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The single-particle content of two-dimensional adjoint QCD remains elusive due to the inability to
distinguish single- from multiparticle states. To find a criterion we compare several approximations to the
theory. The starting point is a Hamiltonian containing only operators corresponding to the long-range
Coulomb forces. This enables us to construct sets of eigenfunctions in the lowest parton sectors.
A perturbative treatment of the omitted operators is then performed. We find that multiparticle states are
absent if pair production is disallowed and hints for a double “Regge” trajectory of single-particle states.
We discuss the structure of the eigensystem of the theory, and present the reason for the fact that bosonic
single-particle states do not form multiparticle states.
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I. INTRODUCTION

Two-dimensional Yang-Mills theory coupled to fermions
in the adjoint representation, QCD2A, has been discussed
extensively in the literature [1–5], due to its many interest-
ing features (see, e.g. Ref. [6]). However, its single-particle
spectrum remains elusive, largely because there is no clear
criterion to help purge the theory of its multiparticle
content. Recently, QCD2A has been numerically solved
as a fermion theory. In Ref. [5], the authors used an idea
from holography, namely that the theory is a trivial
conformal field theory in the UV limit. Therefore a
decoupling between the low-lying spectrum and the
high-scaling-dimension quasiprimary operators ensues. A
basis of these operators is constructed and cut off at a
maximal (scaling) dimension. Good agreement is found
with previous discretized light-cone quantization (DLCQ)
results [3,4,7]. While Ref. [5] furnished an important
contribution to the ongoing debate over the single-particle
content of QCD2A, the disappointing conclusion is that also
this approach is riddled with multiparticle states.
We present some progress on teasing out the true (single-

particle) content of the theory described in more detail in
Sec. II. We start in Sec. III by considering the asymptotic
approach of Ref. [1], in which the theory is solved for high
excitation numbers, i.e. in a regime where parton number
is conserved. We then explore the impact of nonsingular
interactions on the spectrum in Sec. IV. Section V is
devoted to the role of the pair-production operators and
the emergence of multiparticle states. Finally, we take a
look at the implications of bosonization in Sec. VI and
conclude.

II. THE SPECTRUM OF QCD2A

Adjoint QCD2 is based on the following Lagrangian in
light-cone coordinates x� ¼ ðx0 � x1Þ= ffiffiffi

2
p

, where xþ
plays the role of a time:

L ¼ Tr

�
−

1

4g2
FμνFμν þ iΨ̄γμDμΨ

�
; ð1Þ

whereΨ ¼ 2−1=4ð ψχ Þ, with ψ and χ beingNc × Nf matrices.

The field strength isFμν ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�, and the
covariant derivative is defined as Dμ ¼ ∂μ þ i½Aμ; ·�.
Working in the light-cone gauge, Aþ ¼ 0, is consistent if
the fermionic zero modes are omitted. The left-moving
fermions can be integrated out, and the light-cone momentum
Pþ and HamiltonianP− can bewritten in terms of the Fourier
oscillation modes of the right-moving fermion only [3,8].
Once the theory is formulated in terms of independent
degrees of freedom, we can quantize it by imposing canonical
anticommutation relations at equal light-cone times xþ

fψ ijðx−Þ;ψklðy−Þg ¼ 1

2
δðx− − y−Þ

�
δilδjk −

1

N
δijδkl

�
:

ð2Þ
One uses the usual decomposition of the fields in terms of
fermion operators

ψ ijðx−Þ ¼
1

2
ffiffiffi
π

p
Z

∞

0

dkþðbijðkþÞe−ikþx− þ b†jiðkþÞeikþx−Þ;

ð3Þ

with anticommutation relations following from Eq. (2)

fbijðkþÞ; b†lkðpþÞg ¼ δðkþ − pþÞ
�
δilδjk −

1

N
δijδkl

�

ð4Þ

to write the operators in terms of oscillators

Pþ ¼
Z

∞

0

dkkb†ijðkÞbijðkÞ; ð5Þ
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P− ¼ m2

2

Z
∞

0

dk
k
b†ijðkÞbijðkÞ þ

g2N
π

Z
∞

0

dk
k
CðkÞb†ijðkÞbijðkÞ

þ g2

2π

Z
∞

0

dk1dk2dk3dk4

�
BðkiÞδðk1 þ k2 þ k3 − k4Þ

× ðb†kjðk4Þbklðk1Þbliðk2Þbijðk3Þ − b†kjðk1Þb†jlðk2Þb†liðk3Þbkiðk4ÞÞ
þ AðkiÞδðk1 þ k2 − k3 − k4Þb†kjðk3Þb†jiðk4Þbklðk1Þbliðk2Þ

þ 1

2
DðkiÞδðk1 þ k2 − k3 − k4Þb†ijðk3Þb†klðk4Þbilðk1Þbkjðk2Þ

�
ð6Þ

with

AðkiÞ ¼
1

ðk4 − k2Þ2
−

1

ðk1 þ k2Þ2
; ð7Þ

BðkiÞ ¼
1

ðk2 þ k3Þ2
−

1

ðk1 þ k2Þ2
; ð8Þ

CðkÞ ¼
Z

k

0

dp
k

ðp − kÞ2 ; ð9Þ

DðkiÞ ¼
1

ðk1 − k4Þ2
−

1

ðk2 − k4Þ2
; ð10Þ

where the trace-splitting term DðkiÞ can be omitted at large
Nc, and the trace-joining term is proportional to BðkiÞ. The
structure of the Hamiltonian P− displayed in Eq. (6) is

P− ¼ P−
m þ P−

ren þ P−
PC;s þ P−

PC;r þ P−
PV þ P−

finiteN: ð11Þ
Obviously, the mass term P−

m is dropped in the massless
theory, yet the renormalization operator P−

ren needs to be
included. Interactions that violate parton number, P−

PV ,
couple blocks of different parton number, whereas parton-
number-conserving interactions P−

PC are block diagonal,
and may include singular (s) or regular (r) functions of the
parton momenta.
If one considers large excitation numbers, parton-

number-violating operators proportional to BðkiÞ can be
neglected and the mass of the fermions becomes irrelevant
[1]. We will refer to the resulting approximation as the
asymptotic theory: we retain the most singular terms in the
interaction only, and additionally use the approximation

Z
1

0

dy
ðx − yÞ2 ϕðyÞ ≈

Z
∞

−∞

dy
ðx − yÞ2 ϕðyÞ; ð12Þ

because for the highly excited states the integral is
dominated by the interval around x ¼ y, associated with
the long-range Coulomb-type force. Thus, the asymptotic
theory is split into decoupled sectors with fixed parton
numbers subject to the ’t Hooft-like equation [cf. Eq. (4.10)
of Ref. [1]]

M2

g2N
ϕrðx1;…; xrÞ

¼ −
Xr

i¼1

ð−1Þðrþ1Þðiþ1Þ

×
Z

∞

−∞

ϕrðy; xi þ xiþ1 − y; xiþ2;…; xiþr−1Þ
ðxi − yÞ2 dy; ð13Þ

where the wave functions ϕr distribute momentum in the
states of definite parton number r

jΦri ¼
�Yr

j¼1

Z
1

0

dxj

�
δ

�
1 −

Xr

i¼1

xi

�
ϕrðx1; x2;…; xrÞ

×
1

Nr=2
c

Tr½bð−x1Þ � � � bð−xrÞ�j0i: ð14Þ

The xi are momentum fractions with
P

ixi ¼ 1, and the
total momentum has been set to unity. The number of
partons r is even (odd) for bosonic (fermionic) states.
A complete set of solutions of Eq. (13) remains elusive,

while Ref. [1] displayed what looks like half of the bosonic
eigenfunctions, i.e. even-r eigenfunctions with eigenvalues
ð−1Þr=2þ1 under the theory’s Z2 orientation symmetry

T ∶ bij → bji: ð15Þ

In these sectors, the eigenfunctions listed in Ref. [1] have
eigenvalues

M2
n1;…;nk ¼ 2g2Nπ2ðn1 þ n2 þ � � � þ nkÞ; ð16Þ

where the excitation numbers ni are even and their sum is
much larger than k≡ r=2. This implies an exponentially
growing density of states, and points towards the existence
of a Hagedorn transition of the theory at high temperatures.
Equation (16) suggests an r=2-dimensional manifold of
solutions in the r-parton sector. However, the r − 1 relative
momenta of the sector lead one to expect r − 1 quantum
numbers. Incidentally, an r=2-dimensional manifold of
solutions makes it hard to think of a generalization to
the fermionic (odd-r) sectors of the theory. The functions
displayed in Ref. [1] are therefore likely particular
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solutions; the general solutions should exhibit additional
excitation numbers.
The clear separation of the eigenvalues, Eq. (16), does not

guarantee that these are single-particle solutions. We know
from Ref. [4] that exact and approximate multiparticle states
exist in the single-trace sector of the theory, so that single-
particle states cannot be identified with single-trace states.
The problem is compounded by the approximations made.
While omitting the nonsingular terms in the interaction and
discarding parton-changing operators can be justified on
physical grounds, approximating the integral as in Eq. (12)
implies unphysical effects which paradoxically make the
solutions simpler. Furthermore, the correct generalization of
’t Hooft’s approximations [9] to higher parton sectors is a
restriction of the Hilbert space from the naive ½0; 1�r
hypercube to a ðr − 1Þ-simplex, which takes up 1=r! of
the former’s volume; see the Appendix. We expect fewer
linearly independent eigensolutions on the simplex than on
the hypercube.
In fact, multiparticle states (identified by their threshold

masses) are absent altogether in the asymptotic theory. A
quick DLCQ calculation traces this behavior back to the
absence of parton-number violation. This means that a
method to distinguish single- from multiparticle states
cannot emerge from the asymptotic theory alone.
Identifying threshold mass values as in Ref. [4] is not
going to be good enough either: the alleged multiparticle
states fulfill a single-particle integral equation [10]. On the
other hand, one knows from the bosonized theory that
states absent in the adjoint and identity block of the current
algebra are true multiparticle states [11], and one can study
them. The opposite is not true, and one has to learn how to
identify the single-particle states in these current blocks.
Unfortunately, it is unlikely that approximate solutions á la
’t Hooft [9] and Kutasov [1] exist in the bosonized theory,
because bosonization implies parton-number violation.
The eigenvalue problem at hand is equivalent to an

integral equation which is completely specified ab ovo. As
such, Eq. (13) implies that its solutions fulfill several
constraints: the (pseudo)cyclicity of the wave function

ϕrðx1; x2;…; xrÞ ¼ ð−1Þrþ1ϕrðx2; x3…; xr; x1Þ; ð17Þ

since the fermions are real, and the constraint

ϕnð0; x2;…; xnÞ ¼ 0; ð18Þ

necessary to secure Hermiticity of the Hamiltonian (only)
in the presence of a mass term.1 In the case of the ’t Hooft

model [9], this amounts to a “boundary condition” in the
sense that the values of the wave function are specified at
the end points of the interval. We find it advantageous to
realize (and in some sense relax) the latter constraint by
replacing it with the condition

ϕnðx1; x2;…; xnÞ ¼ �ϕnð1 − x1; 1 − x2;…; 1 − xnÞ; ð19Þ

which allows for a natural interpretation of the massless
(massive) theory’s solutions as (anti)periodic functions. Of
course, all constraints are fixed by the form of the integral
equation, and cannot be confused with the conditions
specified to solve a differential equation. For instance, if
Hermiticity is given, the vanishing of the wave functions
follows.
Solutions of definite T symmetry, Eq. (15), fulfill an

additional condition, which means that the wave functions
have different support. Namely, some combination of
creation operators might not exist in one symmetry sector.
For example, in the four-parton sector a constraint arises
because states like Tr½bð−xÞbð−xÞbð−yÞbð−yÞ�j0i are T
even. Analogous requirements exist in other sectors,2

except for the fermionic T ¼ ð−1Þðrþ1Þ=2 sectors.3

III. SOLVING THE ASYMPTOTIC
EIGENVALUE PROBLEM

We can solve the Kutasov integral equation (13) alge-
braically by using the following ansatz for the wave
functions:

jn1; n2;…nr−1i ≐
Yr−1
j

eiπnjxj ¼ ϕrðx1; x2;…; xrÞ; ð20Þ

where r is the number of partons, xr ¼ 1 −
P

r−1
j xj. Note

that we have r − 1 excitation numbers ni, as expected from
r − 1 relative momenta in the r parton sector. The r ¼ 2
version solves the ’t Hooft equation

M2

g2N
eiπnx ¼ −

Z
∞

−∞

dy
ðx − yÞ2 e

iπny ¼ π2jnjeiπnx: ð21Þ

In other words, we use the single-particle states of a
Hamiltonian appropriate for the problem to construct a
Fock basis, in the spirit of Ref. [12]. These single-particle
states are two-parton states, and they constitute an ortho-
normal basis on the interval [0, 1]. However, the multi-
parton states live in a restricted Hilbert space because the
total momentum is fixed; see the Appendix. Clearly,
Eq. (21) is insensitive to the sign of n. Hence, we admit

1The apparent vanishing of the T ¼ ð−1Þr=2½ð−1Þðr−1Þ=2�wave
functions for even [odd] r at the ends of the intervals (see Fig. 1)
is not due to a boundary condition but accidental; the computer
code happens to choose j1; 1;…; K − r − 1i as the first, and
jK=r; K=r;…; K=ri (or similar) as the last basis state. At these
points the eigenfunctions vanish due to symmetry constraints.

2For the first few parton sectors they are: ϕ3−ðx; x; yÞ ¼ 0,
ϕ4þðx; y; x; yÞ ¼ 0, ϕ4−ðx; x; y; yÞ ¼ 0, ϕ5þðx; y; y; x; zÞ ¼ 0,
ϕ6þðx; y; y; x; z; zÞ ¼ 0, ϕ6−ðx; y; z; w; z; yÞ ¼ 0, and cyclic.

3Incidentally, these sectors sport a massless state when the
above approximations are used.
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positive and negative excitation numbers: ni ∈ 2Z or
2Zþ 1.
There is a rather elegant solution to the eigenvalue

problem, Eq. (13), based on the observation that the
solutions of the adjoint ’t Hooft problem have to be
(anti)cyclic, cf. Eq. (17). By introducing the cyclic permu-
tation operator

C∶ðx1; x2;…; xrÞ → ðx2; x3;…; xr; x1Þ;

we can construct the solution to the asymptotic adjoint ’t
Hooft problem by symmetrizing our ansatz

jn1; n2;…nr−1isym

≡ 1ffiffiffi
r

p
Xr
k¼1

ð−1Þðr−1Þðk−1ÞCk−1jn1; n2;…nr−1i; ð22Þ

where C0 ¼ 1. This furnishes a general asymptotic solution
of adjoint QCD2. It is not hard to show that the eigenvalues
are

M2 ¼ g2Nπ2
Xr

k¼1

jnðk−1Þ1 − nðk−1Þ2 j ¼ g2Nπ2
Xr

k¼1

jnðk−1Þ1 j;

ð23Þ

where nðkÞi is the excitation number associated with the ith
momentum fraction of the kth cyclic permutation, e.g.

C2jn1; n2; n3i yields jnð2Þ1 − nð2Þ2 j ¼ jn3 − n2j þ j − n2j.
This could be a useful method for similar integral equa-
tions, like the one associated with adjoint Dirac fermions
recently tackled in Ref. [13].
First, let us clean up the spectrum by using the

orientation symmetry T of the Hamiltonian, Eq. (15).
Note that both symmetry operators act a bit awkwardly
on the basis states, as they are naturally defined with r
variables, but actually live in a ðr − 1Þ-dimensional space

C∶ jn1; n2;…; nr−1i → ð−1Þnr−1 j − nr−1; n1 − nr−1;

n2 − nr−1;…; nr−2 − nr−1i;
T ∶ jn1; n2;…; nr−1i → ð−1Þn1 j − n1; nr−1 − n1;

nr−2 − n1;…; n2 − n1i: ð24Þ

While ½Ck;T � ≠ 0, except for trivial cases, we have

�Xr
k¼1

Ck−1;T
�
¼ 0;

and, by construction, ½ð−1Þkðr−1ÞCk; P−� ¼ 0, so we can
classify the eigenstates according to their eigenvalues M2

and T. To fulfill the integral (eigenvalue) equation, one has
to choose one specific C eigenvalue.

As a cross-check of our ansatz, we will compare to
numerical wave functions generated by a DLCQ algorithm.
A further check is provided by the solutions listed in
Ref. [1], which can be emulated within DLCQ by choosing
a large fermion mass, which enforces the constraint,
Eq. (18) or Eq. (19), vulgo the vanishing of the wave
function at the boundaries. We will refer to the latter
solutions as massive parton solutions. We need to construct
a complete orthonormal basis of the physical Hilbert space
from the ansatz, Eq. (22). We will work out the solutions in
the first few sectors, and develop a general algorithm for the
others.
At r ¼ 2 we have Cjni ¼ T jni ¼ ð−1Þnj − ni, and

hence

ϕ2 ¼ eiπnx − ð−1Þne−iπnx: ð25Þ
Thus both sines with even n and cosines with odd n fulfill
the integral equation, the cyclicity condition, and are states
of definite T. Physics determines which functions to pick:
massive partons require ϕ2ð0Þ ¼ 0 or ϕ2ðxÞ ¼ −ϕ2ð1 − xÞ,
whereas a massless theory requires odd n cosines, i.e.
ϕ2ðxÞ ¼ ϕ2ð1 − xÞ, since a massless bound state with a
constant wave function exists in the limitNf → 1. We clean
up the notation for the generic case, rewriting Eq. (25) as

jϕ2; n; M̄2 ¼ jnji− ¼ jni − ð−1Þnj − ni;
where M̄2 ¼ M2=g2Nπ2, and the minus index signifies that
only the wave function odd under the T operation exists.
In the three-parton sectors, r ¼ 3, we find that both

excitation numbers have to be even, because a massless
bound state with a constant wave function exists. For
massive partons, no massless state exists, but the eigenso-
lutions are again from the even-even fjeeig sector,
cf. Fig. 1. The reason is that the C; T operators permute
excitation numbers, cf. Eq. (24), generating combinations
like n −m which are even for n;m odd.
The wave functions of definite C; T symmetry are

jϕ3; n; m; M̄2 ¼ jn −mj þ jnj þ jmji�
¼ jn;mi þ ð−1Þmj −m; n −mi
þ ð−1Þnjm − n;−ni
� ½ð−1Þnj − n;m − ni þ jm; ni
þ ð−1Þmjn −m;−mi�; ð26Þ

which are symmetric ðþÞ or antisymmetric ð−Þ under
reversal of momentum fractions. Note that some solutions
do not exist in the T -odd sector, e.g. jϕ3; n ¼
−2; m ¼ 0; M̄2 ¼ 4i− ¼ 0. The massless solution has a
constant wave function with n ¼ m ¼ 0.
Note that the states, Eq. (26), are not eigenfunctions of

the Hamiltonian, because they do not fulfill Eq. (19). In
order to create (anti)symmetric wave functions we must
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combine positive- and negative-frequency solutions. This is
natural, since the fermions are real, and hence the eigen-
functions can be chosen to be real. For instance

Rejϕ3; n; mi ¼ cosðπnx1 þ πmx2Þ
þ ð−1Þm cosð−πmx1 þ πðn −mÞx2Þ
þ ð−1Þn cosðπðm − nÞx1 − πnx2Þ
� ðn̄1↔n̄2Þ;

where n̄i is the excitation number associated with xi in a
term, e.g. n̄1 ¼ −m in the ð−1Þm term, which have to be
permuted to obtain a state of definite symmetry under
reversal of momentum fractions due to the T symmetry; the
ð−1Þni factors remain unchanged. Note the disappearance
of the � sign: the real wave functions are all symmetric
under momentum fraction reversal; the antisymmetric
functions are identically zero. We can transcribe the wave
function into ðx1; x2; x3Þ notation to obtain an expression
manifestly symmetrized in the momentum fractions

ϕðn;mÞ
3þ ðx1; x2; x3Þ ¼

X3
i¼1

cosðπnxi þ πmxiþ1Þ þ ðn↔mÞ:

ð27Þ

The functions with the lowest excitation numbers are a

decent fit to the lowest (DLCQ) eigenfunctions, i.e. j1i ¼
ϕð0;0Þ
3þ ¼ const, j2i ¼ ϕð2;0Þ

3þ ¼ ϕð2;2Þ
3þ , j3i ¼ ϕð2;−2Þ

3þ ¼ ϕð4;2Þ
3þ ,

j4i ¼ ϕð4;0Þ
3þ , j5i ¼ ϕð6;2Þ

3þ ; see Fig. 1. From Eq. (26) it is

clear that ϕðn;mÞ
3� ¼ �ϕðm;nÞ

3� , and ϕðn;mÞ
3þ ¼ ϕð−n;−mÞ

3þ , but note

that in general distinct sets of excitation numbers do not
result in distinct wave functions.
The odd-T solutions are the imaginary part of the general

wave function

ϕðn;mÞ
3− ðx1; x2; x3Þ ¼

X3
i¼1

sinðπnxi þ πmxiþ1Þ − ðn↔mÞ:

ð28Þ
Again, the functions with the lowest excitation numbers are
a decent fit to the lowest (DLCQ) eigenfunctions, i.e.

j1i ¼ ϕð4;2Þ
3− , j2i¼ϕð6;2Þ

3− , j3i ¼ ϕð8;2Þ
3− , j4i ¼ ϕð8;4Þ

3− ; see

Fig. 1. Note that ϕðn;nÞ
3− ¼ϕðn;0Þ

3− ¼ 0 and ϕðn;mÞ
3− ¼ −ϕð−n;−mÞ

3− .
The massive parton solutions φ3 are well described by

the same formulas in the opposite T sector, i.e.

φðn;mÞ
3� ðx1; x2; x3Þ ¼ ϕðn;mÞ

3∓ ðx1; x2; x3Þ;
with the excitation numbers of the lowest eigenfunctions
being (2,0),(4,0),(6,2),(6,0) and (6,2),(8,2),(10,4),(10,2),
in the T -even and T -odd sectors, respectively. In the
latter sector many functions are identically zero due to
φðn;mÞ
3− ¼ −φðn;n−mÞ

3− .
As a more stringent test of our ansatz we expanded the

numerical solutions into the complete set of functions just
derived, and checked that the coefficients of the expansion
fall off fast. Note, though, that we are comparing numerical
eigensolutions of the true, amputated4 Hamiltonian, with
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FIG. 1. DLCQ eigenfunctions (solid lines) and asymptotic wave functions (dashed lines) of the theory without pair-production and
nonsingular terms. (a) The lowest two three-parton eigenfunctions in the T -even and -odd sectors (from bottom); K ¼ 151 in the DLCQ
calculation with massless fermions. (b) The same for the massive theory.

4Correct integral boundaries are used, but parton-number-
violating terms have been chopped off.
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analytic eigensolutions of the asymptotic Hamiltonian.
Surprisingly, the eigenfunctions are perfectly reproduced
with only a few nonvanishing coefficients, while the
eigenvalues are off. For instance, at r ¼ 3 ten basis states
produce overlaps of larger than 99.5% with the first few
eigenfunctions in the sector with the massless state, and the
overlaps with the tenth function are in the per mille range.
The conclusion is that for low excitation numbers the mass

renormalization term and the true integral limits are
important to obtain the correct eigenvalues, whereas the
symmetries of the system (cyclicity of the integral equation,
orthogonality constraints of the physical Hilbert space) are
so stringent that, assuming sinusoidal functions, there is
very little leeway to choose the eigenfunctions, so they are
basically fixed.
At r ¼ 4, the states of definite C; T symmetry are

jϕ4; n;m; l; M̄2 ¼ jn −mj þ jnj þ jlj þ jm − lji�
¼ jn;m; li − ð−1Þlj − l; n − l; m − li þ ð−1Þmjl −m;−m; n −mi − ð−1Þnjm − n; l − n;−ni
� ½ð−1Þnj − n; l − n;m − ni − jl; m; ni þ ð−1Þljm − l; n − l;−li − ð−1Þmjn −m;−m; l −mi�: ð29Þ

Due to the intricate way the excitation numbers are
linked to the mass of the bound state, Eq. (23), states with
distinct sets of excitation numbers may have identical
masses. The (orthogonal) eigenstates of the Hamiltonian
are thus linear combinations of these states. For instance,
the lightest states, with M̄2 ¼ 2ðjn1j þ jn2jÞ stem from the
combination

ϕ4−ðx1; x2; x3; x4Þ ≐ jϕ4; n1; 0; n2i − jϕ4; n1; 0;−n2i
þ jϕ4; n1; n1 − n2;−n2i; ð30Þ

which is the subset of solutions displayed as wave functions
ϕ4ðx1; x2; x3; x4Þ in Ref. [1], Eq. (4.13). We find empiri-
cally that the excitation numbers are all even and that there
are other solutions not describable by Eq. (30).
In summary, we see that the symmetrization of states

with r − 1 excitation numbers yields a surprisingly simple
solution for adjoint QCD2, and is in agreement with
previous results, which turn out to be special cases of
the general eigensolutions presented here.

IV. THE IMPACT OF NONSINGULAR
OPERATORS

In Sec. III we solved for the spectrum of P−
asympt ≡

P−
PC;s þ P−

ren keeping only singular terms in the
Hamiltonian. While it will be hard to find analytic solutions
without omitting nonsingular operators, a numerical sol-
ution can be obtained without any problems. We find some
noteworthy changes when regular operators are included.
The two-parton solutions are entirely unaffected by the

regular terms, the lowest mass being M̄2 ¼ 11.74. In
contrast, the lowest T -even three-parton mass jumps
dramatically, as the massless state acquires a mass
(squared) of 5.703 when regular terms are present. Its
wave function has the same structure as the lowest massive
asymptotic one, save for an overall shift due to the
admixture of the constant massless wave function. We
note three things. The inclusion of nonsingular terms

inverts the mass hierarchy of massive states, namely a
three-parton state becomes lighter than a two-parton state.5

Second, this mass is very close to the continuum value
obtained for the full theory M̄2

full;f ¼ 5.75, cf. M̄2
full;b ¼ 10.84

of the lightest boson. We infer that the lowest state is very
pure in parton number, consistent with previous results [2].
Third, the only two sectors unchanged by the inclusion
of nonsingular terms are the two-parton and the T -odd
three-parton sectors.
Why is the T -even three-parton sector so heavily

influenced by nonsingular operators? We can get the idea
by studying the wave functions. In the T -odd sector, the
wave function is an odd function of the momenta; see
Fig. 1(a) and Eq. (28). That means that the contributions
from 1=ðk1 þ k2Þ2 in AðkiÞ, Eq. (7), will cancel and the
masses will stay the same. In the T -even sector, corrections
are large when the wave function is large at the boundaries,
i.e. where (at least) one momentum vanishes, e.g.
ð0; x2; x3 ¼ 1 − x2Þ. We would therefore expect the first,
second and fourth T -even massive eigenvalues to change
substantially, but not the third; see the dashed wave
functions in Fig. 2(a). To confirm our intuition, we compute
the first and second corrections to the masses by sandwich-
ing the operator hij2PþP−

PC;rjji. It is easiest to do this
numerically, using the existing eigensolutions of the
asymptotic (unperturbed) Hamiltonian. We obtain for the
lowest five masses

M̄2
0 ¼ 0þ 5.961 − 0.3536 ¼ 5.607ð5.703Þ;

M̄2
1 ¼ 21.59þ 8.589 − 1.564 ¼ 28.62ð29.05Þ;

M̄2
2 ¼ 46.66þ 9.776 − 2.136 ¼ 54.30ð54.20Þ;

M̄2
3 ¼ 56.07þ 1.662þ 0.3040 ¼ 58.04ð59.54Þ;

M̄2
4 ¼ 74.29þ 10.92 − 1.562 ¼ 83.65ð83.81Þ; ð31Þ

5This is natural in the bosonized theory where the three-parton
state corresponds to the lowest state TrfJψgj0i; see Sec. VI.

UWE TRITTMANN PHYSICAL REVIEW D 92, 085021 (2015)

085021-6



in agreement with our expectations. The nonperturbative
results are listed in parentheses. Unsurprisingly, we find

hϕ−
3;ij2PþP−

PC;rjϕ−
3;ji ¼ 0

for all i; j, and hence the corrections to the T -odd
eigenstates vanish identically.
Although we find a massless state in all T ¼ ð−1Þrþ1

r-parton sectors, the T -odd three-parton sector is the only
one that does not receive corrections. The corrections are
substantial in the other sectors (4þ: 40%, 4−: 80%, 5þ:
57%, 5−: 38%, 6þ: 167%, 6−: 131%; at typical resolutions
K). It is remarkable that the nonsingular terms generate
most of the mass of the six-parton states. Of course, none of
this is in contradiction with the assumption that the
asymptotic Hamiltonian is a good approximation at high
excitation numbers.
One should keep in mind that QCD2A serves as a

potentially solvable model for four-dimensional QCD (at
largeN, but also for other realistic confining theories). While
both have nontrivial large-N limits with mass eigenstates of
indefinite parton number, only (massless) QCD2A is in a
screening phase. This means that the flux strings of QCD2A
will break up. Instead of displaying a Regge trajectory
characteristic of a long flux string, the theory’s single-particle
states can be thought of as bound states consisting of fermions
held together by short flux bits. As a consequence one expects
a linear rise of the masses of the single-particle states with the
number of their partons, which is confirmed numerically [5].
It is important to understand by what mechanism the

bound states interact with each other. Clearly some

interactions take place even at N ¼ ∞ although they are
expected to be suppressed by 1=N. This paradox calls for an
understanding of the interactions between parton sectors
which we address in the next section. Here, we probed what
part different intrasector operators6 play in the generation of
the mass of a bound state. We found an inversion of the
mass hierarchy of the lowest states and believe this can
serve as a paradigm when exploring other theories. The
inversion tells us that other degrees of freedom lead to a
more natural description of the theory (here: bosonization).
Another lesson can be learned from the way that massless
states disappear when regular operators are introduced.
This highlights the different role that massless states play in
adjoint QCD2 as compared to the ’t Hooft model. We
conclude that massless states do not acquire mass by
mixing with other parton sectors. Rather, the structure of
the regular operators is such that they influence states with
odd parton number more dramatically. We suspect that this
behavior is not limited to QCD2A.

V. THE ROLE OF PARTON-NUMBER-VIOLATING
OPERATORS

If we include the parton-number-violating operators, we
obtain the full theory at large Nc. Again a numerical
solution can be obtained easily, with the caveat of a much
higher number of basis states due to the coupling of
parton sectors. Approximate (numerical) solutions are well
documented in the literature; see e.g. Ref. [4].
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FIG. 2. (a) The lowest four three-parton T -even DLCQ eigenfunctions of the theory with nonsingular terms at K ¼ 151 (solid lines)
and of the asymptotic theory (dashed lines). Of the latter, the lowest eigenfunction has been suppressed by a factor of 5, and the second
(third) lowest appears as an analogue of the third (fourth) lowest nonsingular function. (b) Average parton number as a function of 1=K
of a T -even boson (top, ϵ ¼ 0.225, M2 ≈ 41) and fermion (bottom, ϵ ¼ 0.505, M2 ≈ 31).

6That is, operators connecting states of equal parton number.
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The parton-number-changing interactions are three-
body operators, and therefore have the largest influence
on three-parton states. The relevant function, Eq. (8),
is small when the momenta are roughly the same, and
large when k1 − k3 is large while k2 is small. Since
k3 ¼ 1 − k1 − k2, the biggest contributions arise when k1
and k2 are very different.
We can investigate the role of parton-number-violating

operators using perturbation theory by parametrizing the
Hamiltonian

P− ¼ P−
asympt þ ϵP−

PV:

Previously, we argued on physical grounds that P−
PV is

marginal at high excitation numbers without explicitly
identifying a small parameter. Here, we use ϵ to continuously
switch from the asymptotic to the full theory. Obviously, the
only nonzero parton blocks of P−

PV lie on its upper and lower
secondary diagonals. Consequently, there is no first-order
correction to the eigenvalues. At second order an r-parton
eigenfunction receives admixtures of r − 2 and rþ 2 states
only. In particular, the two (three)-parton eigenfunctions
exhibit only four (five)-parton contaminations.
In Sec. III we found analytic expressions for a complete

set of eigenfunctions of the asymptotic Hamiltonian.
Hence, the matrix elements hϕr;�jP−

PV jϕrþ2;�i can in
principle be calculated analytically. However, it should
suffice to evaluate the operators numerically and extrapo-
late to the continuum, with the advantage of using ab ovo
correct (at a certain K) solutions.7

In doing so, we find that parton-number violation is
necessary to produce (exact) multiparticle states in the
spectrum. The reason is that only the complete Hamiltonian
can be cast into a current-current form in the bosonized
theory, where the decoupling of the multiparticle states can
be seen explicitly [11]. This is an important if not
completely surprising result. Physically, it tells us that
QCD2A’s main shared feature with full QCD, namely its
nontrivial large-N limit, is absent if parton violation is
disallowed. Clearly, understanding how the parton sectors
interact and how the states are influenced is important to
figure out whether any of these mechanisms are realized in
four-dimensional QCD.
We will use the purity of states in parton number as a

measure of the importance of pair production. The authors
of Refs. [2,3] inferred that the lowest states of the theory are
very close to being eigenstates of the parton-number
operator. Looking at the mass versus ϵ plot, Fig. 3(a), it
appears that this is a by-product of the fact that the lowest
states are quite isolated in mass. Consequently, these states
are mostly inert with respect to admixtures from other
parton sectors, and pair production is not important for the
lowest states. However, since there are no (exact) multi-
particle states without pair production, it has to be crucial
for the other states. This importance may, however, not be
reflected in parton-number impurity.
In Fig. 3(a), there are two distinct behaviors when the

masses of two states are similar, MiðϵÞ ≈MjðϵÞ: either the
eigenvalues repel or they are not influencing each other at
all. To study these points, we plotted the average number of
partons hni in a state versus ϵ in Fig. 3(b). Although distinct
trajectories of several states are discernible, the plots give

FIG. 3. (a) The spectrum and (b) average parton number of the states in the T -odd bosonic sector as a function of the parton-number-
violation parameter ϵ.

7In general, only a linear combination of the analytic asymp-
totic wave functions will be an eigensolution.
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us little leverage to decide which are the single-particle
states. Whenever two states come close in mass, their other
properties become similar, too. Although it is interesting to
observe how some states “recover” from mixing at certain
values of ϵ, the underlying message seems to be that states
cannot be unambiguously identified as we continuously
turn on pair production. It is a little disturbing that the
function hniðϵÞ of the lowest T -odd boson exhibits a cusp
at ϵ ≈ 0.94. This seems to be a numerical artifact; the effect
diminishes as K grows.
The lowest T -odd fermion is a very pure five-

parton state. This begs the question whether the scheme8

continues. We do see evidence for it. In particular, there is a
pure six-parton state (up to ϵ ≈ 0.3 forK ¼ 24), and there is
a pure seven-parton state for ϵ < 0.6. Both states are T
even. We followed the development of these states at larger
resolution, and they seem to stabilize. Namely, they
become purer in parton number as ϵ and K grow [see
Fig. 2(b)]; the other states in this sector become less pure. If
we extrapolate the curves hniðϵ; KÞ towards the continuum,
we obtain hni ¼ 6 and hni ¼ 7, respectively. This suggests
the existence of a tower of infinitely many single-particle
states organized in a double “Regge” trajectory.

VI. IMPLICATIONS OF BOSONIZATION

The structure of the QCD2A spectrum is best understood
in terms of current operators Jð−pÞ ∼ R

dqbðqÞbðp − qÞ,
i.e. by looking at the bosonized theory [14]. Fermionic
states have an additional single fermion operator. The
eigenvalues are the same as in the fermionic picture,9

yet the eigenfunctions are not, due to the fact that
bosonization is a basis transformation. To find the sin-
gle-particle states it is sufficient to restrict calculations to
the single-trace sector [11]. As pointed out earlier, the
problem is that not all single-trace states are single-particle
states. Bosonization organizes the single-trace sector into
blocks with distinct numbers of single-fermion operators
(f ¼ 0; 1; 2;…), yet only the blocks with f ¼ 0; 1 give rise
to single-particle states [11]. The task to rid these blocks of
(approximate) multiparticle states to reveal the true, single-
particle content of the theory is hard. The problem is the
mixing of the approximate multiparticle states with the
single-particle states at any finite resolution.
We can quickly confirm that the above block diagonal-

ization is realized in any framework10 with discrete
momentum fractions. This exercise will make it easier to
understand the role of the approximate multiparticle states

by projecting out the exact multiparticle states. It requires
the construction of direct-product (DP) states of the form

jDPi ¼ Tr½Jn1ψJn2ψ � � � Jnsψ �j0i;

where Jn1 is a product of n1 current operators carrying, in
general, different (integer) momentum fractions, ψ ≡
bð−1=2Þ is a fermion operator of momentum fraction
1=2, and s > 1. Note that by constructing the DP states,
we explicitly show that in QCD2A one cannot identify
single-trace and single-particle states contrary to the ’t
Hooft model [9].
The dimension of the DP sector of the bosonized single-

trace sector plus the dimension of the (potential) single-
particle sectors add up to the dimension of the single-trace
sector in the fermion picture, for both the fermionic and the
bosonic sectors of the theory. For instance, for K ¼ 21=2
one has 1169 states in the fermionic picture, and 512 in the
bosonized theory. Counting direct product states of the
form jK1i ⊗ jK2i ⊗ � � � ⊗ jKsi (

P
jKj ¼ 21=2) one

arrives at 697, but 40 states of the form ½jK ¼ 7i�3 are
cyclically redundant; see Table I. This implies that cyclic
permutation of “constituent fermions” does not lead to
independent states, consistent with the behavior of the
bosonized states of the bosonic sector. For example, at
K ¼ 4, we have

Tr½Jð−2ÞψJð−1Þψ �j0i ¼ Tr½Jð−1ÞψJð−2Þψ �j0i;

up to terms with a lesser number of operators. Pauli
exclusion dictates that direct product states of identical
fermionic bound states, like Tr½fJð−nÞψg2�j0i, vanish.11
We note that the number of DP states implies that all states,
including the approximate multiparticle states, form DP
states, while the much smaller number of approximate
multiparticle states (maximally the sum of the dimensions
of the blocks with less than two single-fermion operators)
suggests that only some, most likely the single-particle
states, form those.
In sum, we have shown that bosonization casts approxi-

mate and exact multiparticle states into different sectors of
the theory. The important result of this section is that only
fermionic states of the form Tr½Jnψ �j0i form exact multi-
particle states, and therefore (likely) also the approximate
multiparticle states. This was conjectured initially based on
numerical work in the fermionic picture [4], then in the
bosonized theory [7], and has been confirmed with an
independent method recently [5]. Here it appears simply as
a consequence of the structure of the Fock space. The hope
is that this insight leads to a method to identify and
eliminate the approximate multiparticle states from the
f ¼ 0; 1 blocks to reveal the true content of the theory.

8Lowest single-particle states in the bosonic T þ, the fermionic
T þ, the bosonic T −, and the fermionic T − sectors are pure
two-, three-, four- and five-parton states, respectively.

9Although the expressions “bosonized theory” and “fermionic
picture” appear on unequal footing, they help to avoid ambiguous
expressions.

10We describe a DLCQ construction; analogous procedures
exist whenever the spatial dimension is compactified. 11For the general rule, see Ref. [2], Sec. III.
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VII. CONCLUSIONS

We have constructed an algebraic solution of the asymp-
totic approximation to QCD2A in the lowest parton sectors.
We were able to elucidate the impact of nonsingular parts of
the Hamiltonian on the spectrum, and presented a perturbative
calculation by smoothly turning on the parton-number-
violating operators. This allowed us to present evidence for
the existence of two linear “Regge” trajectories of single-
particle states, in accordancewith earlier and recentwork [5,7].
While we were not able to find a criterion to distinguish

single- from multiparticle states in general, we have pre-
sented several new facts that can be used towards finding the
single-particle spectrum of QCD2A. About the structure of
the spectrum we learned the following: all states form exact
multiparticle states, but only fermionic states with exactly
one fermionic operator form approximate multiparticle
states. Furthermore, coupling between parton sectors is a
necessary condition for the existence of multiparticle states.
Reference [15] cautions us not to read too much into

differences of approximations to the theory at finite reso-
lution. On the other hand, the appearance of multiparticle
states has been seen in two very different approaches [4,5],
and therefore hints at a framework-independent problem. In
classic DLCQ the Hamiltonian is block diagonal in reso-
lution, but the supersymmetry operators are not, as the
additional fermion has nonzero momentum at finite reso-
lution. Hence, spurious interactions between single- and
multiparticle states are induced to guarantee supersymmetry
at mSUSY ¼ g2N in the continuum limit, which make it hard
to separate them. Even a manifestly supersymmetric frame-
work like supersymmetric DLCQ [16] does not circumvent
the problem. The need to use periodic boundary conditions
induces other interactions, and leads to worse convergence
for massless fermions.
It may make sense to attempt to understand the spectrum

of the theory using supersymmetry, which is exact formSUSY

and “softly” broken otherwise [17]. One idea is to flesh out
the construction of wave functions by applying the super-
symmetry generator sketched in Ref. [1]. This should work
off the supersymmetric point [15] for the asymptotic theory.
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APPENDIX: PHYSICAL HILBERT SPACE

To solve the eigenvalue problem, Eq. (13), we need to
use a basis of the physical Hilbert space. Due to the cyclic
symmetry of states made of adjoint partons and the fixed,
total momentum set to unity, we have an integration volume
in the r-parton sector12

Z
1=r

0

dx1

�Yr−1
i¼2

Z
1−ðr−1Þx1−

P
i−1
j¼2

xj

x1

dxi

�
¼ 1

r!
:

It seems that we have singled out x1 and xr, but the wave
functions are cyclic in all momentum fractions which
eliminates this concern.
Our naive choice of states, the ansatz (20), is not

orthogonal on the physical Hilbert space for r > 3, and
thus constitutes an overcomplete basis. However, we can
find linear combinations which group the naive solutions
into 1=r! conjugacy classes orthogonal on the physical
Hilbert space. For r < 4 we are done, because the C; T
operators exhaust the possibilities. For r > 3 we have to
form linear combinations of 1

2
ðr − 1Þ! states.

TABLE I. Dimension of Fock bases in the fermionic picture and the bosonized theory. Fermionic (bosonic) states
are on the left (right).

Fermionic picture Bosonized theory DP Fermionic picture Bosonized theory DP

2K Tþ T− Tþ T− states K Tþ T− Tþ T− states

3 1 0 1 0 0 2 1 0 1 1 0
5 1 1 1 1 0 3 1 1 1 2 0
7 3 1 3 1 0 4 4 2 3 1 2
9 4 5 4 4 1 5 5 6 3 3 5
11 11 7 10 6 2 6 16 12 8 4 16
13 18 22 16 16 8 7 27 31 9 9 40
15 51 42 36 28 29 8 75 66 21 13 107
17 99 111 64 64 82 9 153 165 29 29 260
19 257 235 136 120 236 10 392 370 61 45 656
21 568 601 256 256 657 11 879 1791 93 93 1605
23 1421 1365 528 496 1762 12 2196 2142 191 159 3988
25 3312 3400 1048 1048 4664 13 5166 5254 315 315 9790
27 8209 8064 2080 2016 12177 14 12777 12632 622 558 24229

12We can ignore states eliminated by Pauli exclusion, since
they constitute a set of measure zero.
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