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We study the holographic supersymmetric Yang-Mills (SYM) theory, which is living in a hyperbolic
space, in terms of the entanglement entropy. The theory contains a parameter C corresponding to the
excitation of the SYM theory, and it controls the dynamical properties of the theory. The entanglement
temperature, Tent, is obtained by imposing the thermodynamic law for the relative entanglement entropy
and the energy density of the excitation. This temperature is available at any value of the parameter C even
in the region where the Hawking temperature disappears. With this new temperature, the dynamical
properties of the excited SYM theory are examined in terms of the thermodynamic law. We could find the
signatures of phase transitions of the theory.
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I. INTRODUCTION

The holographic approach is a powerful method to study
the nonperturbative properties of the strong coupling gauge
theories [1–3]. In this context, various attempts have been
performed to study the properties of the supersymmetric
Yang Mills (SYM) theory in the confinement phase.
Recently, the quantum information of strong coupling
theory has been studied through the holographic entangle-
ment entropy (SEE), which is very useful to investigate the
theory from the thermodynamic viewpoint by supposing
the thermodynamic law shown at high temperature [4–15].
As shown in [4,5], SEE is obtained by separating the

space to two regions A and its complement Ā as follows:

SEE ¼ AreaðγAÞ
4Gð5Þ

N

; ð1:1Þ

where γA denotes the minimal surface whose boundary is
defined by ∂A and the surface is extended into the bulk.

Gð5Þ
N ¼ Gð10Þ

N =ðπ3R5Þ denotes the five-dimensional Newton

constant reduced from the ten-dimensional one Gð10Þ
N . The

area is given as

AreaðγAÞ≡ SAreaðGð0Þ; XextÞ ¼
Z
γA

ddξ
ffiffiffi
g

p
; ð1:2Þ

where the induced metric gab on γA are defined as

g ¼ detðgabÞ; gab ¼ GMN
∂XM

∂ξa
∂XN

∂ξb : ð1:3Þ

The minimal surface γA is expressed by the profile Xext,
which is embedded in the bulk background defined byGð0Þ.
This formulation has been extended to the nonconformal
case in terms of the string frame metric by including
nontrivial dilaton [15]. Here, we consider the case of the
trivial dilaton and the five-dimensional compact space of
S5. Therefore, the above formula is enough.
At high temperature in the deconfinement phase, it is

well known that the entanglement entropy obtained as
above approaches the thermal entropy, which satisfies the
Bekenstein-Hawking relation, in the limit of large area for
the considered system. This fact is convinced in the high
temperature SYM theory, which is dual to the AdS5-
Schwarzschild gravity, and the temperature is defined by
the Hawking temperature in this case.
On the other hand, in general, the temperature cannot be

defined as the Hawking temperature in the confinement
phase. SEE is however calculable by using the same formula
with (1.1). In other words, the above formula with (1.1) for
SEE is useful both in the confinement and the deconfine-
ment phases. In order to see the thermodynamical proper-
ties clearly, the calculations are performed for the large area
limit of γA for the theory which contains a parameter C
corresponding to the excitation of the theory from its
vacuum state.1 The energy momentum tensor of this theory
is described by this parameter. By the holographic renorm-
alization method [20–22], it has been given in [23]. Using
this energy density, the entanglement temperature (Tent) for
the excited state is calculated according to the method given
in [10]. Tent can be defined even if the state is in the
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1This parameter has been first introduced in the scenario of the
brane world [16–19]. However, its role in the present holographic
case is different from the case of the brane world.
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confinement phase as far as the excitation due to C exists.
Therefore the properties of the theory can be investigated
thermodynamically by using this new temperature Tent for
over all regions of the parameter C.
Our purpose is to investigate the dynamical properties of

the excited SYM theories, which could have a rich phase
structure, by using the thermodynamic laws represented by
the temperature Tent. The merit of using this temperature is
that Tent is available in all the regions of the excitation
parameter. Through the analysis given here, we could show
the important signs of the phase transitions, which have
been indicated by performing the nonthermodynamic holo-
graphic analysis [23,24]. This indicates that the entangle-
ment temperature Tent is useful to study the dynamics of the
excited state thermodynamically even if the Hawking
temperature disappears.
The outline of this paper is as follows. In the next

section, how Tent is defined is explained. In the Sec. III, the
holographic SYM theory with the parameter C, which is
mentioned above, is reviewed, and then the energy momen-
tum tensors are given. In the Sec. IV, the entanglement
entropy is calculated in our model and discussed in many
points through an approximate form. In Sec. V, entangle-
ment temperature Tent is given. Then its meaning and the
thermodynamic investigations for the two phase transitions
of the theory are discussed. The summary and discussions
are given in the final section.

II. ENTANGLEMENT TEMPERATURE

The thermodynamic relation of SEE and the energy
density of the system has been related by introducing
the modular Hamiltonian (H) as [8]

ΔSEE ¼ ΔH; ð2:1Þ

ρ ¼ e−H; ð2:2Þ
where H is defined as above by the density matrix ρ which
determines the entanglement entropy as SEE ¼ −Trρ ln ρ.
In the above, usually, the infinitesimal increasing of SEE

and H are given as

ΔSEE ¼ SEEðGð0Þ þ δG;Xð0ÞÞ − SEEðGð0Þ; Xð0ÞÞ

¼
Z

ddξ
ffiffiffi
g

p
gijδgij; ð2:3Þ

for SEE, and for the modular Hamiltonian,

ΔH ¼
Z

ddξ
ffiffiffiffiffiffiffi
gð0Þ

q
βδhT00i; ð2:4Þ

where Gð0Þ denotes a solution of the (dþ 1)-dimensional
bulk gravity which is dual to the corresponding d-
dimensional field theory, and Xð0Þ represents the profile
Xext of the minimal surface embedded in the bulk

determined by Gð0Þ. The energy density hT00i of the
boundary theory is obtained according to the holographic
method for a given Gð0Þ [20,21]. The metric on the
boundary is denoted by gð0Þð≠ gÞ. Do not confuse gð0Þ
with the induced metric g here. The factor β is introduced as
the temperature β ¼ 1=T. However, in this formulation, it
may depend on the coordinates on the boundary and the
shape of ∂A as shown in the case of the CFT.
Actually, in the case that Gð0Þ is given by AdS5, the

temperature 1=β is obtained as follows according to [14].
The modular Hamiltonian for a ball-shaped region with
radius l in the Minkowski space is given as [8]

H ¼ 2π

Z
ddx

l2 − r2d
2l

T00ðxÞ; ð2:5Þ

where rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ � � � ðxdÞ2

p
. This implies the temper-

ature defined above as

β≡ 1

Tent
¼ 2π

l2 − r2d
2l

ð2:6Þ

for this CFT case. Both Tent and T00 are dependent on the
coordinate on the boundary. Then it is difficult to imagine a
thermodynamic picture for the deviation δgμν which is in
general a complicated function of coordinates.
We notice that the above deviations of SEE and H are

obtained in the linear order of δG. In this case, it has been
shown that the relation (2.1) is always satisfied when δG
satisfies the linearized five-dimensional Einstein equation
under the background Gð0Þ [13].
On the other hand, consider a global excitation as studied

in [10],

hT00i ¼ mR3=ð4πGð5Þ
N Þ; ð2:7Þ

where m denotes a parameter corresponding to the
excitation in the vacuum four-dimensional Minkowski
space-time. In this case, the bulk metric near the boundary
(z ∼ 0) is given as

ds2 ¼
�
R
z

�
2
�
−

1

fðzÞ dt
2 þ fðzÞdz2 þ

X3
i¼1

dxi2
�
;

fðzÞ ¼ 1þmz4 þ � � � ð2:8Þ
Then consider the deviations of SEE and H for small m
within the linear order of m (not for the metric deviation
δG). In this case, we obtain

ΔSEE ¼ ∂mSEEðGð0ÞðmÞ; Xð0ÞÞjm¼0

¼ β

Z
dxd

ffiffiffiffiffiffiffi
gð0Þ

q
∂mhT00ijm¼0; ð2:9Þ

where β ¼ 1=Tent is written outside of the integration by
assuming it as a constant. This assumption seems to be
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reasonable since the deviation of (2.7) is independent of the
boundary coordinates. This implies that the excitation of
the system can be observed uniformly through the global
temperature Tent which is independent of the coordinate.
We should say however that the entanglement temperature
β would generally depend on the choice of the entangle-
ment region. So the above setting of Eq. (2.9) would be
restricted to some special cases of the excitation.
Within the linear approximation for the parameterm, it is

possible to estimate Tent. For the case of a ball-shaped
region with radius l of the Minkowski space, it is given for
small l as follows [10],

Tent ¼
5

2π

1

l
: ð2:10Þ

For more general cases of global hTμνi, a similar evaluation
of Tent is obtained for small l [10–12].
For large l, however, it is necessary to give the metric

form at large z up to the deep infrared region. Furthermore,
we need to obtain the profile function of the minimal
surface in the infrared region. Up to now, there has been
little research in this direction. Our main purpose is to
extend this approach to the infrared region or to the large
size area. We define the temperature Tent at any value of the
parameter m which expresses the excitation of the system.2

In the above CFT example, the excitation is seen from the
vacuum, m ¼ 0, to the excited state with small m. So Tent
can be defined at m ¼ 0 as a limit of m → 0. In our
approach, on the other hand, we could define the temper-
ature TentðmÞ at any m by comparing SEEðmÞ and
SEEðmþ δmÞ. As explained below, this is possible since
we have a holographic solution in which the parameterm is
arbitrary. Thus we can study the thermal properties of the
excited state at any value of m.
The definition of the entanglement temperature TentðαÞ is

performed by using the relative entropy and the thermo-
dynamic first law as follows. Here the parameter m is
generalized to α, and then the energy momentum of the
excitation is denoted as hTμνðαÞi.The details of this
formulation are seen in [8,13] for the case of CFT. The
relative entropy SEEðρ1jρ0Þ is related to ΔH and ΔSEE as
follows [9,10],

Sðρ1jρ0Þ ¼ ΔH − ΔS ≥ 0; ð2:11Þ
for two density matrices ρ1 and ρ0. Consider the case that
the density matrices introduced above are characterized by
the parameters α as follows:

ρ1 ¼ ρðα1Þ; ρ0 ¼ ρðα0Þ; ð2:12Þ

where we suppose

α1 ¼ α0 þ δα: ð2:13Þ

In the case of infinitesimally small δα, we find the
following relation,

ΔSEE ¼ ∂αSEE ¼ ΔH ð2:14Þ

at α ¼ α0, namely in the limit of δα ¼ 0. Further, suppos-
ing that the parameter α is global, we can set the following
relation,

ΔH ¼
Z

ddξ
ffiffiffiffiffiffiffi
gð0Þ

q
βδhT00i

¼ βðαÞ
Z

ddξ
ffiffiffiffiffiffiffi
gð0Þ

q
∂αhT00ijα¼α0

; ð2:15Þ

which has the same form with (2.4). We notice that the
second equation of (2.15) is obtained supposing the
uniformity of β according to the above equation (2.9).
This setting seems to be consistent with our analysis
given here.3

Finally, we arrive at the following formula for the
entanglement temperature:

Tα
entðα0Þ ¼

R
ddξ

ffiffiffiffiffiffiffi
gð0Þ

p ∂hT00i∂α
∂S
∂α

����
α¼α0

: ð2:16Þ

As mentioned above, notice that this temperature does not
depend on the coordinate but does depend on the param-
eter, α0, which determines the excited state of the theory.
Furthermore, the above formula (2.16) is available at any
α0. So it is possible to obtain TentðαÞ as a function of α.

III. GRAVITY DUAL OF EXCITED SYM THEORY

A. Model

The holographic dual to the large N gauge theory
embedded in Friedmann-Robertson-Walker (FRW) space-
time with two parameters is given as the following form of
ten-dimensional metric [23],

ds210 ¼
r2

R2
ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ

þ R2

r2
dr2 þ R2dΩ2

5: ð3:1Þ

γijðxÞ ¼ δij

�
1þ k

r̄2

4r̄02

�−2
; r̄2 ¼

X3
i¼1

ðxiÞ2; ð3:2Þ

2We notice that the parameter m is used here as a symbolic
quantity of the excitation.

3For our present case, the ingredients to realize the Eq. (2.15)
are considered as the following. The excitation parameter is a
global constant and then the energy density of the excitation is
also global. Furthermore, a large volume limit of entanglement
region is considered here.
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where k ¼ �1, or 0. The scale parameter of three space is
denoted by r̄0. The solution is obtained within the ten-
dimensional supergravity of type IIB theory as follows:

Ā ¼
��

1þ
�
r0
r

�
2
�

2

þ
�
b0
r

�
4
�

1=2
; ð3:3Þ

n̄ ¼ ð1þ ðr0r Þ2Þ2 − ðb0r Þ4ffiffiffiffī
A

p ; ð3:4Þ

r0 ¼
R2

2

ffiffiffiffiffi
jλj

p
; b0 ¼

R
a0

�
CR2

4

�
1=4

: ð3:5Þ

Two dimensionful parameters, λ and C, are introduced in
solving the equation of motion. The parameter C, which is
called the “dark radiation,” is introduced as an integration
constant. On the other hand, the dark energy λ, which
corresponds to the four-dimensional cosmological con-
stant, is introduced by the following relation,

�
_a0
a0

�
2

þ k
a20

¼ λ; ð3:6Þ

in solving the bulk Einstein equation. We should notice that
the above equation is not introduced to solve the four-
dimensional Einstein equations with the four-dimensional
cosmological constant. Although the value of λ is arbitrary,
the above bulk solution is considered for the negative value
of λð¼ −jλj < 0Þ in order to study the parameter region
where the phase transition occurs.
Here we comment on the time dependence of the scale

factor a0ðtÞ. Its time dependent form is given by solving
(3.6). In our analysis, we consider the case of very small
time derivative of a0ðtÞ for simplicity. For the sake of the
justification of our assumption for a0ðtÞ, we should say that
the solution of constant a0 is supposed here as a0 ¼
1=

ffiffiffiffiffijλjp
, which is allowed for negative constant λ when

we take k ¼ −1.
Then the theory is considered in the three-dimensional

hyperbolic space. In this case, for a fixed jλj, the theory
shows two phase transitions with increasing C [25,26]. At
small C, the theory is in the confinement and broken chiral
symmetry phase [(A)]. With increasing C, deconfinement
and broken chiral symmetry phase [(B)] appears. Finally
deconfinement and restoration of the chiral symmetry
phase [(C)] is realized. In terms of ðr0; b0Þ, these phases
are assigned as

ðAÞ b0 < r0; ðBÞ r0 < b0 < 1.31r0;

ðCÞ 1.31r0 < b0: ð3:7Þ

The transition from (B) to (C) has been discussed in [26].
Then we expect that the dynamical properties of each phase
of the theory would be observed also as thermodynamic

properties in terms of the entanglement temperature which
is defined by using the excitation corresponding to C.

B. Energy momentum tensor and meaning of C

For later convenience, we show the four-dimensional
stress tensor of the dual field theory for the present model.
It has been given in [23], according to the holographic
renormalization method [20,21] based on the Fefferman-
Graham framework [20–22]. We obtain the following
results,

hTμνi ¼ h ~Tð0Þ
μν i þ 4R3

16πGð5Þ
N

�
3λ2

16
ð1;−gð0ÞijÞ

�
: ð3:8Þ

h ~Tð0Þ
μν i ¼ 4R3

16πGð5Þ
N

~c0
R4

ð3; gð0ÞijÞ; ð3:9Þ

where Gð5Þ
N ¼ 8π3α04gs=R5, R4 ¼ 4πNα02gs and gð0Þij

denotes the three-dimensional metric on the boundary.

The first part, h ~Tð0Þ
μν i, comes from the conformal YM fields

given in [27]. The second term corresponding to the loop
corrections of the YM fields leads to the conformal
anomaly as follows:

hTμ
μi ¼ −

3λ2

8π2
N2: ð3:10Þ

Next, we notice the holographic meaning of the dark
radiation C. The situation is different from the case of
the brane cosmology. Its meaning is clearly understood at
jλj ¼ 0 or r0 ¼ 0, where we find the AdS-Schwarzschild
metric. Then the Hawking temperature is found as

THjr0¼0 ≡ Tð0Þ
H ¼

ffiffiffi
2

p
b0

πR2
: ð3:11Þ

The energy density is given as

ρ ¼ hT00i ¼
3N2

8π2
Tð0Þ
H

4; ð3:12Þ

which represents the Stefan-Boltzmann law of the radia-
tion. This implies that C corresponds to the thermal
radiation of SYM fields in the four-dimensional Minkowski
space-time.
In the present case, however, we are considering the

SYM theory in the four-dimensional curved space-time
which is characterized by λ. Then the relations (3.11)–
(3.12) are modified by the curvature. As a result, the
meaning of C might be changed. In the deconfinement
phases, (B)–(C) with jλj ≠ 0, C still represents the thermal
SYM fields. However the formula (3.11) is modified as
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TH ¼
ffiffiffi
2

p
b0

πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0=b0Þ2

q
: ð3:13Þ

In the confinement phase (A), on the other hand, the
temperature TH disappears even if C ≠ 0. Then we expect
that the glueball-like matter may be represented by C. We
could find a hint for this expectation by studying the
entanglement entropy in these different phases by changing
the value of C.

IV. ENTANGLEMENT ENTROPY

In order to estimate Tent, we first examine the entangle-
ment entropy for a sphere with radius p0.

A. Minimal surface

For the case of the present holographic theory, from
(3.1), the spatial part of the bulk metric is rewritten as

ds2space ¼
1

R2

�
r2 þ 2r20 þ

r4c
r2

�
ds2FRW3

þ R2

r2
dr2 þ R2dΩ2

5;

ð4:1Þ
where

ds2FRW3
¼ a20ðtÞγ2ðdp2 þ p2dΩ2

2Þ; ð4:2Þ

p ¼ r̄
r̄0
; γ ¼ 1=ð1 − p2=4Þ; ð4:3Þ

and rc is defined as

rc ≡ ðb40 þ r40Þ1=4: ð4:4Þ
We used this coordinate since it is useful to study the large
scale region by the finite radial coordinate p. In the
Appendix, we give a small comment of this coordinate.
As shown below, the point r ¼ rc is called the domain

wall since the profile of the minimal surface cannot
penetrate this point to the infrared region. Namely the
solution is restricted to the region rc < r < ∞.
Here, for convenience, we change the variable r to z as

z ¼ r2c=r; ð4:5Þ
so it will be restricted to 0 < z < rc. In this case, the spatial
part of the bulk metric (4.1) is rewritten as

ds2space ¼
1

R2

�
z2 þ 2r20 þ

r4c
z2

�
ds2FRW3

þ R2

z2
dz2 þ R2dΩ2

5:

ð4:6Þ
We consider an entangling surface at z ¼ 0 as a ball with

the radius p0. Here the profile of the minimal surface in the
bulk is set by pðzÞ which is determined later. Then the area
of the minimal surface with this boundary, as shown in the
Fig. 1, is given by [25]

SArea
4π

¼
Z

zðp¼0Þ

0

dzLðzÞ; ð4:7Þ

where

LðzÞ≡ pðzÞ2B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp0ðzÞ2 þ R2

z2

s
; ð4:8Þ

and

B≡ a20γ
2

R2

�
z2 þ r4c

z2
þ 2r20

	
: ð4:9Þ

By solving the variational equation, which is obtained
from (4.7), we can get the profile pðzÞ of the minimal
surface. The numerical solutions for confinement phase
(b0 < r0) and deconfinement phase (r0 ≤ b0) are shown in
Fig. 2 where p0 denotes the ball radius,

p0 ≡ pðz ¼ 0Þ ≤ 2: ð4:10Þ
The upper bound comes from its definition.
From these numerical results, we can see that the profile

function pðzÞ approaches the rectangle form, namely the
bottom line (z ¼ const) and the side lines (p ¼ const)
which are given as

z ¼ zb; p ¼ p0; ð4:11Þ
respectively, where p0 approaches to the upper limit
p0 ¼ 2.0. This behavior is proved as follows. The above
Eq. (4.7) is rewritten as

SArea
4π

¼
Z

p0

0

dpLðpÞ; ð4:12Þ

where

LðpÞ≡ p2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2 _z2ðpÞ

z2ðpÞ

s
; _zðpÞ ¼ ∂zðpÞ

∂p ; ð4:13Þ

and B is the same form as the one given by (4.9).

FIG. 1 (color online). The minimal surface γA is shown
schematically.
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In this case, the configuration for the minimal surface is
obtained by solving the equation of motion for zðpÞ which
is derived from the above action as

∂
∂zðpÞ

0
@p2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

z2
_z2ðpÞ

s 1
A

−
∂
∂p

0
B@ p2BR2

z2 _zðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

z2 _z
2ðpÞ

q
1
CA ¼ 0: ð4:14Þ

Now, we concentrate on near the top of the minimal
surface, namely near p ¼ 0. Here, the following relations

_zð0Þ ¼ 0; and ̈zð0Þ < 0 ð4:15Þ
should be satisfied. From Eq. (4.14), we find the following
equation,

a20γ
2

R2
zb

�
1 −

r4c
z4b

�
¼ R2

3z2b
̈zð0Þ; ð4:16Þ

where _zð0Þ ¼ 0 is imposed. Then we find

zb ≤ rc ¼ ðb40 þ r40Þ1=4 ð4:17Þ
to satisfy the second condition of (4.15). This implies that
the upper bound of z is given by rc, which is called here the
“domain wall”.
We notice the relation of the positions of the domain wall

rc and the horizon rH. The latter appears only in the
deconfinement phase. By setting zH ≡ r2c=rH, we find

z4H − r4c ¼ 2b20r
2
0

�
zH
rc

�
4

≥ 0: ð4:18Þ

This implies that the domain wall rc is smaller than the
horizon zH. Then the minimal surface could not reach the

horizon even if it appears. This fact implies that the form of
the minimal surface is always connected. This point is
important in this analysis.

B. Entanglement entropy in the infrared limit

In [15], it has been pointed out that the configuration of
the minimal surface changes from the connected one to the
disconnected one in the confinement phase. In our case, we
find no such topological change of the minimal surface
configuration. The minimal surface has the connected form
for all regions of p0 though the theory is in the confinement
phase for b0=r0 < 1. This fact is not contradicted by the
statement of [15] since both the bulk geometry and the
shape of the divided region in our case are different from
those studied in [15].
In order to estimate the entanglement entropy by an

approximate formula, it is considered in the infrared limit
of p0 → 2. In this limit, the minimal surface is estimated by
substituting the obtained profile function zðpÞ in Eq. (4.12).
At the limit of p0 → 2, as shown above, the profile is
approximated by the rectangle form (4.11). Thus SArea of
(4.12) can be approximated as

SArea
4π

¼
Z

p0

0;z¼zb;∂z=∂p¼0

dpp2B3=2

þ
Z

zb

0;p¼p0;∂p=∂z¼0

dzp2B
R2

z
ð4:19Þ

¼
Z

p0

0

dpp2

�
a20γ

2

R2
fðzbÞ

�
3=2

þ
Z

zb

0

dzp2
0a

2
0γ

2ðp0ÞgðzÞ ð4:20Þ

where

0.0 0.5 1.0 1.5 2.0
p0.0

0.5

1.0

1.5

2.0

2.5
z

0.0 0.5 1.0 1.5 2.0
p0.0

0.5

1.0

1.5

2.0

2.5
z

FIG. 2 (color online). Left phase: embedded solutions for pðzÞ for p0 ¼ 0.5, 1.9 and 1.99 with r0 ¼ R ¼ 1, a0 ¼ 0.5, b0 ¼ 0.5ð< 1Þ.
The blue line is the domain wall rc ¼ 1.02. Right phase: Embedded solutions for pðzÞ for p0 ¼ 0.5, 1.9 and p0 ¼ 1.99with r0 ¼ R ¼ 1,
a0 ¼ 0.5, b0 ¼ 1.5ð> 1Þ. The blue line is the domain wall rc ¼ 1.57 and the dashed blue line is the event horizon zH ¼ 2.20.
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fðzbÞ ¼ z2b þ
r4c
z2b

þ 2r20; ð4:21Þ

gðzÞ ¼ zþ r4c
z3

þ 2
r20
z
: ð4:22Þ

Here we notice that the first term is dominant for p0 → 2
since it increases with the volume of A. On the other hand,
the second term increases with the surface of A. We could
see that the first term has its minimum at zb ¼ rc from the
form of fðzbÞ given above. Then we could understand that
the value rc corresponds to the domain wall for the minimal
surface.
Another point to be noticed is that rc is larger than the

horizon rH in the deconfinement phase. Then the minimal
surface bounded at r ¼ ∞ could not touch rH and there
appears no disconnected surface as mentioned above.
We estimate the area of the minimal surface SArea by

separating into two parts as follows,

SArea
4π

¼ Ibottom þ Iside; ð4:23Þ

Ibottom ¼
Z

p0

0

dpp2

�
a20γ

2

R2
fðzbÞ

�
3=2

; ð4:24Þ

Iside ¼
Z

zb

0

dzp2
0a

2
0γ

2ðp0ÞgðzÞ: ð4:25Þ

The two parts, Ibottom and Iside, are corresponding to the
parts of z ¼ zb and p ¼ p0 respectively. The first term is
given as

Ibottom ¼ V̄ð3Þ
4πR3

2
ffiffiffi
2

p
ð1þ hÞ3=2; ð4:26Þ

V̄ð3Þ ¼
πR6

2

Z
p0

0

dpp2γ3ðpÞ; ð4:27Þ

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b40

r40

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

R2

r
; ð4:28Þ

where we used

a0 ¼
1ffiffiffiffiffijλjp ¼ R2

2r0
: ð4:29Þ

It is noticed that Ibottom
4 does not contain the parameter r0

or λ. Then the first term is expressed byC only. This point is
important as seen below.

As for the second term Iside, it can be evaluated by
introducing ultraviolet cutoff ϵ as

Iside ¼ a20p
2
0γ

2ðp0Þ
�
z2b
2
−

r4c
2z2b

þ 2r20 ln
zb
rc

−
ϵ2

2
þ r4c
2ϵ2

− 2r20 ln
ϵ

rc

�
: ð4:30Þ

Here we take the limit of ϵ → 0 by subtracting two
divergent terms and we get

Iside ¼ a20p
2
0γ

2ðp0Þ
�
z2b
2
−

r4c
2z2b

þ 2r20 ln
zb
rc

�
þ Fs: ð4:31Þ

This last term Fs denotes an ambiguity of the subtraction.
This is usually determined by appropriate boundary con-
ditions or the renormalization conditions.
Our purpose is to see the change of the entanglement

entropy when the excitation C increases, so we take the
following boundary condition:

SArea
4π

����
zb¼rc;C¼0

¼ 0: ð4:32Þ

Then we find

Fs ¼ 8
V̄ð3Þ
4πR3

; ð4:33Þ

and by setting zb ¼ rc, SArea is given as

SArea
4π

¼ 8
V̄ð3Þ
4πR3

��
1þ h
2

�
3=2

− 1

�
: ð4:34Þ

As for this result, we notice the following points:
(i) The result (4.34) indicates that the minimal surface

SArea is independent of r0. This implies that the
entanglement temperature is determined by chang-
ing b0 since the entanglement entropy is controlled
only by b0. The change of λ is related to the change
of the mass of the excited state and the vacuum
energy as seen below.

(ii) At large C (or equivalently at large b0), we find

SEE ¼ SArea=Vð3Þ
4Gð5Þ

N

¼ π2

2
N2T3

H: ð4:35Þ

This indicates the entanglement entropy at large
scale limit satisfies the thermodynamic relation,

∂U
∂SEE ¼ T ð4:36Þ

where T ¼ TH and

4Notice that, at the limit of p0 ¼ 2, the three volume is
divergent as

2V̄ð3Þ
πR6

¼
Z

p0

0

γ3p2dp ¼ 1

2
a30

�
4p0ð4þ p2

0Þ
ðp2

0 − 4Þ2 þ log
2 − p0

2þ p0

�
:
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U ¼ hT00i ¼
3π3R3

16Gð5Þ
N

T4
H: ð4:37Þ

The above formula for hT00i is obtained at large
C [23].

(iii) The resultant form of the minimal surface is deter-
mined only by the first term of (4.23), which
represents the bottom part of the surface. In other
words, the entropy of the excitations due to the dark
radiation is given by the area at the bottom.

C. About the logarithmic divergent term

We comment on the divergent terms in SArea. They are
found in Iside as

Isidejdiv ¼ a20p
2
0γ

2ðp0Þ
�
r4c
2ϵ2

− 2r20 ln
ϵ

rc

�
: ð4:38Þ

However, this is not equivalent to the one given in [25].
The coefficient of the logarithmic divergent term is
slightly different from the above formula (4.38). This
point is improved by adding a correction term in Iside,
which is roughly approximated. In getting (4.38), we have
approximated as

p2a20γ
2ðpÞ ¼ p2

0a
2
0γ

2ðp0Þ: ð4:39Þ

Then the integration with respect to z is performed. This
procedure corresponds to adopting the approximation of
pðzÞ ¼ p0. On the other hand, gðzÞ has a term proportional
to 1=z3 and we must retain the terms up to z2 in (4.39) in
order to see the logarithmic divergent terms.
Near z ¼ 0, the asymptotic solution can be obtained

as [25]

p ¼ p0 þ p2z2 þ p4z4 þ p4Lz4 log z � � � ; ð4:40Þ

where p4 is an arbitrary constant. p2 and p4L are
determined as

p2 ¼ −
ð1 − ðp2

0=4Þ2ÞR3

2a20p0r4c
;

p4L ¼ −
ð1 − ðp2

0=4Þ2ÞR8 _a20
4a40p0r8c

: ð4:41Þ

Then, instead of (4.25), we obtain

Iside−2 ¼
Z

zb

0

dzp2
0a

2
0γ

2ðp0Þð1þ s2z2ÞgðzÞ; ð4:42Þ

s2 ¼
2ð1þ p2

0=4Þ
p0ð1 − p2

0=4Þ
p2: ð4:43Þ

In this case we have the divergent term as

Iside−2jdiv
¼ a20p

2
0γ

2ðp0Þ
�
r4c
2ϵ2

þ
�ð1þ p2

0=4Þ2
2a20p

2
0

R3 − 2r20

�
ln

ϵ

rc

�
:

ð4:44Þ

Then we could find the familiar formula,

SArea

4Gð5Þ
N

¼ N2 ln ϵþ � � � : ð4:45Þ

So we could see the correct form of logarithmic
divergence contribution by using the higher order term
of pðzÞ with respect to z. However, this is useful in the
region of small z, and we should be careful about this
expansion to large z ∼ zb with large b0. So hereafter we
adopt the formula (4.25) in this discussion.

V. EXCITATION AND ENTANGLEMENT
TEMPERATURE

A. Entanglement temperature

We calculate the entanglement temperature for the
excitation in the SYM theory given above. The global
temperature Tent is calculated according to the formula
(2.16) by replacing the parameter α with b0. Then the
meaning and the role of Tent are investigated for our model
in the confinement phase as well as in the deconfinement
phase. In the latter case, as pointed above, the entanglement
temperature Tent approaches the Hawking temperature TH
at large b0 and infrared limit, namely for the large scale
minimal surface [10]. We could also see this behavior in
our model.
On the other hand, in the confinement phase, TH

disappears and then Tent would be used to measure the
energy of the system due to the excitation of the SYM fields
in the form of the glueballs. We therefore expect that
the mass of the glueball will be related to Tent in the
confinement phase in some way.
In the ultraviolet region, namely at small p0, we expect

the following behavior as given for the deconfining theory
in [10],

Tent ¼
c0
p0

; ð5:1Þ

where c0 is a calculable number. The reason why this is
expected is that the dynamical properties in the infrared
region would not affect the quantities at short range
physics. In fact we could see it numerically. Here our
purpose is to examine the properties at the infrared limit of
p0 ∼ 2 by using an approximate and simple form of the
minimal surface given in our analysis.
In our model, there are two parameters, b0 and r0, as the

candidates for the above α, which are used to define the
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relative entropy, in (2.16). Both b0 and r0 may be
considered as such parameters. However, as seen from
Eq. (4.34), the entanglement entropy is expressed as a
function of x4ð¼ b40=r

4
0Þ which is rewritten as

x4 ¼
�
b0
r0

�
4

¼ 4
C
R2

; ð5:2Þ

where C represents the excitation of the SYM fields. This
means that the entanglement temperature Tent, which
should reflect the excitation of the system, is determined
by the parameter C only. In other words, it is controlled
only by the parameter b0. Thus, according to (2.16), we
have the entanglement temperature Tent as follows:

Tb0
entðb0; r0Þ≡ Tb0

ent ¼
R
ddξ

ffiffiffiffiffiffiffi
gð0Þ

p ∂hT00i∂b0
∂S
∂b0

: ð5:3Þ

In the limit of p0 → 2.0, the maximum of p0, we obtain the
following result,

Tb0
ent ¼

ffiffiffi
2

p
r0

πR2

hffiffiffiffiffiffiffiffiffiffiffi
1þ h

p ; ð5:4Þ

where we used (4.34).
In order to make clear the difference between Tent and

TH, we compare them. Here and in the followings, Tb0
ent and

the Hawking temperature THðr0Þ, which is given in (3.13),
are denoted simply as Tent and TH respectively. They are
shown in Fig. 3, which shows that TH < Tent and Tent
approaches TH from the above at large b0. The ratio of the
two temperatures is expressed as

TH=Tent ¼
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þð1þ hÞ

q
< 1: ð5:5Þ

Then, at high temperature, we can use both temperatures to
examine the thermodynamic properties of the excited system.
On the other hand, while TH cannot be defined in the

small b0ð< r0Þ region of the confinement phase (A), Tent

survives in this region and can be defined in all regions
where the excitation due to C exists. So we use Tent instead
of TH to see the thermo-dynamical properties in the whole
region of C. In other words, it would be possible to extend
the thermodynamic viewpoint by using the new temper-
ature Tent. From this viewpoint, our model is studied
thermodynamically in terms of Tent as follows.

B. Thermodynamic properties in terms of Tent

In order to see the thermodynamic properties of the
excitation, we consider the quantities given by the
following equations,

Eðb0Þ=T4
ent ¼

3π2

8
N2fUðxÞ; fUðxÞ ¼

ð1þ hÞ2
h4

ðh2 − 1Þ;

hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

p
; ð5:6Þ

SEE=T3
ent ¼

π2

2
N2fSðxÞ;

fSðxÞ ¼
ð1þ hÞ3=2

h3
ðð1þ hÞ3=2 − 2

ffiffiffi
2

p
Þ; ð5:7Þ

where Tent is given by (5.4) and

Eðb0Þ≡ hT00i − hT00ijb0¼0: ð5:8Þ

We investigate the above quantities, fU and fS, along the
value of b0.
At large b0:
We notice that the usual thermodynamic relations, (4.35)

and (4.37), are obtained at large b0 (or small r0), where we
find fU → 1, fS → 1, and Tent → TH. Then, at large b0,
these two relations approach the one obtained at high
temperature deconfining phase. When b0 decreases, fU and
fS deviate from one. This is the reflection of the interaction
of the dynamical freedom of the excited fields. Then we
could see the dynamical properties of the excited fields
through this deviation.
Near the region of b0 ¼ 0:
In the region of b0ð< r0Þ, the theory is in the confine-

ment phase and the excitation is expected to be the color
singlet, namely the glueball. We consider the limit of
b0 ¼ 0, where we have the lowest entanglement temper-
ature, which is given as follows:

Tð0Þ
ent ¼

r0
πR2

: ð5:9Þ

It should be noticed that this is positive and finite in spite of
the absence of the excited matter of the system since
b0 ¼ 0. On the other hand, this temperature is related to the
energy and entropy at small b0 as follows,

Eðb0Þ≃ 3π2

2
N2x4Tð0Þ

ent
4; ð5:10Þ

0.5 1.0 1.5 2.0 2.5 3.0
b0

1

2

3

4

(a)

(b)

Tent, TH

FIG. 3 (color online). (b) TH and (a) Tent are shown as the
function of b0=r0 for r0 ¼ 1.
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SEE ≃ 3π2

2
N2x4Tð0Þ

ent
3; ð5:11Þ

where the terms are retained up to Oðx4Þ. These equations
implies (i) that the dynamical degrees of freedom (DOF) of
the excitation due to b0 decrease to zero like x4.
(ii) Secondly, the necessary energy to excite one DOF
from the ground state of b0 ¼ 0 is Tð0Þ

ent . So there is an
energy gap to make the lowest excitation.
This fact is the reflection of the confinement and the

existence of the glueball which has the lowest mass.
Actually, the glueball mass mg for JPC ¼ 2þþ state has
been given as follows [25]:

m2
g ¼ 4ðnþ 1Þðnþ 4Þ r

2
0

R4
¼ jλjðnþ 1Þðnþ 4Þ;

n ¼ 0; 1; 2;…: ð5:12Þ
From this, the lowest glueball mass is found as

mð0Þ
g ¼ 4r0=R2. The relation between the mass mg and

Tð0Þ
ent is therefore rewritten as

Tð0Þ
ent ¼

mð0Þ
g

4π
: ð5:13Þ

This implies that we need a small but finite energy to excite
the vacuum to the lowest excited state with glueballs of the
lowest mass. This is independent of C, and it is determined
by the parameter r0 or λ.
Trangent region, b0=r0 ∼ 1:
The interesting point is seen in the deviations from the

high temperature limit, (4.35) and (4.37). They are
expressed by the functions fU and fS, which are shown
in Fig. 4 as functions of x ¼ b0=r0.
From Fig. 4, we can read the following:
(i) For the range 0 < x < 0.4, thevalues offU andfS are

almost zero. This is interpreted as the reflection of the
confinement since the color degrees of freedom are
suppressed in this region probably to the one of
OðN0Þ. On the other hand, they increase rapidly in the
region of 0.4 < b0 < 1.0 in spite of the fact that the
theory is still in the confinement phase (b0 < 1).
This result could be related to the fact that the glueball
mass is suppressed to smaller value when b0 ap-
proaches b0 ¼ r0, the critical point of (de)confine-
ment phase transition, as found in [25]. As a result, it
would be possible to excite many higher order states
of glueballs since theirmass spectrumwould be given
by Eq. (5.12) with a small prefactor.

(ii) We should notice that this rapid variation of DOF has
been also observed in the lattice simulation of SUð3Þ
gauge theory near the (de)confinement transition
temperature [28]. In this case, however, the observed
phenomenon is interpreted as the crossover. Namely it
is not the first order transition. Therefore the maxi-
mum point of its increasing rate (∂fUðxÞ=∂b0)

is identified as the crossover point from the confine-
ment to the deconfinement. In this region, glueballs
and color degrees of freedom coexist.

In the present case, however, this transition has
been observed as the first order one [27], and the
thermodynamic property is examined by using the
temperaturewhich is defined by theHawking temper-
ature TH. On the other hand, we are now considering
the extended thermodynamics in terms of the entan-
glement temperature Tent.

We could say that the order of the phase transition,
which is observed in the thermodynamics defined by
Tent, would be made milder than the one given in the
analysis in terms of the temperature TH. Further, the
critical point givenby themaximumof∂fUðxÞ=∂b0 is
slightly smaller than the actual transition point
b0=r0 ¼ 1.

(iii) Another point to be noticed is found by comparing
our fU with the one given in [28]. Our fU has a
maximum near b0=r0 ¼ 1. On the other hand, in the
case of the SUð3Þ lattice gauge simulation, the

1 2 3 4 5 6
x

0.5

1.0

1.5

(a)

(b)

FIG. 4 (color online). (a) fUðxÞ and (b) fSðxÞ are shown as the
functions of x ¼ b0=r0. With decreasing b0, the function fU (fS)
gradually increases from one to its maximum 1.7(1.6), which is
realized at about x ¼ 1.3ð1.4Þ. Then both fU and fS decrease
rapidly to zero, which is realized at b0 ¼ 0.

x

1

2

3

1 2 3 4 5 6

FIG. 5 (color online). (a) ∂fUðxÞ=∂b0 is shown as the functions
of x ¼ b0=r0. We find two extremum points, which would
correspond to the two phase transitions of the theory.
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corresponding factor fU increases monotonically
without any such a maximum.
As shown in Fig. 5, the existence of the maximum

of fU implies the existence of the minimum point of
∂fUðxÞ=∂b0 also. This point also indicates the point
where fU changes rapidly; then it may correspond to
another phase transition point. It might be regarded
as the chiral transition point which has been found in
our present model used here.

VI. SUMMARY AND DISCUSSION

In terms of entanglement entropy, we have examined the
SYM theory, which is living in AdS4 space-time. The
ground state of this theory is in the confinement phase,
where we could observe the glueballs as excited modes of
the theory. The mass of the glueballs is expressed by the
scale r0 which characterizes AdS4 curvature.
This theory can be extended to an excited state by adding

extra parameter C (or b0) which is responsible for the
excitation of the SYM theory in the background determined
by r0. This yields its energy density hT00i ∝ b40 in addition to
the one of the ground state composed of r0. At enough large
b0ð> r0Þ, this excitation changes the ground state from the
confinement phase to the deconfinement phase with a finite
temperature.
In the deconfinement phase (r0 < b0), the temperature of

the system is given by the Hawking temperature THðb0; r0Þ,
which depends on b0 and r0. However, THðb0; r0Þ disap-
pears in the confinement phase 0 < b0 ≤ r0. So, in order to
describe all regions of the parameter b0 as a thermodynamic
phenomenon, we here introduced the entanglement temper-
ature Tent, which is available in any phase. It is derived by
supposing the thermodynamic relation between the varia-
tions of the energy density hT00i and the entanglement
entroy SEEðb0Þ. Thus we could obtain the temperature Tent
which is useful at any value of b0.
We used the approximate formula for SEEðb0Þ, which is

evaluated in the limit of large radius of the three-
dimensional hyperboloid, p0. This approximation is rea-
sonable to see the thermodynamic properties since SEEðb0Þ
approaches the Bekenstein-Hawking entropy at large scale.
The regularization for SEEðb0Þ is performed by subtracting
SEEðb0 ¼ 0Þ since our interest is in the region of 0 ≤ b0. As
for the ultraviolet divergences occurring near the boundary,
we could see the expected results in the logarithmic term.
We should notice that in the calculation of SEEðb0Þ we
could not find the topological change of the minimal
surface from the connected to the disconnected one when
p0 increases as found in the case of AdS soliton model [15].
Using the obtained Tent, the two quantities, hT00i=T4

ent and
SEE=T3

ent, which correspond to the effective dynamical
degrees of freedom, are considered.Thenhow these quantities
deviate from their high temperature limit is studied for all
region of b0 including the phase transition point of the theory.

We could find that the dynamical degree of freedom
reduces to the very small number at small b0 ∼ 0. This fact is
interpreted as the reflection of the color confinement since
the color degree of freedom of the excitation vanishes.
Secondly, we notice that there is a lower bound for the

temperature Tent, namely Tent ≥ Tð0Þ
ent. The lower bound Tð0Þ

ent

is related to the glueball massmg as T
ð0Þ
ent ¼ mg=ð4πÞ. These

facts indicate that finite minimum energy is necessary for the
excitation from the ground state b0 ¼ 0, and the excitation
corresponds to the formation of glueballs with the lowest
mass. This is also the reflection of the confinement phase at
small Tent.
Further, we find from hT00i=T4

ent that the dynamical
degrees of freedom increase rapidly near the transition
point, from the confinement to the deconfinement phase.
This phenomenon is similar to the crossover transition
observed in the lattice QCD with SUð3Þ color symmetry
with flavor quarks. So we could understand that the
thermodynamic phenomenon with the entanglement tem-
perature would reproduce milder order phase transition
than the case of Hawking temperature TH.
Thirdly, since hT00i=T4

ent has a maximum, it decreases
after passing through this maximum and approaches to the
expected high temperature limit. So there is a second
extremum for the derivative of the deviation of the freedom.
This point also could be regarded as the phase transition
point as discussed in [28]. In our model, this transition
would be interpreted as the chiral restoration point.
Therefore, we could say that we can see the expected
phase transitions as the thermodynamic phenomenon in
terms of the entanglement temperature Tent.
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APPENDIX: COMMENT ON THE
BOUNDARY METRIC

We notice the coordinate of the boundary for (3.1). It is
given as

ds24 ¼ −dt2 þ a20ðtÞγijðxÞdxidxj: ðA1Þ
γijðxÞ ¼ δij

�
1þ k

r̄2

4r̄02

�−2
;

r̄2 ¼
X3
i¼1

ðxiÞ2; ðA2Þ

where k ¼ �1, or 0. r̄0 denotes the scale factor of three
space. Here we set k ¼ −1 as stated in Sec. III. So the space
is opened. Further (A1) is rewritten by (4.2)–(4.3) in terms
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of the polar coordinate. Although the radial coordinate p in
this metric is restricted as p < 2, the volume of the space is
infinite and then opened. This point becomes more clear
when we rewrite the metric as

ds24 ¼ −dt2 þ a20ðtÞ
�

dq2

1þ q2
þ q2dΩ2

ð2Þ

�
; ðA3Þ

where

q ¼ p
1 − p2=4

: ðA4Þ

The new radial coordinate is then set in the range of
0 < q < ∞. For p ∼ 2ð¼ p0Þ, q approaches to ∞, then the
small change of p near p0 corresponds to a very large
change of q. It is more convenient to use p than q to
perform especially the numerical analysis at large scale
region. Due to this reason, we used p rather than q.
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