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We present electric-magnetic (Hodge) duality formulation for non-Abelian gauge groups with N ¼ 1

supersymmetry in 3þ 1 (4D) dimensions. Our system consists of three multiplets: (i) A super-Yang-Mills
vector multiplet (YMVM) ðAμ

I ; λIÞ, (ii) a dual vector multiplet (DVM) ðBμ
I; χIÞ, and (iii) an unphysical

tensor multiplet (TM) ðCμν
I; ρI;φIÞ, with the index I for adjoint representation. The multiplets YMVM and

DVM are dual to each other like:Gμν
I ¼ ð1=2ÞϵμνρσFρσ

I . The TM is unphysical, but still plays an important
role for establishing the total consistency of the system, based on recently developed tensor-hierarchy
formulation. We also apply this technique to non-Abelian electric-magnetic duality in 9þ 1 (10D)
dimensions. The extra bosonic auxiliary field Kμ1���μ6 in 10D is shown to play an important role for the
closure of supersymmetry on fields.
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I. INTRODUCTION

It is conjectured that the discrete group SLð2;ZÞ ⊂
SLð2;RÞ is the exact symmetry of the full heterotic string
theory [1,2], associated with the target-space duality
symmetry SOð6; 22Þ in compactifications to four dimen-
sions (4D). This feature also leads to electric-magnetic
(EM) duality in 4D or higher dimensions with Lagrangian
formulations [3]. The drawback of nonmanifest Lorentz
invariance in [3] was overcome by the manifestly Lorentz-
invariant reformulation [4]. The S-duality between the
strong and weak string-couplings is also reduced to
EM-duality in 4D [5], making D3-branes self-dual [6].
The SLð2;RÞ symmetry for a vector field was pointed

out early in 1980s [7], and is confirmed to be valid, even in
the presence of Dirac-Born-Infeld interactions [7,8]. The
N ¼ 1 and N ¼ 2 supersymmetric generalizations have
also been accomplished in [9]. Moreover, this duality-
symmetry can be generalized to self-duality in even
dimensions [10].
In 4D, the EM-duality is Fμν

I ¼ ð1=2ÞϵμνρσGρσ
I , where

Gρσ
I is the field strength of a new vector field Bμ

I with the
adjoint index I. However, due to the inconsistency arising

for the na1̈ve definition of the field-strength Gð0ÞI
μν ≡

2D½μBν�I for a non-Abelian vector Bμ
I [11], such an attempt

was again bound to fail in the past. This had been the fate of
vector fields with non-Abelian indices, not to mention its
supersymmetrization.
This problem was first solved by the work by Samtleben

[12] with the purely bosonic EM-duality for non-Abelian
YM gauge field with its Hodge-dual field. The essential
ingredient is to introduce Chern-Simons-like terms in the

G-field strength, combined with a new tensor field Cμνρ
I

in the adjoint representation. Subsequently, this result
was further generalized in terms of “tensor-hierarchy
formulations” [13,14].
The next natural step is the supersymmetrization of

EM-duality for non-Abelian YM gauge fields. Motivated
by this viewpoint, we carry out two objectives in this
paper: (i) The N ¼ 1 supersymmetrization of the system
purely-bosonic EM-duality in 4D [12], and (ii) Its gener-
alization to N ¼ ð1; 0Þ YM multiplet in 10D. Even though
EM-duality for non-Abelian groups had been known in
supergravity, such as N ¼ 8 supergravity in 4D with local
SOð8Þ, and despite the purely-bosonic EM-duality system
had been presented as tensor-hierarchy formulation, our
new ingredient is the supersymmetrization of EM-duality
with arbitrary YM groups.
In our formulation in 4D, we introduce the following

three multiplets: (i) A super-Yang-Mills vector multiplet
(YMVM) which is the conventional vector multiplet, (ii) a
dual vector multiplet (DVM) with the field-strength dual
to the YM-field-strength, and (iii) a tensor multiplet
(TM). The TM plays an important role for the closure of
supersymmetry with no physical degree of freedom.
The introduction of an extra vector field Bμ

I with the
adjoint index in addition to the YM-gauge field Aμ

I is not
new. In addition to [12], another example is the super-
symmetric Jackiw-Pi (JP) model in 3D [15]. The objective
of the original JP-model [16] was to improve the parity-odd
feature with Chern-Simons (CS) theory in 3D, by intro-
ducing an extra vector Bμ

I with the adjoint index. Thus,
the introduction of the extra vector Bμ

I is common to our
present EM-duality formulation and supersymmetric
JP-model [15].
As a by-product of our 4D result, we apply the same

mechanism to 10DYM multiplet. The needed field-content
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is the YMVM ðAμ
I; λIÞ, DVM ðB½7�I; χIÞ1 and auxiliary

tensor potential fields C½8�I and K½6�. Here the potentials Aμ
I

and B½7�I have, respectively, the field-strengths Fμν
I and

G½8�I dual to each other. The important role played by the
extra tensor K½6� is explained both in component and
superspace languages.
From a certain viewpoint, our formulation seems just a

“trivial” truncation of well-known non-Abelian N ¼ 1
systems [14,17,18]. This is because similar structures are
found in [14,17,18], after first embedding all fields in
super-multiplets and then truncating out all extra fields.
Conceptually, that is one way to describe our objective. In
practice, however, the most nontrivial process is the reali-
zation of such “truncation” consistently with supersym-
metry. Whereas the purely-bosonic part of our system had
been presented in [12], its supersymmetrization is the most
nontrivial part. As we will see also, the necessity of the
auxiliary tensor K½6� in the 10D case characterizes our
nontrivial formulation.
Our paper is organized as follows: In the next section,

we review the tensor-hierarchy formulation [13,14] applied
to EM-duality. In Sec. III, we give the N ¼ 1 super-
symmetrization of non-Abelian EM-duality. In Sec. IV, we
reformulate our theory in terms of superspace language
[19]. We next apply the 4D result to the 10D super YM
multiplet in component in Sec. V. In Sec. VI, we present its
superspace reformulation. Concluding remarks are given in
Sec. VII.

II. TENSOR-HIERARCHY AND DUALITY

Our field content consists of three multiplets: (i) A
YMVM: ðAμ

I; λIÞ, (ii) a DVM: ðBμ
I; χIÞ, and (iii) a TM:

ðCμν
I; ρI;φIÞ. The vector fields Aμ

I , Bμ
I , and the tensor field

Cμν
I have the following field-strengths defined by [12–14]

Fμν
I ≡þ2∂ ½μAν�I þmfIJKAμ

JAν
K; ð2:1aÞ

Gμν
I ≡þ2D½μBν�I þmCμν

I

≡þ2ð∂ ½μBν�I þmfIJKA½μBν�IÞ þmCμν
I; ð2:1bÞ

Hμνρ
I≡ ¼ þ3D½μCνρ�I þ 3fIJKFμν

JBρ�K: ð2:1cÞ

We use m as the YM-gauge coupling constant. These
structures with the Chern-Simons (CS) like-terms in G
and H-field-strengths follow the general pattern in the
recently developed tensor-hierarchy formulations [13,14].
Accordingly, the field-strengths F;G and H satisfy their
proper Bianchi-identities (BIds):

D½μFνρ�I ≡ 0; ð2:2aÞ

D½μGνρ�I ≡þ 1

3
mHμνρ

I; ð2:2bÞ

D½μHνρσ�I ≡þ 3

2
fIJKF½μνJGρσ�K: ð2:2cÞ

The general variation of these field-strengths are given by

δFμν
I ¼ þ2D½μjðδAjν�IÞ; ð2:3aÞ

δGμν
I ¼ þ2D½μjðδBjν�IÞ þmð~δCμν

IÞ; ð2:3bÞ

δHμνρ
I ¼ þ3D½mjjð~δCjνρ�IÞ − 3fIJKðδB½μjJÞFjνρ�K

þ 3fIJKðδA½μjJÞGjνρ�K; ð2:3cÞ

~δCμν
I ≡ δCμν

I þ 2fIJKðδA½μjJÞBjν�I: ð2:3dÞ

Since the dual-vector Bμ
I has a space-time index μ, it must

have its proper “gauge” transformation: δUBμ
I ¼ Dμβ

I . The
tensor Cμν

I should also have its tensorial gauge trans-
formation: δVCμν

I ¼ 2D½μγν�I [13,14]. In total, there are
three different (generalized) gauge and tensor transforma-
tions δT; δU and δV with the appropriate parameters αI; βI

and γμ
I [13,14]:

δTðAμ
I; Bμ

I; Cμν
IÞ ¼ ðDμα

I;−mfIJKαJBμ
K;

−mfIJKαJCμν
KÞ; ð2:4aÞ

δUðAμ
I; Bμ

I; Cμν
IÞ ¼ ð0;þDμβ

I;þfIJKβJFμν
KÞ; ð2:4bÞ

δVðAμ
I; Bμ

I; Cμν
IÞ ¼ ð0;−mγμ

I;þ2D½μγν�IÞ: ð2:4cÞ

Using (2.4) in (2.3), we get

δTðFμν
I; Gμν

I; Hμνρ
IÞ ¼ −mfIJKαJðFμν

K;Gμν
K;Hμνρ

KÞ;
ð2:5aÞ

δUðFμν
I; Gμν

I; Hμνρ
IÞ ¼ ð0; 0; 0Þ;

δVðFμν
I; Gμν

I; Hμνρ
IÞ ¼ ð0; 0; 0Þ: ð2:5bÞ

In particular, the CS-like terms in the G and H-field-
strengths play important roles for the δU and δV-invariances
(2.5b). These results simply follow from the straightforward
application of the more general tensor-hierarchy formu-
lation [13,14].
Our crucial starting point is to require the EM-duality

between the field-strengths F and G2:

1We use the symbol ½n� like X½n� ≡ Xμ1���μn to save space for
indices.

2We use the symbol ¼� for an equality related to a duality, or a
more general constraint related to consistency with duality.
Similarly, we use the symbol ¼• for a field equation.
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Gμν
I¼� þ 1

2
ϵμν

ρσFρσ
I: ð2:6Þ

Note that the right-hand side of the H-BI (2.2c) vanishes
upon the use of the EM-duality (2.6).
Before the discovery of tensor-hierarchy formulation

[13,14], there used to exist inconsistency for EM-duality
for non-Abelian groups. For example, the gauge noncovar-
iance is one of them. The naïvely-defined field-strength

Gð0ÞI
μν ≡þ2D½μBν�I ð2:7Þ

is not δβ invariant, because it transforms as

δUG
ð0ÞI
μν ¼ mfIJKFμν

JβK ≠ 0: ð2:8Þ

The trouble is that this transformation does not leave the
duality condition (2.6) intact. What is needed is an extra term
in Gμν

I as in (2.1b) that cancels the unwanted term (2.8),
yielding δUGμν

I ¼ 0. In contrast, the non-invariance of the

naïve field-strength δUG
ð0ÞI
μν ≠ 0 used to present an obstruc-

tion to establish the EM-duality: Gð0ÞI
μν ¼� ð1=2ÞϵμνρσFρσ

I .

III. SUPERSYMMETRIC EM-DUALITY

The next step is to supersymmetrize the duality con-
dition (2.6). Because of the general tensor-hierarchy

formulation [13], this process is straightforward. As has
been mentioned, the TM in our system is unphysical,
namely, all fields ðCμν

I; ρI;φIÞ have no physical degree of
freedom.
To be more specific, the N ¼ 1 supersymmetry

transformation rule for our multiplets YMVM, DVM
and TM is

δQAμ
I ¼ þðϵ̄γμλIÞ; ð3:1aÞ

δQλ
I ¼ þ 1

2
ðγμνϵÞFμν

I þ imðγ5ϵÞφI; ð3:1bÞ

δQBμ
I ¼ þiðϵ̄γ5γμχIÞ; ð3:1cÞ

δQχ
I ¼ þ i

2
ðγ5γμνϵÞGμν

I − imðγ5ϵÞφI ð3:1dÞ

δQCμν
I ¼ þiðϵ̄γ5γμνρIÞ − 2fIJKðϵ̄γ½μjλJÞBjν�K; ð3:1eÞ

δQρ
I ¼ −

i
6
ðγ5γμνρϵÞHμνρ

I þ iðγ5γμϵÞDμφ
I

þ 1

2
fIJKðγμϵÞðλ̄JγμγKÞ; ð3:1fÞ

δQφ
I ¼ þiðϵ̄γ5ρIÞ: ð3:1gÞ

Accordingly, by the use of (2.3) we can get

δQFμν
I ¼ −2ðϵ̄γ½μDν�λIÞ; δQGμν

I ¼ −2iðϵ̄γ5γ½μDν�χIÞ þ imðϵ̄γ5γμνρIÞ; ð3:2aÞ

δQHμνρ
I ¼þ 3iðϵ̄γ5γ½μνDρ�ρIÞ þ 3fIJKðϵ̄γ½μjλJÞGjνρ�K − 3ifIJKðϵ̄γ5γ½μχJÞFνρ�K: ð3:2bÞ

The definitions for the F;G and H-field-strengths are
exactly the same as in (2.1).
Our supersymmetric completion of the duality (2.6)

reads as

Gμν
I ¼� þ 1

2
ϵμν

ρσFρσ
I; ð3:3aÞ

λI¼� − χI; DλI¼• 0; DχI¼• 0; ð3:3bÞ

ρI ¼� 0; φI ¼� 0; ð3:3cÞ

Hμνρ
I ¼� −

i
2
fIJKðλ̄Jγ5γμνρλKÞ: ð3:3dÞ

Some remarks are in order: First, the last two equations in
(3.3b) are actually field equations, but they are still

indirectly related to the EM-duality by supersymmetry.
Second, the first equation in (3.3b) implies that the two
fermions λ and χ coincide up to a sign. Third, (3.3c) is
needed, so that the TM is not physical. Fourth, the
condition on H is nontrivial, because if we simply put

Hμνρ
I¼� 0, then its supersymmetric transformation gener-

ates nonvanishing terms on-shell due to (3.2b). Even
though the first term in (3.2b) vanishes due to (3.3c),
the additional two terms ≈ðϵ̄γ5γλÞ ∧ G and ðϵ̄γχÞ ∧ F
remain. Even though the latter is approximately equivalent
to the former because of (3.3a) and (3.3b), they do not
exactly cancel each other. It is the variation of the
right-hand side of (3.3d) that cancels these two terms:

δQ½Hμνρ
I þ ði=2ÞfIJKðλ̄Jγ5γμνρλKÞ�¼� 0.

Fifth, all other equations in (3.3) are consistent with
supersymmetry. This confirms the total on-shell consis-
tency with supersymmetry.
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Sixth, the closure of supersymmetry works as follows:

½δQ1
; δQ2

� ¼ δP3
þ δT3

þ δU3
þ δV3

;

ξμ3 ¼ þ2ðϵ̄1γμϵ2Þ; αI3 ¼ −ξμ3Aμ
I; βI3 ¼ −ξμ3Bμ

I; γ3μ
I ¼ −ξν3Cνμ

I − ξ3μφ
I; ð3:4Þ

where δP is the translation operation. The transformations δP; δT; δU and δV , respectively have the parameters ξμ; αI; βI and
γμ

I. The subscript 3 on these parameters is to show that they are produced out of the commutator ½δQ1
; δQ2

�.
Seventh, other commutators among δU and δQ or δV and δQ are the following:

½δQ; δU� ¼ δV; γμ
I ≡ −fIJKðϵ̄γμλJÞβK; ð3:5aÞ

½δT1
; δT2

� ¼ δT3
; αI3 ≡ −fIJKαJ1αK2 ; ð3:5bÞ

½δQ; δT � ¼ ½δQ; δV � ¼ ½δT; δU� ¼ ½δT; δV � ¼ ½δU; δV � ¼ ½δU1
; δU2

� ¼ ½δV1
; δV2

� ¼ ½δK1
; δK2

�
¼ ½δT; δK� ¼ ½δU; δK� ¼ ½δV; δK� ¼ 0: ð3:5cÞ

Eighth, the degrees of freedom (DOF) in our system
are counted as follows: The TM is off-shell without
auxiliary fields. However, since it is unphysical with
DOF are 0þ 0 on-shell. Both of our YMVM and DVM
are on-shell, namely, there is no D-type auxiliary fields.
So the total DOF of these two multiplets are 2ð2þ 2Þ
on-shell. However, due to the supersymmetric duality
(3.3a) and (3.3b), the total DOF are reduced to
2ð2þ 2Þ=2 ¼ 2þ 2.
This situation is very similar to the duality-symmetric

11D supergravity [20]. Namely, in [20] we use both the
4th rank field-strength Fμνρσ and its Hodge dual Gμ1���μ7
simultaneously. Originally, there are 2

�
9

3

�
¼ 2 · 84¼ 168

on-shell DOF, but due to the duality relation F½4� ¼
ð1=7!Þϵ½4�½7�G½7�, the total DOF are reduced again to 84,
balancing the usual 128þ 128 on-shell DOF in 11D
supergravity [21].

IV. SUPERSPACE REFORMULATION

Once we have established the component formulation of
our system, it is rather straightforward to translate it into
superspace [19]. Our superfield-strengths are FAB

I; GAB
I

and HABC
I ,3 defined by

FAB
I ≡þE½AABÞI − TAB

CAC
I þmfIJKAA

JAB
K; ð4:1aÞ

GAB
I ≡þ∇½ABBÞI − TAB

CBC
I þmCAB

I; ð4:1bÞ

HABC
I ≡þ 1

2
∇½ACBCÞI −

1

2
T ½ABjDCDjCÞI

þ 1

2
fIJKF½ABJBCÞK; ð4:1cÞ

where EA ≡ EA
M∂M, while ∇A is the YM-gauge covariant

derivative:∇A ≡ EA
M∂M þ AM

IτI with the YM group gen-
erators τI. These field-strengths satisfy their respective BIds:

þ 1

2
∇½AFBCÞI −

1

2
T ½ABjDFDjCÞI ≡ 0; ð4:2aÞ

þ 1

2
∇½AGBCÞI −

1

2
T ½ABjDGDjCÞI −mHABC

I ≡ 0; ð4:2bÞ

þ 1

6
∇½AHBCDÞI −

1

4
T ½ABjEHEjCDÞI

−
1

4
fIJKF½ABjJGjCDÞK ≡ 0: ð4:2cÞ

Equations (4.1) and (4.2) are nothing but our component
results (2.1) and (2.2) recasted into superspace [19].
Our superspace constraints at engineering dimensions

0 ≤ d ≤ 1
4 are

Tαβ
c ¼ þ2ðγcÞαβ; Hαβc

I ¼ þ2ðγcÞαβφI; ð4:3aÞ

Fαb
I ¼ −ðγbλIÞα; Gαb

I ¼ −iðγ5γbχIÞα;
Hαbc

I ¼ −iðγ5γbcρIÞα; ð4:3bÞ

∇αλβ
I ¼ þ 1

2
ðγcdÞαβFcd

I − imðγ5ÞαβφI; ð4:3cÞ

∇αχβ
I ¼ þ i

2
ðγ5γcdÞαβGcd

I þ imðγ5ÞαβφI; ð4:3dÞ
3In superspace, we use the local coordinate indices A≡

ða; αÞ; B≡ ðb; βÞ;… for the bosonic (or fermionic) coordinates
a; b;… ¼ 0; 1; 2; 3 (or α; β;… ¼ 1; 2; 3; 4). The (anti)symmet-
rization in superspace is such asM½ABÞ ≡MAB − ð−ÞABMBA. The
YM-covariant derivative Dμ in component language is now ∇a.
For curved coordinates, we use M;N;….

4The engineering dimension for our bosonic (or fermionic)
fundamental field is d ¼ 0 (or d ¼ 1=2).
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∇αρβ
I ¼ −

i
6
ðγ5γcdeÞαβHcde

I − iðγ5γcÞαβ∇cφ
I

þ 1

2
fIJKðγcÞαβðλ̄JγcλKÞ; ð4:3eÞ

∇αφ
I ¼ −iðγ5ρIÞα: ð4:3fÞ

Other independent components, such as Hαβγ
I are all zero.

The constraints at d ¼ 3=2 are equivalent to (3.2):

∇αFbc
I ¼ ðγ½b∇c�λIÞα;

∇αGbc
I ¼ iðγ5γ½b∇c�χÞα − imðγ5γbcρIÞα; ð4:4aÞ

∇αHbcd
I ¼ −

i
2
ðγ5γ½bc∇d�ρIÞα −

1

2
fIJKðγ½bλJÞαGcd�K

þ i
2
fIJKðγ½bχJÞαFcd�K: ð4:4bÞ

Our duality-related equations in (3.3) are reexpressed as

Gab
I ¼� þ 1

2
ϵab

cdFcd
I; ð4:5aÞ

λα
I ¼� − χα

I; ð∇λIÞα ¼• 0; ð∇χIÞα ¼• 0; ð4:5bÞ

ρα
I ¼� 0; φI ¼� 0; ð4:5cÞ

Habc
I¼� −

i
2
fIJKðλ̄Jγ5γabcλKÞ; ~Hμ

I¼� þ 1

2
fIJKðλ̄JγμλKÞ:

ð4:5dÞ
It is not too difficult to confirm the mutual consistency of
these equations. For example, a spinorial derivative ∇α on
(4.5a) is shown to vanish:

∇α

�
Gab

I −
1

2
ϵab

cdFcd
I

�

¼� ðγ½a∇b�λIÞα þ ðγabc∇cλ
IÞα¼� ðγab∇λIÞα¼• 0; ð4:6Þ

by the use of (4.5b) and (4.5c).

V. 10D APPLICATION

As we have promised, we apply our supersymmetriza-
tion technique in 4D to 10D super YM system. Our field
content is the YMVM ðAμ

I; λIÞ, DVM ðB½7�I; χIÞ, and
auxiliary bosonic tensor fields C½8�I and K½6�. Here the
fermions λI and χI are both Majorana-Weyl spinors with the
positive chirality, as in the conventional super YM theory in
10D. Compared with the previous 4D case, the tensor K½6�
is new, without any adjoint index. The important role
played by this tensor will be clarified after (5.7c) below.

The N ¼ ð1; 0Þ supersymmetry transformation rule is

δQAμ
I ¼ þðϵ̄γμλIÞ; ð5:1aÞ

δQλ
I ¼ þ 1

2
ðγμνϵÞFμν

I; ð5:1bÞ

δQBμ1���μ7
I ¼þ ðϵ̄γμ1���μ7χIÞ þ 7K½μ1���μ6jðϵ̄γjμ7�λIÞ; ð5:1cÞ

δQχ
I ¼ −

1

8!
ðγ½8�ϵÞG½8�I; ð5:1dÞ

δQCμ1���μ8
I ¼ −8fIJKðϵ̄γμ1λJÞBμ2���μ8�

K; ð5:1eÞ

δQKμ1���μ6 ¼ 0; ð5:1fÞ

where γ11ϵ ¼ þϵ. The field-strengths F;G;H and L,
respectively, of the potentials A;B;C and K are defined by

Fμν
I ≡þ2∂ ½μAν�I þmfIJKAμ

JAν
K; ð5:2aÞ

Gμ1���μ8
I≡þ 8∂ ½μ1Bμ2���μ8�

I þmCμ1���μ8
I − 28K½μ1���μ6Fμ7μ8�

I;

ð5:2bÞ

Hμ1���μ9
I≡þ 9D½μ1Cμ2���μ9�

I þ 36fIJKF½μ1μ2
JBμ3���μ9�

K;

ð5:2cÞ

Lμ1���μ7 ≡þ7∂ ½μ1Kμ2���μ7�: ð5:2dÞ

These field-strengths satisfy the BIds

D½μFνρ�I ≡ 0; ð5:3aÞ

D½μ1Gμ2���μ9�
I ≡þ 1

9
mHμ1���μ9

I − 4L½μ1���μ7Fμ8μ9�
I; ð5:3bÞ

D½μ1Hμ2���μ10�
I ≡þ 9

2
fIJKF½μ1μ2

JGμ3���μ10�
K; ð5:3cÞ

∂ ½μ1Lμ2���μ8� ≡ 0: ð5:3dÞ

The arbitrary variations of these field-strengths are

δFμν
I ¼ þ2D½μðδAν�IÞ; ð5:4aÞ

δGμ1���μ8
I ¼ þ8D½μ1ð~δBμ2���μ8�

IÞ − 8ðδA½μ1
IÞLμ2���μ8�

þmð~δCμ1���μ8Þ − 28ðδK½μ1���μ4ÞFμ7μ8�
I; ð5:4bÞ

δHμ1���μ9
I ¼ þ9D½μ1ð~δCμ2���μ9�

IÞ − 36fIJKð~δB½μ1���μ7
JÞFμ8μ9�

K

þ 9fIJKð~δA½μ1
JÞGμ2���μ9�

K; ð5:4cÞ

δLμ1���μ7
I ¼ þ7∂ ½μ1ðδKμ1���μ7�

IÞ; ð5:4dÞ
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~δBμ1���μ7
I ≡ δBμ1���μ7

I − 7ðδA½μ1j
IÞKjμ2���μ7�; ð5:4eÞ

~δCμ1���μ8
I ≡ δCμ1���μ8

I þ 8fIJKðδA½μ1
JÞBμ2���μ8�

K: ð5:4fÞ

There are four different gauge transformations δT; δU; δV and δK:

δTAμ
I ¼ Dμα

I; δTðB½7�I; C½8�I; K½6�Þ ¼ −mfIJKαJðB½7�K; C½8�K; 0Þ; ð5:5aÞ

δUBμ1���μ7
I ¼ þ7D½μ1βμ2���μ7�; δUCμ1���μ8

I ¼ −28fIJKF½μ1μ2
Jβμ3���μ8�

K; ð5:5bÞ

δVB½7�I ¼ −mγ½7�I; δVCμ1���μ8
I ¼ þ8D½μ1γμ2���μ8�

I; ð5:5cÞ

δKBμ1���μ7
I ¼ 21κ½μ1���μ5Fμ6μ7�

I; δKKμ1���μ6 ¼ þ6∂ ½μ1κμ2���μ6�: ð5:5dÞ

for the potentials A;B; C and K, respectively. All other fields not given above are invariant, e.g., δUAμ
I ¼ 0, or δVK½6� ¼ 0.

Under each of δU; δV and δK-transformations, there are only two fields transforming. Note that B½7�I also transforms under
δK. Using (5.4), we can prove the covariance and invariance of our field-strengths:

δTðFμ
I; G½8�I; H½9�I; L½7�Þ ¼ −mfIJKαJðFμ

K;G½8�K;H½9�K; 0Þ;
δUðFμ

I; G½8�I; H½9�I; L½7�Þ ¼ ð0; 0; 0; 0Þ; δUðFμ
I; G½8�I; H½9�I; L½7�Þ ¼ ð0; 0; 0; 0Þ; ð5:6aÞ

δKðFμ
I; G½8�I; H½9�I; L½7�Þ ¼ ð0; 0; 0; 0Þ: ð5:6bÞ

The closure of supersymmetry is

½δQ1
; δQ2

� ¼ δP3
þ δT3

þ δU3
þ δV3

þ δK3
; ð5:7aÞ

ξμ3 ≡þ2ðϵ̄1γμϵ2Þ; αI3 ≡ −ξμ3Aμ
I; β3μ1���μ6

I ≡ −ξμ3Bνμ1���μ6
I; ð5:7bÞ

γ3μ1���μ7
I ≡ −ξν3Cνμ1���μ7

I; κ3μ1���μ5 ≡þ2ðϵ̄1γμ1���μ5ϵ2Þ − ξν3Kνμ1���μ5 : ð5:7cÞ

The closures on B½7�I and C½8�I need special care. In
½δQ1

; δQ2
�B½7�I , there arises a term 42ðϵ̄1γ½μ1���μ5jϵ2ÞFjμ6μ7�

I .
Usually, such a term poses a problem, because a γ½5�-term is
not acceptable in a supersymmetry-commutator. Even
though its leading gradient-term 84ðϵ̄1γ½μ1���μ5jϵ2Þ∂ jμ6jAjμ7�

I

may be absorbed into δUB½7�I, the non-Abelian term
42mðϵ̄1γ½μ1���μ5jϵ2ÞfIJKAjμ6

JAμ7�
K cannot be interpreted as

a part of δUB½7�I. However, in our system, this problematic
term can be interpreted as a δK-transformation as
δKBμ1���μ7

I ¼ 21κ½μ1���μ5jFjμ6μ7�
I as in (5.5d) and (5.7c). This

justifies the necessity of the new gauge symmetry δK for
the new field K½6�. Note also that in the previous 4D case,
the analog of the K½6�-field was not needed, because there
was no higher-rank gamma-term in ½δQ1

; δQ2
�Bμν

I , such as
42mðϵ̄1γ½μ1���μ5jϵ2ÞfIJKAjμ6

JAμ7�
K . This is the very reason

why we need K½6� in 10D with its associated symmetry δK.
The necessity of K½6� is also reflected in superspace
language [19] in the next section.

Some readers may still wonder what is the real role
played by the tensor K½6�. Such a question seems legitimate,
because the field strength L½7� is zero, so K½6� is unphysical,
and completely gauged away. This question is answered
as follows: If K½6� were gauged away, and its gauge
transformation δK were no longer available, the aforemen-
tioned unwanted term 42mðϵ̄1γ½μ1���μ5jϵ2ÞfIJKAjμ6

JAμ7�
K in

½δQ1
; δQ2

�B½7�I would not be absorbed into any gauge
transformation, and thus the supersymmetry closure would
be inconsistent. So,K½6� should not be entirely gauged away,
maintaining supersymmetry closure. The nontrivial trans-
formation δKB½7� ≠ 0 is also closely related to this fact. In
other words, if we gauged away K½6�, the δK-gauge freedom
would be lost, and supersymmetry would not close. This is a
typical example showing that even nonphysical fields are
playing important roles for the closure of supersymmetry.
As for ½δQ1

; δQ2
�C½8�I, there arise three sorts of terms:

FB; λ2 andKλ2-terms. The λ2-terms need a special γ-matrix
identities
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ðγ½μ1���μ4jνÞαβðγjμ5���μ8�νÞγδ ¼ 0;

ðγ½μ1���μ6j½3�Þαβðγjμ7μ8�½3�Þγδ ¼ 0: ð5:8Þ

Here all spinorial indices are for the negative chirality,
contracted with positive chiral spinors, such as ϵα1; ϵ

β
2 or λ

γI.
Equation (5.8) excludes possible γ½5� and γ½9�-terms in the
commutator.
Other nonvanishing commutators among δQ; δT; δU; δK

are

½δQ; δU� ¼ δV3
; γ3μ1���μ7

I ≡ −7fIJKðϵ̄γ½μ1λJÞβμ2���μ7�K;
ð5:9aÞ

½δQ; δK� ¼ δU3
; β3μ1���μ6

I ≡ −6κ½μ1���μ5ðϵ̄γμ6�λIÞ:
ð5:9bÞ

Our supersymmetric EM-duality relationships are now

Fμν
I¼� þ 1

8!
ϵμν

½8�G½8�I ≡ ~Gμν
I; ð5:10aÞ

H½9�I¼� −
1

2
fIJKðλ̄Jγ½9�λKÞ; ð5:10bÞ

λI¼� − χI; ð5:10cÞ

DλI¼• 0; DχI¼• 0; ð5:10dÞ

L½7� ¼• 0: ð5:10eÞ

One difference compared with the previous 4D case is
the new tensor L½7� needed for the supersymmetry-
closure of the system. This will be mentioned in the
next section.

VI. 10D SUPERSPACE REFORMULATION

As reconfirmation and for future applications, we refor-
mulate the 10D result in superspace [19]. Our superfield-
strengths are defined by

FAB
I ≡þE½AABÞI − TAB

CAC
I þmfIJKAA

JAB
K; ð6:1aÞ

GA1���A8

I ≡þ 1

7!
∇½A1

BA2���A8Þ
I −

1

6!·2
T ½A1A2j

CBCjA3���A8Þ
IþmCA1���A8

I −
1

6!·2
K½A1���A6

FA7A8Þ
I; ð6:1bÞ

HA1���B9

I ≡þ 1

8!
∇½A1

CA2���A9Þ
I −

1

7!·2
T ½A1A2j

CCCjA3���A9Þ
I −

1

7!·2
fIJKF½A1A2

JBA3���A9Þ
K; ð6:1cÞ

LA1���A7
≡þ 1

6!
E½A1

KA2���A7Þ −
1

5!·2
T ½A1A2j

BKBjA3���A7Þ: ð6:1dÞ

In particular, the KF-term in (6.1b) is the superspace generalization of (5.2b) in component language.
These field-strengths satisfy the superspace BIds

1

2
∇½AFBCÞI −

1

2
T ½ABjDFDjCÞI ≡ 0; ð6:2aÞ

1

8!
∇½A1

GA2���A9Þ
I −

1

7!·2
T ½A1A2j

BGBjA3���A9Þ
I þ 1

7!·2
L½A1���A7

FA8A9Þ
I −mHA1���A9

I ≡ 0; ð6:2bÞ

1

9!
∇½A1

HA2���A10Þ
I −

1

8!·2
T ½A1A2j

BHBjA3���A10Þ
I −

1

8!·2
fIJKF½A1A2

JGA3���A10Þ
K ≡ 0; ð6:2cÞ

1

7!
∇½A1

LA2���A8Þ −
1

6!·2
T ½A1A2j

BLBjA3���A8Þ ≡ 0: ð6:2dÞ

These are respectively referred to as ðABCÞF; ðA1 � � �A9ÞG; ðA1 � � �A10ÞH and ðA1 � � �A8ÞL-BIds. Here LA1���A7
plays an

important role, as will be clarified shortly.
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The superspace constraints at engineering dimensions 0 ≤ d ≤ 1 are

Tαβ
c ¼ þ2ðγcÞαβ; Lαβc1���c5 ¼ þ2ðγc1���5Þαβ; ð6:3aÞ

Fαb
I ¼ þðγbÞαβλβI ≡ −ðγbλIÞα; Gαb1���b7

I ¼ þðγb1���b7ÞαβχβI ≡ −ðγb1���b7χIÞα; ð6:3bÞ

∇αλ
βI ¼ þ 1

2
ðγcdÞαβFcd

I; ∇αχ
βI ¼ þ 1

8!
ðγcdÞαβG½8�I: ð6:3cÞ

Here the upper (or lower) spinorial indices α;β;… (or α;β;…) are for the positive (or negative) chiralities. We also use the

collective indices α≡ ð α ; αÞ; β≡ ð β ; βÞ;…. Due to the mixed chirality C
αβ
: or Cαβ

:

for the charge-conjugation matrices in

10D, the upper (or lower) indices are equivalent to dotted indices: Xα ¼ Cαβ
:

X
β
: (or Xα ¼ −C

αβ
: Xβ

:

). However, we avoid to

use the dotted ones. All other independent components, such as Tα
βc; Gα β c1���c6

I; Hα β c1���c7
I, etc. are zero.

The superspace constraints at d ¼ 3=2 are

∇αFbc
I ¼þ ðγ½b∇c�λIÞα; ∇αGb1���b8

I ¼ þ 1

7!
ðγ½b1���b7∇b8�χ

IÞα; ð6:4aÞ

∇αHb1���b9
I ¼ −

1

2
fIJKðγcdγb1���b9λJÞαFcd

K: ð6:4bÞ

Our supersymmetric EM-duality relations are parallel to
the component case (5.10):

Fab
I¼� þ 1

8!
ϵab

½8�G½8�I ≡ ~Gab
I; ð6:5aÞ

G½8�I¼� −
1

2
ϵ½8�abFab

I ≡ − ~F½8�
I; ð6:5bÞ

H½9�I¼� −
1

2
fIJKðλ̄Jγ½9�λKÞ; ð6:5cÞ

λαI¼� − χαI; ð6:5dÞ

ð∇λIÞα ¼• 0; ð∇χIÞα ¼• 0; ð6:5eÞ

La1���a7 ¼
•
0: ð6:5fÞ

The satisfaction of the BIds (6.2) needs special care, in
particular, the role played by the superfield-strength
LA1���A7

. For example, if the LF-term in (6.2b) did not
exist in the ðαβγd1 � � �d6ÞG-BId at d ¼ 1=2, then a term
proportional to ðγ½d1jÞðαβjðγjd2���d6�χIÞjγÞ would be left
over. This term is canceled by the like-term arising from
the LF-term in the G-BId (6.2b). Similarly at d ¼ 1, the
ðαβc1 � � � c7ÞG-BId, which is equivalent to the closure
½δQ1

; δQ2
�B½7�I in component language, works as

follows: If there were no LF-term in this BId, then there
would remain a term −ð1=6!Þðγ½c1c2j½3�ÞαβG½3�jc3���c7�

I¼� −
ð1=120Þðγ½c1���c5jÞαβ Fjc6c7�

I , upon the use of the duality
(5.10a). However, this term is exactly canceled by the like-
term arising from ð1=240ÞLαβ½c1���c5jFjc6c7�

I. We have thus

confirmed the significance of the K½6�-field both in com-
ponent and superspace languages. The significance of the
δK for the closure of supersymmetry in component is
reflected into the necessity of the LF-term in G-Bianchi
identity (6.2b) in superspace.
For BIds at d ¼ 1=2, the following γ-matrix relation-

ships are crucial:

ðγeÞðαβðγef1���f4ÞγδÞ ¼ 0; ð6:6aÞ

ðγ½aj½4�Þαβðγjb�½4�Þγδ ¼ 0; ð6:6bÞ

ðγ½e1Þðαβðγe2���e6�ÞβδÞ ¼ 0; ð6:6cÞ

in addition to (5.8). All of these can be easily confirmed by
the use of more fundamental relationships, such as

δðαγδβÞδ ¼ −
1

8
ðγeÞαβðγeÞγδ −

1

1920
ðγ½5�Þαβðγ½5�Þγδ: ð6:7Þ

As in the 4D case in Sec. III, we can confirm the internal
consistency of supersymmetric EM-duality in (6.5). A
typical example is the spinorial derivative ∇α acting
on (6.5a) or (6.5c), yielding zero by the use of other
duality-related equations in (6.5). These are parallel to the
component case, so that we do not give details.

VII. CONCLUDING REMARKS

In this paper, we have accomplished the N ¼ 1 super-
symmetrization of the EM-duality relationship (2.6) for
non-Abelian gauge groups in 4D. The original EM-duality
(2.6) is supersymmetrized to the equations in (3.3).
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Subsequently, we have also established the EM-duality
(5.10) for N ¼ ð1; 0Þ non-Abelian supersymmetric system
in 10D.
The total system in 4D is simple with only three

multiplets: a YMVM, a DVM and a nonphysical TM.
Yet the TM plays a very crucial role for avoiding the
conventional problem with non-Abelian EM-duality based
on tensor-hierarchy [12–14]. Even though EM-duality for
SOð8Þ group with N ¼ 8 local supersymmetry [22] had
been known for a long time, our system is simple only
with global supersymmetry. Our formulations became
possible, thanks to the recently developed tensor-hierarchy
formulation [12–14].
We have confirmed the total consistency both in

component and superspace languages [19] both in 4D
and 10D, as well. The existence of the extra tensors, such
as Cμν

I in 4D or C½8�I and K½6� in 10D is to maintain the
total consistency of the system. In particular, the field-
strengths G and H contain CS-like terms, guaranteeing
consistency. This aspect is also the result of tensor-
hierarchy formulation [12–14].
The validity of the particular KF-type CS-term in the

G-field strength (5.2b), and the LF-term in the G-Bianchi
identity (5.3b) in component language is reconfirmed as
(6.1b) and (6.2b) in superspace. The necessity of the

potential K½6� or its field strength L½7� is confirmed both
in component and superspace languages. It is the sophis-
ticated combination of tensor-hierarchy formalism [13,14]
and the special role played by K½6� and L½7� that make our
EM-duality possible in 10D.
In our paper, we have dealt with the manifestly-Lorentz-

covariant EM-duality, such as Fμν
I¼� þ ð1=8!Þϵμν½8�G½8�I in

10D, instead of nonmanifest Lorentz covariance as in [3].
Even though our system lacks a Lagrangian formulation, it
still maintains manifest Lorentz-covariance at the field-
equation level.
As some readers may have noticed, (3.3d) indicates that

the dual field-strength ~Hμ
I equals the YM-current vector:

~Hμ
I¼� JμI. The divergence of the left-hand side of this

relationship vanishes by the EM-duality (2.6) via theH-BId
(2.2c), while the vanishing of the right-hand side is the
usual current conservation. In other words, the new
relationship like (3.3d) relates the current JμI directly to
field-strength ~Hμ

I without involving derivatives of the
latter.
We believe our present result may well be important for

generating other and new supersymmetric consistent the-
ories of non-Abelian vectors and tensors associated with
general EM-dualities, in diverse space-time dimensions.
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