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The complex Langevin method in conjunction with the gauge cooling is applied to the two-dimensional
lattice SUð2Þ Yang-Mills theory that is analytically solvable. We obtain strong numerical evidence that at
large Langevin time the expectation value of the plaquette variable converges, but to a wrong value when
the complex phase of the gauge coupling is large.
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I. INTRODUCTION

As a possible approach to the functional integral with
complex measure, such as the one encountered in the finite
density QCD [1,2], the complex Langevin method [3–5]
has attracted much attention in recent years. This recent
interest was triggered mainly by the discovery of sufficient
conditions for the convergence of the method to a correct
answer [6,7]. Reference [8] is a review on recent develop-
ments. Roughly speaking, if the probability distribution of
configurations generated by the Langevin dynamics damps
sufficiently fast at infinity of configuration space, the
statistical average over the configurations is shown to be
identical to the integration over the original complex
measure. It has been observed that, in systems for which
the complex Langevin (CL) method converges to a wrong
answer (such as the three-dimensional XY model [9]), this
requirement of a sufficiently localized distribution is broken,
typically in “imaginary directions” in configuration space.
After the above understanding, a prescription in lattice

gauge theory that makes the probability distribution well
localized was proposed in Ref. [10]; the prescription is
termed “gauge cooling” and it proceeds as follows: The
link variables in lattice gauge theory are originally elements
of the compact gauge group SUðNÞ. When the (effective)
action is complex, however, the corresponding Langevin
evolution drives link variables into imaginary directions
and link variables become elements of SLðN;CÞ, a non-
compact gauge group.1 This evolution tends to make the
distribution wide in noncompact directions; in terms of the
SUðNÞ Lie algebra, those noncompact directions are para-
metrized by imaginary coordinates. At this point, one notes
that the definition of a physical observable that is invariant
under the original SUðNÞ gauge transformations can
always be tailored so that it is invariant also under the
noncompact SLðN;CÞ gauge transformations. The idea of
the gauge cooling is that by applying the SLðN;CÞ gauge
transformations appropriately along the complex Langevin

evolution, one squeezes the distribution well localized so
that the prerequisite of the convergence theorem [6,7] is
fulfiled without changing physical observables.
In a one-dimensional gauge model and in the four-

dimensional QCDwith heavy quarks, it has been confirmed
that the gauge cooling makes the distribution well localized
and the complex Langevin method gives rise to correct
answers [10]. More recently, this method was applied to
the full QCD at finite density [11]. See also Refs. [12–14].
One should note, however, that the Langevin dynamics
itself is defined on gauge noninvariant variables (i.e., link
variables) and also that the gauge cooling step cannot be
regarded as a Langevin evolution that is induced by a
holomorphic action; the latter is assumed in the conver-
gence theorem [6,7]. Strictly speaking, therefore, the
convergence theorem does not apply when the gauge
cooling is employed. The method should still be carefully
examined in various possible ways.
In the present paper, we apply the complex Langevin

method in conjunction with the gauge cooling to the
two-dimensional lattice Yang-Mills theory, which can be
analytically solved [15–17]. By doing this, we examine the
validity of the method. The partition function of the
two-dimensional Yang-Mills theory on the lattice is given by

Z ¼
Z �Y

x;μ

dUx;μ

�
e−S; ð1:1Þ

where Ux;μ are link variables defined on a two-dimensional
rectangular lattice, S is the lattice action,2

S ¼ −
β

2N

X
x

Tr½U01ðxÞ þU01ðxÞ−1�; ð1:2Þ

and the plaquette variable is defined by

UμνðxÞ ¼ Ux;μUxþμ̂;νU−1
xþν̂;μU

−1
x;ν: ð1:3Þ

For simplicity, we assume that the gauge group is SUð2Þ,
that is, Ux;μ ∈ SUð2Þ in the original integral (1.1). On the*hsuzuki@phys.kyushu‑u.ac.jp

1We will shortly describe the Langevin evolution of link
variables. 2Throughout this paper, N ¼ 2.
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other hand, when the gauge coupling β is complex, the
corresponding Langevin equation [Eq. (2.1) below] evolves
link variables as elements of SLð2;CÞ. Thus, the distinction
between U†

x;μ and U−1
x;μ becomes very important in the

complex Langevin dynamics. For the convergence theorem
in Refs. [6,7] to apply, the action S that generates the drift
force in the Langevin equation and physical observables
must be a holomorphic function of dynamical variables; our
above definitions (1.2)–(1.3) that entirely use U−1

x;μ not U
†
x;μ

are chosen by this criterion. Note also that the plaquette
action (1.2) is invariant under the SLð2;CÞ lattice gauge
transformations [such as the one in Eq. (2.4)].
We consider the expectation value of the plaquette

variable:

hTr½U01ðxÞ�i ¼
1

Z

Z �Y
x;μ

dUx;μ

�
e−STr½U01ðxÞ�: ð1:4Þ

Even if the gauge coupling β is complex, this can be exactly
computed by the character expansion [15–17]. Under
periodic boundary conditions, one yields

hTr½U01ðxÞ�i ¼ −
N
V

∂
∂β lnZ; Z ¼

X∞
n¼1

�
2

β
InðβÞ

�
V
;

ð1:5Þ

where InðxÞ denotes the modified Bessel function of the
first kind and V is the number of lattice points.

II. COMPLEX LANGEVIN METHOD AND THE
GAUGE COOLING

The following procedures are basically identical to the
ones adopted for the four-dimensional lattice QCD in
Ref. [11] for example, although our two-dimensional
pure-gauge system is much simpler.
For the link variable, the Langevin equation with a

discretized Langevin time twith the time step ϵ is defined by

Ux;μðtþ ϵÞ ¼ exp

�
i
X
a

λað
ffiffiffi
ϵ

p
ηa;x;μðtÞ − ϵDa;x;μSÞ

�
Ux;μðtÞ;

ð2:1Þ

where λa (a ¼ 1, 2, 3) are Pauli matrices, ηa;x;μðtÞ are
Gaussian real random numbers of the variant

hηa;x;μðtÞηb;y;νðt0Þi ¼ 2δabδxyδμνδtt0 ; ð2:2Þ

and Da;x;μS is the drift force generated by the action S in
Eq. (1.2); the derivative with respect to the link variable is
given by

Da;x;μfðUÞ ¼ ∂ξfðeiξλaUx;μÞjξ¼0
: ð2:3Þ

When the gauge coupling β is complex, the drift force
becomes complex and the Langevin evolution evolves link
variables as elements of SLð2;CÞ.
The above complex Langevin dynamics tends to make

the probability distribution function of link variables wide
in noncompact directions of SLð2;CÞ. To squeeze the
distribution well localized without changing gauge invari-
ant quantities, we apply the following SLð2;CÞ gauge
transformation (this step is the gauge cooling)

Ux;μ → U0
x;μ ¼ VxUx;μV−1

xþμ̂; ð2:4Þ

where

Vx ¼ e−ϵαf
x
aλa ;

fxa ¼ 2Tr

�
λa
X
μ

ðUx;μU
†
x;μ −U†

x−μ̂;μUx−μ̂;μÞ
�
; ð2:5Þ

and α > 0 is a real parameter. The distance defined by [18],

d ¼ 1

V

X
x;μ

1

N
TrðUx;μU

†
x;μ − 1Þ ≥ 0; ð2:6Þ

measures how a SLð2;CÞ gauge field is far away from the
subspace of SUð2Þ gauge fields. It is then straightforward
to see that for a sufficiently small ϵ, the gauge cooling (2.4)
decreases or does not change the distance d. Note that fxa
in Eq. (2.5) is not a holomorphic function of link variables
and thus the step (2.4) cannot be regarded as a part of the
complex Langevin dynamics in which the drift force is
generated by a holomorphic action; this fact prevents us
from applying the convergence theorem [6,7] to the above
procedures.

III. RESULT OF NUMERICAL SIMULATIONS

We numerically solved the Langevin equation with the
discretized Langevin time, Eq. (2.1), on a V ¼ 42 lattice.
Periodic boundary conditions are imposed. The maximal
size of the time step ϵ we adopted was 0.001 and, when the
drift force becomes large, we further reduced ϵ “adaptively”
according to the prescription in Ref. [19].
As the parameter α in the gauge cooling (2.5), we tried

both α ¼ 1 and the adaptive choice (see Ref. [8])

αad ¼
1

D
; D≡ 1

V

X
a;x

jfxaj þ 1: ð3:1Þ

Our numerical results did not show any notable difference
in these two choices and we present the results with the
latter choice in what follows.
To determine an appropriate rate of the gauge cooling

(2.4) along the Langevin evolution, we observed the time
evolution of the distance d (2.6) by changing the number
of the gauge cooling steps per one Langevin update (2.1).
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In Fig. 1, for β ¼ 0.4þ 2.0i, we plotted the evolution of the
distance d as the function of the Langevin time t by
changing the number of the gauge cooling steps per one
Langevin update as 10, 30, and 100.3 Since this plot shows
the evolution including the Langevin stochastic dynamics,
the distance d does not necessarily decrease. Since we do
not see much difference for those three choices, we adopted
ten gauge cooling steps per one Langevin update. With this
choice, the evolution of the distance d for various complex
gauge couplings, β ¼ 0.4þ 0.4i, 0.4þ 2.0i, 2.0þ 0.4i,
and 2.0þ 2.0i, looks as depicted in Fig. 2. It appears that
the gauge cooling is working perfectly for those complex
gauge couplings, suppressing the evolution to noncompact
imaginary directions.
Now we turn to the computation of the expectation value

of the plaquette, Eq. (1.4), by the complex Langevin
method. Starting from a configuration of random SUð2Þ
matrices, we discarded configurations until the Langevin
time t ¼ 11 for thermalization. Then 1000 configurations
separated by Δt ¼ 1 from t ¼ 11 to t ¼ 1010 are used to
compute the expectation value. For typical values of the
complex gauge coupling, we confirmed that the plaquette
values between configurations separated by Δt ¼ 1 practi-
cally have no autocorrelation. In Figs. 3 and 4, we plotted
the real and imaginary parts of the expectation value (1.4)
obtained by the CL method. The error bars are statistical
ones. The horizontal axis is the the complex phase θ of the
gauge coupling4 with the modulus 1.5:

β ¼ 1.5eiθ; 0 ≤ θ ≤ π=2: ð3:2Þ

The solid line curves are exact values given by Eq. (1.5).
We see that the complex Langevin method reproduces the
real part fairly well, while it clearly fails to converge to the
correct value of the imaginary part when the complex phase
of the gauge coupling is large.
The gradation plot in Fig. 5 shows the relative error

jhTr½U01ðxÞ�iCL − hTr½U01ðxÞ�iexactj
jhTr½U01ðxÞ�iexactj

ð3:3Þ

on the first quadrant of the complex β plane.5 The (quadrant)
circle in the figure is Eq. (3.2) along which Figs. 3 and 4 are

FIG. 1 (color online). Evolution of the distance d (2.6) for β ¼
0.4þ 2.0i with various numbers of the gauge cooling steps per
one Langevin update (2.1), 10, 30, and 100.

FIG. 2 (color online). Evolution of the distance d (2.6) for
various complex gauge couplings, β ¼ 0.4þ 0.4i, 0.4þ 2.0i,
2.0þ 0.4i, and 2.0þ 2.0i. The number of the gauge cooling steps
per one Langevin update (2.1) is 10.

FIG. 3 (color online). Real part of the expectation value (1.4)
obtained by the CL method and the exact value given by
Eq. (1.5). The horizontal axis is the complex phase θ of the
gauge coupling in Eq. (3.2).

3We define the Langevin time t such that it does not elapse
during the gauge cooling steps.

4When the gauge group is SUð2Þ, the partition function (1.1) is
invariant under β → −β. Because of this invariance and the
complex conjugation, it is sufficient to consider the range of the
phase, 0 ≤ θ ≤ π=2.

5The block around the origin β ¼ 0 is omitted from the plot
because hTr½U01ðxÞ�i ∼ 0 for β ∼ 0.
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plotted. Clearly, the relative error of the complex Langevin
method becomes large when the complex phase of the gauge
coupling becomes large. Four black crosses in the figure
indicate complex gauge couplings we used in Fig. 2; the
behavior in Fig. 2 thus suggests that the gauge cooling is
correctly working for the region of the complex gauge
coupling shown in Fig. 5. Nevertheless, the complex
Langevin method shows large deviation from the correct
value as in Fig. 4. This is the main result of the present paper.
A similar failure of the complex Langevin method for

large complex β has been observed; see Fig. 8 of Ref. [20].
This result of Ref. [20] is, however, for a one-dimensional
integral (not a gauge theory) and the validity of the gauge
cooling, which is our main issue in this paper, is not
relevant to this result of Ref. [20].

It is of interest how configurations generated by the
Langevin dynamics distribute in configuration space. To
give some idea on this point, in Figs. 6 and 7, we present
scatter plots of the plaquette variable (averaged over the
lattice volume) for each configuration. Both cases, with and
without the gauge cooling, are shown. Figure 6 is for
β ¼ 1.5eið0.3π=2Þ (i.e., θ ¼ 0.3π=2) and corresponds to
points in Figs. 3 and 4 with a relatively small complex
phase. Figure 7 is, on the other hand, for β ¼ 1.5eið0.7π=2Þ
(i.e., θ ¼ 0.7π=2) and corresponds to points in Figs. 3 and 4
with a large complex phase and with large deviation.
Although there is a tendency when the complex phase
of the gauge coupling is large for the distribution to become
somewhat wider even after the gauge cooling, it is not clear
from the scatter plot in Fig. 4 alone whether the distribution
is so poorly localized as to break the prerequisite of the
convergence theorem [6,7]. More detailed study is needed
on this point.

FIG. 4 (color online). Imaginary part of the expectation value
(1.4) obtained by the CL method and the exact value given by
Eq. (1.5). The horizontal axis is the complex phase θ of the gauge
coupling in Eq. (3.2).

FIG. 5 (color online). Gradation plot of the relative error (3.3)
on the complex β (the gauge coupling) plane. The block around
the origin β ¼ 0 is omitted from the plot. The quadrant is
Eq. (3.2) along which Figs. 3 and 4 are plotted. Four black
crosses indicate complex gauge couplings we used in Fig. 2.

FIG. 6 (color online). Distribution of the plaquette variable
averaged over the lattice volume. β ¼ 1.5eið0.3π=2Þ (θ ¼ 0.3π=2).

FIG. 7 (color online). Distribution of the plaquette variable
averaged over the lattice volume. β ¼ 1.5eið0.7π=2Þ (θ ¼ 0.7π=2).
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IV. CONCLUSION

In the present paper, we applied the complex Langevin
method in conjunction with the gauge cooling to the two-
dimensional lattice SUð2ÞYang-Mills theory. Our intention
was to examine the validity of the method by using this
analytically solvable model. Somewhat unexpectedly, as
shown in Figs. 4 and 5, we obtained strong numerical
evidence that the method fails to converge to the correct
value when the complex phase of the gauge coupling is
large. As we emphasized in the introduction, the conver-
gence proof of Refs. [6,7] does not necessarily apply when
the gauge cooling is employed; thus there is no contra-
diction even if the method leads to a wrong answer.
Nevertheless, it is not yet clear what causes the failure

for the gauge coupling with a large complex phase. To find
the resolution of the problem we found in the present study,
first we have to pin down what the real source of the failure
is. For this, consideration on the basis of another approach
to the functional integral with complex measure, the
Lefschetz thimble [21–25], might provide useful insight.
See also Ref. [26] for suggestive observations.
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