We give two
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examples of time-reversal broken surface states momen-
tarily. It will help to see the connection between the fermion
number anomaly and the preservation of T to ask: What
happens to the edge if we adiabatically continue the bulk
through a T -breaking path to a product state? It is not
necessary to have a surface phase transition: Without T ,
one way to deform the bulk (on a torus, say) to a product
state is to open up an array of gapped trivial surfaces
(possible because T is broken) and then expand the
intervening vacuum regions to consume the system, fol-
lowing [5]. On a system with boundary, this can be done
everywhere except at topologically ordered boundaries
which are independently stable. On a slab of finite but
large thickness, therefore, in the absence of T , one can
disconnect the top from the bottom by cutting open a
middle (trivial, gapped) surface, and hence ending the
fermion tunneling without destroying the surface topologi-
cal order.
A model with the same spectrum of quasiparticles

and braiding statistics can be realized intrinsically in
D ¼ 2þ 1. For example, it can be obtained from the
Kitaev honeycomb model with ν ¼ 8 (see Table 2 of
[88]). That model does not preserve time reversal sym-
metry: the violations of time-reversal symmetry occur at
boundaries, where there is a chiral edge spectrum (with
cL − cR ¼ 4). The model at the surface of the boson SPT
cannot be put on a space with boundary (since the boundary
of a boundary is empty) and is time-reversal invariant.
The price for this extra symmetry is that the fermion
number is not conserved.
To connect the various phenomena, it is useful to

explicitly realize various T broken surface states starting
from the T invariant all-fermion surface toric code. The
basic observation follows from the previous paragraph:
given Z2 charged fermionic matter we may shift the vortex
from bosonic to fermionic and vice versa by adding ν ¼ �8
copies of a pþ ip state for the charged fermions. Normally
in 2þ 1 dimensions the time-reversal point has an absolute
chiral central charge c− ¼ 0 and a bosonic vortex. We can
obtain a fermionic vortex and c− ¼ 4 by adding ν ¼ 8
copies of charged fermions in pþ ip states. However,
on the surface of the T invariant bosonic SPT, there is a
shift in the spectrum so that the T invariant point has a
fermionic vortex. Then we may construct a pair of T
broken surface states which are still topologically ordered
by adding ν ¼ �8 copies charged fermions in pþ ip
states. The system now explicitly breaks time reversal
and has a bosonic vortex.
Given a bosonic vortex, we may condense the vortex to

destroy the surface topological order. At a domain wall
between the two distinct ways to break T to obtain a
bosonic vortex we have ν ¼ 16 Majorana edge modes
before condensing the vortex. After condensing the vortex
we obtain the edge of the E8 state of bosons [12]. Thus we
obtain the same edge physics as the E8 BF theory discussed

in [2]. This analysis provides another route to connect the
layer construction to a topological bulk theory via the
nontrivial surface, in this case in 3þ 1 dimensions. When
the surface preserves T , we may interpret the bulk FF term
in 3þ 1 dimensions as providing a T invariant regulator
for the surface all-fermion toric code.
Again the presence of neutral bulk fermions renders

everything trivial. In the presence of microscopic neutral
fermions, the bosonic SPT can be deformed into 16
copies of the free fermion topological superconductor,
and this in turn is equivalent to nothing [3,89]. So
adding fermions explicitly makes the bulk trivial (in
addition to the edge). This picture nicely complements
the edge analysis above where we argued that adding
fermions effectively changes the minimal chiral central
charge one can have without topological order (from
c− ¼ 8 to c− ¼ 1=2).

B. Reality of this phenomenon

We have to ask: Are there real physical systems made
just of bosons, with a gap, which can transport the fermion
number? The D ¼ 3þ 1 boson SPT protected by time
reversal should do so. This makes it even more interesting
to try to realize this state in the world.
Finally, we note the following consequence of our claim,

given that elementary gauge-neutral fermions have not
been observed in nature.19 Were we to discover a fermionic
magnetic monopole in our world, it would imply either20 of
the following points:
(1) There are microscopic, gauge-neutral fermions. The

opposite is conjectured to be true in e.g. Ref. [59].
(2) We live on the boundary of some higher dimensional

space. Boundary theories of 4þ 1D SPT phases
have been suggested in attempts to understand the
matter content (and flavor structure) of the standard
model [90–93].
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APPENDIX A: LATTICE BOSONS FOR
DUALITY-SYMMETRIC SURFACE QED

1. This is a model of bosons

The two-form gauge theory studied in this paper is a
model of bosons. Low-energy evidence for this statement is
the fact that we did not have to choose a spin structure to
put it on an arbitrary 4-manifold. This is in contradistinc-
tion to Uð1Þk¼1 Chern-Simons theory in D ¼ 2þ 1. We
note in passing that on a manifold that admits spinors, the
intersection form is even ½Iðv; vÞ ∈ 2Z� [94]. (This means
that to describe an effective field theory for a fermionic
SPT state, we should consider the level k ∈ Z=2.)
High-energy (i.e. condensed-matter) evidence for the

claim that this is a model of bosons is the following
conjecture for a lattice model of bosons which produces
this effective field theory. The Hilbert space is as follows

and is similar to lattice boson constructions of electrody-
namics in other dimensions [95–98].

(i) Put rotors eibp on the plaquettes p of a 4d spatial
lattice. (Actually, the model is defined for any 4d
simplicial complex. Translation invariance will not
play a significant role.) These act as

eibp jnpi ¼ jnp þ 1i
on states with definite excitation number np; we will
interpret np as a number of (oriented) “sheets”
covering the plaquette.

(ii) Put charge-k bosons Φl ¼ Φ†
−l on the links l. These

satisfy ½Φl;Φ
†
l� ¼ 1. We will say that Φ†

l creates
a string segment, and Φ†

lΦl is the number of
(oriented) strings covering the link.

The Hamiltonian is

H ¼ −
X

links;l∈Δ1

� X
p∈sðlÞ

np − kΦ†
lΦl

�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H1;dark blue gauss law:happy when sheets close;or end on strings

−
X

volumes;v∈Δ3

Y
p∈∂v

eibp þ H:c:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H3∼B2;dark blue makes sheets hop:

− Γ
X
p∈Δ2

n2p

|fflfflfflffl{zfflfflfflffl}
H2∼E2:dark blue discourages sheets:

− t
X
p∈Δ2

eikbp
Y
l∈∂p

Φ†
l þ H:c:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hstrings;dark blue hopping term for matter strings

þ VðjΦj2Þ:

The subscripts indicate the dimension of the simplices to
which the terms are associated. When Γ ¼ 0; V ¼ 0, these
terms all commute. The ground state for t > 0 is described
by a soup of oriented closed 2d sheets, and groups of k can
end on strings.
Now take VðjΦj2Þ¼ðjΦj2−v2Þ. This causes Φl ¼ veiφl

to condense, which leads to a two-form Higgs mechanism,

Hstrings ¼ −
X
p

tv4 cos

�
kbp −

X
l∈∂p

φl

�
:

On the low-energy manifold of this Hamiltonian, we have

ðeibpÞk ¼ 1; jnpi≃ jnp þ ki:
This leaves behind k species of (unoriented) sheets.
The ground states are then described by equal-

superposition sheet soup. If the intersection form on the
spatial 4-manifold which is triangulated by the simplicial
complex has I ¼ 1, there are kb2 ground state sectors.
These ground states represent the algebra of “tube oper-
ators”: for any closed union of 2-simplices ω

Fω ≡ Y
p∈ω

eibp ;

T ω ≡ Y
V∈Δ3

Y
p∈∂V∩ω

np;FωT ω0 ¼ e2πiIωω0T 0
ωFω:

2. Continuum limit

The Higgs mechanism described above leads to

Uð1Þ →
Higgs

Zk two-form gauge theory,

L ¼ tv4

2
ðdφ1 þ kB2Þ ∧ ⋆ðdφ1 þ kB2Þ þ

1

g2
dB2 ∧ ⋆dB2

≃ k
2π

B ∧ dCþ 1

8πtv4
dC ∧ ⋆dCþ 1

g2
dB ∧ ⋆dB

with dC≃ 2πt⋆ðdφþ kBÞ. This equivalence is described
in [57,99].

APPENDIX B: MORE DETAILS ON MONOPOLE
STRINGS AND VORTEX SHEETS IN 5d

ABELIAN GAUGE THEORY

Consider a 5d U(1) one-form gauge field a, with field
strength f ¼ da. A magnetic excitation with respect to this
gauge field has

H
Σ2
f ¼ 2πg, where Σ2 is a closed 2-surface

surrounding the object. Such an object is therefore codi-
mension three, and is a string in 4þ 1 dimensions. The
quantity which is localized on the monopole strings is
therefore a three-form,

⋆jm ¼ δ3ðmonopole stringsÞ ¼ ⋆df ≡ dC;

where C is a two-form.
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Suppose we Higgs the Uð1Þ gauge field by condensing a
charged order parameter field b ∼ veiϕ. This adds

δH ¼ m2ðaþ dϕÞ2;
so that a eats the phase ϕ, and m ∼ tv. Topological defects
in ϕ, i.e. zeros of b around which ϕ winds by 2π, occur at
codimension two (since b is a complex function) and in 5d
are therefore (2þ 1)-dimensional vortex sheets.
These vortex sheets can end on the monopole strings.

This is the same fact as the fact that vortex strings can end
on magnetic monopoles in 3þ 1 dimensions. In the Higgs

phase of a (3þ 1)-dimensional Abelian gauge theory, the
vortex string provides a means to collimate the magnetic
flux coming out of the monopole. The result is the
confinement of the magnetic charges; this is a manifestation
of the Meissner effect. It is the same in D ¼ 4þ 1, except
now it is magnetically charged strings which are connected
by vortex sheets. In the Higgs phase, it is energetically
favorable for the monopole strings to be connected by such
vortex sheets.
The final ingredient in the coupled-layer construction is

the fact that the condensate is not purely electric with
respect to any individual layer.
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