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A vector model with a hybrid form of spacetime symmetry breaking consisting of explicit diffeo-
morphism breaking but spontaneous local Lorentz violation is presented. The combined effects of these
symmetry breakings give rise to a theory obeying the Einstein-Maxwell equations in a preferred spatially
homogeneous and isotropic frame, with photons emerging as massless Nambu-Goldstone modes.
Interpretations and possible generalizations of this model are discussed, and comparisons are made to
previous models describing photons as Nambu-Goldstone modes.
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I. INTRODUCTION

Fundamental spacetime symmetries, such as diffeomor-
phism invariance and local Lorentz invariance, play an
essential role in the standard model of particle physics and
Einstein’s general relativity. However, a variety of theo-
retical results stemming from efforts to merge gravity with
quantum physics suggest that these symmetries might not
hold exactly at all energy scales [1–6]. These include
mechanisms found in string theory, quantum gravity
models, modified gravity theories, alternative theories
describing dark matter and dark energy, and models with
spacetime-varying couplings.
At the level of effective field theory, described using an

action and Lagrangian, the breaking of these spacetime
symmetries involves a process of either explicit or sponta-
neous symmetry breaking [7,8]. The breaking is explicit
if a fixed background field, which is nondynamical and
does not undergo field variations, appears directly in the
Lagrangian. Alternatively, if the action remains invariant
under a spacetime symmetry, but the vacuum solution does
not, then the breaking is spontaneous. Examples of models
with explicit symmetry breaking include massive gravity
[9], Chern-Simons gravity [10], and theories with explicit
time-varying couplings [11]. Theories with spontaneous
spacetime symmetry breaking involve a dynamical tensor
that acquires a nonzero vacuum value. Examples include
models in which the tensor is a vector [4,7,12,13], a
symmetric two-tensor [14], or an antisymmetric two-tensor
[15]. Models of these types have been used in a wide range
of applications and geometries [16–20].
Both of these forms of spacetime symmetry breaking

have direct physical consequences in field theory and
gravity. For example, with explicit symmetry breaking in
a gravitational theory, the requirement of general covari-
ance must be compatible with geometric identities such as
the Bianchi identity as well as the equations of motion and
covariant energy-momentum conservation. This results in
consistency conditions that must hold, which involve the
background field [7,8]. Since local symmetries are lost with

explicit breaking, the number of degrees of freedom in a
theory can change as well. On the other hand, a well-known
consequence of spontaneous symmetry breaking is that
massless Nambu-Goldstone (NG) modes should appear.
These either propagate as long-range interactions or get
reinterpreted through the Higgs mechanism as degrees of
freedom associated with massive gauge fields.
The simplest models involving spontaneous spacetime

symmetry breaking contain a vector field that acquires a
vacuum expectation value. When the NG modes survive as
long-range interactions in this type of model, proposals
have been made to interpret them as massless photons. This
idea dates back to models first defined by Bjorken [21]
using composite fermions and subsequently by Nambu [22]
using a constrained vector field. These original models
were restricted to flat Minkowski spacetime, and no
physical signatures of Lorentz violation were found to
emerge. Instead, it was argued by Nambu that his model
was equivalent to electromagnetism in a nonlinear gauge.
More general vector models with spontaneous Lorentz

violation incorporate gravity as well as signatures of
physical Lorentz violation [7,12,13,23–37]. These types
of models are known as bumblebee models. In these
models, a potential V is typically included in the action,
which induces a vacuum expectation value for the vector
field. The potential is formed as a function of a scalar
combination X of the vector Bμ and the metric gμν and
possibly other matter fields as well. The potential has a
minimum when V 0 ¼ 0, where the prime denotes differ-
entiation with respect to X. In the minimum of V, the vector
has a vacuum value, denoted as hBμi ¼ bμ. It is this
background vector that causes local Lorentz symmetry
to be spontaneously broken.
In many bumblebee models, the potential V is a function

of a scalar X ¼ ðBμBμ þ b2Þ, where b is a constant with
dimensions of mass and V 0 ¼ 0 for X ¼ 0. In this case, the
vacuum vector bμ is spontaneously induced as a timelike
vector obeying bμbμ ¼ −b2. The natural mass scale to arise
in an effective theory originating from mechanisms in
string theory or from a quantum theory is the Planck mass.
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However, since Lorentz violation is presumably small,
having escaped detection in high-precision experiments,
additional couplings giving rise to suppressed values for b
would need to arise as well.
In general, there are additional degrees of freedom in

bumblebee models compared with Einstein-Maxwell
theory [30], and the possibility that these might arise as
ghost modes is an important consideration. For this reason,
a subset of bumblebee models known as Kostelecký-
Samuel (KS) models uses a Maxwell kinetic term for
the vector Bμ [4,7]. In a linearized limit, this eliminates a
potential ghost mode as a propagating degree of freedom,
and in flat spacetime the model appears to be amenable to
quantization [38,39]. In the KS model, the potential V
destroys the local Uð1Þ gauge symmetry that holds for the
Maxwell kinetic term. The form of the potential also allows
both massless NG modes and a massive mode. The NG
modes are excitations about the vacuum solution that
remain in the minimum of the potential obeying V0 ¼ 0,
while the massive mode is an excitation with V 0 ≠ 0. When
a nonzero massive mode is present, this results in mod-
ifications to both the Newtonian and Coulomb static
potentials [13]. These along with interactions in the matter
sector provide physical signals of Lorentz breaking.
However, in the limit where the massive mode becomes
extremely large, the KS model merges with Einstein-
Maxwell theory.
In this paper, a vector model is defined that has a hybrid

form of spacetime symmetry breaking. It uses both explicit
diffeomorphism breaking and spontaneous Lorentz break-
ing. The idea behind the explicit breaking is to incorporate
at the level of effective field theory the possibility of a
spacetime-dependent coupling. Couplings of this form
have been investigated both theoretically and experimen-
tally [11]. Indeed, one of the original motivations was
Dirac’s large-number hypothesis [40], which suggested that
the huge differences in physical scales that are observed in
nature have their origin in the form of a time-dependent
coupling. The coupling considered here is assumed to
combine with the mass scale b, giving rise to a model with
an explicit time-dependent scalar bðtÞ. Here, t is presum-
ably time on a cosmological scale, and the dependence in
bðtÞ could involve a significant suppression factor com-
pared to the time-independent scale b as the Universe has
expanded. With this additional dependence, the potential
can have a modified functional form given as VðBμBμþ
bðtÞ2Þ, which explicitly breaks time diffeomorphisms.
However, local Lorentz symmetry is still spontaneously
broken by this form of V when a vacuum solution obeying
bμbμ ¼ −bðtÞ2 appears.
In the next section, the vector model with a hybrid form

of symmetry breaking is presented, and the consequences
of both the explicit time diffeomorphism breaking and
spontaneous Lorentz symmetry breaking are examined. It is
shown that the consistency conditions arising as a result of

the explicit time diffeomorphism breaking impose a
constraint on the theory, which does not allow the
massive mode to appear. The resulting theory therefore
only contains massless NG modes as photons and has
equations of motion equivalent to Einstein-Maxwell theory.
Section III offers more detailed interpretations and com-
pares the hybrid form of spacetime symmetry breaking with
spontaneous Lorentz breaking that does not involve explicit
diffeomorphism breaking. Possible generalizations of these
results are discussed in Sec. IV, and Sec. V provides a
summary and conclusions.

II. bðtÞ MODEL

Consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð1Þ

where

L ¼ 1

16πG
Rþ LBðgμν; BμÞ

− VðBμBμ þ bðtÞ2Þ þ LMðgμν; Bμ; fψÞ: ð2Þ

This Lagrangian contains an Einstein-Hilbert term for
the metric gμν, kinetic terms for the vector field in LB,
a potential VðBμBμ þ bðtÞ2Þ that depends on a time-
dependent coupling bðtÞ, and a matter sector LM that
couples conventional matter fields denoted generically as
fψ with the vector and metric.
The kinetic term for the vector is chosen to have a

Maxwell form, with

LB ¼ −
1

4
BμνBμν; ð3Þ

where Bμν ¼ DμBν −DνBμ and Dμ denotes a spacetime
covariant derivative. It is assumed that there is no torsion,
so the field strength can also be written as Bμν ¼ ∂μBν−∂νBμ. The energy-momentum tensors for the vector,
potential, and matter sector are defined, respectively, as

Tμν
B ¼ BμαBν

α −
1

4
gμνBαβBαβ; ð4Þ

Tμν
V ¼ −Vgμν þ 2V 0BμBν; ð5Þ

1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμν
Mδgμν ≡

Z
d4x

δð ffiffiffiffiffiffi−gp
LMÞ

δgμν
δgμν: ð6Þ

Similarly, a current that couples the vector Bμ with matter
can be defined as
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Z
d4x

ffiffiffiffiffiffi
−g

p
JμδBμ ≡

Z
d4x

ffiffiffiffiffiffi
−g

p δLM

δBμ
δBμ: ð7Þ

In terms of these quantities, the Einstein equations, the
equations of motion for the vector field, and the matter
equations of motion are given, respectively, as

Gμν ¼ 8πGðTμν
B þ Tμν

V þ Tμν
M Þ; ð8Þ

DμBμν ¼ 2V 0Bν − Jν; ð9Þ
Z

d4x
ffiffiffiffiffiffi
−g

p δLM

δfψ
δfψ ¼ 0: ð10Þ

Taking covariant divergences of the first two of these and
using the contracted Bianchi identity, DμGμν ¼ 0, and the
equation DμDνBμν ¼ 0 gives the conditions

DμðTμν
B þ Tμν

V þ Tμν
M Þ ¼ 0; ð11Þ

Dμð2V 0Bμ − JμÞ ¼ 0: ð12Þ

Notice that V 0 in these equations denotes the appearance of
a massive mode. It acts as both a source of current and
energy-momentum density.
The action S is not invariant under time diffeomor-

phisms. The change in the total action under these trans-
formations is obtained by taking field variations of S with
respect to the dynamical fields where the field fluctuations
are given by Lie derivatives. However, the background bðtÞ
is nondynamical and is fixed under these transformations.
As a result, the Lagrangian does not transform as a scalar
under diffeomorphisms, and the action is not invariant.
Despite the explicit breaking of time diffeomorphisms,

the action is invariant under local Lorentz transformations.
In some respects this is surprising, since a fixed non-
constant background bðtÞ has field gradients associated
with it. These give preferred directions in local frames,
which as fixed backgrounds do break local Lorentz
invariance. Nonetheless, the action does not depend on
the gradient of bðtÞ, and therefore there is no explicit
breaking of local Lorentz symmetry in the resulting
dynamics as described by S.
However, there is spontaneous breaking of local Lorentz

invariance, due to the form of the potential V, which causes
nonzero vacuum values to appear. Assuming vanishing
kinetic terms, the vacuum solution consists of a vector bμ
obeying bμhgμνibν ¼ −bðtÞ2 and a vacuum solution for the
metric denoted as hgμνi. It is assumed that the conventional
matter fields have vanishing vacuum values hfψi ¼ 0.
These vacuum values involving a timelike and time-
dependent vector select a preferred frame in which the
vector takes the form bμ ¼ ðbðtÞ; 0; 0; 0Þ. The metric can be
written generically as hgμνi ¼ Diagð−1; aðtÞ; aðtÞ; aðtÞÞ,
with aðtÞ being a scale parameter, which describes a
spatially homogeneous and isotropic vacuum.

When diffeomorphism invariance is explicitly broken by
a background field there are potential inconsistencies that
must be overcome for solutions to exist. The extent to
which a theory is constrained by these consistency con-
ditions depends on the form of the background tensor [8].
For scalar fields, where the Lie derivative is proportional to
the transformation vector ξμ, e.g., LξbðtÞ ¼ ξμ∂μbðtÞ, the
conditions are most severe. In some cases solutions can be
ruled out, while in others solutions can exist only if certain
constraints hold. An example of this type is Chern-Simons
gravity, which has a nondynamical scalar background that
explicitly breaks diffeomorphisms. Solutions to this theory
can only exist if the spacetime has a vanishing Pontryagin
density, �RR ¼ 0 [10]. However, for theories with back-
ground vectors or tensors the Lie derivatives also contain
terms that involve derivatives of ξμ. In variations of the
action, this allows integrations by parts to be performed,
which leads to more options for evading the potential
inconsistency. An example along these lines is massive
gravity, which contains a background field that is a
symmetric two-tensor.
The vector theory presented here has a background scalar

bðtÞ that appears as part of the potential VðBμBμ þ bðtÞ2Þ.
The requirement of general covariance can be used to
determine the consistency conditions that arise in this
case. Although the bðtÞ model explicitly breaks time
diffeomorphisms, it must still be generally covariant
under coordinate transformations to maintain observer
independence. This includes general coordinate transfor-
mations defined as xμ → x0ðxÞ ¼ xμ − ξμ, which have
the same mathematical form as a diffeomorphism trans-
formation. However, under observer general coordinate
transformations the background bðtÞ transforms, and
the Lagrangian is therefore a scalar under these
transformations.
Performing the field variations corresponding to these

observer transformations on S gives the off-shell result:

Z
d4x

�
δð ffiffiffiffiffiffi−gp ðLB þ LM − VÞ

δgμν
Lξgμν

þ ffiffiffiffiffiffi
−g

p δðLB þ LM − VÞ
δBμ

LξBμ þ
ffiffiffiffiffiffi
−g

p δLM

δfψ
Lξfψ

−
ffiffiffiffiffiffi
−g

p δV
δbðtÞLξbðtÞ

�
¼ 0: ð13Þ

In this expression, the variations of the Einstein-Hilbert
term drop out as a result of integrating by parts and using
the contracted Bianchi identities. Since the fields Bμ and fψ

are dynamical their variations in the action vanish on shell.
The remaining variations with respect to the metric gμν
define the energy-momentum tensors. Using integrations
by parts on these terms gives the result,
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Z
d4x

ffiffiffiffiffiffi
−g

p
ξν

�
−DμðTμν

B þ Tμν
V þ Tμν

M Þ− δV
δbðtÞD

νbðtÞ
�
¼ 0:

ð14Þ

This result must hold for all ξν with appropriate boundary
conditions. For the case where the potential has the form
VðBμBμ þ bðtÞ2Þ, the resulting consistency condition is

DμðTμν
B þ Tμν

V þ Tμν
M Þ ¼ −2V 0bðtÞDνbðtÞ: ð15Þ

If the right-hand side in this expression is nonzero, this
result is clearly in conflict with the condition in Eq. (11),
which followed from the Einstein equations and the
contracted Bianchi identity. Thus, the right-hand side must
vanish for solutions to exist, giving

V 0bðtÞ∂0bðtÞ ¼ 0: ð16Þ

Since ∂0bðtÞ ≠ 0 by construction, the result is that the
massive mode V 0 must vanish for solutions to exist. With
V 0 ¼ 0, the only excitations that can exist for the vector
field are the massless NG modes.
This same result follows from the equations of motion as

well. Using the definitions of Tμν
B and Tμν

V , their divergences
can be worked out and combined with the equations of
motion. The results are

DμT
μν
B ¼ −2V 0BμBμν þ JμBμν; ð17Þ

DμT
μν
V ¼ 2V 0BμBμν þ ðDμJμÞBν − 2V 0bðtÞDνbðtÞ: ð18Þ

For the matter sector, a specific form for the fields fμ is
required. However, a covariance argument can be used for
the term LM, with the requirement that it by itself must be a
scalar. The result is

DμT
μν
M ¼ −ðDμJμÞBν − JμBμν: ð19Þ

Adding these three expressions gives (15).
Notice that in the individual expressions for the different

contributions to the energy-momentum density, when a
massive mode is present with V 0 ≠ 0, then matter charge
current density is not conserved and exchanges of energy
depending on the massive mode and the matter charge
nonconservation can occur between the different sectors. It
is these types of transfers that can destabilize the theory if
the massive mode is not constrained.
However, the condition V 0 ¼ 0 that must hold on shell

alters the equations of motion and conservation conditions.
With no massive mode, the equation of motion for the
vector field in (9) reduces to the usual Maxwell equations.
Taking the divergence then gives

DμJμ ¼ 0: ð20Þ

With V 0 ¼ 0, the energy-momentum Tμν
B becomes equiv-

alent to the energy momentum in electromagnetism, and
Tμν
V reduces to a contribution from a cosmological constant

with V equal to a constant. Notice that with V 0 ¼ 0, the
only exchanges of energy between the vector field and
the matter sector have the usual form as a Lorentz
force �JμBμν.
In the bðtÞ model, the only vector excitations are

massless NG modes, which are solutions of the usual
Einstein-Maxwell equations, but with a fixed gauge deter-
mined by the condition V 0 ¼ 0. If V 0 ¼ 0 is satisfied by
BμBμ ¼ −bðtÞ2, then the NG modes are excitations that
preserve this condition. If the theory is linearized, using
Bμ ≃ bμ þ Eμ, then to leading order the condition is
satisfied by excitations obeying an axial gauge condition,
bμEμ ¼ 0. These excitations can be shown to consist of two
transverse massless modes and one auxiliary mode, which
is the same as for a massless photon.
Since Bμ reduces to the background bμ in the absence of

photons, interactions with matter currents of the form bμJμ

might be expected to cause Lorentz-violating signals,
which would be of a form as described by the standard
model extension (SME) [41,42]. This would then lead to
experimental bounds being placed on bμ. However, inter-
actions of this form with a fermion matter field are known
to be unobservable in the SME. This is because the
coefficients bμ can be absorbed by a field redefinition that
shifts the phase of the fermion field. In the absence of the
massive mode, there are also no modifications of the
Newtonian or Coulomb potentials as there are in the KS
model. The end result appears to be that the model with a
background time-varying coupling bðtÞ gives solutions
that are equivalent to Einstein-Maxwell theory in a non-
linear gauge.
Notice that this type of theory has no analogue in flat

spacetime. While a flat background is a valid vacuum
solution, the spacetime itself must remain dynamical,
allowing gravitational excitations to occur. This is because
the condition V 0 ¼ 0 is imposed as a result of combining
the contracted Bianchi identity with the Einstein equations.
It therefore hinges on the dynamics and geometrical
conditions that apply in gravity. However, in the absence
of gravity, no such condition emerges and V 0 is not required
to vanish. As a result, the theory in flat spacetime violates
energy conservation due to the breaking of time translation
invariance.

III. INTERPRETATIONS AND COMPARISONS

The results obtained for the bðtÞmodel raise a number of
interpretational issues, which are discussed in this section.
For many of these, it is useful to make comparisons with the
KS model and also with Einstein-Maxwell theory.
The KS model has a constant value of b, and there is no

explicit symmetry breaking. Instead, time diffeomorphisms
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and local Lorentz symmetry are spontaneously broken by a
constant background, which can be chosen in a preferred
frame as bμ ¼ ðb; 0; 0; 0Þ. There is no condition that the
massive mode V 0 must vanish. The NG modes appear as
photons; however, there are also signatures of Lorentz
violation due to the presence of the massive mode.

A. Degrees of freedom

As a first comparison, the number of degrees of freedom
can be examined for both the KS and bðtÞ models. Since
the KS model is diffeomorphism invariant, there are four
gauge degrees of freedom associated with this symmetry.
However, due to the breaking of local Uð1Þ gauge
invariance there is one additional degree of freedom
compared to Einstein-Maxwell theory, which is the massive
mode V 0. This is the case in the bðtÞ model as well.
However, due to the breaking of time diffeomorphisms in
the bðtÞ model, there is a second additional degree of
freedom in the form of the metric component that can no
longer be gauged away.
The equations of motion associated with these extra

degrees of freedom can be investigated at the linearized
level using field redefinitions. For the broken Uð1Þ, this is
achieved by writing Bμ ≃ Aμ − ∂μΛ, where Aμ is a gauge-
fixed vector, for example satisfying an axial gauge con-
dition, while Λ is the extra degree of freedom associated
with the broken local Uð1Þ symmetry. Substituting this in
the Lagrangian and varying with respect to Λ gives the
equation Dμð2V 0Bμ − JμÞ ¼ 0. This holds as a dynamical
equation of motion in both the KS and bðtÞ models.
The additional equation in the bðtÞ model can be
obtained in a similar way at the linearized level by writing
gμν ≃ ~gμν þ δ0νDμξ0 þ δ0μDνξ0, where ~gμν is a gauge-fixed
form of the metric and ξ0 is the extra degree of freedom
associated with the broken time diffeomorphism. In this
case, varying the effective action with respect to ξ0 gives
DμðTμ0

B þ Tμ0
V þ Tμ0

M Þ ¼ −2V 0bðtÞD0bðtÞ. Note that when
the equation for ξ0 is combined with the Einstein equations
and the contracted Bianchi identity the end result is that
V 0 ¼ 0. This additional condition does not arise in the KS
model because it has only the one additional equation of
motion associated with the broken Uð1Þ symmetry.

B. Current conservation

Another feature of the bðtÞ model compared to the KS
model is that the charge current Jμ must be covariantly
conserved in the bðtÞ model, while it need not be in the KS
model if a massive mode is present. The existence of a
conserved current in the bðtÞ model suggests that there
should be a Uð1Þ symmetry. However, this symmetry is
explicitly broken in the bðtÞ model. Thus, the question of
why covariant current conservation holds in the bðtÞ model
needs to be addressed.

To begin, note that while local Uð1Þ symmetry and time
diffeomorphisms are broken by the potential term in the
bðtÞ model, there is an unbroken diagonal subgroup. This
can be used to show that if a generic external current Jμ

couples to Bμ, with LM ¼ BμJμ, then Jμ must be conserved
in order for the subgroup symmetry to hold. To see this,
transform the action by both a broken infinitesimal time
diffeomorphism with vector ξ0 and by a broken local Uð1Þ
transformation, Bμ → Bμ − ∂μΛ. It is assumed that the only
breaking of these symmetries is in the potential term.
Therefore, to leading order in the infinitesimal parameters,
the result is

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
V 0ð−2Bμ∂μΛþ 2bðtÞξ0∂0bðtÞÞ: ð21Þ

This is an off-shell result showing that a local subgroup
symmetry exists if Λ and ξ0 are chosen at every point so
that the term in parentheses vanishes. The entire action is
then invariant under the subgroup transformation, which
implies that the matter term LM by itself is invariant under
just the Uð1Þ transformation, since bðtÞ does not enter LM.
Performing the subgroup transformation, which leaves the
total action invariant, therefore gives LM → LM − ð∂μΛÞJμ
in the matter term. The vanishing of this extra term in the
action requires that DμJμ ¼ 0 must hold.
An example of how current conservation arises in

interactions with a specific type of matter field can be
considered as well. Consider the case of a fermion field that
is minimally coupled to Bμ. To describe gravity with a
fermion field, a vierbein formalism is used, where the
metric is replaced by a vierbein eμa. Here, the index a gives
components defined with respect to a local Lorentz frame,
and the Dirac form of the action can then be used. In the
absence of torsion, as assumed here, the vierbein formalism
does not play a significant role in the conservation law that
arises for the current. The main effect is that the Dirac
matrix γa in a local Lorentz frame becomes the composite
eμaγa in a curved spacetime. The minimally coupled matter
term for a fermion ψ is then given as

LM ¼ ψ̄ðieμaγaðDμ þ iqBμÞ −mÞψ : ð22Þ

In this case, the term LM by itself is invariant under local
Uð1Þ transformations, since the current is carried by the
dynamical fermion fields. However, the theory also has a
global Uð1Þ symmetry, ψ → eiqΛψ , where Λ is a constant
and all other fields are left unchanged. Applying the
Noether theorem to this global symmetry gives a cova-
riantly conserved current Jμ ¼ ψ̄eμaγaψ , which obeys
DμJμ ¼ 0 on shell. Note that this current does not depend
on the potential V, which is independent of ψ . As a result,
the current Jμ carried by the fermion fields is conserved in
both the KS and bðtÞ models. Note as well that the
condition DμJμ ¼ 0 causes the charge current associated
with the massive mode to be separately conserved, i.e.,
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Dμð2V 0BμÞ ¼ 0 must hold on shell in either model.
However, this condition does not require that V 0 ¼ 0,
and indeed in the KS model the massive mode V 0 does
not need to vanish. Similarly, in the bðtÞ model, current
conservation for Jμ is not sufficient for requiring that the
massive mode must vanish.
Since the unbroken diagonal subgroup is a local sym-

metry of the action, there should be a Noether identity
associated with it that holds on shell. However, this identity
would not give any additional conditions that do not
already follow from the Bianchi identity, the equations
of motion, and the identity DμDνBμν ¼ 0. It is the con-
sistency of these conditions that requires that V 0 ¼ 0 must
hold in the bðtÞ model.

C. Einstein-Maxwell with gauge-fixing term

The question of whether the potential term VðBμBμ þ
bðtÞ2Þ in the bðtÞ model can be considered as equivalent to
a gauge-fixing term in Einstein-Maxwell theory can be
addressed as well. In an interpretation along these lines, the
initial Lagrangian is taken as the usual Einstein-Maxwell
Lagrangian, and the potential is treated as an added gauge-
fixing term that is used to fix a particular gauge choice. The
most straightforward way to implement a fixed gauge is by
using a Lagrange-multiplier potential. As an illustrative
comparison, first consider the KS model with a Lagrange-
multiplier potential, which is given as

V ¼ λðBμBμ þ b2Þ; ð23Þ

where λ is the Lagrange-multiplier field. Variation of the
action with respect to λ in this case gives the equation
BμBμ ¼ −b2, which can be interpreted as a nonlinear
gauge-fixing condition for the local Uð1Þ symmetry. The
only excitations permitted in Bμ are the NG modes.
However, the massive mode V 0 ¼ λ still appears in the
remaining equations of motion, and equivalence with
Einstein-Maxwell theory is only achieved when λ ¼ 0.
Thus, an essential part of the gauge-fixing procedure is to
get rid of the Lagrange multiplier by setting λ ¼ 0 by hand.
There is no dynamical condition in the KS model that
requires that λ must vanish. It is for this reason that the KS
model is not equivalent to Einstein-Maxwell theory with a
gauge-fixing term.
In contrast, the bðtÞ model with a Lagrange-multiplier

potential V ¼ λðBμBμ þ bðtÞ2Þ has BμBμ ¼ −bðtÞ2 arising
as the equation of motion for λ. However, in this case, the
requirement of general covariance leading to Eq. (15) still
applies, and this combined with the contracted Bianchi
identity and the equations of motion gives (16), but with
V 0 ¼ λ. Since ∂0bðtÞ ≠ 0 by construction, the consistency
of the theory requires that λ ¼ 0must always hold on shell.
Thus, in the case of the bðtÞ model with a Lagrange-
multiplier potential, the condition BμBμ ¼ −bðtÞ2 is auto-
matically imposed by the consistency conditions that

follow as a result of explicit diffeomorphism breaking. It
does not involve an extra procedure that must be imple-
mented by hand. Moreover, for any potential of the form
VðBμBμ þ bðtÞ2Þ, even without a Lagrange-multiplier
field, the consistency of the theory requires that V 0 ¼ 0
must hold. There is therefore an infinite number of possible
terms that all give similar results equivalent to Einstein-
Maxwell theory with the same fixed nonlinear gauge
condition. It is important to note as well that the potentials
VðBμBμ þ bðtÞ2Þ do not fully fix the broken gauge sym-
metries, since a local residual subgroup symmetry still
exists.
Ultimately, if the bðtÞ model is fully equivalent to

Einstein-Maxwell theory then it makes sense that it would
be open to more than one form of interpretation. If the
model is viewed as an Einstein-Maxwell theory with a
gauge-fixing term, it is fair to say that it involves an unusual
choice of gauge, which is both nonlinear and spacetime
dependent. Nonetheless, with this interpretation, photons
can be considered as massless gauge fields. On the other
hand, if the bðtÞ model is interpreted as a theory with a
hybrid form of spacetime symmetry breaking, then photons
emerge in this case as massless NG modes associated with
spontaneous Lorentz violation. In this interpretation, the
result that only the NG modes can appear (with no massive
mode) is a consequence of the conditions that must hold
when diffeomorphisms are explicitly broken in a gravita-
tional theory.

D. Symmetry breaking

Lastly, there are issues concerning how to interpret the
symmetry breaking in the bðtÞ model, which merit dis-
cussion as well. The vacuum solution involves a vector bμ
that satisfies the condition bμbμ ¼ −bðtÞ2. In this relation,
bðtÞ is a fixed background that explicitly breaks time
diffeomorphisms. On the other hand, bμ is a vacuum
expectation value that appears as a result of spontaneous
symmetry breaking. It spontaneously breaks local Lorentz
boosts as well as time diffeomorphisms. Thus, there
appears to be a double breaking of time diffeomorphisms,
once explicitly by bðtÞ and then again spontaneously by bμ.
However, notice that the consistency condition stemming

from explicit diffeomorphism breaking requires that the last
term in Eq. (13) must vanish. It is this condition that gives
V 0 ¼ 0 as an on-shell condition in the bðtÞ model. The
vanishing of this term, involving variation of the action
with respect to bðtÞ, is the same result that would hold if
bðtÞ were in fact a dynamical field. This feature of explicit
diffeomorphism breaking by a fixed background scalar was
also observed in Chern-Simons gravity [10]. For consis-
tency to hold, the background bðtÞ must act effectively like
a dynamical solution. However, since bðtÞ is fixed, this is
actually a condition that is imposed on the other fields, i.e.,
Bμ and gμν. It is these fields that must have solutions that
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permit bðtÞ to blend in as a dynamical solution. It is for this
reason that a constraint gets put on Bμ and gμν.
With bðtÞ effectively mimicking a dynamical field, the

explicit breaking and spontaneous breaking of time diffeo-
morphisms are compatible. In particular, when a vacuum
solution forms, the explicit-breaking background bðtÞ
coexists with bμ and hgμνi as if it too were a dynamical
vacuum solution.

IV. GENERALIZATIONS

There are a number of generalizations of the bðtÞ model
that can be considered. The key feature in these is the
inclusion of fixed backgrounds that impose conditions as a
result of explicit diffeomorphism breaking.
One generalization would be to use a theory containing

higher-rank tensors. In this case, a potential V would be
constructed out of scalars formed using these tensors and
the metric. Possible examples include using a symmetric
two-tensor or an antisymmetric two-tensor, both of which
are used in models with spontaneous Lorentz breaking
[14,15]. Generalizing these to allow potentials that have
background fields that explicitly break diffeomorphisms
might give new theories with hybrid forms of spacetime
symmetry breaking. Combining broken diffeomorphisms
with broken gauge symmetry groups may result in theories
with unbroken subgroups. With higher-rank tensors, it
becomes possible to explicitly break more than one diffeo-
morphism, which can give consistency conditions that
require additional constraints.
Further modifications to a vector theory with explicit

breaking can be considered as well. For example, vector
fields with a non-Abelian gauge group might be used
[32,37]. Alternatively, different forms of kinetic terms LB
besides the Maxwell form could be included. Models with
generalized kinetic terms are typically investigated as
vector-tensor theories [43] of gravity as opposed to
modified theories of electromagnetism, and for this reason
they typically do not include direct matter couplings. The
symmetry breaking in this case might lead to modified
forms of propagation of gravitational interactions, making
the interpretation in terms of spontaneous Lorentz breaking
with generation of a vacuum solution and NG modes less
relevant. Such models with explicit breaking can also result
in modified initial value constraints [44]. Another modi-
fication would be to include torsion with a dynamical spin
connection [7]. This allows the possibility of a Higgs
mechanism in a Riemann-Cartan geometry [12,13], where
a propagating spin connection can acquire a mass. With
additional couplings that explicitly break diffeomorphism
invariance, other forms of Higgs approaches in gravity [45]
might emerge. Nonmiminal gravitational couplings of the
vector Bμ with the curvature tensor can be considered as
well [17]. These types of couplings are known to give rise
to physical signals of spontaneous Lorentz violation. In all
of these modifications, the possible generation of ghost

modes becomes a serious problem that would need to be
overcome to obtain viable models.
Since the bðtÞ model is based on the idea that a time-

varying coupling can arise at the level of effective field
theory from unknown mechanisms occurring in the context
of a more fundamental theory, it is possible that more than
one such coupling might arise. For example, while an
explicit time-varying cosmological constant ΛðtÞ by itself
is inconsistent with the Einstein equations, the Bianchi
identity, and matter energy-momentum conservation, this
would no longer be the case when other time-varying
couplings are included. In the bðtÞ model, adding a time-
varying cosmological constant would lift the requirement
that the massive mode must vanish. Instead, the time
variations of bðtÞ and ΛðtÞ would be linked by the
consistency conditions associated with explicit diffeomor-
phism breaking. However, extended models of this form
lack a clear determination of the functional time depend-
ence that appears in these couplings. Such an issue is less of
a concern in the bðtÞmodel that does not include additional
time-dependent couplings, since ultimately the theory is
found to be equivalent to Einstein-Maxwell theory.

V. SUMMARY AND CONCLUSIONS

This paper considers the idea that an effective field
theory arising from a more fundamental theory at the
Planck scale, such as string theory or a quantum theory of
gravity, might incorporate both spontaneous Lorentz vio-
lation and the formation of a time-varying coupling. Such a
theory would have a hybrid form of spacetime symmetry
breaking consisting of both explicit diffeomorphism break-
ing and spontaneous Lorentz breaking. Each of these types
of symmetry breaking has physical consequences, which
are explored for the case of a gravitational theory with a
vector field.
The model with a hybrid form of symmetry breaking

considered in this paper replaces the constant b in the KS
model with a time-varying coupling bðtÞ. The resulting
potential then has the form VðBμBμ þ bðtÞ2Þ, where it is
assumed that the minimum of the potential occurs when
BμBμ ¼ −bðtÞ2. The appearance of bðtÞ in the effective
Lagrangian explicitly breaks time diffeomorphisms, but
still allows spontaneous breaking of local Lorentz sym-
metry. The potential also explicitly breaks local Uð1Þ
symmetry; however, an unbroken diagonal symmetry
remains, which manifests itself in the matter sector as a
local Uð1Þ transformation.
The explicit breaking of time diffeomorphism invariance

results in consistency conditions that must hold on shell
[7,8]. These conditions stem from the combination of
general coordinate invariance, the dynamical equations
of motion, and the Bianchi identity. In the bðtÞ model,
they require that the only allowed solutions are ones that
keep the potential at its minimum with V 0 ¼ 0. This forbids
the appearance of a massive mode and only allows the NG
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modes as possible excitations of the vector around its
vacuum solution. With V 0 ¼ 0, the equations of motion are
equivalent to those in Einstein-Maxwell theory, and both
the total energy-momentum tensor and the charge current
are covariantly conserved on shell. Thus, the NG modes
appear as photons.
The vacuum solution that results has a preferred frame

in which the background bμ is purely timelike, and the
vacuum solutions for the metric describe a spatially

homogeneous and isotropic spacetime. With just one vector
background bμ, there are no conventional interactions with
matter fields that cannot be eliminated using field redefi-
nitions. Thus, the bðtÞ model does not have physical
signatures of Lorentz violation. Instead, the hybrid form
of spacetime symmetry breaking can be viewed as an
alternative explanation for the emergence of massless
photons in a classical gravitational field theory besides
the usual one based on gauge invariance.
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