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Non-Abelian electric-magnetic duality with supersymmetry in 4D and 10D
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We present electric-magnetic (Hodge) duality formulation for non-Abelian gauge groups with N = 1
supersymmetry in 3 + 1 (4D) dimensions. Our system consists of three multiplets: (i) A super-Yang-Mills
vector multiplet (YMVM) (A,/, 27), (ii) a dual vector multiplet (DVM) (B,’, '), and (iii) an unphysical
tensor multiplet (TM) (C,,”. p’, ¢'), with the index ! for adjoint representation. The multiplets YMVM and
DVM are dual to each other like: G,w’ =(1/ Z)E”D/MF pg’ . The TM is unphysical, but still plays an important

role for establishing the total consistency of the system, based on recently developed tensor-hierarchy
formulation. We also apply this technique to non-Abelian electric-magnetic duality in 9+ 1 (10D)

dimensions. The extra bosonic auxiliary field K,
closure of supersymmetry on fields.
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I. INTRODUCTION

It is conjectured that the discrete group SL(2,Z) C
SL(2,R) is the exact symmetry of the full heterotic string
theory [1,2], associated with the target-space duality
symmetry SO(6,22) in compactifications to four dimen-
sions (4D). This feature also leads to electric-magnetic
(EM) duality in 4D or higher dimensions with Lagrangian
formulations [3]. The drawback of nonmanifest Lorentz
invariance in [3] was overcome by the manifestly Lorentz-
invariant reformulation [4]. The S-duality between the
strong and weak string-couplings is also reduced to
EM-duality in 4D [5], making D3-branes self-dual [6].

The SL(2,R) symmetry for a vector field was pointed
out early in 1980s [7], and is confirmed to be valid, even in
the presence of Dirac-Born-Infeld interactions [7,8]. The
N =1 and N =2 supersymmetric generalizations have
also been accomplished in [9]. Moreover, this duality-
symmetry can be generalized to self-duality in even
dimensions [10].

In 4D, the EM-duality is F,,/ = (1/2)¢,,”°G,,’, where
G, is the field strength of a new vector field B,’ with the
adjoint index I. However, due to the inconsistency arising

for the nalve definition of the field-strength Gl =

2Dy, B,;’ for a non-Abelian vector B, [11], such an attempt
was again bound to fail in the past. This had been the fate of
vector fields with non-Abelian indices, not to mention its
supersymmetrization.

This problem was first solved by the work by Samtleben
[12] with the purely bosonic EM-duality for non-Abelian
YM gauge field with its Hodge-dual field. The essential
ingredient is to introduce Chern-Simons-like terms in the
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in 10D is shown to play an important role for the

PACS numbers: 12.60.Jv, 11.15.-q, 11.30.Pb

G-field strength, combined with a new tensor field C /w]
in the adjoint representation. Subsequently, this result
was further generalized in terms of “tensor-hierarchy
formulations™ [13,14].

The next natural step is the supersymmetrization of
EM-duality for non-Abelian YM gauge fields. Motivated
by this viewpoint, we carry out two objectives in this
paper: (i) The N = 1 supersymmetrization of the system
purely-bosonic EM-duality in 4D [12], and (ii) Its gener-
alization to N = (1,0) YM multiplet in 10D. Even though
EM-duality for non-Abelian groups had been known in
supergravity, such as N = 8 supergravity in 4D with local
SO(8), and despite the purely-bosonic EM-duality system
had been presented as tensor-hierarchy formulation, our
new ingredient is the supersymmetrization of EM-duality
with arbitrary YM groups.

In our formulation in 4D, we introduce the following
three multiplets: (i) A super-Yang-Mills vector multiplet
(YMVM) which is the conventional vector multiplet, (ii) a
dual vector multiplet (DVM) with the field-strength dual
to the YM-field-strength, and (iii) a tensor multiplet
(TM). The TM plays an important role for the closure of
supersymmetry with no physical degree of freedom.

The introduction of an extra vector field BM’ with the
adjoint index in addition to the YM-gauge field A, is not
new. In addition to [12], another example is the super-
symmetric Jackiw-Pi (JP) model in 3D [15]. The objective
of the original JP-model [16] was to improve the parity-odd
feature with Chern-Simons (CS) theory in 3D, by intro-
ducing an extra vector Bul with the adjoint index. Thus,
the introduction of the extra vector B,’ is common to our
present EM-duality formulation and supersymmetric
JP-model [15].

As a by-product of our 4D result, we apply the same
mechanism to 10D YM multiplet. The needed field-content

© 2015 American Physical Society
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is the YMVM (A4,/, "), DVM (Bp’.z")" and auxiliary
tensor potential fields Cjg)’ and K . Here the potentials A,
and Bp;' have, respectively, the field-strengths F,,’ and
G[g]l dual to each other. The important role played by the
extra tensor Kjg is explained both in component and
superspace languages.

From a certain viewpoint, our formulation seems just a
“trivial”  truncation of well-known non-Abelian N =1
systems [14,17,18]. This is because similar structures are
found in [14,17,18], after first embedding all fields in
super-multiplets and then truncating out all extra fields.
Conceptually, that is one way to describe our objective. In
practice, however, the most nontrivial process is the reali-
zation of such “truncation” consistently with supersym-
metry. Whereas the purely-bosonic part of our system had
been presented in [12], its supersymmetrization is the most
nontrivial part. As we will see also, the necessity of the
auxiliary tensor K¢ in the 10D case characterizes our
nontrivial formulation.

Our paper is organized as follows: In the next section,
we review the tensor-hierarchy formulation [13,14] applied
to EM-duality. In Sec. III, we give the N =1 super-
symmetrization of non-Abelian EM-duality. In Sec. IV, we
reformulate our theory in terms of superspace language
[19]. We next apply the 4D result to the 10D super YM
multiplet in component in Sec. V. In Sec. VI, we present its

superspace reformulation. Concluding remarks are given in
Sec. VIL

II. TENSOR-HIERARCHY AND DUALITY

Our field content consists of three multiplets: (i) A
YMVM: (A,/,2%), (ii) a DVM: (B, ¥'), and (iii) a TM:
(C.'.p", ¢"). The vector fields A", B,”, and the tensor field
C,,' have the following field-strengths defined by [12-14]

ol =+20,A, +mfUkA /A K, (2.1a)
GWI = —|—2D[”BU]I + mCWI

= +2(8[#B,,]I + mf”KAwB,,]I) + mCWI, (2.1b)
H”W,IE = +3chw]l =+ 3fIJKFWJB/,]K. (2.]0)

We use m as the YM-gauge coupling constant. These
structures with the Chern-Simons (CS) like-terms in G
and H-field-strengths follow the general pattern in the
recently developed tensor-hierarchy formulations [13,14].
Accordingly, the field-strengths F, G and H satisfy their
proper Bianchi-identities (BIds):

DyF,, =0, (2.2a)

'We use the symbol [, like X;,; =X

o 4y, (O save space for
indices.
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1
l'/’][ =+ 3 mH/w/)I’

D,G (2.2b)

3
D[/,tpra]I = +§f”KF[;wJGpa]K' (220)

The general variation of these field-strengths are given by

8F,," = 42Dy, (5A,)"). (2.3a)
G, = +2Dy,(8B),)") + m(5C,,"). (2.3b)
8H,,,! = 43Dy, [(5C),,)") = 3K (6By, ) F K
+ 3K (8A1,7)G K. (2.3¢)
8C,,1=58C,," +2fVK(5A,7)By)". (2.3d)

Since the dual-vector Bﬂ’ has a space-time index y, it must
have its proper “gauge” transformation: 6B’ = D, f'. The
tensor C,,’ should also have its tensorial gauge trans-
formation: &,C,," = 2Dy,y,)" [13,14]. In total, there are
three different (generalized) gauge and tensor transforma-

tions &7, 8, and &, with the appropriate parameters o,
and y,’ [13,14]:

sr(AL B/ CLN) = (D, —mf%a B K,

-mf%a’C,5), (2.4a)
6U(A;41’ BMI’ C;wl) = (O’ +D[lﬁ1’ +f”KﬁJFﬂDK>’ (24b)
sv(A, B!, Cu') = (0,—my,', +2Dyy,)"). (2.4c)

Using (2.4) in (2.3), we get

5T(F 1 G 1 H I)I—H’lf”KO!‘](F K G K H K)’

wo> G s Hyp wo v Huwp
(2.5a)

5U(F;w17 G/,wls H;wpl) = (0’ 0, 0)7

Sy(Fu' Gu' Hy,') = (0,0,0) (2.5b)

In particular, the CS-like terms in the G and H-field-
strengths play important roles for the d;; and dy-invariances
(2.5b). These results simply follow from the straightforward
application of the more general tensor-hierarchy formu-
lation [13,14].

Our crucial starting point is to require the EM-duality
between the field-strengths F' and G*:

*We use the symbol = for an equality related to a duality, or a
more general constraint related to consistency with duality.

Similarly, we use the symbol = for a field equation.
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|
G,'=+ 3 €, F 5" (2.6)
Note that the right-hand side of the H-BI (2.2c) vanishes
upon the use of the EM-duality (2.6).

Before the discovery of tensor-hierarchy formulation
[13,14], there used to exist inconsistency for EM-duality
for non-Abelian groups. For example, the gauge noncovar-
iance is one of them. The naively-defined field-strength

Gw' = +2D,B,) (2.7)

is not oy invariant, because it transforms as
S (0)1 _ IJKF J pK 0 2.8
UG#I/ - mf Hv :B ?é . ( . )

The trouble is that this transformation does not leave the
duality condition (2.6) intact. What is needed is an extra term
in GWI as in (2.1b) that cancels the unwanted term (2.8),
yielding 5UGWI = 0. In contrast, the non-invariance of the

naive field-strength 6UG,(,OD>1 # 0 used to present an obstruc-
tion to establish the EM-duality: G,(,(,),)Ii(l /2)€,/°F 5"

III. SUPERSYMMETRIC EM-DUALITY

The next step is to supersymmetrize the duality con-
dition (2.6). Because of the general tensor-hierarchy
|

5QF;41/I = —2(5}/le”]),1),

5QH/wpI =+ 3l(é75y[/pr]pl) + 3f”l((éybt|)/)G|yp]K - 3if”K(é7/5y[;J(J)va]K'

The definitions for the F,G and H-field-strengths are
exactly the same as in (2.1).

Our supersymmetric completion of the duality (2.6)
reads as

N
G,'=+ Eeﬂf F,', (3.3a)
M=yl PA=0, Py'=0,  (3.3b)
pl =0, o' =0, (3.3¢)
o .
H/wpl - Ef”]((ﬂjyiy/wpﬂl()' (33d)

Some remarks are in order: First, the last two equations in
(3.3b) are actually field equations, but they are still
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formulation [13], this process is straightforward. As has
been mentioned, the TM in our system is unphysical,
namely, all fields (C,,”, p’. ¢') have no physical degree of
freedom.

To be more specific, the N =1 supersymmetry
transformation rule for our multiplets YMVM, DVM
and TM is

5QA’,I = +(éyﬂ21), (3.1a)
1
SoAl = +E (r"™e)F,,' +im(yse)p’ (3.1b)
SoB,! = +i(eysy ). (3.1¢)
i :
5Q)(I = +§ (757’”6)(}”/ - lm(}’se)f/’l (3.1d)
SQC/H/I = +i(éy5}/;¢upl) - 2f”K(éy[/4\/IJ)B\D]K’ (316)
i .
Sop' = = e (rsr" )y, + ilysr'e) Dy’
1 _
+5 /e ) A7), (3.1f)
@' = +i(Ersph). (3.1g)
Accordingly, by the use of (2.3) we can get
5QG/41/[ - —21(@75}/[/41)”])(1) + im(é75yﬂyp’), (323)
(3.2b)

|

indirectly related to the EM-duality by supersymmetry.
Second, the first equation in (3.3b) implies that the two
fermions A and y coincide up to a sign. Third, (3.3c) is
needed, so that the TM is not physical. Fourth, the
condition on H is nontrivial, because if we simply put

H,,' =0, then its supersymmetric transformation gener-
ates nonvanishing terms on-shell due to (3.2b). Even
though the first term in (3.2b) vanishes due to (3.3c),
the additional two terms =~(&ysyA) A G and (éyy) A F
remain. Even though the latter is approximately equivalent
to the former because of (3.3a) and (3.3b), they do not
exactly cancel each other. It is the variation of the
right-hand side of (3.3d) that cancels these two terms:
80lHup! + (i/2)f7K (2151, ) 200,

Fifth, all other equations in (3.3) are consistent with
supersymmetry. This confirms the total on-shell consis-
tency with supersymmetry.

085014-3



HITOSHI NISHINO AND SUBHASH RAJPOOT
Sixth, the closure of supersymmetry works as follows:
[6Q1 ’ 5Q2] = 61’3 + 5T3 + 6U3 + 5V3’
5= 1+2e'e). o =-8A

PHYSICAL REVIEW D 92, 085014 (2015)

ﬂg = _ngﬂI’ },3#1 = _Eécvﬂl - 53;4(:015 (34)

where 5 is the translation operation. The transformations &p, 87, 8y and &y, respectively have the parameters &, o, ! and
7. The subscript 3 on these parameters is to show that they are produced out of the commutator [5, ,5¢,]-
Seventh, other commutators among 6y and 6, or 6y and J, are the following:

[5Q7 5u] = oy, 7,4[ = _f”K@Vyﬂj)ﬁkv

(67,01, =or,.  of=—f""alaf,

[6Q75T] = [5Q’5V] = [5T55U} = [5T’5V] = [5Uv5V] = [5U,»5U2] = [5v|»5v2] = [51([’51(2]

= [6r, 6] = [0y, 5k] = [0y, k] = 0.

Eighth, the degrees of freedom (DOF) in our system
are counted as follows: The TM is off-shell without
auxiliary fields. However, since it is unphysical with
DOF are 0 + 0 on-shell. Both of our YMVM and DVM
are on-shell, namely, there is no D-type auxiliary fields.
So the total DOF of these two multiplets are 2(2 + 2)
on-shell. However, due to the supersymmetric duality
(3.3a) and (3.3b), the total DOF are reduced to
22+2)/2=2+2.

This situation is very similar to the duality-symmetric
11D supergravity [20]. Namely, in [20] we use both the
4th rank field-strength F,,,, and its Hodge dual G

K1 K7

9
3>_2-84_168

on-shell DOF, but due to the duality relation Fyy =
(1/7")ew me, the total DOF are reduced again to 84,
balancing the usual 128 + 128 on-shell DOF in 11D
supergravity [21].

simultaneously. Originally, there are 2(

IV. SUPERSPACE REFORMULATION

Once we have established the component formulation of
our system, it is rather straightforward to translate it into
superspace [19]. Our superfield-strengths are F,z', G5’
and H,pc!,’ defined by

FABI = +E[AAB)1 - TABCACI + mfIJKAAJABK, (413)

GABI = +V[ABB)I - TABCBCI + mCABI, (41b)

’In superspace, we use the local coordinate indices A =
(a,a), B= (b,p), ... for the bosonic (or fermionic) coordinates
a,b,...=0,1,2,3 (or a,p,... = 1,2,3,4). The (anti)symmet-
rization in superspace is such as M5 = Myp — (=)*"BMpg,. The
YM-covariant derivative D, in component language is now V.

(3.5a)

(3.5b)

(3.5¢)

|
! 1 ;1 D 1
Hypc' = +§v[ACBC) _ET[AB\ Cpic)
1
+ EfIJKF[ABJBC)K» (41C)

where E, = E,M9,,, while V, is the YM-gauge covariant
derivative: V, = E,M0,, + A,,'z' with the YM group gen-
erators 7/. These field-strengths satisfy their respective BIds:

1 1
+ EV[AFBC)I - E T[AB‘DFD|C)I = 0, (42&)
1 1 D I I
+ EV[AGBC) - ET[AB\ Gpjc)' —mH ' =0, (4.2b)
1 ;1 E !
+ EV[AHBCD) 1 T4 HEcp)
1
- Zf”KF[AB|JG\CD)K =0. (4.2¢)

Equations (4.1) and (4.2) are nothing but our component
results (2.1) and (2.2) recasted into superspace [19].

Our superspace constraints at engineering dimensions
0<d<1"are

Taﬂc = +2<y6)aﬂ’ Haﬁ’cl = +2(yc)aﬁ(p1’ (438')
Fab[ = _(71)’11)0:’ Gabl = _i(757b)(])a’
Habcl = _i(}/SybCpl)a’ (43b)
1 1 cd 1 . 1
va}“ﬁ = ‘1‘5(7 )aﬁch - lm(yS)aﬁ(p ’ (430)
i . .
Vs = ) (757D apGed" + im(ys) s (4.3d)

“The engineering dimension for our bosonic (or fermionic)
fundamental field is d = 0 (or d = 1/2).
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i .
vap/il = 6 (YSyCde)aﬁHcdel - l(ySyc)aﬂvc(pl
1 .
+ EfIJK (}/C)a/}(ﬂjyc/lK)’ (436)
Vo' = =i(vsp') e (4.3f)

Other independent components, such as Ha/,y’ are all zero.
The constraints at d = 3/2 are equivalent to (3.2):

vancl = (y[va]/ll)a’

vathI = i(}/S}/[hvc])()a - im(ySthpI)m (443)
i 1
Vo Hpedd = — 2 (757 Vap') o — Ef Ky pA”)oGea™
i
+ Ef”K(Y[b){J)ach]K- (4.4b)

Our duality-related equations in (3.3) are reexpressed as

1

Gab - + zeadech s (453)
At ==yl (V1) =0, (¥y'),=0, (4.5b)
Pl =0, ¢! =0, (4.5¢)

w1 - ~

Habcl = - EfHK (’?'JySYabc/lK) ’
(4.5d)

It is not too difficult to confirm the mutual consistency of
these equations. For example, a spinorial derivative V, on
(4.5a) is shown to vanish:

1
va <Gab1 - _eadechI>
2
;<7[avb]/11>a +

by the use of (4.5b) and (4.5c).

(Yabcvcll)a;(yabVAl)a;O’ (46)

V. 10D APPLICATION

As we have promised, we apply our supersymmetriza-
tion technique in 4D to 10D super YM system. Our field
content is the YMVM (4,7, 1), DVM (Bml '), and
auxiliary bosonic tensor fields C[g]l and K. Here the
fermions A’ and y/ are both Majorana-Weyl spinors with the
positive chirality, as in the conventional super YM theory in
10D. Compared with the previous 4D case, the tensor Kg)
is new, without any adjoint index. The important role
played by this tensor will be clarified after (5.7¢c) below.

« .
Hﬂlz +§f”K(/1J7MK)-

PHYSICAL REVIEW D 92, 085014 (2015)

The N = (1,0) supersymmetry transformation rule is
oA, = +(er ), (5.1a)
1
5Q/11 = +§ (}/””e)FWI, (5.1b)
5QBM1“'1471 =+ (éyﬂl'“m)([) + 7K[/41"'M6|(€}/\M7]/11)’ (5'10)
1
Sox' = —g(y[S]e)G[g]f, (5.1d)
80C,, s’ = =85 (€7,,47)B,, X, (5.1e)
50K,y = O, (5.1f)

where y1,¢ = +e€. The field-strengths F,G,H and L,
respectively, of the potentials A, B, C and K are defined by

F,/ = +28[”A,,]1 +mfEA, ALK, (5.2a)
Gy =+ 80y, By +mCp| = 28K Fr
(5.2b)
HMl"'#QIE + 9D[l41cﬂ2"'ﬂ9]1 + 36f”KF[#1ﬂszﬂ3'“Il9]K’
(5.2c)
Lyyopy = +70p, Ky (5.2d)
These field-strengths satisfy the Blds
D[ﬂFW]I = 0, (533.)
1
D[f‘lGMZ"'ﬂe]I = +§mHﬂ1"'l491 - 4L[ﬂl"'ﬂ7FﬂsM9]1’ (53b)
9
D[ﬂlHﬂz‘“/ho][ = +EfUKF[ﬂlﬂszﬂy“ﬂlo]K’ (530)
Ny Lytyopsg) = 0. (5.3d)
The arbitrary variations of these field-strengths are
5FWI = +2DU4(5AU]I), (543)
6Gyy-pyy” = 8Dy, (53/42 -m]l) - 8(6AU4|I)LP¢2"'#8]
+ m<5CM1 Ms) 28<5K[/41"'."‘4)FI47I48][’ (54b)
6HM1 9 +9D[I41(5Cﬂ7 ) 36f”K(5B[ﬂ] M7j) ﬂ8M9
+9f1K (54,7 )Gﬂz_‘.ﬂg]’f, (5.4¢)
5LM1"'M71 = +78[ﬂ1 (5Kﬂ1"'l47]1)’ (54d)
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OBy, = 6By, = T(6AL K -] (5.4¢)
6C, ! = 0C,, "+ 8K (84, ") By, K. (5.4f)
There are four different gauge transformations 7, 8y, oy and Og:
8rA, =D,dl.  8:(By'.Cy'l Kig) = —mfl%a (B X, CX.0), (5.5a)
SuBuy! = +TDy By SuChyps’ = =28 K F 0 B (5.5b)
5VB[7]1 = —myml, SvCpyp = +8D[;417uz~-ﬂs][’ (5.5¢)
SkByy oy’ = 21Ky F s OkK e = F600, Ky o) (5.5d)

for the potentials A, B, C and K, respectively. All other fields not given above are invariant, e.g., 5UA”’ =0, 0r6yKig = 0.
Under each of §;;, 5y and dg-transformations, there are only two fields transforming. Note that B[7]1 also transforms under
Og- Using (5.4), we can prove the covariance and invariance of our field-strengths:

6r(F,!.Gg' . Hy' . Lyz)) = —mf%a’ (F, X

.Gy, Hy*,0),

Sy(F," G[g]I,H[g]I,Lm) =(0,0,0,0), sy(F," G[S]I,H[g]l,Lm) = (0,0,0,0), (5.6a)
5x(F,'. G . Hy'. Li7;) = (0,0,0,0). (5.6Db)
The closure of supersymmetry is
[60,.00,] = p, + 61, + by, + Sy, + Ik, (5.7a)
& =12e'e),  d=-8AL Py =8B (5.7b)
Vi) = =EC o’y Kapyops = F2(E17 005 €2) — EK s (5.7¢)

The closures on By’ and Cjg’ need special care. In
[60,-60,]Bp". there arises a term 42(&, ¥}y, .| €2) F juur] -
Usually, such a term poses a problem, because a y(5)-term is
not acceptable in a supersymmetry-commutator. Even
though its leading gradient-term 84(&,y},,...s€2) O | Al
may be absorbed into 5UB[7]1 , the non-Abelian term
42m(ély[/41“'ﬂ5|€2)f”KA|ﬂ6jAﬂ7]K
a part of 5UB[7]1 . However, in our system, this problematic

cannot be interpreted as

term can be interpreted as a Jg-transformation as
6KB}4|'“M7I = 2]Kbt1--~ys\Flu6u7]1 as in (5.5d) and (5.7c¢). This
justifies the necessity of the new gauge symmetry 5 for
the new field Kg). Note also that in the previous 4D case,
the analog of the K g -field was nor needed, because there
was no higher-rank gamma-term in [y, . 80,]B,,", such as
42m (€17, .5 €2) KA, T A, K. This is the very reason
why we need K¢ in 10D with its associated symmetry J.
The necessity of Kjg is also reflected in superspace

language [19] in the next section.

|

Some readers may still wonder what is the real role
played by the tensor K(g. Such a question seems legitimate,
because the field strength L7 is zero, so K g is unphysical,
and completely gauged away. This question is answered
as follows: If K were gauged away, and its gauge
transformation dx were no longer available, the aforemen-
tioned unwanted term 42m(éyyy,, ... €2) "X A, A, K in
60,-80,]B;n) would not be absorbed into any gauge
transformation, and thus the supersymmetry closure would
be inconsistent. So, K should not be entirely gauged away,
maintaining supersymmetry closure. The nontrivial trans-
formation 6xBj7 # 0 is also closely related to this fact. In
other words, if we gauged away K{g), the 6x-gauge freedom
would be lost, and supersymmetry would not close. This is a
typical example showing that even nonphysical fields are
playing important roles for the closure of supersymmetry.

As for [8p,.60,]Clg’, there arise three sorts of terms:
FB, 2> and K/>-terms. The /?-terms need a special y-matrix
identities
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(y[ﬂl"'ﬂ4\’/)aﬂ(nﬂs'“ﬂs]y)}"s =0,

sl ™) ap V1) y5 = O- (5.8)

Here all spinorial indices are for the negative chirality,
contracted with positive chiral spinors, such as €f, eg or A%,
Equation (5.8) excludes possible 1! and y-terms in the
commutator.

Other nonvanishing commutators among &, 67, 0y, Ok
are

80,6y = év,, Vs = _7fUK(é7’[/41’w)ﬁﬂzmm]K’
(5.9a)
[5Q’ 5[(] = 5U3’ ﬂ3ﬂ1"'ﬂsl = _6’([/41“'/45 (éyﬂs]ﬂ’])'
(5.9b)

Our supersymmetric EM-duality relationships are now

PHYSICAL REVIEW D 92, 085014 (2015)

Hy)'=~ %f’”{(ifyp]l’(), (5.10b)
A==y (5.10¢)
pa'=0,  By'=0, (5.10d)
Ly =0 (5.10¢)

One difference compared with the previous 4D case is
the new tensor Lj; needed for the supersymmetry-

closure of the system. This will be mentioned in the
next section.

VI. 10D SUPERSPACE REFORMULATION

As reconfirmation and for future applications, we refor-

1 ~ mulate the 10D result in superspace [19]. Our superfield-
11X = 8 I — 4
Fu'=+ g1 G G =G’ (5.10a) strengths are defined by
|
FABI = +E[AAB)1 - TABCACI + mfIJKAAJABK, (613)
Guonl=+~V, B ! Tis,a, B LymCyond = ——Kip n Fan)! 6.1b
ApAy = +ﬂ (A, PA;y-Ag) _6!_-2 [A1Ay] P ClAs-Ag) TmCy, .4 _6!_'2 [A;Aet AgAg) ( : )
H ! ! Vi, C ! ! T cc ! ! UKE ., 4.'B K 6.1
ApBy = +§ (A1 = Ay-Ag) ) [A14;] ~ClA5-Ag) _7y—2f (A4, PAs-Ag) o (6.1¢)
1
LAIA..A7 = +5E[A]KA7 Ay) 5!‘2T[A1A2‘BKB‘A3.A.A7). (61(1)
In particular, the KF-term in (6.1b) is the superspace generalization of (5.2b) in component language.
These field-strengths satisfy the superspace Blds
! ;] D 1
EV[AFBC) _ET[AB| Fpie)' =0, (6.2a)
! Vi, G ! ! T BG ! ! L Faan H I'=0 6.2b
g1 ¥ AT Ar-Ag) T g LA A Y BlAs-Ay) +m [A-A T AgAg) — M 4 .p7 =0, (6.2b)
1V H ! g T By ! ! UKE, 4G K=o 6.2
a (A4, Ay Ay) _m [A1Ay| T B|A3-Ay) _mf [A1Ay YAz-Ayp) =Y ( : C)
1 B -
ﬁv[AlLAZ”'As) _6!_'2T[A]A2| LB‘AB'"AS) = O (62(1)

These are respectively referred to as (ABC)y, (A ---Ag)g. (A ---Ayg)y and (A; ---Ag),-Blds. Here Ly ..o, plays an

important role, as will be clarified shortly.
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The superspace constraints at engineering dimensions 0 < d <1 are

Taﬁc = +2(J/c)aﬂ’ L!l/fcl'“cs = +2(y51'“5)0€/3’ (6.321)

Fp' = +(7b)aﬁ’1ﬁ[ =—(1pA) o Gyt = +(7b1-~-b7)aﬂ)(ﬁl = —(Vbybl ) (6.3b)
1 1

VP — +§(J/Cd)aﬁchla V" = +g(7€d)aﬂG[8]l- (6.3¢)

Here the upper (or lower) spinorial indices *# -

- (or 5 ) are for the positive (or negative) chiralities. We also use the

collective indices a = (, %), p= (g 7, .... Due to the mixed chirality C, j Of C for the charge-conjugation matrices in

10D, the upper (or lower) indices are equivalent to dotted indices: X* = Cc¥x 5 (or X, =-C, ﬁXﬁ ). However, we avoid to

use the dotted ones. All other independent components, such as T,/¢, G, ,;L.],“L.G’ H

The superspace constraints at d = 3/2 are

vthcI =+ (y[hvc]il)

a’

1
vaHb1~-~b91 = - Ef”K(VCdYbI~-~b9/11)achK-

Our supersymmetric EM-duality relations are parallel to
the component case (5.10):

| ~
Fa'=+ geab[g]G[s]l =G, (6.5a)

« 1 ~
G[g]l = - Ee[g]abFabI = —F[g]l, (65b)

« 1 -

H[g]] = — zfl',l((/ljy[g]l,(), (650)
Jel = — el (6.5d)
(V) =0, (Vx'),=0, (6.5¢)
Ly . =0. (6.5f)

The satisfaction of the Blds (6.2) needs special care, in
particular, the role played by the superfield-strength
Ly, ..4,- For example, if the LF-term in (6.2b) did not
exist in the (apfyd, ---dg);-Bld at d = 1/2, then a term
proportional 0 ({4, ) (ap) (V|ds-al’)}y) Would be left
over. This term is canceled by the like-term arising from
the LF-term in the G-BId (6.2b). Similarly at d = 1, the
(afcy - - c7)s-Bld, which is equivalent to the closure
[60,-60,]Bp' in component language, works as

follows: If there were no LF-term in this BId, then there

would remain a term _<1/6!)(y[c]cz|[3])aﬂG[3Hc‘3mc7]1:_
(1/120) (¥(c,c5))ap Flege;)» upon the use of the duality
(5.10a). However, this term is exactly canceled by the like-
term arising from (1/240)L ypic,...c| F|cec,]’- We have thus

I
VoG, ...n,

gﬁc|-~-c717 etc. are zero.

1
=+ (Voy oy Vi X e (6.4a)

7!

(6.4b)

|
confirmed the significance of the Kg-field both in com-
ponent and superspace languages. The significance of the
Ok for the closure of supersymmetry in component is
reflected into the necessity of the LF-term in G-Bianchi
identity (6.2b) in superspace.

For Blds at d = 1/2, the following y-matrix relation-
ships are crucial:

(ye)((l[)’(yefl..'fA)yﬁ) =0, (663)
™) e (V151147)y6 = O. (6.6b)
(}’[e‘>(aﬁ<7ezmeﬁ])ﬂ§) =0, (6.6¢)

in addition to (5.8). All of these can be easily confirmed by
the use of more fundamental relationships, such as

1 1

8a0p)° = ~3 (re)ap(r)"® = 1920 D). (6.7)

As in the 4D case in Sec. III, we can confirm the internal
consistency of supersymmetric EM-duality in (6.5). A
typical example is the spinorial derivative V, acting
on (6.5a) or (6.5c), yielding zero by the use of other
duality-related equations in (6.5). These are parallel to the
component case, so that we do not give details.

VII. CONCLUDING REMARKS

In this paper, we have accomplished the N = 1 super-
symmetrization of the EM-duality relationship (2.6) for
non-Abelian gauge groups in 4D. The original EM-duality
(2.6) is supersymmetrized to the equations in (3.3).
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Subsequently, we have also established the EM-duality
(5.10) for N = (1,0) non-Abelian supersymmetric system
in 10D.

The total system in 4D is simple with only three
multiplets: a YMVM, a DVM and a nonphysical TM.
Yet the TM plays a very crucial role for avoiding the
conventional problem with non-Abelian EM-duality based
on tensor-hierarchy [12—14]. Even though EM-duality for
SO(8) group with N = 8 local supersymmetry [22] had
been known for a long time, our system is simple only
with global supersymmetry. Our formulations became
possible, thanks to the recently developed tensor-hierarchy
formulation [12—14].

We have confirmed the total consistency both in
component and superspace languages [19] both in 4D
and 10D, as well. The existence of the extra tensors, such
as C,," in 4D or Cpg)' and K¢ in 10D is to maintain the
total consistency of the system. In particular, the field-
strengths G and H contain CS-like terms, guaranteeing
consistency. This aspect is also the result of tensor-
hierarchy formulation [12-14].

The validity of the particular KF-type CS-term in the
G-field strength (5.2b), and the L F-term in the G-Bianchi
identity (5.3b) in component language is reconfirmed as
(6.1b) and (6.2b) in superspace. The necessity of the

PHYSICAL REVIEW D 92, 085014 (2015)

potential Kg or its field strength L7 is confirmed both
in component and superspace languages. It is the sophis-
ticated combination of tensor-hierarchy formalism [13,14]
and the special role played by K¢ and L7 that make our
EM-duality possible in 10D.

In our paper, we have dealt with the manifestly-Lorentz-
covariant EM-duality, such as F,,/= + (1/81)¢,,BlG[g in
10D, instead of nonmanifest Lorentz covariance as in [3].
Even though our system lacks a Lagrangian formulation, it
still maintains manifest Lorentz-covariance at the field-
equation level.

As some readers may have noticed, (3.3d) indicates that
the dual field-strength H ”1 equals the YM-current vector:
H ”1 =J ”’ . The divergence of the left-hand side of this
relationship vanishes by the EM-duality (2.6) via the H-Bld
(2.2c), while the vanishing of the right-hand side is the
usual current conservation. In other words, the new
relationship like (3.3d) relates the current J,/ directly to

field-strength I-jﬂl without involving derivatives of the
latter.

We believe our present result may well be important for
generating other and new supersymmetric consistent the-
ories of non-Abelian vectors and tensors associated with
general EM-dualities, in diverse space-time dimensions.
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