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We study the quantization of a minimally gauged massless Rarita–Schwinger field, by both the Dirac
bracket and functional integral methods. The Dirac bracket approach in the covariant radiation gauge leads
to an anticommutator that has a nonsingular limit as gauge fields approach zero, is manifestly positive
semidefinite, and is Lorentz invariant. The constraints also have the form needed to apply the Faddeev–
Popov method for deriving a functional integral, using the same constrained Hamiltonian and inverse
constraint matrix that appear in the Dirac bracket approach.

DOI: 10.1103/PhysRevD.92.085023 PACS numbers: 03.50.Kk, 03.65.Pm, 03.70.+k, 11.10.Ef

I. INTRODUCTION

In this paper, we continue the study of gauging a massless
Rarita–Schwinger field begun in the preceding paper [1],
referred to henceforth as (I), which dealt principally with the
classical case (with a small excursion into first quantization).
Here we turn to a detailed examination of the quantization of
a gauged massless Rarita–Schwinger field. Our main aim is
to show that a consistent quantization is possible in the gauge
covariant radiation gauge, avoiding the problem of non-
positivity of the canonical anticommutator first noted by
Johnson and Sudarshan [2] and later rederived by Velo and
Zwanziger [3]. Other objections to gauging a massless
Rarita–Schwinger field—the issue of superluminal signaling
and various “on-shell no-go” theorems—have already been
taken up in (I). In referring to a formula numbered “Eq. (#)”
in the preceding paper, we shall use the notation “Eq. (I-#),”
while nonhyphenated equation numbers refer to equations
from this paper.
InSec. II,wegive theHamiltonian formof the equations of

motion and constraints and introduce the Dirac bracket. This
can be done without imposing a gauge-fixing condition; in
particular, we do not use the condition Ψ0 ¼ 0 that was
imposed in an initial arXiv posting [4] of this paper. When a
gauge-fixing condition is omitted, the equation of motion for
~Ψ computed from the Dirac bracket agrees with the equation
of motion of Eq. (I-29), in the form obtained when Ψ0 is
eliminated by using the secondary constraint ω ¼ 0; this
demonstrates that theDirac formalism isworking correctly in
the Rarita–Schwinger equation context. However, in the
absence of a gauge-fixing constraint, the Dirac bracket anti-

commutator of ~Ψ with ~Ψ† agrees with the anticommutator
calculated inRefs. [2] and [3],which is singular in the limit of
vanishing gauge fields and is not positive semidefinite.
In Sec. III, we study the Dirac bracket in its classical and

quantum forms with the imposition of a covariant radiation
gauge constraint. We show that now the quantum Dirac
bracket has the requisite positivity properties to be an

anticommutator; related details are given in the Appendix.
In Sec. IV, we give an alternative approach to proving
positivity of the anticommutator in the covariant radiation
gauge, based on writing a Lagrangian for the equation of
motion for ~Ψ in which Ψ0 has already been eliminated by
the use of the secondary constraint. In Sec. V, we discuss
the Lorentz covariance of the covariant radiation gauge and
show the Lorentz invariance of the Dirac bracket. In
Sec. VI, we turn to path integral quantization in the
covariant radiation gauge, leading to a formalism closely
resembling the Dirac bracket approach. A brief concluding
discussion is given in Sec. VII.
Our conclusion from this paper and the preceding one is

that one can consistently gauge a massless Rarita–
Schwinger field, at both the classical and quantum levels.
This opens the possibility of using gauged Rarita–
Schwinger fields as part of the anomaly cancelation
mechanism in grand unified models, with anomalies of
the spin-1

2
fields canceling against the spin-3

2
anomaly.

II. HAMILTONIAN FORM OF THE EQUATIONS
AND THE DIRAC BRACKET

The standard route to canonical quantization is to
transform the Lagrangian equations to the Hamiltonian
form and to take the constraints into account by replacing
the classical brackets by the Dirac brackets. In carrying this
out, we will simplify the formulas by making the gauge
choice A0 ¼ 0 for the non-Abelian gauge fields. This gauge
choice is always attainable and leaves a residual non-
Abelian gauge invariance with a time-independent gauge
parameter. The Hamiltonian will then be covariant with
respect to this restricted gauge transformation. For the
moment, in discussing the canonical Hamiltonian and

bracket formalism, we will allow ~A to be time dependent,
so that ~E ≠ 0. But when we turn to the Dirac bracket
construction corresponding to a constrained Hamiltonian,
which is simplest in the case of time-independent con-

straints, we will assume a time-independent ~A, correspond-
ing in the A0 ¼ 0 gauge to ~E ¼ 0. (If we carry along the A0
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term in the formulas, then time-independent fields would

not require ~E ¼ 0. So this specialization can be avoided at
the price of somewhat lengthier equations.)
From the action SðΨμÞ ¼

R
dtLðΨμÞ of Eq. (I-23) and

the canonical momentum ~P ¼ 1
2
~Ψ† × ~σ, we find the

canonical Hamiltonian to be

H¼
Z

d3x∂0
~Ψ · ~P−L

¼−
1

2

Z
d3x½−Ψ†

0~σ · ~D× ~Ψþ ~Ψ† · ~σ× ~DΨ0þ ~Ψ† · ~D× ~Ψ�

¼−
1

2

Z
d3x½−Ψ†

0~σ · ~D× ~Ψþði~P− ~P× ~σÞ · ð~σ× ~DΨ0

þ ~D× ~ΨÞ�; ð1Þ

where in the final line we have used the inversion

formula ~Ψ† ¼ i~P − ~P × ~σ.
We can now compute the classical brackets of various

quantities with H. From

d ~Ψ
dt

¼ ½ ~Ψ; H�C ¼ 1

2
½ið~σ × ~DΨ0 þ ~D × ~ΨÞ

− ~σ × ð~σ × ~DΨ0 þ ~D × ~ΨÞ�

¼ ~DΨ0 þ
1

2
½−~σ × ð ~D × ~ΨÞ þ i ~D × ~Ψ�; ð2Þ

we obtain the ~Ψ equation of motion in the form given in

Eq. (I-29). Similarly, from the bracket of ~P withH, we find

the equation of motion for ~Ψ†. Turning to brackets of the
constraints with H, starting with PΨ†

0
, we find

dPΨ†
0

dt
¼ ½PΨ†

0
; H�C ¼ −

1

2
χ; ð3Þ

and so PΨ†
0
¼ 0 for all times implies that χ ¼ 0. For the

total time derivative of χ, we have

dχ
dt

¼ ∂χ
∂tþ½χ;H�C¼ ~σ×g

∂ ~A
∂t · ~Ψþ½χ;H�C ¼−igω; ð4Þ

and so χ ¼ 0 for all times implies that ω defined in
Eq. (I-28) vanishes. Since ω contains a term proportional
to Ψ0, to continue this process by calculating the time
derivative of ω, we must obtain dΨ0=dt from a bracket of
Ψ0 withH (and similarly for dΨ†

0=dt). This requires adding
to H a term

ΔH ¼ −
Z

d3x

�
PΨ0

dΨ0

dt
þ PΨ†

0

dΨ†
0

dt

�
: ð5Þ

Requiring ΔH to be self-adjoint then imposes the
requirement

P†
Ψ0

¼ −PΨ†
0
; ð6Þ

which was noted following Eq. (I-56). As noted in (I), the
chain of successive brackets with H starting from PΨ†

0
and

continuing to χ;ω;… leads only to constraints involving ~Ψ
and Ψ0 but never their adjoints. The doubling of the set of
constraints, which turns the first class constraints into
second class ones, comes from requiring that the adjoint
of each fermionic constraint also be a constraint, not from
taking successive brackets with H.
We are now ready to implement the Dirac bracket

procedure. The basic idea is to change the canonical
bracket ½F;G�C to a modified bracket ½F;G�D, which
projects F andG onto the subspace obeying the constraints,
so that the constraints are built into the brackets, or after
quantization, into the canonical anticommutators. The
constraints can then be “strongly” implemented in the
Hamiltonian by setting terms proportional to the constraints
to zero. After an integration by parts, the second line of
Eq. (1) takes the form

H ¼ −
1

2

Z
d3x½−Ψ†

0 χ − χ†Ψ0 þ ~Ψ† · ~D × ~Ψ�; ð7Þ

so setting the constraints χ†; χ equal to zero in Eq. (7), we
see that the constrained Hamiltonian is just

H ¼ −
1

2

Z
d3x ~Ψ† · ~D × ~Ψ

¼ −
1

2

Z
d3xði~P − ~P × ~σÞ · ~D × ~Ψ; ð8Þ

which coincides with the energy integral computed in
Eq. (I-35) from the stress-energy tensor.
We proceed now to calculate the Dirac bracket for the

case when F ¼ Fð ~ΨÞ and G ¼ Gð ~Ψ; ~Ψ†Þ; the case when

F ¼ Fð ~Ψ†Þ can then be obtained by taking the adjoint, and
the case when F ¼ Fð ~Ψ; ~Ψ†Þ can be obtained by combin-
ing the extra bracket terms from both calculations. When F

has no dependence on ~Ψ†, it has vanishing brackets with
the constraints ϕa of Eq. (I-55) and nonvanishing brackets
with the constraints χa of Eq. (I-56). The Dirac bracket then
has the form [see Eqs. (I-A20) and (I-A21) for why M−1

appears]

½F;G�D ¼ ½F;G�C −
X
a

X
b

½F; χa�CM−1
ab ½ϕb; G�; ð9Þ

where Mabð~x; ~yÞ ¼ ½ϕað~xÞ; χbð~yÞ�C is the matrix defined in
Eqs. (I-58) and (I-59). We recall that this matrix has the
form
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M ¼

0
BBB@

0 −1 0 0

1 U S T

0 V A B

0 W C D

1
CCCA; ð10Þ

where in the SUðnÞ gauge field case each entry in M is a
2n × 2n matrix. Using the block inversion method given in
Eqs. (I-A18) and (I-A19), we find that M−1 is given by

M−1 ¼

0
BBB@

Σ 1 −ðSF þ T HÞ −ðSGþ T IÞ
−1 0 0 0

FV þ GW 0 F G

HV þ IW 0 H I

1
CCCA;

ð11Þ

where

Σ ¼ U − SðFV þ GWÞ − T ðHV þ IWÞ; ð12Þ

and where F , G, H, I are the elements of the block
inversion of the matrix N of Eq. (I-60),

�
F G

H I

��
A B

C D

�
¼

�
1 0

0 1

�
: ð13Þ

Substituting these into Eq. (9), we find for the Dirac
bracket a lengthy expression, which simplifies considerably

after noting that ½Fð ~ΨÞ; χ1�C ¼ ½Fð ~ΨÞ;−PΨ0
�C ¼ 0 and

½ϕ1; Gð ~Ψ; ~Ψ†Þ�C ¼ ½PΨ†
0
; Gð ~Ψ; ~Ψ†Þ�C ¼ 0, leaving the

relatively simple formula

½Fð ~ΨÞ; Gð ~Ψ; ~Ψ†Þ�D ¼ ½Fð ~ΨÞ; Gð ~Ψ; ~Ψ†Þ�C
− ½Fð ~ΨÞ; χ3�CðF ½ϕ3; Gð ~Ψ; ~Ψ†Þ�C þ G½ϕ4; Gð ~Ψ; ~Ψ†Þ�CÞ
− ½Fð ~ΨÞ; χ4�CðH½ϕ3; Gð ~Ψ; ~Ψ†Þ�C þ I ½ϕ4; Gð ~Ψ; ~Ψ†Þ�CÞ: ð14Þ

We note that only the matrix N enters, in this case through
its inverse, rather than the full matrix of constraint
brackets M. The final step is to evaluate the inverse block
matrix elements F ;G;H; I from the expressions for
A;B; C;D, again by using the block inversion formulas
of Eqs. (I-A18) and (I-A19). Let us define the Green’s
function D−1ð~x − ~yÞ by

ðið~L~xÞ2 þ ~σ · ~L~x × ~L~xÞD−1ð~x − ~yÞ ¼ δ3ð~x − ~yÞ ð15Þ

and a second Green’s function Zð~x − ~yÞ by

Zð~x−~yÞ¼A−BD−1C

¼−2ig~σ · ~Bδ3ð~x−~yÞ−4 ~D~x · ~L~xD−1ð~x−~yÞ~L~y ·D⃖~y;

ð16Þ

where in the covariant radiation gauge ~L ¼ ~D. Then the
needed inverse block matrices are

F ¼ Z−1;

G ¼ −Z−1BD−1;

H ¼ −D−1CZ−1;

I ¼ D−1 þD−1CZ−1BD−1: ð17Þ

We wish now to apply the Dirac bracket formula to the
cases (i) Fð ~ΨÞ ¼ ~Ψ andGð ~Ψ; ~Ψ†Þ ¼ ~Ψ† and (ii)Fð ~ΨÞ ¼ ~Ψ

and Gð ~Ψ; ~Ψ†Þ ¼ H, withH the constrained Hamiltonian of
Eq. (8). The following canonical brackets are needed
for this:

½ ~Ψð~xÞ; χ3ð~yÞ�C ¼ 2 ~D~xδ
3ð~x − ~yÞ;

½ ~Ψð~xÞ; χ4ð~yÞ�C ¼ ði~L~x − ~σ × ~L~xÞδ3ð~x − ~yÞ;
½ϕ3ð~xÞ; ~Ψ†ð~yÞ�C ¼ 2 ~D~xδ

3ð~x − ~yÞ ¼ −2δ3ð~x − ~yÞD⃖~y;

½ϕ4ð~xÞ; ~Ψ†ð~yÞ�C ¼ −ði~L~x − ~L~x × ~σÞδ3ð~x − ~yÞ ¼ δ3ð~x − ~yÞðiL⃖~y − L⃖~y × ~σÞ;
½ϕ3ð~xÞ; H�C ¼ ig~Bð~xÞ · ~Ψð~xÞ;

½ϕ4ð~xÞ; H�C ¼ 1

2
ði~L~x − ~L~x × ~σÞ × ~D~x · ~Ψð~xÞ: ð18Þ
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Additionally, for case i, we need the canonical bracket

½Ψið~xÞ;Ψ†
jð~yÞ�C ¼½Ψið~xÞ; iPjð~yÞ − ϵjklPkð~yÞσl�C

¼ − iðδij þ iϵjilσlÞδ3ð~x − ~yÞ ¼ −iσjσiδ3ð~x − ~yÞ ¼ −2i
�
δij −

1

2
σiσj

�
δ3ð~x − ~yÞ; ð19Þ

and for case ii, we need the canonical bracket

½Ψið~xÞ; H�C ¼ 1

2
ði ~D~x × ~Ψð~xÞ − ~σ × ð ~D~x × ~Ψð~xÞÞÞi: ð20Þ

Up to this point, we have not specialized ~L so as to make it easy to ascertain what the formulas become when the gauge
fixing is omitted (as in Refs. [2] and [3]). When ~L ¼ 0, the matrix N degenerates to its upper left element A. This is
reflected in the fact that Z of Eq. (16) simplifies to

Zð~x − ~yÞ ¼ A ¼ −2ig~σ · ~Bδ3ð~x − ~yÞ; ð21Þ

which is a local function of ~x and so is algebraically invertible. The Dirac bracket of ~Ψð~xÞ with the constrained Hamiltonian
now simplifies to

d ~Ψð~xÞ
dt

¼ ½ ~Ψð~xÞ; H�D ¼ 1

2
½i ~D~x × ~Ψð~xÞ − ~σ × ð ~D~x × ~Ψð~xÞÞ� −

Z
d3yf2 ~D~x½Z−1ð~x − ~yÞig~Bð~yÞ · ~Ψð~yÞ�g

¼ 1

2
½i ~D~x × ~Ψð~xÞ − ~σ × ð ~D~x × ~Ψð~xÞÞ� þ ~D~x

1

~σ · ~Bð~xÞ
~Bð~xÞ · ~Ψð~xÞ: ð22Þ

The second line of this equation is just the ~Ψ equation of
motion in the form of Eq. (I-29) (when A0 ¼ 0), with Ψ0

eliminated by using the secondary constraint, which when
~E ¼ 0 reads ~σ · ~BΨ0 ¼ ~B · ~Ψ. This shows that the Dirac
bracket formalism correctly incorporates the Ψ0 term of
Eq. (I-29). The reason a local result is obtained from this
calculation is that, in the absence of gauge fixing, the Dirac

bracket only projects into the subspace that preserves the
primary constraint χ ¼ 0, and since the equation of
motion of Eq. (I-29) preserves this constraint, it already

resides in the subspace projected into by the ~L ¼ 0 Dirac
bracket.
When ~L ¼ 0, for the Dirac bracket of ~Ψið~xÞ with ~Ψ†

jð~yÞ,
we find

½Ψið~xÞ;Ψ†
jð~yÞ�D ¼½Ψið~xÞ;Ψ†

jð~yÞ�C −
Z

d3wd3z½Ψið~xÞ; χ3ð~wÞ�CZ−1ð~w − ~zÞ½ϕ3ð~zÞ;Ψ†
jð~yÞ�C

¼ − 2i

��
δij −

1

2
σiσj

�
δ3ð~x − ~yÞ −D~xi

δ3ð~x − ~yÞ
g~σ · ~Bð~xÞ

D⃖~yj

�

¼ − 2ih~xj
��

δij −
1

2
σiσj

�
1þ Πi

1

g~σ · ~B
Πj

�
j~yi; ð23Þ

where in the final line we havewritten iD~xi ¼ Πi to relate to
the abstract operator notation of Velo and Zwanziger [3].
Multiplying the final line by i to convert the Dirac bracket
to an anticommutator and by a factor 1=2 reflecting our
different field normalization, Eq. (23) becomes the expres-
sion for the anticommutator given in the zero mass limit of
Eq. (4.12) of Ref. [3]. Using identities in Appendix A of (I),
one can verify (as in Appendix C of Ref. [3]) that

ð~σ× ~D~xÞi
��

δij−
1

2
σiσj

�
δ3ð~x− ~yÞ−D~xi

δ3ð~x− ~yÞ
g~σ · ~Bð~xÞ

D⃖~yj

�
¼ 0;

ð24Þ

that is, the constraint χ is explicitly projected to zero.
However, as noted in the Introduction to (I), the anticom-

mutator of Eq. (23) becomes singular as ~B → 0, rather than
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limiting to the free Rarita–Scwhinger anticommutator. This
problem is a direct consequence of omitting a gauge-fixing

constraint, by taking ~L ¼ 0 in calculating the matrix N.
Now setting ~L ¼ ~D for the covariant radiation gauge, we

find for the Dirac bracket of Ψið~xÞ with the constrained
Hamiltonian

d ~Ψð~xÞ
dt

¼ ½ ~Ψð~xÞ;H�D ¼ 1

2
½i ~D~x × ~Ψð~xÞ− ~σ × ð ~D~x × ~Ψð~xÞÞ�

−
Z

d3yf2 ~D~x½F ð~x− ~yÞig~Bð~yÞ · ~Ψð~yÞ

þ Gð~x− ~yÞ1
2
ði ~D~y − ~D~y × ~σÞ× ~D~y · ~Ψð~yÞ�

þ ði ~D~x − ~σ × ~L~xÞ½Hð~x− ~yÞig~Bð~yÞ · ~Ψð~yÞ

þ Ið~x− ~yÞ1
2
ði ~D~y − ~D~y × ~σÞ× ~D~y · ~Ψð~yÞ�g: ð25Þ

The first line of this equation gives the second term of the
unconstrained equation of motion in the form of Eq. (I-29),
while the remaining terms replace the first term of
Eq. (I-29) to guarantee that

dϕ3

dt
¼ dχ

dt
¼ dð~σ × ~D · ~ΨÞ

dt
¼ σ × ~D ·

d ~Ψ
dt

¼ 0;

dϕ4

dt
¼ d

~D · ~Ψ
dt

¼ ~D ·
d ~Ψ
dt

¼ 0; ð26Þ

where we have used the fact that we are assuming that ~D is
time independent. That is, the Dirac bracket simultaneously
projects the equation of motion into the subspace where

both χ ¼ 0 and ~D · ~Ψ ¼ 0. The restriction to ~D being time
independent can be avoided by treating the gauge fields as
dynamical variables, taking into account their own con-
straint structure, and noting that the radiation gauge-fixing

constraint ~∇ · ~P~A ¼ 0, with ~P~A the canonical momentum

conjugate to ~A, has nonvanishing fermionic brackets with

all Rarita–Schwinger constraints involving ~D ¼ ~∇þ g~A.
This requires an extension of the Dirac bracket construction
to take the new, Grassmann-odd, brackets into account, and
the extended Dirac bracket structure will then obey Eq. (26)

without requiring the assumption of a time-independent ~A

and ~D.

With ~L ¼ ~D, we find for the Dirac bracket of Ψið~xÞ with Ψ†
jð~yÞ

½Ψið~xÞ;Ψ†
jð~yÞ�D ¼ −2i

�
δij −

1

2
σiσj

�
δ3ð~x − ~yÞ

þ 4 ~D~xiF ð~x − ~yÞD⃖~yj − 2D~xiGð~x − ~yÞðiD⃖~y − D⃖~y × ~σÞj
þ 2ði ~D~x − ~σ × ~D~xÞiHð~x − ~yÞD⃖~yj − ði ~D~x − ~σ × ~D~xÞiIð~x − ~yÞðiD⃖~y − D⃖~y × ~σÞj; ð27Þ

which gives the generalization of Eq. (23) to the case when
a covariant gauge-fixing constraint is imposed. This equa-
tion will be further analyzed in the next section.

III. QUANTIZATION OF THE
ANTICOMMUTATOR DERIVED FROM THE
DIRAC BRACKET AND POSITIVITY IN THE

COVARIANT RADIATION GAUGE

Given the Dirac bracket, the next step is to quantize,
by multiplying all Dirac brackets by i and then reinter-
preting them as anticommutators or commutators of oper-
ators. In the case considered here, this can be done in a
constructive way, as follows. First, let us replace the set of
2n-component column vector constraints ϕa and
2n-component row vector constraints χa by the set of 4n
scalars given by their individual matrix elements.
Moreover, since the χa are the adjoints of the ϕa, we
can take linear combinations to make all of these scalars
self-adjoint. Labeling the set of self-adjoint scalar

constraints by Φa, the Dirac bracket construction for the
bracket of F with G reads

½F;G�D ¼½F;G�C −
X
a

X
b

½F;Φa�CT−1
ab ½Φb; G�C;

Tab ¼½Φa;Φb�C; ð28Þ

with the matrix T real.
We now observe that, since the Φa are all linear in the

scalar components of ~Ψ and ~Ψ†, if we make the replace-
ment i½; �C → f; gC, with f; g the anticommutatior, and

replace all Grassmann variables ~Ψ and ~Ψ† with operator
variables having the standard canonical anticommutators,
then, since there is no other operator structure, the same real
matrix Tab will be obtained. Moreover, if F and G are both

linear in the scalar components of ~Ψ and ~Ψ†, the
Grassmann bracket i½F;G�C formed from the scalar com-
ponents of F and G will agree with the canonical

QUANTIZED GAUGED MASSLESS RARITA-SCHWINGER FIELDS PHYSICAL REVIEW D 92, 085023 (2015)

085023-5



anticommutator ifF;GgC formed from the corresponding
operator scalar components and will be a c-number. Thus,
for linear F andG, we can define a “Dirac anticommutator”
fF;GgD by

fF;GgD ¼fF;GgC −
X
a

X
b

fF;ΦagCT−1
abfΦb; GgC;

Tab ¼fΦa;ΦbgC: ð29Þ

When one or both of F and G are bilinear, the Grassmann
bracket i½F;G�C formed from the scalar components of F
and G will agree with the canonical commutator formed
from the corresponding operator scalar components, and
we can define a “Dirac commutator” by a formula
analogous to Eq. (29) in which each anticommutator with
at least one bilinear argument is replaced by a commutator.
In this way, we get a mapping of classical brackets into
quantum anticommutators and commutators, that inherits
the algebraic properties of the Dirac bracket, including the

chain rule, with the Jacobi identities for odd and even
Grassmann variables mapping to the corresponding anti-
commutator and commutator Jacobi identities.
To complete this correspondence, we must show that the

Dirac anticommutator of Ψαu
i and Ψ†βv

j (with α ¼ 1; 2; β ¼
1; 2 the spin indices; u ¼ 1;…; n; v ¼ 1;…; n the internal
symmetry indices; and i ¼ 1; 2; 3; j ¼ 1; 2; 3 the spatial
vector indices) has the expected positivity properties of an
operator anticommutator, by showing that for an arbitrary
set of complex functions Aαu

i ð~xÞ we have

Z
d3xd3yAαu

i ð~xÞA�βv
j ð~yÞfΨαu

i ð~xÞ;Ψ†βv
j ð~yÞgD ≥ 0: ð30Þ

We demonstrate this in several steps, in the covariant
radiation gauge. First, we examine the conditions for
positivity of the canonical anticommutator and Poisson
bracket,

Z
d3xd3yAαu

i ð~xÞA�βv
j ð~yÞfΨαu

i ð~xÞ;Ψ†βv
j ð~yÞgC ¼

Z
d3xd3yAαu

i ð~xÞA�βv
j ð~yÞi½Ψαu

i ð~xÞ;Ψ†βv
j ð~yÞ�C: ð31Þ

From Ψ†βv
j ¼ iPβv

j − ϵjklPδv
k σδβl , we find that

½Ψαu
i ð~xÞ;Ψ†βv

j ð~yÞ�C ¼ − iðδijδαβ þ iϵjikσ
αβ
k Þδuvδ3ð~x − ~yÞ

¼ − iðσjσiÞαβδuvδ3ð~x − ~yÞ ¼ −2i
�
δij −

1

2
σiσj

�
αβ

δuvδ3ð~x − ~yÞ: ð32Þ

Multiplying by i=2 and writing Aαu
i ¼ Rαu

i þ iIαui ; i ¼ 1; 2; 3; α ¼ 1; 2; u ¼ 1;…; n, with R and I real, the right-hand side
of Eq. (31) evaluates to [we suppress the internal symmetry index u from here on, so ðRα

i Þ2 means
P

n
u¼1ðRαu

i Þ2, etc.]

X3
i¼1

X2
α¼1

ððRα
i Þ2 þ ðIαi Þ2Þ −

1

2
ððR1

2 − I11 þ I23Þ2 þ ðR1
1 þ I12 − R2

3Þ2 þ ðR2
2 þ I21 þ I13Þ2 þ ðR2

1 − I22 þ R1
3Þ2Þ: ð33Þ

If all three components Aα
i ; i ¼ 1;…; 3 are present, the

expression in Eq. (33) is not positive semidefinite. But
when only two of the three components are present, as a
result of application of a constraint, then each of the four
squared terms on the right-hand side of Eq. (33) contains
only two terms, and so the expression in Eq. (33) is positive
semidefinite by virtue of the inequality

X2 þ Y2 −
1

2
ðX � YÞ2 ¼ 1

2
ðX ∓ YÞ2 ≥ 0: ð34Þ

Another way of seeing this, noted by Velo and Zwanziger
[3] and Allcock and Hall [5], is that, becauseP

3
i¼1 σiσi ¼ 3, the expression Wij ¼ δij − 1

2
σiσj is not a

projector. But when one component of ~σ, say σ3, is replaced
by 0, so that one has

P
3
i¼1 σiσi ¼

P
2
i¼1 σiσi ¼ 2, then

X
l

WilWlj ¼ δij − 2
1

2
σiσj þ

1

4
σi
X2
l¼1

σlσlσj

¼ δij −
1

2
σiσj ¼ Wij; ð35Þ

andWij is a projector and hence is positive semidefinite. So
we anticipate that proving positivity will require the
projection of Eq. (32) into a subspace obeying at least

one constraint on ~Ψ.
The next step is to use the property that the Dirac bracket

of linear quantities F and G reduces to the canonical
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bracket of their projections into the subspace obeying the
constraints, when (as is the case here) all constraints are
second class, that is they all appear in the Dirac bracket [6].
Referring to Eq. (28), let us define

~F ¼ F −
X
a

X
b

½F;Φa�CT−1
abΦb;

~G ¼ G −
X
a

X
b

½G;Φa�CT−1
abΦb; ð36Þ

so that

½ ~F;Φc�C ¼½F;Φc�C −
X
a

X
b

½F;Φa�CT−1
ab ½Φb;Φc�C

¼½F;Φc�C −
X
a

X
b

½F;Φa�CT−1
abTbc

¼½F;Φc�C −
X
a

½F;Φa�Cδac ¼ 0; ð37Þ

and similarly for ~G. As a result of this relation, which holds
when the canonical brackets are simply numbers (as in the
case here where Φc and F;G are linear), together with
symmetry of the canonical bracket ½ ~G;Φc�C ¼ ½Φc; ~G�C, we
see that

½F;G�D ¼ ½ ~F; ~G�C: ð38Þ

These properties of Eqs. (36)–(38) carry over when we
replace Grassmann numbers with operators and classical
brackets with anticommutators, since in the linear case all
anticommutators of linear quantities are c-numbers that
commute with the operators and since the anticommutator
is symmetric. Thus, we have

fΨα
i ð~xÞ;Ψ†β

j ðy⃗ÞgD ¼ f ~Ψα
i ð~xÞ; ~Ψ†β

j ð~yÞgC: ð39Þ

To further study the properties of ~Ψið~xÞ and ~Ψ†
jð~yÞ (with

spinor indices suppressed), let us now return to our original
labeling of the constraints by ϕa and χa as in Eq. (14), so
that we have in the Dirac bracket formalism

~Ψið~xÞ ¼ Ψið~xÞ −
X
a

X
b

½Ψið~xÞ; χa�CM−1
abϕb ð40Þ

and a similar equation (with the roles of ϕa and χa
interchanged) for ~Ψ†

jð~yÞ, with a; b summed from 3 to 4.
We now note two important properties of this equation. The
first is that it is invariant under the replacement of the
constraints χa by any linear combination χ0a ¼ χbKba, with
the matrix K nonsingular, since the factors K and K−1

cancel between χ0a and M0−1
ab . (More generally, the Dirac

bracket is invariant under the replacement of the constraints
by any nonsingular linear combination of the constraints,
reflecting the fact that the Dirac bracket is a projector onto

the subspace obeying the constraints, and this subspace is
invariant under the replacement of the constraints by any
nonsingular linear combination of the constraints.) The
second is that, if we act on ~Ψið~xÞ with either D~xi or
ð~σ ×D~xÞi, we get zero. For example, recalling that in the
covariant radiation gaugeD~xiΨið~xÞ ¼ ϕ4ð~xÞ, we have (with
spatial variable labels ~x suppressed)

Di
~Ψi ¼ ϕ4 −

X
a

X
b

½ϕ4; χa�CM−1
abϕb

¼ ϕ4 −
X
a

X
b

M4aM−1
abϕb ¼ ϕ4 −

X
b

δ4bϕb ¼ 0

ð41Þ

and similarly for ð~σ ×D~xÞi, with ϕ4 replaced by ϕ3.
Let us now write ~Ψið~xÞ as a projector Rijð~x; ~yÞ acting on

Ψjð~yÞ, giving after an integration by parts on ~y

~Ψið~xÞ ¼
Z

d3yRijð~x; ~yÞΨjð~yÞ;

Rijð~x; ~yÞ ¼ δijδ
3ð~x− ~yÞ

þ
X
a

X
b

Z
d3z½Ψið~xÞ;χað~zÞ�CM−1

abð~z; ~yÞη⃖bjð~yÞ;

ð42Þ

with

⃖η3jð~yÞ ¼ ð~σ × D⃖~yÞj; ⃖η4jð~yÞ ¼ D⃖~yj: ð43Þ

By virtue of Eq. (41) and its analog for ~σ × ~D, we have

D~xiRijð~x; ~yÞ ¼ 0;

ð~σ × ~D~xÞiRijð~x; ~yÞ ¼ 0: ð44Þ

Since

~σ · ~D~xσiRijð~x; ~yÞ ¼ D~xiRijð~x; ~yÞ þ ið~σ × ~D~xÞiRijð~x; ~yÞ;
ð45Þ

then assuming that ~σ · ~D is invertible, Eqs. (44) also imply
that

σiRijð~x; ~yÞ ¼ 0: ð46Þ

Next, let us focus on the bracket ½Ψið~xÞ; χað~zÞ�C appearing

as the first factor inside the sum. Setting ~L ¼ ~D in Eq. (18),
we have

½ ~Ψð~xÞ; χ3ð~zÞ�C ¼ 2 ~D~xδ
3ð~x − ~zÞ;

½ ~Ψð~xÞ; χ4ð~zÞ�C ¼ ði ~D~x − ~σ × ~D~xÞδ3ð~x − ~zÞ: ð47Þ
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Using the invariance of ~Ψi, or equivalently of Rij, under the
replacement of χ3; χ4 by any nondegenerate linear combi-
nation of χ3; χ4, let us choose the new combinations so that

½ ~Ψð~xÞ; χ3ð~zÞ�C ¼ ð~σ × ~D~xÞδ3ð~x − ~zÞ ¼ ~η3ð~xÞδ3ð~x − ~zÞ;
½ ~Ψð~xÞ; χ4ð~zÞ�C ¼ ~D~xδ

3ð~x − ~yÞ ¼ ~η4ð~xÞδ3ð~x − ~zÞ: ð48Þ

Substituting this into Eq. (42), we get the symmetric
expression

Rijð~x; ~yÞ ¼ δijδ
3ð~x − ~yÞ

þ
X
a

X
b

Z
d3z~ηaið~xÞM−1

abð~x; ~yÞ⃖ηbjð~yÞ: ð49Þ

By virtue of this symmetry, the projector Rij is annihilated

by the constraints D⃖~yj and ð~σ × D⃖~yÞj acting from the right,
which in turn implies that in addition to Eq. (46) we also
have

Rijð~x; ~yÞσj ¼ 0: ð50Þ

An explicit construction of Rijð~x; ~yÞ and verification of
Eqs. (46) and (50) are given in the Appendix.
Returning now to Eqs. (30) and (39), writing ~Ψα

i and ~Ψ†β
j

in terms of projectors acting onΨα
i andΨ

†β
j , we have (using

σϵδm ¼ σ�δϵm and continuing to suppress internal symmetry
indices u; v, which are contracted in the same pattern as the
spatial vector and spin indices)

Z
d3x

Z
d3yAα

i ð~xÞA�β
j ð~yÞfΨα

i ð~xÞ;Ψ†β
j ð~yÞgD

¼
Z

d3x
Z

d3yAα
i ð~xÞA�β

j ð~yÞf ~Ψα
i ð~xÞ; ~Ψ†β

j ð~yÞgC

¼
Z

d3x
Z

d3yAα
i ð~xÞA�β

j ð~yÞ
Z

d3z
Z

d3wRαγ
il ð~x; ~zÞfΨγ

l ð~zÞ;Ψ†δ
m ð~wÞgCR�βδ

jm ð~y; ~wÞ

¼
Z

d3x
Z

d3yAα
i ð~xÞA�β

j ð~yÞ
Z

d3z
Z

d3wRαγ
il ð~x; ~zÞ2

�
δlmδ

γδ −
1

2
σγϵl σ

�δϵ
m

�
δ3ð~z − ~wÞR�βδ

jm ð~y; ~wÞ

¼ 2

Z
d3z

�Z
d3xAα

i ð~xÞRαγ
il ð~x; ~zÞ

��Z
d3yAβ

j ð~yÞRβγ
jl ð~y; ~zÞ

��
; ð51Þ

which is positive semidefinite.
We conclude that the anticommutator of ~Ψ with ~Ψ† is

manifestly positive semidefinite in the covariant radiation
gauge. The duality of the ϕ3;4 and χ3;4 constraints in this
gauge is essential to reaching this conclusion; if gauge
fixing were omitted, or if another gauge were chosen, this
symmetry would not be present, and we could not deduce
positivity in a similar fashion.

IV. ALTERNATIVE LAGRANGIAN AND
HAMILTONIAN FOR THE ~Ψ EQUATION
IN THE COVARIANT RADIATION GAUGE

Up to this point, we have worked with the original action
of Eq. (I-23) and the canonical momentum derived from it.
We give here another approach, based on setting up an
action for the ~Ψ equation of motion from which Ψ0 has
been eliminated by the secondary constraint,

D0
~Ψ ¼ ~D ~R · ~Ψþ i ~D × ~Ψ;

~R ¼ ð~σ · ~BÞ−1ð~Bþ ~σ × ~EÞ; ð52Þ

which holds when the primary constraint χ ¼ 0 is obeyed.
Consider the self-adjoint action

Ŝ ¼
Z

d3xL̂ ¼ i
2

Z
d4x ~Ψ† · ðD0

~Ψ − i ~D × ~Ψ

− ~D ~R · ~Ψ − ~R† ~D · ~ΨÞ: ð53Þ

Varying with respect to ~Ψ†, and imposing two constraints,

(i) the primary constraint χ ¼ ~σ · ~D × ~Ψ ¼ 0 and (ii) the

gauge fixing constraint ~D · ~Ψ ¼ 0, we get the equation of
motion of Eq. (52). For the canonical momentum conjugate

to ~Ψ, we find

~P ¼ ∂LŜ

∂ð∂0
~ΨÞ

¼ −
i
2
~Ψ†; ð54Þ

which implies that

~Ψ† ¼ 2i~P: ð55Þ

For the Hamiltonian corresponding to the new action, we
find (again for simplicity taking A0 ¼ 0 and integrating the
middle term by parts)
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Ĥ ¼
Z

d3x∂0
~Ψ · ~P − L̂

¼ 1

2

Z
d3x ~Ψ† · ð− ~D × ~Ψ − iD⃖ ~R · ~Ψþ i~R† ~D · ~ΨÞ

¼ −
1

2

Z
d3x ~Ψ† · ~D × ~Ψ; ð56Þ

where in going from the second to the final line we have

used the constraint ~D · ~Ψ ¼ 0 and its adjoint ~Ψ† · D⃖ ¼ 0.
The Hamiltonian Ĥ is again the energy integral calculated
from the left chiral part of the stress-energy tensor and
expressed in terms of the canonical momentum is

Ĥ ¼ −i
Z

d3x~P · ~D × ~Ψ: ð57Þ

From here on, the argument parallels that of Secs. II and
III but is simpler. For the canonical bracket of Ψið~xÞ with
Ψjð~yÞ, we have

½Ψið~xÞ;Ψ†
jð~yÞ�C ¼ ½Ψið~xÞ; 2iPjð~yÞ�C ¼ −2iδijδ3ð~x − ~yÞ;

ð58Þ

and so multiplying by i to convert to a canonical anti-
commutator, we get

fΨið~xÞ;Ψ†
jð~yÞgC ¼ 2δijδ

3ð~x − ~yÞ; ð59Þ

which is positive semidefinite. The complete set of
constraints is

ϕ3 ¼ χ ¼ ~σ · ~D × ~Ψ;

ϕ4 ¼ ~D · ~Ψ;

χ3 ¼ χ† ¼ − ~Ψ† × D⃖ · ~σ ¼ 2i~P · ~σ × D⃖;

χ4 ¼ ~Ψ† · D⃖ ¼ 2i~P · D⃖: ð60Þ

The constraints ϕ3;ϕ4 are identical to ϕ1;ϕ2 of Eq. (A1),
while the constraints χ3; χ4 are χ1; χ2 of Eq. (A1) up to an
invertible linear transformation (just the interchange of the
χ constraints and division by 2i). Thus, the projector
Rijð~x; ~yÞ is the same as that calculated in the Appendix,
and the Dirac anticommutator given by Eq. (39) is positive
semidefinite by Eq. (51), this time without using the fact
that Rij is projected to zero by σi and σj.

V. LORENTZ COVARIANCEOF THECOVARIANT
RADIATION GAUGE AND LORENTZ

INVARIANCE OF THE DIRAC BRACKET

We study next the behavior of the covariant radiation
gauge and the Dirac bracket under Lorentz boosts. The
Rarita–Schwinger field ψα

μ and its left-handed chiral

projection Ψα
μ both have a four-vector index μ and a spinor

index α. Under an infinitesimal Lorentz transformation, the
transformations acting on these two types of indices are
additive and so can be considered separately. The spinor
indices are transformed as in the usual spin-1

2
Dirac

equation by a matrix constructed from the Dirac gamma
matrices, which commutes with Dμ. Hence, the spinor
index transformation leaves the covariant radiation gauge

condition ~D · ~Ψ invariant.
This leaves the transformation on the vector index to be

considered, and this is a direct analog of the Lorentz
transformation of the radiation gauge in quantum electro-
dynamics [7]. Since the radiation gauge condition is
invariant under spatial rotations, we only have to consider
a Lorentz boost,

~x → ~x0 ¼ ~xþ ~vt;

x0 ¼ t → t0 ¼ tþ ~v · ~x: ð61Þ

Under this boost, the field ~Ψ transforms as

~Ψ → ~Ψ0 ¼ ~Ψþ ~vΨ0: ð62Þ

For an observer in the boosted frame, the covariant

radiation gauge would be ~D~x0 · ~Ψ
0 ¼ 0, with

~D~x0 ¼ ~∇~x0 þ g~A0, where ~A0 ¼ ~AþOð~vÞ. Applying this to
~Ψ0ð~x0; t0Þ and using the covariant radiation gauge condition
in the initial frame, we get

~D~x0 · ~Ψ
0 ¼ vjΣjð~x; tÞ; ð63Þ

with Σjð~x; tÞ a local polynomial in ~Ψ;Ψ0 and the gauge
fields, where we have dropped primes on the right-hand
side since there is an explicit factor of ~v. So in the boosted

frame, ~Ψ0 does not obey the covariant radiation gauge
condition, but this can be restored by making a gauge
transformation

~Ψ0 → ~Ψ0 − ~Dð ~D2Þ−1vjΣjð~x; tÞ: ð64Þ

Hence, the covariant radiation gauge condition is Lorentz
boost covariant, although not Lorentz boost invariant.
Referring now to Eq. (A10), we note that the covariant

radiation gauge Dirac bracket and the anticommutation
relations are invariant under infinitesimal Rarita–
Schwinger gauge transformations, such as that of
Eq. (64), up to a remainder that is quadratic in the gauge
parameter. Hence, the covariant radiation gauge Dirac
bracket and the anticommutation relations following from
it are Lorentz invariant, since a finite Lorentz transforma-
tion can be built up from a series of infinitesimal ones.
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VI. PATH INTEGRAL QUANTIZATION

An alternative method of quantization to the Dirac
bracket approach is setting up a Feynman path integral.
Again, we will specialize to the case where the external
gauge potentials, and hence ~D, are time independent, since
the simplest discussions of path integrals for constrained
systems assume time-independent constraints. As noted
above, this assumption can be dropped when the gauge
field is quantized along with the Rarita–Schwinger field,
leading to a more complex system of constraints and
constraint brackets.
When the constraints are time independent, the classical

brackets of Eqs. (I-57) and (I-58) have the form needed to
apply the Faddeev–Popov [8] method for path integral
quantization. (This has been applied in the free Rarita–
Schwinger case by Das and Freedman [9] and by
Senjanović [10].) The general formula of Ref. [8] for the
in to out S matrix element (up to a constant proportionality
factor) reads

houtjSjini ∝
Z

expðiSðq; pÞÞ
Y
t

dμðqðtÞ; pðtÞÞ;

dμðq; pÞ ¼
Y
a

δðχaÞδðϕaÞðdet½ϕa; χb�Þξ
Y
i

dpidqi; ð65Þ

where ξ ¼ 1 when all canonical variables are bosonic, and
ξ ¼ −1 in our case in which all canonical variables are
fermionic, or Grassmann odd. In applying this formula, we
note that, since the action S of Eq. (I-23) and the bracket
matrix M of Eqs. (I-59)–(I-62) are independent of PΨ0

and
PΨ†

0
, we can immediately integrate out the delta functions in

these two constraints. Also, since the canonical momentum
~P is related to ~Ψ† by the constant numerical transformation

of Eq. (I-54), we can take ~Ψ† as the integration variable

instead of ~P, up to an overall proportionality constant. So
we have the formula, after an integration by parts in the
second term,

houtjSjini ∝
Z

exp

�
i
1

2

Z
d4x½−Ψ†

0~σ · ~D × ~Ψ − ~Ψ† · ~σ × D⃖Ψ0 þ ~Ψ† · ~D × ~Ψ − ~Ψ† · ~σ ×D0
~Ψ�
�

×
Y
t;~x

dμðΨ0;Ψ
†
0; ~Ψ; ~Ψ†Þ

¼
Z

exp
�
i
1

2

Z
d4x½−Ψ†

0 χ − χ†Ψ0 þ ~Ψ† · ~D × ~Ψ − ~Ψ† · ~σ ×D0
~Ψ�
�

×
Y
t;~x

dμðΨ0;Ψ
†
0; ~Ψ; ~Ψ†Þ: ð66Þ

Here

dμðΨ0;Ψ
†
0; ~Ψ; ~Ψ†Þ ¼

�Y4
c¼2

δðχcÞδðϕcÞ
�
ðdet½ϕa; χb�Þ−1dΨ0dΨ

†
0d ~Ψd ~Ψ†; ð67Þ

with dΨ0 and dΨ†
0 each a product over the spinor components and d ~Ψ and d ~Ψ† each a product over the spinor-vector

components.
As our next step, we can carry out the integrations overΨ0 andΨ

†
0, using the delta functions δðϕ2Þ and δðχ2Þ. This leaves

the formula

houtjSjini ∝
Z

exp

�
i
1

2

Z
d4x½− ~Ψ† · ð~Bþ ~σ × ~EÞð~σ · ~BÞ−1χ

− χ†ð~σ · ~BÞ−1ð~Bþ ~σ × ~EÞ · ~Ψþ ~Ψ† · ~D × ~Ψ − ~Ψ† · ~σ ×D0
~Ψ�
�

×
Y
t;~x

dμð ~Ψ; ~Ψ†Þ; ð68Þ

with

dμð ~Ψ; ~Ψ†Þ ¼
�Y4

c¼3

δðχcÞδðϕcÞ
�
ðdet½ϕa; χb�Þ−1d ~Ψd ~Ψ†; ð69Þ

so that only the remaining constraints ϕ3;4; χ3;4 are used in constructing the determinant det½ϕa; χb�.
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Finally, using the delta functions δðϕ3Þ ¼ δðχÞ and
δðχ3Þ ¼ δðχ†Þ to simplify the exponent, we end up with
the elegant formula

houtjSjini ∝
Z

exp

�
i
1

2

Z
d4x ~Ψ† · ½ ~D × ~Ψ − ~σ ×D0

~Ψ�
�

×
Y
t;~x

dμð ~Ψ; ~Ψ†Þ; ð70Þ

which as in Dirac bracket quantization, employs as
Hamiltonian the energy integral computed in Eq. (I-35)
from the stress-energy tensor. In using this formula, the
customary procedure [11] would be to put the bracket
matrix that is the argument of the determinant back into the
exponent by introducing bosonic ghost fields ϕG.

VII. CONCLUSION AND DISCUSSION

To conclude, we see that, when a covariant radiation
gauge constraint is included, the problems with canonical
quantization found in Refs. [2] and [3] are avoided; the
Dirac bracket is well-defined in the limit of zero external
fields and is positive semidefinite. Thus, our conclusion in
(I) that the classical theory of gauged Rarita–Schwinger
fields is consistent extends to the quantized theory of
gauged Rarita–Schwinger fields as well. As noted in (I),
this means that in constructing grand unified theories one
can contemplate an anomaly cancellation mechanism in
which the gauge anomalies of Rarita–Schwinger fields
cancel against those of spin-1

2
fields, as first suggested in

Ref. [12] and as used in the SUð8Þ family unification model
of Ref. [13].
Some final remarks:
(1) In quantizing, we assumed that the gauge fields ~A are

time independent, so that d=dt and ~D commute. As
noted, this assumption can be dropped if the gauge
fields are treated as dynamical variables, leading to
an extension of the bracket structure, involving
fermionic brackets as well as bosonic ones. (For a
discussion of bosonic vs fermionic constraints,
see Ref. [14].)

(2) In demonstrating positivity of the anticommutator in
Sec. III (but not in Sec. IV), we used the condition

~σ · ~Ψ ¼ 0. Deriving this from the covariant radiation

gauge condition ~D · ~Ψ ¼ 0 assumed the invertibility
of ~σ · ~D, and attainability of the covariant radiation
gauge assumed the invertibility of ð ~DÞ2. The con-
ditions for invertibility of these two operators remain
to be studied. (The open space index theorems of
Callias [15] and Weinberg [15] involve ~σ · ~Dþ iϕ,
with ϕ a scalar field, and so do not give information
about the invertibility of ~σ · ~D.)
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APPENDIX: CONSTRUCTION OF THE
PROJECTOR Rijð~x;~yÞ

Since there are only two ϕa constraints and two χa
constraints, we index them a ¼ 1; 2 rather than a ¼ 3; 4 as
in the text and use the invariance of Rijð~x; ~yÞ under
changing the linear combination of the χa constraints.
We start from the constraint set

ϕ1 ¼ ~σ × ~D · ~Ψ; χ1 ¼ ~P · D⃖;

ϕ2 ¼ ~D · ~Ψ; χ2 ¼ ~P · ~σ × D⃖: ðA1Þ

For the bracket matrix

Mabð~x; ~yÞ ¼ ½ϕað~xÞ; χbð~yÞ�C ¼
�
Â B̂

Ĉ D̂

�
; ðA2Þ

we find the matrix elements

Â¼−ig~σ · ~Bδ3ð~x−~yÞ;
B̂¼ð2ð ~D~xÞ2þg~σ · ~BÞδ3ð~x−~yÞ¼δ3ð~x−~yÞð2ðD⃖~yÞ2þg~σ · ~BÞ;
Ĉ¼ð ~D~xÞ2δ3ð~x−~yÞ¼δ3ð~x−~yÞðD⃖~yÞ2;
D̂¼ ig~σ · ~Bδ3ð~x−~yÞ: ðA3Þ

We write the inverse matrix M−1ð~z; ~wÞ as
�
F̂ Ĝ

Ĥ Î

�
; ðA4Þ

which obeys

QUANTIZED GAUGED MASSLESS RARITA-SCHWINGER FIELDS PHYSICAL REVIEW D 92, 085023 (2015)

085023-11



�
Â B̂

Ĉ D̂

��
F̂ Ĝ

Ĥ Î

�
¼

�
F̂ Ĝ

Ĥ Î

��
Â B̂

Ĉ D̂

�
¼

�
1 0

0 1

�
:

ðA5Þ

In terms of the inverse matrix, the projector Rijð~x; ~wÞ is
given by (with internal symmetry indices suppressed)

Rijð~x; ~wÞ ¼ δijδ
3ð~x − ~wÞ1

þD~xiF̂ ð~x − ~wÞð~σ × D⃖~wÞj þD~xiĜð~x − ~wÞD⃖~wj

þ ð~σ ×D~xÞiĤð~x − ~wÞð~σ × D⃖~wÞj
þ ð~σ ×D~xÞiÎð~x − ~wÞD⃖~wj: ðA6Þ

From this expression, we find

D~xiRijð~x; ~wÞ ¼ Rijð~x; ~wÞD⃖~wj ¼ ð~σ ×D~xÞiRijð~x; ~wÞ
¼ Rijð~x; ~wÞð~σ × D⃖~wÞj ¼ 0: ðA7Þ

In verifying these, it is not necessary to evaluate the inverse
matrix; instead, after contracting on the vector index i or j,
one expresses the resulting pre- or postfactor in terms of
Â;…; D̂ and then uses the algebraic relations following

from multiplying out the matrices in Eq. (A5). Finally,
contracting

~σ · ~D~xσi ¼ðD~x þ i~σ × ~D~xÞi;
σj~σ · D⃖~w ¼ðD⃖~w − i~σ × D⃖~wÞj ðA8Þ

with Rijð~x; ~wÞ, we conclude that

σiRijð~x; ~yÞ ¼ Rijð~x; ~yÞσj ¼ 0; ðA9Þ

when ~σ · ~D is invertible.
As a consequence of Eqs. (42) and (A7), ~Ψið~xÞ is

invariant under the transformations

~Ψ → ~Ψþ ~Dϵ;

~Ψ → ~Ψþ ~σ × ~Dϵ: ðA10Þ

The first of these implies that the canonical anti-
commutation relations are invariant under infinitesimal
Rarita–Schwinger gauge transformations starting from the
covariant radiation gauge.
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