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We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita–
Schwinger field yields a consistent classical theory, with a generalized fermionic gauge invariance realized
as a canonical transformation. To simplify the algebra, we study a two-component left chiral reduction of
the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a
general non-Abelian gauging and analyze the constraints and the Rarita–Schwinger gauge invariance of the
action. An explicit wave front calculation for Abelian gauge fields shows that wavelike modes do not
propagate with superluminal velocities. An analysis of Rarita–Schwinger spinor scattering from gauge
fields shows that adiabatic decoupling fails in the limit of zero gauge field amplitude, invalidating various
“no-go” theorems based on “on-shell” methods that claim to show the impossibility of gauging Rarita–
Schwinger fields. Quantization of Rarita–Schwinger fields, using many formulas from this paper, is taken
up in the following paper.
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I. INTRODUCTION

A. Motivations and background

Cancellation of gauge anomalies is a basic requirement
for constructing grand unified models, and the usual
assumption is that anomalies must cancel among spin-1

2

fermion fields. However, a 1985 paper of Marcus [1]
showed that in principle an SUð8Þ gauge theory can be
constructed with spin-3

2
Rarita–Schwinger fermions play-

ing a role in anomaly cancelation, and we have recently
constructed [2] a family unification model incorporating
this observation. Using gauged spin-3

2
fields in a grand

unification model raises the question of whether such
fields admit a consistent quantum or even classical theory.
It is well known, from the papers of Johnson and
Sudarshan [3] and Velo and Zwanziger [4] and much
subsequent literature (see e.g. Hortacsu [5], Deser and
Waldron [6]), that theories of massive gauged Rarita–
Schwinger fields have serious problems. Does setting the
fermion mass to zero eliminate these difficulties?
The lesson we have learned from the success of the

Standard Model is that fundamental fermion masses lead to
problems and are to be avoided; all mass is generated by
spontaneous symmetry breaking, either through coupling
to the Higgs boson or through the formation of chiral
symmetry breaking fermion condensates. So from a
modern point of view, the Rarita–Schwinger theory with
an explicit mass term is suspect. Several hints that the
behavior of the massless theory may be satisfactory are
already apparent from a study of the zero mass limit of
formulas in the Velo–Zwanziger paper. First, in their
demonstration of superluminal signaling, the problematic

sign change that they find for large ~B fields (Eq. (2.15) of
Ref. [4]) is not present when the mass is set to zero. Second,
when the mass is zero, the secondary constraint that they
derive (Eq. (2.10) of Ref. [4]) appears as a factor in the
change in the action under a Rarita–Schwinger gauging
δψμ ¼ Dμϵ, with Dμ the usual gauge covariant derivative.
[This statement is not in Ref. [4] but is an easy calculation
from their Eqs. (2.1)–(2.3), with the Dμ of this paper their−iπμ.] Hence, the constrained action in the massless
gauged Rarita–Schwinger theory has a fermionic gauge
invariance that is the natural generalization of the fermionic
gauge invariance of the massless free Rarita–Schwinger
theory. Third, their formula for the anticommutator
(Eq. (4.12) of Ref. [4]) in the zero mass case develops
an apparent singularity in the limit of vanishing gauge field
~B, and so their quantization does not limit to the standard
free theory quantization. However, since the massive theory
does not have a fermionic gauge invariance, Ref. [4] does not
include a gauge-fixing term analogous to that used in the
massless case, but gauge fixing is needed to get a consistent
quantum theory for a free massless Rarita–Schwinger field.
So these observations, following from the equations in
Ref. [4], suggest that a study of the massless Rarita–
Schwinger field coupled to spin-1 gauge fields is in order.
In a different and more recent setting, massless Rarita–

Schwinger fields appear consistently coupled to gravity as
the gravitinos of supergravity, as discussed by Das and
Freedman [7]. Grisaru, Pendleton, and van Nieuwenhuizen
[8] have shown that soft spin-3

2
fermions must be coupled to

gravity as in supergravity, in an analysis based on the free
particle external line pole structure of spin-3

2
fields that do

not have spin-1 gauge couplings. Their result has been
extended to gauged spin-3

2
fields in various recent “no-go”

theorems based on “on-shell” methods [9,10], that again
assume a free particle external line pole structure. None of*adler@ias.edu
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these papers has analyzed the gauged Rarita–Schwinger
equation to determine the asymptotic field structure. Thus,
these papers do not prove that there cannot be a consistent
theory of massless, gauged Rarita–Schwinger fields, so
again a detailed study of this possibility is warranted.

B. Outline of the paper and summary

With these motivations and background in mind, we
embark in this paper on a detailed study of the classical
theory of a minimally gauged massless Rarita–Schwinger
field. In Sec. II, we give the Lorentz covariant Lagrangian
for a gauged four-component Rarita–Schwinger spinor
field, derive the source current for the gauge field,
and check that it is gauge-covariantly conserved. We also
give the Lorentz covariant form of the constraints, of the
fermionic gauge transformation, and of the symmetric
stress-energy tensor and briefly discuss the generalization
to nonflat metrics. Since in the massless case left chiral
and right chiral components of the field decouple, in
Sec. III, we rewrite the Lagrangian for left chiral
components in terms of two-component spinors and
Pauli matrices, which simplifies the subsequent analysis.
We then give the Euler–Lagrange equations in two-
component form and use them to analyze the structure
of constraints and the fermionic gauge transformation of
the action. In Sec. IV, we introduce canonical momenta for
the Rarita–Schwinger field components, which are used to
define classical Poisson brackets, and discuss the role of
the constraints as generators of gauge transformations
under the bracket operation. We show that the constraints
group into two sets of four, within each of which there are
vanishing Poisson brackets. In Sec. V, we argue that
fermionic gauge transformations give a generalized form
of gauge invariance, corresponding to the presence of
redundant gauge degrees of freedom, by studying the
properties of both infinitesimal and general finite gauge
transformations. We show that infinitesimal gauge trans-
formations are an invariance of the constrained action
functional that governs the influence of Rarita-Schwinger
fields on gauge and gravitational fields. We show that
finite gauge transformations take the form of generalized
auxiliary fields, which lead to an extended action that has
an exact invariance under fermionic gauge transforma-
tions. In Sec. VI, we specialize to the case of an Abelian
gauge field (as in Ref. [4]) and analyze the wave front
structure, showing that physical wave modes propagate
with luminal velocities; an extension of this discussion,
showing that gauge modes are subluminal, is given in
Appendix B. In Sec. VII, making a transition to first
quantization, we analyze Rarita–Schwinger fermion scat-
tering from an Abelian gauge potential. We show that the
asymptotic state structure assumed in “on-shell no-go”
theorems is not realized but that a consistent scattering
amplitude can be formulated using an analog of the
distorted wave Born approimation. In Sec. VIII, we give

a brief summary and discussion, and in Appendix A, we
summarize our notational conventions and some useful
identities. We suggest that the reader skim through
Appendix A before going on to Sec. II, since things
stated in Appendix A are not repeated in the body of the
paper. In the paper that follows this one, we build on our
analysis to discuss quantized Rarita–Schwinger fields.

II. LAGRANGIAN AND COVARIANT CURRENT
CONSERVATION IN FOUR-COMPONENT FORM

A. Flat spacetime

The action for the massless Rarita–Schwinger theory is

SðψμÞ ¼
1

2

Z
d4xψ̄μαuRμαu;

Rμαu ¼ iϵμηνρðγ5γηÞαβðDνψ
β
ρÞu;

ðDνψ
β
ρÞu ≡ ∂νψ

βu
ρ þ gAu

νvψ
βv
ρ ;

Au
νv ¼ AA

ν tuAv; ð1Þ

with ψμαu ¼ ψμαuð~x; tÞ a four-vector four-component
spinor, with four-vector index μ ¼ 0;…; 3, spinor index
α ¼ 1;…; 4, and SUðnÞ internal symmetry index u ¼
1;…; n, with SUðnÞ gauge generators tA; A ¼
1;…; n2 − 1. Taking u to range from 1 to n means that,
for definiteness, we are assuming that the spinors transform
according to the fundamental representation of the SUðnÞ
internal symmetry group, but other representations and
other compact Lie groups can be accommodated by
assigning the internal indices u and A the appropriate
range. Note that tA, Au

νv, and Dν all commute with the
gamma matrices and the Pauli spin matrices from which the
gamma matrices are constructed, and for an Abelian
internal symmetry group, the indices u and A are not
needed. Using

ψ̄μαu ¼ ψ†
μβuiðγ0Þβα; ð2Þ

together with the adjoint convention ðχ†1χ2Þ† ¼ χ†2χ1 for
Grassmann variables χ1; χ2, it is easy to verify that S is
self-adjoint.
From here on, we will usually not indicate the spinor

indices α; β and internal symmetry indices u; v explicitly,
but they are implicit in all formulas. Varying S with respect
to the Rarita–Schwinger fields, we get the equations of
motion

ϵμηνρ∂νψ̄ργη ¼ gϵμηνρψ̄ρAA
ν tAγη;

ϵμηνργη∂νψρ ¼ −gϵμηνργηAA
ν tAψρ: ð3Þ

Reexpressed in terms of the covariant derivative, these
are
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ϵμηνρψ̄ρD⃖νγη ¼ 0;

ϵμηνργηDνψρ ¼ 0. ð4Þ

The μ ¼ 0 component of these equations gives the
primary constraints

ϵenrψ̄ rD⃖nγe ¼ 0;

ϵenrγeDnψ r ¼ 0; ð5Þ
with e; n; r summed from 1 to 3. Contracting the equation
of motion for ψ̄ρ with g−1D⃖μ and the equation of motion for
ψρ with g−1Dμ, we get the secondary constraints

ϵμηνρψ̄ρFμνγη ¼ 0;

ϵμηνργηFμνψρ ¼ 0; ð6Þ
where we have introduced the gauge field strength

Fμν ¼ g−1½Dμ; Dν� ¼ g−1½D⃖μ; D⃖ν�
¼ ∂μAν − ∂νAμ þ g½Aμ; Aν�; ð7Þ

which with the adjoint representation index A indicated
explicitly reads

FA
μν ¼ ∂μAA

ν − ∂νAA
μ þ gfABCAB

μAC
ν : ð8Þ

Under a Rarita–Schwinger gauge transformation (with ϵ a
four-component spinor), which is a natural gauge field
generalization of the fermionic gauge invariance for a free,
massless Rarita–Schwinger field discussed in Ref. [11],

ψμ → ψμ þ δGψμ; δGψμ ≡Dμϵ;

ψ̄μ → ψ̄μ þ δGψ̄μ; δGψ̄μ ≡ ϵ̄D⃖μ; ð9Þ
the action of Eq. (1) changes according to

δGSðψμÞ ¼ − 1

4
ig
Z

d4x½ϵ̄γ5ðϵμηνργηFμνψρÞ

þ ðϵμηνρψ̄ρFμνγηÞγ5ϵ� þOðϵ̄…ϵÞ: ð10Þ
The factors bracketed in parentheses are identical to the
secondary constraints of Eq. (6). This equation holds with
finite (not necessarily infinitesimal) ϵ and its adjoint ϵ†; the
precise form of the quadratic term is given in Eq. (72)
below. We will argue in Sec. V that Eq. (10) implies that,
even when coupled to gauge fields, the Rarita–Schwinger
theory has a generalized form of fermionic gauge
invariance.
Adding the gauge field action

SðAA
μ Þ ¼ − 1

4

Z
d4xFA

μνFAμν ð11Þ

and varying the sum SðψμÞ þ SðAA
μ Þ with respect to the

gauge potential, we get the gauge field equation of motion

DνFAμν ≡ ∂νFAμν þ gfABCAB
νFCμν ¼ gJAμ;

JAμ ¼ 1

2
ψ̄νiϵνημργ5γηtAψρ: ð12Þ

A straightforward calculation using Eqs. (3) shows that the
gauge field source current JAμ obeys the covariant con-
servation equation

DμJAμ ¼ ∂μJAμ þ gfABCAB
μJCμ ¼ 0; ð13Þ

as required for consistency of Eq. (12). So from the Rarita–
Schwinger and gauge field actions, we have obtained a
formally consistent set of equations of motion.
In addition to the gauge field source current, there is an

additional current Jμ that obeys an ordinary conservation
equation,

Jμ ¼ 1

2
ψ̄νϵ

νημργ5γηψρ;

∂μJμ ¼ 0. ð14Þ
In the massive spinor case, Velo and Zwanziger [4] argue
that the analogous current, within the constraint subspace
of Eq. (5), should have a positive time component. In the
massless case, we see no reason for this requirement, since
Eq. (14) is the fermion number current and its time
component, giving the fermion number density, can have
either sign. However, we shall use parts of the positivity
argument of Ref. [4] later on in discussing positivity of the
Dirac bracket anticommutator.
The symmetric stress-energy tensor for the free massless

Rarita–Schwinger has been computed by Das [12] (see also
Allcock and Hall [13]). Changing ordinary derivatives to
gauge covariant derivatives, Das’s formula becomes

Tστ
RS ¼ −

i
4
ϵλμνρ½ψ̄ λγ5ðγτδσμ þ γσδτμÞDνψρ

þ 1

4
∂αðψ̄ λγ5γμð½γα; γσ�δτν þ ½γα; γτ�δσνÞψρÞ�: ð15Þ

[This formula can be made manifestly self-adjoint by
replacing Dν by 1

2
ðDν − D⃖νÞ, but this is not needed to

verify stress-energy tensor conservation.] Adding the gauge
field stress-energy tensor,

Tστ
gauge ¼ − 1

4
ηστFA

λμF
Aλμ þ FAσ

λ FAλτ; ð16Þ

a lengthy calculation, using Eq. (13) together with identities
and alternative forms of the equations of motion given in
Appendix A, shows that the total tensor is conserved,

∂σðTστ
RS þ Tστ

gaugeÞ ¼ 0: ð17Þ

B. Generalization to general gμν
The generalization of the Rarita–Schwinger action to

curved spacetime has been reviewed by Deser and Waldron
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[6]. In Eq. (1), d4x is replaced by the invariant volume
element d4xð−gÞ1=2, and the covariant derivative Dν

becomes the curved spacetime covariant derivative

Dνψρ ¼ ∂νψρ − Γβ
νρψβ þ

1

4
ωνmnγ

mnψρ þ gAνψρ; ð18Þ

with Γβ
νρ and ωνmn the affine and spin connections. The

Rarita–Schwinger equation of Eq. (4) and the primary
constraint of Eq. (5) have the same form as before, in terms
of the extended covariant derivative Dν. The secondary
constraint of Eq. (6) now reads

ϵμηνρψ̄ρ½D⃖μ; D⃖ν�γη ¼ 0;

ϵμηνργη½Dμ; Dν�ψρ ¼ 0; ð19Þ

with D⃖ν defined by the adjoint of Dν. The commutator of
covariant derivatives is now given by [6]

½Dμ; Dν�ψρ ¼ −Rσ
μνρψσ þ

1

4
Rμνmnγ

mnψρ þ gFμνψρ; ð20Þ

with Rσ
μνρ and Rμνmn components of the Riemann curvature

tensor, and as in flat spacetime involves only ψρ and not its
time or space derivatives. In terms of the extended covariant
derivative, the fermionic gauge transformation is still given
by Eq. (9), and under this gauge transformation, the change
in the action is now given by

δGSðψμÞ ¼ − 1

4
i
Z

d4x½ϵ̄γ5ðϵμηνργη½Dμ; Dν�ψρÞ

þ ðϵμηνρψ̄ρ½D⃖μ; D⃖ν�γηÞγ5ϵ� þOðϵ̄…ϵÞ; ð21Þ

with the factors bracketed in parentheses now identical to
the secondary constraints of Eq. (19) (and again with ϵ and
ϵ† finite). The arguments to be given in Sec. V then imply
that in the presence of both gravitation and gauge fields the
Rarita–Schwinger theory has a generalized form of fer-
mionic gauge invariance. Having established this curved
spacetime generalization, we will continue in the remainder
of this and the following paper to work in flat spacetime,
but we expect everything done in what follows to have a
curved spacetime generalization when the covariant deriva-
tive is suitably extended.

III. LAGRANGIAN ANALYSIS FOR LEFT CHIRAL
SPINORS IN TWO-COMPONENT FORM

Although we could continue with the four-component
formalism to study constraints, the Hamiltonian formal-
ism, and quantization, it will be more convenient to first
reduce the four-component equation to decoupled equa-
tions for left and right chiral components of ψα

μ (with α the
spinor index and with the internal symmetry index
implicit). Since these are related by symmetry, we can
then focus our analysis on the two-component equations

for the left chiral component, which is the component
conventionally used in formulating grand unified models
(see, e.g., Ref. [2]).
We convert the action of Eq. (1) to two-component

form for the left chiral components of ψα
μ, using the Dirac

matrices given in Eqs. (A2) and (A4). Defining the two-
component four-vector spinor Ψα

μ and its adjoint Ψ†
μα by

PLψ
α
μ ¼

�
Ψα

μ

0

�
; μ ¼ 0; 1; 2; 3; α ¼ 1; 2;

ψ†
μαPL ¼ ðΨ†

μα 0 Þ; ð22Þ

the action decomposes into uncoupled left and right chiral
parts. The left chiral part, with spinor indices α suppressed,
is given by

SðΨμÞ ¼
1

2

Z
d4x½−Ψ†

0~σ · ~D × ~Ψþ ~Ψ† · ~σ × ~DΨ0

þ ~Ψ† · ~D × ~Ψ − ~Ψ† · ~σ ×D0
~Ψ�: ð23Þ

Varying with respect to ~Ψ†, we get the Euler–Lagrange
equation

0 ¼ ~V ≡ ~σ × ~DΨ0 þ ~D × ~Ψ − ~σ ×D0
~Ψ; ð24Þ

while varying with respect to Ψ†
0, we get the primary

constraint [given in four-component form in Eq. (5)]

0 ¼ V0 ≡ χ ≡ ~σ · ~D × ~Ψ: ð25Þ

(The abbreviation V0 ≡ χ conforms to the notation of
Ref. [4].) A second primary constraint follows from the fact
that the action has no dependence on dΨ†

0=dt, which implies
that the momentum conjugate to Ψ†

0 vanishes identically,

PΨ†
0
¼ 0: ð26Þ

Contracting ~V with ~σ and with g−1 ~D, and using the
covariant derivative relations of Eq. (A14), we get,
respectively,

~σ · ~V ¼ 2iθ þ χ;

g−1 ~D · ~V ¼ iωþ g−1D0χ; ð27Þ

with

θ≡ ~σ · ~DΨ0 −D0~σ · ~Ψ;

ω≡ ~σ · ~BΨ0 − ð~Bþ ~σ × ~EÞ · ~Ψ: ð28Þ

Since the Euler–Lagrange equations imply that ~V and χ
vanish for all times, we learn that θ and ω vanish also for all
times. Since θ involves a time derivative, its vanishing is
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just one component of the equation of motion forΨμ. But ω
involves no time derivatives, so it is a secondary constraint
that relates Ψ0 to ~Ψ [given in four-component form in
Eq. (6)]. For each of the above equations, there is a
corresponding relation for the adjoint quantity.
The equation of motion ~V ¼ 0 can be written in a simpler

form by using the identities of Eqs. (A10) and (A11) as
follows. Using Eq. (A10) to simplify 0 ¼ ~σ × ~V − i ~V, we
get an equation for D0

~Ψ,

D0
~Ψ ¼ ~DΨ0 þ

1

2
½−~σ × ð ~D × ~ΨÞ þ i ~D × ~Ψ�: ð29Þ

A further simplification can be achieved by incorporating
the primary constraint χ ¼ 0, through applying Eq. (A11)

to ~A ¼ ~D × ~Ψ,

0 ¼ ~σχ ¼ ~σ ~σ ·ð ~D × ~ΨÞ ¼ ~D × ~Ψ − i~σ × ð ~D × ~ΨÞ: ð30Þ

Using this to replace the first term in square brackets in
Eq. (29), we get the alternative form of the equation of
motion, valid when the constraint χ ¼ 0 is satisfied,

D0
~Ψ ¼ ~DΨ0 þ i ~D × ~Ψ: ð31Þ

Writing the gauge field interaction terms in Eq. (23) in
the form

SintðΨμÞ ¼
g
2

Z
d4xðAB

0 J
B0 þ ~AB · ~JBÞ; ð32Þ

we find the left chiral contribution to the current of Eq. (12)
in the form

JA0 ¼ − ~Ψ†tA · ~σ × ~Ψ;

~JA ¼ Ψ†
0tA~σ × ~Ψþ ~Ψ† × ~σtAΨ0 − ~Ψ† × tA ~Ψ: ð33Þ

Replacing tA by −i, we find the corresponding singlet
current in the form

J0 ¼ i ~Ψ† · ~σ × ~Ψ;

~J ¼ −iðΨ†
0~σ × ~Ψþ ~Ψ† × ~σΨ0 − ~Ψ† × ~ΨÞ: ð34Þ

For the energy integral computed from the left chiral part of
the the stress-energy tensor of Eq. (15), we find

H ¼ −
Z

d3xT00
RS ¼ − 1

2

Z
d3x ~Ψ† · ~D × ~Ψ: ð35Þ

To conclude this section, we verify that the action of
Eq. (23) has a fermionic gauge invariance on the constraint
surface ω ¼ 0;ω† ¼ 0, as already seen in covariant form
following Eq. (9). Letting ϵ be a general space and time
dependent two-component spinor, we introduce the fer-
mionic gauge changes

~Ψ → ~Ψþ δG ~Ψ; δG ~Ψ≡ ~Dϵ;

Ψ0 → Ψ0 þ δGΨ0; δGΨ0 ≡D0ϵ ð36Þ

and their adjoints, which are the left chiral form of the
gauge change of Eq. (9). Substituting this into Eq. (23),
integrating by parts where needed, and using Eqs. (A14) to
simplify commutators of covariant derivatives, we find that
Eq. (10) takes the two-component spinor form

δGSðΨμÞ ¼
1

2
ig
Z

d4xðω†ϵ − ϵ†ωÞ þOðϵ†…ϵÞ; ð37Þ

with the quadratic term given in Eq. (70) below. Hence, the
action on the constraint surface ω ¼ ω† ¼ 0 has a fer-
mionic gauge invariance. Another gauge invariant, on the
constraint surface χ ¼ χ† ¼ 0, is the fermion number, given
by the space integral of the time component of the singlet
current of Eq. (34),

R
d3xJ0, which has the gauge variation

δG

Z
d3xJ0 ¼

Z
d3x½−iðϵ†χ þ χ†ϵÞ þ gϵ†~σ · ~Bϵ�: ð38Þ

Again, these equations hold for ϵ and its adjoint ϵ† finite.
However, neither the equation of motion, the constraints

χ and ω, the non-Abelian “charge”
R
d3xJB0, nor the

integrated Hamiltonian H is gauge invariant in the inter-
acting case. Using δG to denote gauge variations, we have

δG ~V ¼ −igð~Bþ ~σ × ~EÞϵ;
δGθ ¼ −ig~σ · ~Eϵ;

δGχ ¼ −ig~σ · ~Bϵ;

δGω ¼ ~σ · ~BD0ϵ − ð~Bþ ~σ × ~EÞ · ~Dϵ;

δG

Z
d3xJB0 ¼ g

Z
d3xðϵ†½~A; tB� · ~σ × ~Ψ

þ ~Ψ† × ~σ · ½tB; ~A�ϵÞ;

δGH ¼ 1

2
ig
Z

d3xð ~Ψ† · ~Bϵ − ϵ† ~B · ~ΨÞ: ð39Þ

The only global fermionic gauge invariants are the action
integral and the fermion number integral, in both flat and
curved spacetimes.
These results have an interpretation in terms of the

distinction between a gauge transformation, customarily
defined as an invariance of the physical state of the system,
and a canonical transformation. The usual gauge trans-
formations in gauge field theories and general relativity are
invariances of the action without the imposition of a
constraint and consequently are invariances of the field
equations and the Hamiltonian. Such gauge transforma-
tions are a special case of canonical transformations, but the
converse is not true; canonical transformations in general
alter the action, the field equations, and the Hamiltonian.

CLASSICAL GAUGED MASSLESS RARITA-SCHWINGER FIELDS PHYSICAL REVIEW D 92, 085022 (2015)

085022-5



We will see in Sec. IV that the fermionic gauge trans-
formations of Eq. (36) are always canonical transforma-
tions, which reduce to gauge transformations of the
customary type only when the external gauge fields vanish.
However, by virtue of the Jacobi identity for the Poisson
bracket, canonical transformations preserve inner proper-
ties of the theory. As an example, that will be needed in our
further discussion of generalized fermionic gauge invari-
ance in Sec. V, we verify that the secondary constraint
following from the gauge-varied equation of motion ~V and
primary constraint V0 ¼ χ agrees with the gauge variation
of the original secondary constraint ω. From Eq. (27), we
have

~D · ~V −D0χ ¼ igω: ð40Þ

Preservation of inner properties under the fermionic gauge
transformation means that we should find that

~D · δG ~V −D0δGχ ¼ igδGω: ð41Þ

Substituting Eqs. (39) into the left-hand side of Eq. (41)
gives

ig½D0~σ · ~Bϵ − ~D · ð~Bþ ~σ × ~EÞϵÞ�
¼ ig½~σ · ~BD0ϵ − ð~Bþ ~σ × ~EÞ · ~Dϵþ Cϵ�; ð42Þ

with the commutator remainder C given by

C ¼ ~σ · ½D0
~B − ~BD0 þ ~D × ~Eþ ~E × ~D� − ð ~D · ~B − ~B · ~DÞ

¼ 0; ð43Þ

which vanishes by virtue of the gauge field Bianchi
identity.
In Sec. V, wewill discuss in more detail why the fermionic

gauge transformation, because it leaves the constrained
action invariant, corresponds to an unwanted redundancy
in the time evolution. To break the gauge invariance, we can
introduce an additional constraint, in the form

fð ~ΨÞ ¼ 0; ð44Þ

with f a scalar function of its argument. This constraint,
together with the χ constraint, leaves one independent two-
component spinor of the original three in ~Ψ, corresponding
to the physical massless Rarita–Schwinger modes propa-
gating in the gauge field background. Wewill limit ourselves
to considering linear constraints of the general form

f ¼ ~L · ~Ψ; ð45Þ

and the choice ~L ¼ ~D, a gauge covariant radiation gauge
analog, plays a special role in our analysis. By not
specializing ~L in our formulas, we can also examine the

consequences of omitting a gauge fixing condition, corre-
sponding to taking ~L ¼ 0.
We proceed to examine the gauge covariant radiation

gauge condition in more detail. We note that, since

~σ · ~D ~σ · ~Ψ ¼ ~D · ~Ψþ iχ; ð46Þ
the primary constraint χ ¼ 0 implies that

~σ · ~D ~σ · ~Ψ ¼ ~D · ~Ψ: ð47Þ

Hence, when ~σ · ~D is invertible, which is expected in a
perturbation expansion in the gauge coupling g, the

covariant radiation gauge constraint ~D · ~Ψ ¼ 0 implies that

~σ · ~Ψ ¼ 0: ð48Þ

Conversely, Eqs. (46) and (47) show that ~D · ~Ψ ¼ 0 and

~σ · ~Ψ ¼ 0 together imply the primary constraint χ ¼ 0, and

also ~σ · ~Ψ ¼ 0 and χ ¼ 0 imply ~D · ~Ψ ¼ 0.
We next note that on a given initial time slice the

covariant radiation gauge is attainable. Under the gauge
transformation of Eq. (36), we see that

~D · ~Ψ → ~D · ~Ψþ ð ~DÞ2ϵ: ð49Þ

Hence, when ð ~DÞ2 is invertible, which we expect to be true
in a perturbative sense, then we can invert ð ~DÞ2ϵ ¼ − ~D · ~Ψ,

to find a gauge function ϵ that brings a general ~Ψ to the
covariant radiation gauge. Since

ð~σ · ~DÞ2 ¼ ð ~DÞ2 þ g~σ · ~B; ð50Þ

the conditions for ~σ · ~D to be invertible and for ð ~DÞ2 to be
invertible, are related. For generic non-Abelian gauge
fields, both of these operators should be invertible, but
there will be isolated gauge field configurations for which
~σ · ~D has zeros.
However, although the covariant radiation gauge can be

imposed on any time slice, it is not preserved by the

equation of motion for ~Ψ. To see this, let us consider the
simplified case in which the gauge potential is specialized

to A0 ¼ 0 and ∂0
~A ¼ 0, so that only a static ~B field is

present. From Eq. (31), we have

∂0ð ~D · ~ΨÞ ¼ ð ~DÞ2Ψ0 þ g~B · ~Ψ ¼ ½ð ~DÞ2 þ g~σ · ~B�Ψ0

¼ ð~σ · ~DÞ2Ψ0: ð51Þ

So ∂0ð ~D · ~ΨÞ ¼ 0 impliesΨ0 ¼ 0, but this is one constraint
too many. Hence, at each infinitesimal time step, we must
make a further infinitesimal fermionic gauge transforma-
tion to maintain the covariant radiation gauge condition, as
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further discussed in Sec. V B below. Only in the absence of
gauge fields can we simultaneously impose the constraints
~∇ · ~ψ ¼ 0, ~σ · ~ψ ¼ 0, and ψ0 ¼ 0, as used in the discussion
of Ref. [11] for the free Rarita–Schwinger case.

IV. CANONICAL MOMENTA, CLASSICAL
BRACKETS, AND GAUGE GENERATORS

We next introduce the canonical momentum conjugate to
~Ψ, defined by

~P ¼ ∂LS

∂ð∂0
~ΨÞ

¼ 1

2
~Ψ† × ~σ; ð52Þ

which can be solved for ~Ψ† using the final line of
Eq. (A11),

~Ψ† ¼ i~P − ~P × ~σ: ð53Þ
We will use Eq. (53) when computing classical brackets

involving ~Ψ† using the formula of Eq. (A17). Equation (52)
can be written as an explicit matrix relation for the six

components of ~P and ~Ψ†,

0
BBBBBBBBBB@

P↑
1

P↓
1

P↑
2

P↓
2

P↑
3

P↓
3

1
CCCCCCCCCCA

¼ 1

2

0
BBBBBBBBB@

0 0 1 0 0 −i
0 0 0 −1 i 0

−1 0 0 0 0 1

0 1 0 0 1 0

0 i 0 −1 0 0

−i 0 −1 0 0 0

1
CCCCCCCCCA

0
BBBBBBBBBB@

Ψ†↑
1

Ψ†↓
1

Ψ†↑
2

Ψ†↓
2

Ψ†↑
3

Ψ†↓
3

1
CCCCCCCCCCA
;

ð54Þ

showing that they are related by an anti-self-adjoint matrix
with the determinant −1=16.
The four constraints introduced in Sec. III are

ϕ1 ¼ PΨ†
0
;

ϕ2 ¼ ð~σ · ~BÞ−1ω ¼ Ψ0 − ð~σ · ~BÞ−1ð~Bþ ~σ × ~EÞ · ~Ψ;

ϕ3 ¼ χ ¼ ~σ · ~D × ~Ψ;

ϕ4 ¼ ~L · ~Ψ: ð55Þ

In writing these, we are assuming that ~σ · ~B is invertible
in the non-Abelian case. We are writing the gauge-fixing

condition as a general linear gauge-fixing constraint ~L · ~Ψ
so as to keep track of which terms in the final answers
arise from gauge fixing, which is not evident if we
specialize by replacing ~L by ~D at this stage. The
constraints of Eq. (55), including the gauge-fixing con-
straint ϕ4, are all first class in the Dirac classification,

since they have vanishing mutual classical brackets. This
is a consequence of the fact that, starting with a

constraint depending on ~Ψ but not on ~Ψ† and taking
an arbitrary number of time derivatives, one still has a

constraint depending only on ~Ψ.
To preserve the adjoint properties of the Rarita–

Schwinger equation, for each of these four constraints,
we must impose a corresponding adjoint constraint. Using
Eq. (53) to express ~Ψ† in terms of ~P, we write these as

χ1 ¼ ðPΨ†
0
Þ† ¼ −PΨ0

;

χ2 ¼ ω†ð~σ · ~BÞ−1 ¼ Ψ†
0

− ~P · ½ið~Bþ ~σ × ~EÞ − ~σ × ð~Bþ ~σ × ~EÞ�ð~σ · ~BÞ−1;
χ3 ¼ χ† ¼ 2~P · D⃖;

χ4 ¼ ~Ψ† · L⃖ ¼ ~P · ðiL⃖ − ~σ × L⃖Þ: ð56Þ

(The reason for the minus sign in the definition PΨ†
0
¼

−P†
Ψ0

will be given in Sec. II of the following paper
where we discuss the Hamiltonian form of the equations.)
The constraints ϕa are implicitly 2n-component column
vectors, and the adjoint constraints χa are implicitly
2n-component row vectors, with 2n arising from the
product of a factor of 2 for the two implicit spinor indices
and a factor of n for the n implicit SUðnÞ internal symmetry
indices.

When ~L ¼ ~D, we see that ϕ4 becomes ϕ4 ¼ ~D · ~Ψ, and

χ4 becomes χ4¼ i~P · D⃖− ~P · ~σ× D⃖¼ði=2Þχ3− ~P · ~σ× D⃖.
So a special feature of covariant radiation gauge, which
will be exploited later, is that the constraints ϕ3;ϕ4 are

contractions of ~σ × ~D and ~D with ~Ψ, and the constraints
χ3; χ4 are contractions of linear combinations of the duals D⃖

and ~σ × D⃖ with ~P. That is, in the covariant radiation gauge,
the constraint spaces selected by χ3; χ4 and ϕ3;ϕ4 are duals
of one another.
We can now compute the classical brackets of the

constraints. We see that the brackets of the ϕs and χs
vanish among themselves,

½ϕa;ϕb�C ¼ 0;

½χa; χb�C ¼ 0;

a; b ¼ 1;…; 4. ð57Þ

On the other hand, the brackets of the ϕs with the χs give a
nontrivial matrix of brackets M, which has a nonvanishing
determinant,

Mabð~x; ~yÞ≡ ½ϕað~xÞ; χbð~yÞ�C ≠ 0;

detM ≠ 0. ð58Þ
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Thus, in terms of the Dirac classification, the original first
class constraints ϕa have become second class, not from
adding new constraints that follow from differentiation with
respect to time or from imposing gauge-fixing conditions
but rather from adjoining the adjoint set of constraints. This
is a feature of the Rarita–Schwinger constrained fermion
system that has no analog in the familiar constrained boson
systems such as gauge fields.
Evaluating the brackets shows that M has the general

form

M ¼

0
BBB@

0 −1 0 0

1 U S T

0 V A B

0 W C D

1
CCCA; ð59Þ

where in the SUðnÞ gauge field case each entry in M is a
2n × 2n matrix (corresponding to the fact that ϕa is
implicitly a 2n-component column vector and χb is
implicitly a 2n-component row vector). Evaluating detM
by a cofactor expansion with respect to the elements of the
two unit matrices �1, we see that the submatrices
U;S; T ;V;W do not contribute, and we have

detM ¼ detN

N ¼
�
A B

C D

�
: ð60Þ

So we need to only evaluate the brackets M33 ¼ A,
M34 ¼ B, M43 ¼ C, M44 ¼ D, giving

A ¼ −2ig~σ · ~Bð~xÞδ3ð~x − ~yÞ;
B ¼ −2 ~D~x · ~L~xδ

3ð~x − ~yÞ;
C ¼ 2~L~x · ~D~xδ

3ð~x − ~yÞ;
D ¼ ðið~L~xÞ2 þ ~σ · ð~L~x × ~L~xÞÞδ3ð~x − ~yÞ: ð61Þ

When ~L ¼ ~D, these become

A ¼ −2ig~σ · ~Bð~xÞδ3ð~x − ~yÞ;
B ¼ −2ð ~D~xÞ2δ3ð~x − ~yÞ;
C ¼ 2ð ~D~xÞ2δ3ð~x − ~yÞ;
D ¼ iðð ~D~xÞ2 − g~σ · ~Bð~xÞÞδ3ð~x − ~yÞ: ð62Þ

Reflecting the fact that the ϕa and χa are adjoints of one
another, together with the fact that the matrix relating ~Ψ† to
~P is anti-self-adjoint [see Eq. (54)], these matrix elements
obey the adjoint relations

Mabð~x; ~yÞ† ¼ −Mbað~y; ~xÞ: ð63Þ

Applications of these bracket and determinant calculations
will be made in the subsequent paper, where we discuss
quantization by both the Dirac bracket formalism and by
the Feynman path integral.
To conclude this section, we note that the constraints

χ; χ†; PΨ0
; PΨ†

0
play the role of gauge transformation gen-

erators. For example, we have (with common time argu-
ment t suppressed)

�Z
d3x

1

2
χ†ð~xÞϵð~xÞ; ~Ψð~yÞ

�
C
¼ ~D~yϵð~yÞ;

�
−
Z

d3xPΨ0
ð~xÞD0ϵð~xÞ;Ψ0ð~yÞ

�
C
¼ D0~yϵð~yÞ: ð64Þ

So the fermionic gauge transformation is a canonical
transformation. This is also evident from the fact that since
Eq. (36) is just a shift in the fermionic variables ~Ψ and Ψ0

by the quantities ~Dϵ and D0ϵ, which have no dependence
on the fermionic variables, this shift leaves the canonical
brackets ½ ~Ψi; ~Pj�c, ½Ψ0; PΨ0

�c, etc., unchanged.

V. GENERALIZED GAUGE INVARIANCE OF THE
RARITA–SCHWINGER ACTION

We turn now to a justification of our claim that the
fermionic gauge transformation introduced in Eqs. (9)
and (36) is a generalized form of gauge invariance, which
corresponds to redundant degrees of freedom and which
leaves essential attributes of the physics of gauged Rarita–
Schwinger fields invariant. In the most familiar gauge
invariant theories, such as Abelian or non-Abelian gauge
fields, the Lagrangian density is invariant under a
gauge transformation on the fields. These theories exhibit
what one could term “strong” gauge invariance. In a
weaker form of gauge invariance, which occurs for the
free Rarita–Schwinger equation, the Lagrangian density
changes by a total derivative under a gauge transformation
of the fields, and so only the action is gauge invariant.
Characteristic features of this case have been studied by
Das [12]. We argue in this section that there is a still
weaker form of gauge invariance, obeyed by the massless
Rarita–Schwinger equation with Abelian or non-Abelian
gauging, in which, under a gauge transformation, the
Lagrangian changes by a total derivative plus terms which
vanish when initial value constraints are obeyed.
We divide our argument that the transformation of

Eqs. (9) and (36) is a generalized form of a gauge
invariance into two parts, first considering infinitesimal
transformations and then considering general finite
transformations.

A. Infinitesimal gauge transformations

In his seminal analysis of constrained systems, Dirac
[14] classifies as “first class” constraints the maximal set of
constraints that have vanishing mutual Poisson brackets
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and notes that “Each of them thus leads to an arbitrary
function of the time in the general solution of the equations
of motion with given initial conditions.” Elaborating on
this, he notes that “Different solutions of the equations of
motion, obtained by different choices of the arbitrary
functions of the time with given initial conditions, should
be looked upon as all corresponding to the same physical
state of motion, described in various way (sic) by different
choices of some mathematical variables that are not of
physical significance (e.g. by different choices of the gauge
in electrodynamics or of the co-ordinate system in a
relativistic theory.)”
These remarks suggest that gauge invariance, in its most

general form, corresponds to an arbitrariness in the time
evolution of a system, in the sense that the future evolution
of the system is not uniquely determined by the initial
conditions and the Euler–Lagrange equations following
from the action principle. Under this generalized definition,
the Rarita–Schwinger equation with coupling to gauge
fields has a fermionic gauge invariance. To see this, we note
the Euler–Lagrange equations yield equations of two types.
The first are the time evolution equations contained in
Eq. (3), that determine the field variables at a later time
tþ Δt from those initially given at time t. The second are
the primary and secondary constraints of Eqs. (5) and (6),
which constrain the initial field values at time t. If we make
the gauge transformation of Eq. (9) at time t, with
infinitesimal gauge parameter ϵ (with ϵ† its adjoint), we
see that the action at time t changes, to first order in ϵ,
according to Eq. (10). So assuming that the initial data at
time t obey both the primary and secondary constraints,
then when the constraints at time t are applied, the change
in the action isOððϵÞ2Þ. After this gauge transformation, we
have seen in Eq. (39) that the Euler–Lagrange equations ~V,
the primary constraint χ, and the secondary constraint ω are
all changed at order ϵ, but because the gauge transformation
is a canonical transformation that preserves inner proper-
ties, we have also seen that the altered secondary constraint
is the one implied by the altered ~V and χ, with an error of at
most ðϵÞ2. Hence, after the gauge transformation, we still
have consistent equations of motion and initial conditions,
which can serve as a starting point for time evolution.
However, by making the gauge infinitesimal gauge trans-
formation, we have introduced an arbitrariness into the
evolved solution. To get a unique time evolution path from
the initial data at time t using the action principle, one
must impose a gauge-fixing condition, that selects one
member out of the equivalence class of equal action field
configurations.
In the gauged Rarita–Schwinger theory, only the con-

strained action and constrained fermion number, in both flat
and curved spacetimes, are invariant to first order under
infinitesimal fermionic gauge transformations. This has an
important physical significance. Consider a set of Rarita–
Schwinger fields that, as envisaged in the model of Ref. [2],

are permanently bound into condensates. The only way to
see that these fields are present is through their gravitational
fields, through their gauge field polarizabilities, and pos-
sibly also through their influence on overall fermion
number counting. The constrained action is the functional
of the metric and the gauge fields that determines the
influence of the Rarita–Schwinger fields on the metric and
the gauge fields, respectively, so the fact that the con-
strained action is invariant under infinitesimal fermionic
gauge transformations means that the physical effects
induced by confined Rarita–Schwinger fields are similarly
invariant. (This statement is not contradicted by the
fermionic gauge noninvariance of the energy integral and
the gauge field source currents, since these are calculated
by varying the unconstrained action and do not take into
account the fact that the constraints that enter into the
constrained action are themselves nontrivial functions of
the spacetime metric and the gauge fields.)
The fermionic gauge invariance of the constrained action

functional of the metric and the gauge fields then allows us
to impose a gauge-fixing constraint, making the time
evolution determined by the action principle unique.
Gauge fixing eliminates the redundancy of gauge degrees
of freedom and so is a convenience in checking the correct
helicity counting for the Rarita–Schwinger fields but is not
needed for this purpose. In the following paper, where we
turn to quantization, gauge fixing is needed to get an
invertible constraint matrix in the weak field limit, and
when covariant radiation gauge fixing is used, one finds
manifestly positive semidefinite anticommutation relations
for the quantized Rarita–Schwinger fields.

B. Finite gauge transformations: Auxiliary
field and the extended action

Since the transformations of Eqs. (9) and (36) are linear in
the Rarita-Schwinger field, the relations of Eq. (39) give the
most general form of the transformed equations of motion
and constraints. Thus, letting Λ denote a finite fermionic
gauge transformation, the general form of the equations of
motion and constraints are

0 ¼ ~VðΛÞ ¼ ~σ × ~DΨ0 þ ~D × ~Ψ − ~σ ×D0
~Ψ

− igð~Bþ ~σ × ~EÞΛ;
0 ¼ χðΛÞ ¼ ~σ · ~D × ~Ψ − ig~σ · ~BΛ;

0 ¼ ωðΛÞ ¼ ~σ · ~BðΨ0 þD0ΛÞ
− ð~Bþ ~σ × ~EÞ · ð ~Ψþ ~DΛÞ: ð65Þ

Under the gauge shifts of Eq. (36), Λ is augmented to Λþ ϵ,
or, equivalently, under the extended gauge transformation
that includes a shift of Λ,

Ψ0 → Ψ0 þD0ϵ; ~Ψ → ~Ψþ ~Dϵ; Λ → Λ − ϵ;

ð66Þ
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the formulas of Eq. (65) are left invariant. By using Eq. (43),
one can verify that

~D · ~VðΛÞ −D0 χðΛÞ ¼ igωðΛÞ: ð67Þ
From Eqs. (65), one deduces alternative forms of the ~Ψ
equation of motion, subject to the constraint χðΛÞ ¼ 0,

D0
~Ψ ¼ ~DΨ0 þ i ~D × ~Ψþ gð~B − i~EÞΛ;
0 ¼ θðΛÞ≡ ~σ · ~DΨ0 −D0~σ · ~Ψ − ig~σ · ~EΛ: ð68Þ

From the first of these, one finds

D0
~D · ~Ψ ¼ ð ~DÞ2Ψ0 þ gð~Bþ i~EÞ · ~Ψþ g ~D · ðð~B − i~EÞΛÞ;

ð69Þ

which gives a condition on the gauge shift Λ for the
covariant radiation gauge condition ~D · ~Ψ ¼ 0 to be main-
tained in time.
We can now write down an action corresponding to the

generalized equations of motion and constraints. It is

SðΛÞ ¼ 1

2

Z
d4x½−Ψ†

0~σ · ~D × ~Ψ

þ ~Ψ† · ð~σ × ~DΨ0 þ ~D × ~Ψ − ~σ ×D0
~ΨÞ

− ig ~Ψ† · ð~Bþ ~σ × ~EÞ · Λþ igΛ†ð~Bþ ~σ × ~EÞ · ~Ψ
þ igΨ†

0~σ · ~BΛ − igΛ†~σ · ~BΨ0

þ igΛ†ð~Bþ ~σ × ~EÞ · ~DΛ − igΛ†~σ · ~BD0Λ�: ð70Þ

One can check that the final line of this action is self-
adjoint, by using Eq. (43), and one can also verify that this
action is invariant under the transformation of Eq. (66),
including quadratic terms in ϵ, without using the constraints
following from the equations of motion. The extended
action of Eq. (70) gives the most general form of the gauged
Rarita-Schwinger action, in which Λ plays the role of
an auxiliary field that restores exact fermionic gauge
invariance.
Varying this action with respect to Ψ† gives the gener-

alized equation of motion ~VðΛÞ ¼ 0, while varying it with
respect to Ψ†

0 gives the generalized primary constraint
χðΛÞ ¼ 0. Since these hold for all times, Eq. (67) then
shows that they imply the generalized secondary constraint
ωðΛÞ ¼ 0. Varying this action with respect to Λ† gives just
the secondary constraint ωðΛÞ ¼ 0 as the equation of
motion for Λ. This shows that Λ is not an independent
dynamical variable but rather is a Lagrange multiplier for
the secondary constraint, which plays the role of a
generalized auxiliary field. This further supports our argu-
ment that the gauge transformation of Eq. (36) corresponds
to a generalized gauge invariance, and that the gauge
degrees of freedom are redundant degrees of freedom.

Making the shift ϵ ¼ −Λ reduces Λ to zero, so that
action of Eq. (70) reduces to the original action of Eq. (23).
Conversely, this shows that Eq. (70) is just Eq. (23) with the

substitutions Ψ0 → Ψ0 þD0Λ and ~Ψ → ~Ψþ ~DΛ, that is

SðΛÞ ¼ 1

2

Z
d4x½−ðΨ†

0 þ Λ†D⃖0Þ~σ · ~D × ð ~Ψþ ~DΛÞ

þ ð ~Ψ† þ Λ†D⃖Þ · ð~σ × ~DðΨ0 þD0ΛÞ
þ ~D × ð ~Ψþ ~DΛÞ − ~σ ×D0ð ~Ψþ ~DΛÞÞ�; ð71Þ

which makes manifest the invariance of SðΛÞ under the
shift transformation of Eq. (66). The simplicity of this way
of constructing the extended action is a reflection of the fact
that the fermionic gauge group is simply an Abelian group
under addition of gauge functions. If we now define Ψ0

0 ¼
Ψ0 þD0Λ and ~Ψ0 ¼ ~Ψþ ~DΛ and fix the choice of Λ by
imposing a gauge-fixing condition, such as the gauge
covariant radiation gauge, then we see that as a function
of the primed, gauge-fixed variables, the generalized action
SðΛÞ takes the same form that the original action of Eq. (23)
took as a function of the original variables.
The above analysis in terms of two-component, left

chiral spinors can also be carried out in the original four-
component formalism. Making the substitution ψμ → ψμ þ
DμΛ in Eq. (1) gives after some algebra using Eq. (7) the
four-component form of the extended action functional of
the Rarita-Schwingerfield ψρ and the auxiliary field Λ,

SðΛÞ ¼ i
2

Z
d4xϵμηνρ

h
ψ̄μγ5γηDνψρ

þ g
2
ð−Λ̄γ5γηFμνψρ þ ψ̄μγ5γηFνρΛ

− Λ̄γ5γηFνρDμΛÞ
i
; ð72Þ

which is self-adjoint by virtue of the Bianchi identity

ϵμηνρ½Dμ; Fνρ� ¼ 0: ð73Þ

Varying Eq. (72) with respect to ψ̄μ gives the generalized
Euler–Lagrange equations (which include the generalized
primary constraint)

ϵμηνρ
�
Dνψρ þ

g
2
FνρΛ

�
¼ 0; ð74Þ

while applying g−1Dμ to this and using Eq. (73) gives the
generalized secondary constraint

ϵμηνρFμνðψρ þDρΛÞ ¼ 0: ð75Þ

Varying Eq. (72) with respect to Λ̄ gives just the gener-
alized secondary constraint of Eq. (75), again showing that
Λ is a Lagrange multiplier for the secondary constraint,
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which acts as an auxiliary field, and thus corresponds to a
redundant degree of freedom, not a physical degree of
freedom.

VI. PROPAGATION OF A RARITA–SCHWINGER
FIELD IN AN EXTERNAL ABELIAN GAUGE

FIELD: ABSENCE OF SUPERLUMINAL
PROPAGATION

We specialize now to the case of a Rarita–Schwinger
spinor propagating in an external Abelian gauge field, as
studied by Velo and Zwanziger [4]. For an Abelian gauge
field,

1

~σ · ~B
¼ ~σ · ~B

ð~BÞ2
; ð76Þ

and so ~σ · ~B is invertible as long as ð~BÞ2 > 0, which we

assume. Provided the Lorentz invariant expression ð~BÞ2 −
ð~EÞ2 is positive, ð~BÞ2 will be positive in any Lorentz frame.
In discussing undamped wave propagation, we will not use

the inequality ð~BÞ2 − ð~EÞ > 0, but in treating damped
longitudinal mode propagation in Appendix B, we will

assume that ð~EÞ2=ð~BÞ2 is small, as motivated by the fact

that when ð~EÞ2 is of order ð~BÞ2 the vacuum is
highly unstable against pair creation. (Strictly speaking,
the vacuum is stable against pair production only when
~E · ~B ¼ 0 and ð~BÞ2 − ð~EÞ2 > 0, that is, when there is a
Lorentz frame in which the Abelian field has vanishing
~E [15].)
Given that ð~BÞ2 > 0, we can solve the constraint ω ¼ 0

of Eq. (28) for Ψ0, giving

Ψ0 ¼
~Q · ~Ψ

ð~BÞ2
; ð77Þ

where we have defined

~Q≡ ~σ · ~Bð~Bþ ~σ × ~EÞ ¼ ~B× ~Eþ ~B ~σ ·ð~Bþ i~EÞ− i~B · ~E ~σ :

ð78Þ

Substituting the solution for Ψ0 into Eq. (31), we get an
equation of motion for ~Ψ by itself,

D0
~Ψ ¼ ~D

~Q · ~Ψ

ð~BÞ2
þ i ~D × ~Ψ: ð79Þ

To determine the wave propagation velocity in the
neighborhood of a spacetime point x� ¼ ðt�; ~x�Þ, we need
to calculate the equation for the wave fronts, or character-
istics, at that point. Writing the first-order Eq. (79) in the
form

∂0
~Ψ ¼ ~∇ ~Q� · ~Ψ

ð~B�Þ2
þ i ~∇ × ~Ψþ ~Δ½ ~Ψ; x�; x�; ð80Þ

with ~B� and ~Q� the values of the respective quantities at x�,
we see that ~Δ½ ~Ψ; x�; x� involves no first derivatives of ~Ψ at
x�, and so is not needed [16,17] for determining the wave
fronts of Eq. (31). The reason is that, when taking an
infinitesimal line integral of Eq. (80), according to

lim
δ→0

Z
δ

−δ
dl½∂0

~Ψ ¼ …�; ð81Þ

discontinuities across wave fronts contribute through the
first derivative terms, but when the external fields are

smooth, the term ~Δ½ ~Ψ; x�; x� makes a vanishing contribu-

tion as δ → 0. Dropping ~Δ and multiplying through by
ð~B�Þ2, we get the equation determining the wave fronts in
the form

ð~B�Þ2∂0
~Ψ ¼ ~∇ ~Q� · ~Ψþ ið~B�Þ2 ~∇ × ~Ψ: ð82Þ

By similar reasoning, the constraint χ can be simplified, for
purposes of determining the wave fronts, by replacing ~D

by ~∇, giving
0 ¼ ~σ · ~∇ × ~Ψ: ð83Þ

Since these are now linear equations with constant
coefficients, the solutions are plane waves, and without
loss of generality, we can take the negative z ¼ x3 axis as
the direction of wave propagation. So making the Ansatz

~Ψ ¼ ~C expðiΩtþ iKzÞ; ð84Þ
Eq. (82) for the wave fronts or characteristics takes the form

0 ¼ ~F≡ ð~B�Þ2Ω~C − Kẑ ~Q� · ~C − ið~B�Þ2Kẑ × ~C; ð85Þ
with ẑ a unit vector along the z axis, and the constraint
Eq. (83) becomes an admissability condition on ~C,

0 ¼ ~σ · ẑ × ~C: ð86Þ
Writing Fm as a matrix times Cn (and dropping the

subscripts �, which are implicit from here on), we have

Fm ¼ NmnCn;

Nmn ¼ ð~BÞ2Ωδmn − Kδm3Qn − ið~BÞ2Kϵm3n: ð87Þ
The equation for the characteristics is now

detðNÞ ¼ 0; ð88Þ
since this is the condition for Eq. (85) to have a solution
with nonzero ~C. However, since the evaluation of the
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determinant shows that it factorizes into blocks that
determine C1;2 and a block that determines C3, a simpler
way to proceed is to work directly from the equations
Fm ¼ 0, which decouple in a corresponding way.
Calculating from Eq. (85), we find

0 ¼ F↑;↓
1 ¼ ð~BÞ2ðΩC↑;↓

1 þ iKC↑;↓
2 Þ;

0 ¼ F↑;↓
2 ¼ ð~BÞ2ðΩC↑;↓

2 − iKC↑;↓
1 Þ;

0 ¼ F↑;↓
3 ¼ ð~BÞ2ΩC↑;↓

3 − Kð ~Q · ~CÞ↑;↓; ð89Þ
where ↑;↓ indicate the up and down spinor components,
labeled in Eq. (22) by α ¼ 1; 2. Similarly, the constraint
Eq. (86) becomes 0 ¼ −σ1C2 þ σ2C1, that is

C↑
2 ¼ iC↑

1 ;

C↓
2 ¼ −iC↓

1 ; ð90Þ

with no corresponding condition on C↑;↓
3 . The first two lines

of Eq. (89) together with Eq. (90) have the solution

C↑
1 ¼ C; C↑

2 ¼ iC; Ω ¼ K;

C↓
1 ¼ C; C↓

2 ¼ −iC; Ω ¼ −K; ð91Þ

with C arbitrary, corresponding to waves with a velocity of
magnitude jΩ=Kj ¼ 1. Thus, the modes with C1;2 ≠ 0 are
exactly luminal. Because general background gauge fields
are a nonisotropic medium, these modes have nonzero
longitudinal components given by solving the third line
of Eq. (89),

C3 ¼ Kðð~BÞ2Ω − KQ3Þ−1ðQ1C1 þQ2C2Þ: ð92Þ
The effect on the characteristics of a gauge change

~Ψ → ~Ψþ ~Dϵ, ϵ ¼ E expðiΩtþ iKzÞfðt; zÞ, where f has a
unit slope discontinuity along the z axis at x�, is to shift
C↑;↓
3 → C↑;↓

3 þ E↑;↓, and thus C↑;↓
3 are gauge degrees of

freedom. In Appendix B, we continue this discussion and
show that the longitudinal gauge mode with C1 ¼ C2 ¼
0; C3 ≠ 0 also does not propagate superluminally, although
in general it is subluminal.

VII. FAILURE OF ADIABATIC DECOUPLING AND
INAPPLICABILITY OF THE S-MATRIX

NO-GO THEOREMS

We show in this section that various no-go theorems that
claim to rule out the gauging of higher-spin theories do not
apply to the gauged Rarita–Schwinger field. The reason is
that there is a failure of adiabatic decoupling, arising from
the fact that the ω secondary constraint is homogeneous in
the gauge fields. For a recent paper on no-go theorems, see
Ref. [10], which has extensive references to the earlier
literature. In our analysis here, we shall refer specifically to

the paper of Porrati [9], which uses so-called on-shell
methods to give limits on massless high-spin particles.
The analysis of Porrati assumes that “the general helicity-

conserving matrix element of a Uð1Þ current between on-
shell spin s states is hv; pþ qjJμju; pi…,” where u and v
are free-space spinors that obey the massless Dirac equation.
Porrati assumes that the matrix element is bilinear in u and v,
and “otherwise depends only on the momenta.”We shall see
in the following subsections that this assumed form is not
realized in the gauged Rarita–Schwinger theory, where,
because of the failure of adiabatic decoupling, the matrix
element in question also depends on the Uð1Þ gauge field
polarization through the dual field strength F̂ην ¼ 1

2
ϵηνλσFλσ.

In fact, the initial and final Rarita–Schwinger spinors both
must have a F̂ην dependence in order to obey the secondary
constraint of Eq. (6), and so the matrix element has the more
complicated form hv; pþ q; F̂ηνjJμju; p; F̂ηνi.
We show in Sec. VII A that the initial and final Rarita–

Schwinger spinors in the limit of a zero gauge field
amplitude are equal to free-space spinors u; v of the form
assumed by Porrati, plus a fermionic gauge transformation
that depends explicitly on the photon field strength F̂ην. This
structure arises from the homogeneous form of the secon-
dary constraint and corresponds to an intrinsically non-
perturbative aspect of the gauged Rarita–Schwinger
equation. As another reflection of this, we show in
Sec. VII B that one cannot set up a covariant Lippmann–
Schwinger equation [18] for the Rarita–Scwhinger wave
function, and so the matrix element that enters into the
no-go theorems does not admit a Born approximation. In
Sec. VII C, we show that a matrix element that has all the
required invariances can be formulated using an analog of
the distorted wave Born approximation, in which the initial
and final Rarita–Schwinger states have an explicit depend-
ence on the photon polarizations.

A. Zero amplitude limit of the ~Ψ equation:
Retained memory of the gauge field

As in Sec. VI, let us consider a Rarita–Schwinger field
propagating in an external Abelian gauge field. For con-
venience, we assume that the ratio j~Eð~xÞj=j~Bð~xÞj≡ rð~xÞ is
bounded from above. In the limit as the vector potential

amplitude ~A is scaled to zero, Eqs. (77) and (78) become

Ψ0ð~xÞ ¼ ~Rð~xÞ · ~Ψð~xÞ;
~Rð~xÞ ¼ ~σ · B̂ð~xÞðB̂ð~xÞ þ rð~xÞ~σ × Êð~xÞÞ; ð93Þ

with B̂ ¼ ~B=j~Bj and Ê ¼ ~E=j~Ej unit vectors along the ~E and
~B fields. When the external field is a propagating plane wave
with the wave vector direction q̂, the unit vectors q̂, B̂, and Ê
form an orthonormal set of constant unit vectors, and
j~rð~xÞj ¼ 1. We see that, because the secondary constraint
of Eq. (6) is homogeneous in the field strengths, the relation
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between Ψ0 and ~Ψ retains a memory of the gauge field
orientations, and thus of the photon polarization, even in the
limit as the field amplitude approaches zero.

In the zero amplitude limit, D0 ¼ ∂0 and ~D ¼ ~∇, so
substituting Eq. (93) into Eq. (79), the zero amplitude limit

for the equation of motion for ~Ψ becomes

∂0
~Ψ ¼ ~∇ ~R · ~Ψþ i ~∇ × ~Ψ; ð94Þ

with the primary constraint now ~σ · ~∇ × ~Ψ ¼ 0. Hence,

through ~R, the ~Ψ equation of motion retains a memory of
the external fields in the limit of zero amplitude; that is,
adiabatic decoupling has failed. Let us now consider the
situation in which the Rarita–Schwinger field and the

external gauge fields are plane waves, so that ~R is a

constant and ~Ψ has the form

~Ψ ¼ ~CeiðΩtþ~k·~xÞ: ð95Þ
Making the fermionic gauge transformation

~Ψ → ~Ψ0 ¼ ~Ψþ ~∇ϵ;

ϵ ¼ EeiðΩtþ~k·~xÞ; ð96Þ

~Ψ0 still obeys the zero amplitude primary constraint since

~σ · ~∇ × ~∇ϵ ¼ 0. Then the gauge choice

E ¼ i
~R · ~C
~R · ~k

ð97Þ

reduces Eq. (94) to the free-space form

∂0
~Ψ0 ¼ i ~∇ × ~Ψ0: ð98Þ

Thus, a Rarita–Schwinger plane wave in a zero amplitude
gauge field plane wave background is equal to a free-space
solution plus a gauge term that has a memory of the photon
polarizations.

B. Breakdown of the Lipmann–Schwinger equation:
No Born approximation to scattering

Let us now examine what happens if one tries to set up a
covariant Lippmann–Schwinger equation, so as to generate
a Born perturbation series for the Rarita–Schwinger wave
function in an external gauge field. Let us start from the
Rarita–Schwinger equation in the form [see Eq. (A6)]

γηνρDνψρ ¼ 0: ð99Þ

Splitting Dν into ∂ν and gAν, this equation takes the form

γηνρ∂νψρ ¼ −γηνρgAνψρ: ð100Þ

Let us now try to solve this equation as a perturbation series
around a free-space solution by writing

ψρðxÞ ¼ ψ free
ρ ðxÞ þ

Z
d4ySραðx − yÞγαβκgAβðyÞψκðyÞ;

ð101Þ

where ψ free
ρ obeys the free-space Rarita–Schwinger

equation

γηνρ∂νψ
free
ρ ¼ 0: ð102Þ

If the free-space Rarita–Schwinger Green’s function
Sραðx − yÞ obeyed

γηνρ∂xνSραðx − yÞ ¼ −δηαδ4ðx − yÞ; ð103Þ

then Eq. (101) would reproduce Eq. (100). But in fact the
free-space Green’s function cannot obey Eq. (103), because
∂xηγ

ηνρ∂xνSραðx − yÞ ¼ 0; instead it obeys [19]

γηνρ∂xνSραðx − yÞ ¼ −δηαδ4ðx − yÞ þ ∂yαΩηðx − yÞ;
ð104Þ

with Ω necessarily nonvanishing. Integrating ∂yα by parts
onto the factor γαβκgAβðyÞψκðyÞ, one gets

γαβκgFαβðyÞψκðyÞ þ γαβκgAβðyÞ∂yαψκðyÞ: ð105Þ

The first term of this expression vanishes by virtue of the
secondary constraint, but the second term is nonvanishing
because the Rarita–Schwinger equation for the exact wave
function ψκðyÞ is

γαβκDyαψκðyÞ ¼ 0; ð106Þ

that is, it requires the full covariant derivative Dyα in
place of its free-space restriction ∂yα. The conclusion
from this analysis is that one cannot set up a covariant
Lippmann–Schwinger equation for the gauged Rarita–
Schwinger wave function, and thus one cannot develop
this wave function into a Born approximation series
expansion in powers of the coupling g to the external
gauge field.

C. Lorentz covariance and mode counting in on-shell
Rarita–Schwinger field-photon scattering: Distorted

wave Born approximation analog

We address finally the question [20] of whether one can
write down an amplitude for leading-order on-shell scatter-
ing of Rarita–Schwinger fields from an external electro-
magnetic field, which has the requisite relativistic
covariance while preserving the correct counting of mass-
less spin-3

2
propagation modes. Looking ahead to the
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quantization, an operator effective action for this scattering
process can be inferred from the interaction term in Eq. (1),

Seffðψμ; AνÞ ¼
Z

d4xLeffðψμ; AνÞ;

Leffðψμ; AνÞ ¼
1

2
gψ̄μðxÞiϵμηνργ5γηAνðxÞψρðxÞ; ð107Þ

where we have suppressed spinor indices as in the text
from Eq. (3) onward. For Abelian external fields Aν, the
covariant derivatives in the equations of motion and
constraints are given by

Dν ¼ ∂ν þ gAν; D⃖ν ¼ ∂⃖ν − gAν: ð108Þ

At the outset, we shall assume that AνðxÞ is of short range
and vanishes for j~xj > R for some radius R. This effective
action, the equations of motion of Eqs. (3) and (4), and the
primary and secondary constraints following from them,
given in Eqs. (5) and (6), are all relativistically covariant
and so provide a starting point for calculating a covariant
scattering amplitude. Taking the matrix element of
Eq. (107) between an incoming Rarita–Schwinger state
of four-momentum p and an outgoing Rarita–Schwinger
state of four momentum p0, we get the corresponding
scattering amplitude

AS ¼
1

2
ig
Z

d4xψ̄μðp0; xÞϵμηνργ5γηAνðxÞψρðp; xÞ; ð109Þ

where ψρ and ψ̄μ are now wave functions, rather than
operators, that obey the Rarita–Schwinger equations of
motion in the presence of the external field Aν.
We now introduce source currents for the gauge potential

Aν and the Rarita–Schwinger wave functions ψρ and ψ̄μ,
and study their conservation properties. The source current
to which the gauge potential Aν couples is defined by
writing the scattering amplitude as

AS ¼
1

2
ig
Z

d4xAνðxÞJνðxÞ;

JνðxÞ ¼ ψ̄μðp0; xÞϵμηνργ5γηψρðp; xÞ: ð110Þ

The source current for the Rarita–Schwinger field ψ̄μðp0; xÞ
is defined by writing the scattering amplitude as

AS ¼
1

2
ig
Z

d4xψ̄μðp0; xÞJ μðp; xÞ;

J μðp; xÞ ¼ ϵμηνργ5γηAνðxÞψρðp; xÞ: ð111Þ

Finally, the source current for the Rarita–Schwinger field
ψρðp; xÞ is defined by writing the scattering amplitude as

AS ¼
1

2
ig
Z

d4xJ̄ ρðp0; xÞψρðp; xÞ;

J̄ ρðp0; xÞ ¼ ψ̄μðp0; xÞϵμηνργ5γηAνðxÞ: ð112Þ

We now show that the three currents that we have just
defined are conserved. For the source current Jν for the
gauge potential, we have

∂νJν ¼ ψ̄μðp0; xÞD⃖νϵ
μηνργ5γηψρðp; xÞ

þ ψ̄μðp0; xÞϵμηνργ5γηDνψρðp; xÞ
¼ 0; ð113Þ

where the first and second terms on the right vanish by the
Rarita–Schwinger equations for ψ̄μðp0; xÞ and ψρðp; xÞ,
respectively. For the source current J μðp; xÞ for the spinor
ψ̄μðp0; xÞ, we have

DμJ μðp; xÞ ¼ ϵμηνργ5γηð∂μAνðxÞÞψρðp; xÞ
þ ϵμηνργ5γηAνðxÞDμψρðp; xÞ

¼ 0: ð114Þ

The second term on the right vanishes by the Rarita–
Schwinger equation for ψρðp; xÞ, while the first term on the
right can be rewritten as

1

2
ϵμηνργ5γηFμνðxÞψρðp; xÞ ð115Þ

and vanishes by the secondary constraint of Eq. (6). Finally,
for the source current J̄ ρðp0; xÞ for the spinor ψρðp; xÞ, we
have

J̄ ρðp0; xÞD⃖ρ ¼ ψ̄μðp0; xÞϵμηνργ5γηð∂ρAνðxÞÞ
þ ψ̄μðp0; xÞD⃖ρϵ

μηνργ5γηAνðxÞ
¼ 0: ð116Þ

Again, the second term on the right vanishes by the Rarita–
Schwinger equation, while the first term on the right
vanishes by the secondary constraint of Eq. (6).
Consider now the following three gauge transformations:

AνðxÞ → AνðxÞ þ ∂νΛ;

ψρðp; xÞ → ψρðp; xÞ þDρα;

ψ̄μðp0; xÞ → ψ̄μðp0; xÞ þ β̄D⃖μ; ð117Þ

with α and β independent spinorial gauge parameters. From
Eqs. (110)–(112), together with Eqs. (113)–(116), we find
that these transformations each leave the amplitude A
invariant,
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δΛAS ¼
1

2
ig
Z

d4xð∂νΛÞJνðxÞ

¼ − 1

2
ig
Z

d4xΛ∂νJνðxÞ ¼ 0;

δαAS ¼
1

2
ig
Z

d4xJ̄ ρðp0; xÞDρα

¼ − 1

2
ig
Z

d4xJ̄ ρðp0; xÞD⃖ρα ¼ 0;

δβAS ¼
1

2
ig
Z

d4xβ̄D⃖μJ μðp; xÞ

¼ − 1

2
ig
Z

d4xβ̄DμJ μðp; xÞ ¼ 0: ð118Þ

This, together with the primary and secondary constraints,
implies the correct mode counting for the Rarita–
Schwinger wave functions, since the gauge degrees of
freedom do not change the amplitude and so are redundant.
We next must specify more precisely the structure of the

spinor wave functions entering the formula for AS. Since
the gauge field Aν is assumed to vanish in the external
region j~xj > R, the Rarita–Schwinger wave functions obey
free field equations in this region. So for j~xj ≫ R, they can
be taken asymptotically as plane waves at t → �∞,

ψμðp0; xÞ ∼ uμðp0Þeip0·x; t → þ∞;

ψρðp; xÞ ∼ uρðpÞeip·x; t → −∞: ð119Þ

With these boundary conditions, the formula for the
amplitude takes the final form

A ¼ 1

2
ig
Z

d4xψ̄ ð−Þ
μ ðp0; xÞϵμηνργ5γηAνðxÞψ ðþÞ

ρ ðp; xÞ:

ð120Þ

The out state (−) and in state (þ) boundary conditions used
here are analogs of the boundary conditions used in the
distorted wave Born approximation [21], which the con-
struction of Eq. (120) resembles. Equation (120) then
gives an approximation to the matrix element for Rarita–
Schwinger scattering by the gauge potential.
Rather than invoking the presence of redundant degrees

of freedom to count physical Rarita–Schwinger states, we
can follow the usual procedure of imposing a gauge-fixing
constraint. To preserve relativistic and gauge covariance,
this can be taken as the gauge covariant Lorentz gauge
condition

ψ̄μðp0; xÞD⃖μ ¼ Dρψρðp; xÞ ¼ 0; ð121Þ

which is attainable from a generic gauge by the gauge
transformation of Eq. (9), provided that DμDμ is invertible.
In the external region where the gauge field vanishes, one
can instead use the condition γρψρ ¼ 0 in place of the

secondary constraint together with the gauge condition
∂ρψρ ¼ 0, giving the usual covariant degree of freedom
counting for the incoming and outgoing Rarita–Schwinger
wave functions [22]. Alternatively, if we are not concerned
to maintain manifest Lorentz covariance, we can make a
gauge transformation in the external region to the gauge
ψ0 ¼ ~∇ · ~ψ ¼ 0 used in Refs. [11,19] to enumerate Rarita–
Schwinger degrees of freedom. When a non-Lorentz
covariant radiation gauge condition is used, scattering
matrix elements depend on a unit timelike vector in
addition to the particle momenta, and so the conditions
assumed in [9] are not obeyed.
Note that if one were to attempt to construct a Born

approximation amplitude, in which the Rarita–Schwinger
wave functions in the presence of the gauge field are
replaced by plane waves in the interior region where the
potential is nonzero, the arguments given above for the
compatibility of Lorentz covariance with degree of freedom
counting would fail. The reason for this is that the spinor
source currents would then no longer be conserved, even to
zeroth order in the gauge coupling g, because the free
particle plane wave solutions do not obey the secondary
constraint of Eq. (6). The nonexistence of a satisfactory
Born approximation for Rarita–Schwinger photon scatter-
ing agrees with the result obtained in Sec. VII B, that one
cannot construct a Lippmann–Schwinger equation for this
process. To establish compatibility, we have had to use an
analog of the distorted wave Born approximation [21], in
which the leading approximation to the amplitude is
constructed using interacting rather than free fermion wave
functions and does not have a perturbation expansion for
small coupling, g.
When the external Abelian potential is a plane wave field

which extends to infinity, there is no large j~xj region where
the Rarita–Schwinger solutions reduce to free-space ones.
Rather, as shown in Sec. VII A, in the adiabatic decoupling
limit of a zero amplitude gauge field, the Rarita–Schwinger
solutions become free-space solutions plus gauge terms
that remember the photon polarization and which are
necessary to enforce the secondary constraint. Thus, one
cannot attain the kinematic form assumed in the on-shell
no-go theorems. But as shown here, using distorted Born
approximation waves, one can write down a consistent
covariant scattering amplitude.

VIII. SUMMARY AND REMARKS

To conclude, we see that, unlike the massive case, the
massless gauged Rarita–Schwinger equation leads to a
consistent classical theory. The theory has the correct
counting of propagating nongauge degrees of freedom
with no superluminal wave propagation. The theory admits
a generalized fermionic gauge transformation, and infini-
tesimal gauge transformations are an invariance of the
constrained flat and curved spacetime actions and of the
fermion number. The gauged Rarita–Schwinger equation
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has a nonperturbative aspect when the secondary constraint
ω is eliminated, resulting in a breakdown of adiabatic
decoupling, leading to the inapplicability of various
S-matrix no-go theorems that claim to forbid gauged
massless Rarita–Schwinger fields. The extension of these
results to the quantized Rarita–Schwinger theory is given in
the following paper, where we show that a consistent
quantization by the Dirac bracket and path integral methods
is possible, with a manifestly positive semidefinite canoni-
cal anticommutator in the covariant radiation gauge.
Thus, in the massless case, our analysis eliminates the
various objections that have been raised to gauging Rarita–
Schwinger fields, showing that non-Abelian gauging of
Rarita–Schwinger fields can be contemplated as part of the
anomaly cancelation mechanism in constructing grand
unified models.
We conclude with several remarks:
(1) We have introduced gauge fixing to make the time

evolution of the Rarita–Schwinger fields unique, but
the analysis of this paper does not require gauge
fixing. Specifically, if gauge fixing is not imposed,
the correct helicity counting is still obtained because
fermionic gauge degrees of freedom are redundant
degrees of freedom and are not physical. Gauge
fixing makes this redundancy manifest by providing
a condition that excludes the gauge degrees of
freedom, but in analogy to the case of Maxwell
electrodynamics, gauge fixing is not needed to get
the correct physical state counting. On the other
hand, in the following paper, where we turn to
quantization, gauge fixing is needed. This can
already be anticipated from the form of the con-
straint matrix N of Eq. (60), which, when gauge
fixing is omitted, reduces to the single element A ¼
−2ig~σ · ~Bð~xÞδ3ð~x − ~yÞ which is not invertible in the
small ~B limit. Inversion of the constraint matrix does
not enter into the calculations of this paper but is
needed in the following paper both for the Dirac
bracket and path integral quantization.

(2) A possible exception to the nonperturbative behavior
detailed in Sec. VII is when the ~E and ~B gauge fields
are random, since if Eq. (77) is replaced by an
average, denoted by AV,

hΨ0iAV ≃
� ~Q

ð~BÞ2
	

AV

· h ~ΨiAV; ð122Þ

it becomes

hΨ0iAV ≃ 1

3
~σ · h ~ΨiAV; ð123Þ

which is compatible with hΨ0iAV ¼ ~σ · h ~ΨiAV ¼ 0,
the customary free Rarita–Schwinger constraints
employed in Refs. [11,19]. This heuristic observa-
tion suggests that Rarita–Schwinger fields coupled

to quantized gauge fields with a zero background
gauge field may have a perturbative g → 0 limit.

(3) In showing in the Abelian case that there is no
superluminal propagation, the inversion of ~σ · ~B to
get Ψ0 only required ð~BÞ2 ≠ 0. In the non-Abelian
case, where ~B is itself a matrix, the conditions for
invertibility are nontrivial and have yet to be
analyzed. We will see in the following paper that
this issue is side stepped when the constraints are
dealt with by the Dirac bracket or path integral
procedures, since these do not require the inversion
of ~σ · ~B when a gauge constraint is included.
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APPENDIX A: NOTATIONAL CONVENTIONS
AND USEFUL IDENTITIES

We follow in general the notational conventions of the
book Supergravity by Freedman and Van Proeyen [19].
The metric ημν is ð−;þ;þ;þÞ, and the Dirac gamma
matrices γμ; γμ obey the Clifford algebra

γμγν þ γνγμ ¼ 2ημν: ðA1Þ

They are given in terms of Pauli matrices σj by

γ0 ¼ −γ0 ¼
�
0 −1
1 0

�
;

γj ¼ γj ¼
�

0 σj

σj 0

�
;

γ5 ¼ iγ0γ1γ2γ3 ¼
�
1 0

0 −1
�
: ðA2Þ

We also note that

ϵ0123 ¼ −ϵ0123 ¼ 1; ðA3Þ
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the left chiral projector PL is given by

PL ¼ 1

2
ð1þ γ5Þ; ðA4Þ

and the spinor ψ̄ is defined in terms of the adjoint spinor
ψ† by

ψ̄ ¼ ψ†iγ0: ðA5Þ

As noted in Ref. [19], the Rarita–Schwinger equation of
motion can be written in a number of equivalent forms.
When ordinary derivatives are replaced by gauge covariant
derivatives, these are the vector-spinor equations

ϵμηνργηDνψρ ¼ 0;

γηνρDνψρ ¼ 0;

γρðDνψρ −DρψνÞ ¼ 0;

γαDαðDσψν −DνψσÞ ¼ γρð½Dρ; Dσ�ψν þ ½Dν; Dρ�ψσ

þ ½Dσ; Dν�ψρÞ; ðA6Þ

with only the fourth line, which is quadratic in the covariant
derivative, involving more than just a substitution ∂ν → Dν

in the formulas of Ref. [19]. Using γηγηνρ ¼ 2γνρ, these also
imply the spinor equation γνρDνψρ ¼ 0. These formulas
play a role in verifying stress-energy tensor conservation, as
does the identity [23]

0 ¼ ϵλσμνðAτBλCσDμEν þ AνBτCλDσEμ þ AμBνCτDλEσ

þ AσBμCνDτEλ þ AλBσCμDνEτÞ; ðA7Þ

with Aτ; Bλ; Cσ; Dμ; Eν five arbitrary four-vectors. This
identity follows from

0 ¼ δατ ϵ
λσμν þ δντϵ

αλσμ þ δμτ ϵναλσ þ δστ ϵ
μναλ þ δλτϵ

σμνα;

ðA8Þ

which is easily verified by noting that λ; σ; μ; ν must take
distinct values from the set 0,1,2,3, and that τ must be equal
to one of these values.
The fundamental identity for the Pauli matrices is

σaσb ¼ δab þ iϵabcσc; ðA9Þ

with ϵ123 ¼ 1 and with the index c summed. We repeatedly
use the following two identities that can be derived from
Eq. (A9), for a general three-vector ~A that is proportional to
a unit matrix in the spinor space and so commutes with ~σ,

~σ × ð~σ × ~AÞ ¼ − 2~Aþ i~σ × ~A;

ð~A × ~σÞ × ~σ ¼ − 2~Aþ i~A × ~σ: ðA10Þ

Additional useful identities are

~σ × ~σ ¼ 2i~σ;

~σ ~σ ·~A ¼ ~A − i~σ × ~A;

~σ · ~A ~σ ¼ ~Aþ i~σ × ~A;

ð~σ × ~AÞ · ~σ ¼ −2i~σ · ~A;

~σ · ð~σ × ~AÞ ¼ 2i~σ · ~A;

σaσb ¼ 2

�
δab − 1

2
σbσa

�
;

~B ¼ i~A − ~A × ~σ↔~A ¼ 1

2
ð~B × ~σÞ: ðA11Þ

Gauge field covariant derivatives are

Dμ ¼ ∂μ þ gAμ; ðA12Þ

with the gauge potential Aμ ¼ AA
μ tA and the gauge gen-

erators tA anti-self-adjoint and with the components AA
μ

self-adjoint. The non-Abelian generators tA obey the
compact Lie algebra

½tA; tB� ¼ fABCtC; ðA13Þ

in the Abelian case, we replace tA by −i. In writing field
strengths ~E and ~B, we pull out an additional factor of i to
make them self-adjoint, so that we have the identities

~D × ~D ¼ − ig~B;

½ ~D;D0� ¼ − ig~E: ðA14Þ

We will also write a right-acting three-vector covariant

derivative as ~D ¼ ~∇þ g~A and define a left-acting three-

vector covariant derivative as D⃖ ¼ ∇⃖ − g~A, so that we have
the integration by parts formulas

Z
d3xA ~D~xB ¼ −

Z
d3xAD⃖~xB;

~D~xδ
3ð~x − ~yÞ ¼ − δ3ð~x − ~yÞD⃖~y: ðA15Þ

An analogous definition is used for the operators ~L and L⃖
which enter the gauge-fixing condition.
At the classical level, variables will be either Grassmann

even or odd. Irrespective of the Grassmann parity of
monomials A and B, the adjoint operation is defined
by [19]

ðABÞ† ¼ B†A†: ðA16Þ

For classical brackets, we follow the convention of
Henneaux and Teitelboim [24],
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½F;G�C ¼
�∂F
∂qi

∂G
∂pi

− ∂F
∂pi

∂G
∂qi

�

þ ð−ÞϵF
�∂LF
∂θα

∂LG
∂πα þ ∂LF

∂πα
∂LG
∂θα

�
; ðA17Þ

with ϵF the Grassmann parity of F, with ∂L a Grassmann
derivative acting from the left, and with qi; pi (θα; πα)
canonical coordinates and the momenta of even (odd)
Grassmann parity. Using the classical bracket, the Dirac
bracket is constructed from the constraints as discussed in
Sec. II of the following paper. To make the transition to
quantum theory, the quantum commutator (anticommuta-
tor) is defined to be iℏ times the corresponding Dirac
bracket (with ℏ ¼ 1 in our notation). Classical canonical
brackets are always denoted, as above, by a subscript C,
with a subscript D used for the corresponding Dirac
bracket. We use the standard notations ½A;B� ¼
AB − BA for the commutator and fA; Bg ¼ ABþ BA for
the anticommutator.
To calculate the Dirac bracket, we use block inversion of

a matrix. Let

M ¼
�
A1 A2

A3 A4

�
;

M−1 ¼
�
B1 B2

B3 B4

�
; ðA18Þ

with A1;…; A4 themselves matrices. Then when A4 is
nonsingular, the blocks B1;…; B4 of M−1 are given by

Δ≡ A1 − A2A−1
4 A3;

B1 ¼ Δ−1;
B2 ¼ −Δ−1A2A−1

4 ;

B3 ¼ −A−1
4 A3Δ−1;

B4 ¼ A−1
4 þ A−1

4 A3Δ−1A2A−1
4 : ðA19Þ

Even though the blocks are noncommutative, Eqs. (A18)
and (A19) give an inverse that obeysM−1M ¼ MM−1 ¼ 1.
When the constraints ϕa and χa are combined into an

eight element set of constraints κa ¼ ϕa; κaþ4 ¼ χa;
a ¼ 1;…; 4, then the bracket matrix Sabð~x; ~yÞ≡
½κað~xÞ; κbð~yÞ�C can be expressed in terms of the matrix
Mabð~x; ~yÞ of Eq. (58) as

Sð~x; ~yÞ ¼
�

0 Mð~x; ~yÞ
MTð~y; ~xÞ 0

�
; ðA20Þ

where MT
abð~x; ~yÞ ¼ Mbað~x; ~yÞ is the matrix transpose.

Defining the inverseM−1ð~x; ~yÞ by R d3zM−1ð~x;~zÞMð~z;~yÞ¼R
d3zMð~x;~zÞM−1ð~z;~yÞ¼δ3ð~x− ~yÞ, it is easy to verify that

S−1ð~x; ~yÞ ¼
�

0 MT−1ð~y; ~xÞ
M−1ð~x; ~yÞ 0

�
: ðA21Þ

APPENDIX B: ANALYSIS OF THE
RARITA–SCHWINGER FIELD IN AN

EXTERNAL ABELIAN GAUGE
FIELD: PROPAGATION OF THE
LONGITUDINAL GAUGE MODE

We continue here the analysis begun in Sec. V to study
propagation of the longitudinal gauge mode. We must now
solve for C↑;↓

3 starting from Eq. (89) with C1;2 ¼ 0, so the
third line of Eq. (89) simplifies to

0 ¼ ð~BÞ2ΩC↑;↓
3 − KðQ3C3Þ↑;↓;

Q3 ¼ B1E2 − B2E1 þ B3~σ · ð~Bþ i~EÞ − i~B · ~Eσ3: ðB1Þ

Writing this as

�
0

0

�
¼

�
U11 U12

U21 U22

��
C↑
3

C↓
3

�
; ðB2Þ

we find for the matrix elements

U11 ¼ ð~BÞ2Ω − K½B1E2 − B2E1 − iðB1E1 þ B2E2Þ þ B2
3�;

U22 ¼ ð~BÞ2Ω − K½B1E2 − B2E1 þ iðB1E1 þ B2E2Þ − B2
3�;

U12 ¼ −KB3½B1 þ iE1 − iðB2 þ iE2Þ�;
U21 ¼ −KB3½B1 þ iE1 þ iðB2 þ iE2Þ�: ðB3Þ

The equation 0 ¼ detðUÞ ¼ U11U22 −U12U21 reduces,
after dividing by an overall factor of ð~BÞ2, to

0 ¼ ð~BÞ2Ω2 − 2ΩKðB1E2 − B2E1Þ þ K2ðE2
1 þ E2

2 − B2
3Þ;

ðB4Þ
with the solution

Ω
K

¼ X � Y1=2

ð~BÞ2
;

X ¼ B1E2 − B2E1;

Y ¼ ðB1E2 − B2E1Þ2 − ð~BÞ2ðE2
1 þ E2

2 − B2
3Þ: ðB5Þ

The analysis of the solutions of Eqs. (B4) and (B5)
divides into two cases, according to whether the roots of
Eq. (B5) are both real or both complex. The roots are both
complex if

ðB1E2 − B2E1Þ2 < ð~BÞ2ðE2
1 þ E2

2 − B2
3Þ; ðB6Þ

which can be rearranged algebraically to the form
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½ð~BÞ2 − ðE2
1 þ E2

2Þ�B2
3 < ðB2

1 þ B2
2ÞðE2

1 þ E2
2Þcos2ϕ;

ðB7Þ

where we have written

B1E2 − B2E1 ¼ðB2
1 þ B2

2Þ1=2ðE2
1 þ E2

2Þ1=2 sinϕ;
B1E1 þ B2E2 ¼ðB2

1 þ B2
2Þ1=2ðE2

1 þ E2
2Þ1=2 cosϕ: ðB8Þ

Since the right-hand side of Eq. (B7) is non-negative, when
the left-hand side is negative, the inequality is satisfied,
and both roots are complex. Hence, a necessary (but not
sufficient) condition for both roots to be real is

ð~BÞ2 − ðE2
1 þ E2

2Þ > 0: ðB9Þ

1. Hyperbolic case: Both roots real

When both roots are real, Eq. (B1) describes the hyper-
bolic case of propagating waves. Introducing the velocity
V ¼ Ω=K, Eq. (B4) can be written as

0 ¼ ð~BÞ2V2 − 2VðB1E2 − B2E1Þ þ E2
1 þ E2

2 − B2
3;

ðB10Þ
which can be rearranged algebraically to the form

½ðB2
1 þ B2

2Þ1=2 − ðE2
1 þ E2

2Þ1=2�2 þ ð~BÞ2ðV2 − 1Þ
¼ 2ðB2

1 þ B2
2Þ1=2ðE2

1 þ E2
2Þ1=2ðV sinϕ − 1Þ: ðB11Þ

Let us now assume that V2 > 1 and show that this leads to
a contradiction. When V2 > 1, the left-hand side of
Eq. (B11) is non-negative, which implies that V sinϕ on
the right must be non-negative, and so can be replaced by
its absolute value. Hence, the right-hand side of Eq. (B11)
obeys the inequality

2ðB2
1 þ B2

2Þ1=2ðE2
1 þ E2

2Þ1=2ðV sinϕ − 1Þ
¼ 2ðB2

1 þ B2
2Þ1=2ðE2

1 þ E2
2Þ1=2ðjV sinϕj − 1Þ

≤ 2ð~BÞ2ðjVj − 1Þ; ðB12Þ
where we have used Eq. (B9). But the left-hand side of
Eq. (B11) obeys the inequality

½ðB2
1 þ B2

2Þ1=2 − ðE2
1 þ E2

2Þ1=2�2 þ ð~BÞ2ðV2 − 1Þ
≥ ð~BÞ2ðjVj þ 1ÞðjVj − 1Þ > 2ð~BÞ2ðjVj − 1Þ; ðB13Þ

which is a contradiction, since a real number cannot be
strictly less than itself. Hence, we must have V2 ≤ 1, and
there is no superluminal propagation.

2. Elliptic case: Both roots complex

When both roots are complex, Eq. (B1) describes the
elliptic case in which there are no propagating waves;
when a propagating wave enters an elliptic region from a
hyperbolic one, it will be damped to zero amplitude.
However, in the case of weak damping, one can still define
a wave velocity and ask what its magnitude is. When both
roots are imaginary, Eq. (B5) takes the form

Ω
K

¼ X � ið−YÞ1=2
ð~BÞ2

;

X ¼ B1E2 − B2E1;

−Y ¼ −ðB1E2 − B2E1Þ2 þ ð~BÞ2ðE2
1 þ E2

2 − B2
3Þ: ðB14Þ

Regarding Ω as real and the wave number K as complex,
the effective propagation velocity has the magnitude

jVeff j ¼




 ΩKR





 ¼ X2 − Y

ð~BÞ2jXj
¼ E2

1 þ E2
2 − B2

3

jB1E2 − B2E1j
: ðB15Þ

The condition for weak damping is−Y ≪ X2, which can be
rewritten as

ð~BÞ2ðE2
1 þ E2

2 − B2
3Þ ≪ 2ðB1E2 − B2E1Þ2; ðB16Þ

and implies

jVeff j ≪
2jB1E2 − B2E1j

ð~BÞ2
≤
2j~Ej
j~Bj

: ðB17Þ

Hence, as long as 2j~Ej is not much larger than j~Bj, which is
required by the vacuum stability condition j~Ej < j~Bj, the
damped wave propagation velocity is subluminal.
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