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Super Feynman rules for any superspin are given for massiveN ¼ 1 supersymmetric theories, including
momentum superspace on-shell legs. This is done by extending, from space to superspace, Weinberg’s
perturbative approach to quantum field theory. Superfields work just as a device that allow one to write
super Poincaré-covariant superamplitudes for interacting theories, relying neither in path integral nor
canonical formulations. Explicit transformation laws for particle states under finite supersymmetric
transformations are offered. C, P, T, and R transformations are also worked out. A key feature of this
formalism is that it does not require the introduction of auxiliary fields, and when introduced, their purpose
is just to render supersymmetric invariant the time-ordered products in the Dyson series. The formalism is
tested for the cubic scalar superpotential. It is found that when a superparticle is its own antisuperparticle
the lowest-order correction of time-ordered products, together with its covariant part, corresponds to the
Wess–Zumino model potential.
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I. INTRODUCTION

From the inception of superspace by Salam and Strahdee
[1], functional and path integral methods have been the
preferred scheme to formulate field theory in superspace
[2–4]. These formalisms allow us to write correlation
functions that perturbatively give super Feynman rules
with off-shell legs, making it unclear how to replace them
by the corresponding momentum superspace on-shell legs.
Perhaps, because realistic supersymmetric theories would
never be symmetries of the S-matrix [5], this issue seems
secondary. However, thinking of supersymmetry as a
theoretical laboratory, the issue has its own importance.
A purpose of this paper is to provide formulas for on-shell
legs in order to construct superamplitudes SNM for
scattering processes of massive superparticle states (or
particle superstates), where N and M label Fock states,
extended such that one superparticle carries momentum p,
spin-projection σ, and left or right fermionic 4-spinors sþ or
s−. These superamplitudes are constructed extending
Weinberg’s approach [6,7] from fields to superfields, that
is from (momentum and configuration) space to super-
space. What is done here is to express the potential
appearing in the Dyson operator series

S ¼ T exp

�
−i

Z
dtVðtÞ

�
ð1Þ

as

VðtÞ ¼
Z

d3xd4ϑVðx; ϑÞ; ð2Þ

where Vðx;ϑÞ is a sum of free superfield products
obtained as super momentum Fourier transforms of
creation-annihilation superparticle operators. These creation-
annihilation superparticle operators are used to write
superparticle states that allow us to write SNM in terms
of super Feynman rules, after the appropriate Wick
pairings. As in the ordinary space approach [6], the
assumed conditions for the super S-matrix are perturba-
tivity, unitarity, Poincaré covariance, and clustering, with
the addition of supersymmetry covariance. All of these
are satisfied (with an important qualification made below)
by Eqs. (1) and (2).
One advantage of Weinberg’s approach is that it repre-

sents an alternative perturbative formulation for massive
quantum field theories, independently of whether a corre-
sponding canonical and/or path-integral formulation can be
established.1 At present, a systematic formulation to obtain
general massive super Feynman rules from canonical and/
or path-integral formulations is not only unknown [9], but
also only a few low superspin massive free Lagrangians
have been constructed [10–13] (propagating component
free fields for general massive supersymmetric multiples
have been recently presented in Ref. [14]). Thus, one of the
main aims of this paper is to provide a set of general super
Feynman rules for massive arbitrary superspins, where the
hypothetical canonical/path integral formulations from
which the rules can be derived are lacking (if they exist
at all). Since another aspect of Weinberg’s approach is that
it tells us what to expect from any massive field theory
when considered in the interaction picture, we hope that
this new formulation will provide guidance for studies on
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the broader task of finding if indeed a systematic canonical
and/or path-integral formulation is possible [9].
This extension maintains all the properties of Weinberg’s

approach; i.e., super Feynman rules can be built for any
superspin in a straightforward manner, and one can easily
incorporate charge conjugation, parity, time reversal, andR
symmetries. Furthermore, it also allows us to obtain
economic and concise expressions.
A characteristic feature of supersymmetric theories [15]

is that when the Lagrangian does not contain auxiliary
fields the potential becomes not only a function of the
coupling constant g but also of its square g2, relating one
and the next order in perturbation theory (otherwise
“miraculous” cancellations could not occur). Thus, it is
difficult to see how a perturbative scheme can cope with
this situation. As in the case of Lorentz invariance, in
considering Vðxμ; ϑÞ as an invariant density under super-
symmetry transformations,

UðξÞVðxμ; ϑÞUðξÞ−1 ¼ Vðxμ þ ϑ⊺ϵγ5γ
μξ; ϑþ ξÞ; ð3Þ

is not sufficient to render supersymmetric invariant the
time-ordered products appearing in Eq. (1); therefore, we
must introduce noncovariant terms of higher order in
coupling constants. We show that these noncovariant terms
are always local in space, making the definition of the
covariant super S-matrix possible [7]. For this perturbative
formalism, this seems to be the origin of auxiliary fields.
We adopt the notation and conventions of Refs. [8,16],

except for left and right 4-spinors, which wewrite as 2ϑ� ¼
ðI � γ5Þϑ instead of ϑL;R. As for the methods employed, we
use the standard techniques of the operators’ formalism and
calculus in superspace (see, for example, Refs. [16,17]). We
present notation and all our conventions in Appendix A.
Also, we conjugate under the integrals of the fermionic
variables and explain this in Appendix B.
The article is structured as follows. In Sec. II, unitary

representations of the super Poincaré group are constructed.
Section III deals with causal superfields, and meanwhile
Sec. IV is devoted to time-ordered products and super-
propagators. In Sec. V, super Feynman rules are presented.
Charge conjugation, parity, time-reversal, and R trans-
formation formulas are written in Sec. VI. The details of
the cubic superpotential for a scalar superfield are worked
out in Sec. VII. Finally, our conclusions are presented in
Sec. VIII.

II. CREATION-ANNIHILATION
SUPERPARTICLE OPERATORS

N ¼ 1 supersymmetric multiplets have four particle
states with angular momentum ðj; j; j� 1

2
Þ.2 With this in

mind, we embed these states into two superparticle states,
one with left 4-spinor sþ and the other with right 4-spinor
s−, and their fermionic expansion coefficients represent
the states of the supersymmetric multiplet. We show that
super Poincaré transformations are acting unitarily on
these superstates, with the additional feature that finite
supersymmetric transformations are also considered. To
do so, instead of taking states with jþ 1

2
and j − 1

2
angular

momentum, we take these states to be in the tensorial
representation j ⊗ 1

2
. That is, at the level of creation

operators, we start with3

a�þðp; σÞ; a�−ðp; σÞ; l�aðp; σÞ; a ¼ þ 1

2
;−

1

2
;

ð4Þ

that satisfy the (nonzero) (anti)commutators4

½a�ðp; σÞ; a��ðp0; σ0Þg ¼ δ3ðp − p0Þδσσ0 ;
flaðp; σÞ; l�bðp0; σ0Þ� ¼ δ3ðp − p0Þδabδσσ0 ð5Þ

and under a Poincaré transformation behave as

UðΛ; xÞa��ðp; σÞUðΛ; xÞ−1

¼ e−ip·x

ffiffiffiffiffi
k0

p0

s X
σ0
UðjÞ

σ0σ½WðΛ;pÞ�a��ðpΛ; σ0Þ;

UðΛ; xÞl�aðp; σÞUðΛ; xÞ−1

¼ e−ip·x

ffiffiffiffiffi
k0

p0

s X
b;σ0

UðjÞ
σ0σ½WðΛ;pÞ�Uð1

2
Þ

ba½WðΛ;pÞ�l�bðpΛ; σ0Þ;

ð6Þ

where UðjÞ is the spin-j rotation matrix and WðΛ;pÞ is the
so-called Wigner rotation,

WðΛ;pÞ ¼ LðΛpÞ−1ΛLðpÞ; p ¼ LðpÞk; ð7Þ

with k ¼ ð 0 0 0 m Þ as a standard vector and WðΛ;pÞ
isomorphic to the rotation group. As a definition, fermionic
(bosonic) creation-annihilation particle operators remain
fermionic (bosonic) with respect to supernumbers. A very
important fact is that when a Lorentz transformation R is an
element of the rotation group the following relation holds:

½D�ðRÞ�ab ¼ U
ð1
2
Þ

abðRÞ; ð8Þ

2Except for the case j ¼ 0. We call superspin j to the set
fj; j; j� 1

2
g.

3All states are constructed from a�ð� � �ÞjVACi, where jVACi
is a super Poincaré-invariant vacuum. Here, we denote the adjoint
of an operator as �. When the adjoint is accompanied by a
transpose of some vector, we denote it by †.

4f� is defined to be an anticommutation or commutation if ½g is
a commutation or an anticommutation, respectively.
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where D� stands for the Weyl representations. We embed
the operators l�a in a four component vector,

bðp; σÞ≡D½LðpÞ�
�
lðp; σÞ
lðp; σÞ

�
; ð9Þ

withD½Λ� ¼ DþðΛÞ ⊕ D−ðΛÞ, the Dirac representation. In
view of (6) and (8),

UðΛ; xÞb̄ðp; σÞUðΛ; xÞ−1

¼ e−ip·x

ffiffiffiffiffi
k0

p0

s X
σ0
UðjÞ

σ0σ½WðΛ;pÞ�b̄ðpΛ; σ0ÞD½Λ�; ð10Þ

where b̄ is the Dirac adjoint b†β. The nonvanishing (anti)
commutation relations of ðb; b̄Þ are

fbαðp; σÞ; b̄βðp0; σ0Þ� ¼ ½I þ ð−ipÞ=m�αβδðp − p0Þδσσ0 :
ð11Þ

One can also show that

ð−ipÞbðp; σÞ ¼ mbðp; σÞ; ð12Þ
which is a reminder that, although we are using a four-
dimensional vector with 4ð2jþ 1Þ spin projections, only
2ð2jþ 1Þ of them are independent.
We define two types of creation superparticle (sparticle)

operators,

a��ðp; s�; σÞ≡ a��ðp; σÞ �
ffiffiffiffiffiffiffi
2m

p
b̄ðp; σÞs�

� 2mδ2ðs�Þa�∓ðp; σÞ; ð13Þ

with their corresponding annihilation sparticle operators

a∓ðp; s∓; σÞ≡ ða��ðp; ðϵγ5βs�Þ�; σÞÞ�
¼ a�ðp; σÞ �

ffiffiffiffiffiffiffi
2m

p
s⊺∓ϵγ5bðp; σÞ

∓ 2mδ2ðs∓Þa∓ðp; σÞ: ð14Þ

Creation-annihilation sparticle operators have the Poincaré
transformation property

UðΛ; xÞa��ðp; s�; σÞUðΛ; xÞ−1

¼ e−ip·x

ffiffiffiffiffi
k0

p0

s X
σ0
UðjÞ

σ0σ½WðΛ;pÞ�a��ðpΛ; DðΛÞs�; σ0Þ;

UðΛ; xÞa�ðp; s�; σÞUðΛ; xÞ−1

¼ eþip·x

ffiffiffiffiffi
k0

p0

s X
σ0
UðjÞ�

σ0σ ½WðΛ;pÞ�a�ðpΛ; DðΛÞs�; σ0Þ;

ð15Þ

and the (nonzero) anti(commutation) relations

½a∓ðp; s∓; σÞ; a��ðp0; s�0; σ0Þg
¼ δ3ðp0 − pÞδσσ0 exp ½2s⊺ϵγ5ð−ipÞs0��;

½a�ðp; s�; σÞ; a��ðp0; s�0; σ0Þg
¼ �2mδ3ðp0 − pÞδσσ0δ2½ðs0 − sÞ��: ð16Þ

The ðþÞ and ð−Þ creation-annihilation sparticle operators
are not independent; they are related by a Fourier trans-
formation in fermionic variables. For the creation type, we
have

a��ðp; s�; σÞ

¼∓ ð2mÞ−1
Z

d2s0∓ exp ½2s⊺�ϵγ5ðþipÞs0∓�a�∓ðp; s0∓; σÞ;

ð17Þ
and meanwhile for the annihilation type,

a�ðp; s�;σÞ

¼ ∓ ð2mÞ−1
Z

d2s0∓ exp ½−2s⊺�ϵγ5ðþipÞs0∓�a∓ðp; s0∓;σÞ:

ð18Þ
Now, we introduce the Majorana fermionic operators,

UðΛÞQαU−1ðΛÞ ¼
X
β

DðΛ−1ÞαβQβ;

fQα; Q̄βg ¼ ð−2iÞðγμÞαβPμ; ½Qα; Pμ� ¼ 0; ð19Þ

that are supersymmetry generators. We define a super-
symmetric transformation through the exponential mapping

UðϑÞ ¼ exp ½þiϑ⊺ϵγ5Q�; ð20Þ

where ϑ is a fermionic 4-spinor that parametrizes the
transformation. The composition rule for the supersym-
metric transformation is given by

Uðϑ0ÞUðϑÞ ¼ exp ½iϑ0⊺ϵγ5Pϑ�Uðϑþ ϑ0Þ: ð21Þ

We take the action of a supersymmetric transformation on
creation-annihilation sparticle operators as

UðϑÞa��ðp; s�; σÞUðϑÞ−1
¼ exp ½ϑ⊺ϵγ5ðþipÞð2sþ ϑÞ��a��ðp; ðsþ ϑÞ�; σÞ;

UðϑÞa�ðp; s�; σÞUðϑÞ−1
¼ exp ½ð2sþ ϑÞ⊺ϵγ5ðþipÞϑ∓�a�ðp; ðsþ ϑÞ�; σÞ:

ð22Þ
This equation is consistent with the composition prop-

erty (21), with (17), and (18). From here, we can write the
finite supersymmetric transformations in components:
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UðϑÞa�þðp; σÞUðϑÞ−1 ¼ ½1 −m2δ4ðϑÞ�a�þðp; σÞ þ
ffiffiffiffiffiffiffi
2m

p
b̄ðp; σÞ½ϑþ þmδ2ðϑþÞϑ−� þ ½ϑ⊺ϵγ5ðþipÞϑþ þ 2mδ2ðϑþÞ�a�þðp; σÞ;

UðϑÞa�−ðp; σÞUðϑÞ−1 ¼ ½1 −m2δ4ðϑÞ�a�−ðp; σÞ −
ffiffiffiffiffiffiffi
2m

p
b̄ðp; σÞ½ϑ− −mδ2ðϑ−Þϑþ� þ ½ϑ⊺ϵγ5ðþipÞϑ− − 2mδ2ðϑ−Þ�a�−ðp; σÞ;

UðϑÞb̄ðp; σÞUðϑÞ−1 ¼ þb̄ðp; σÞ
�
I þm2δ4ðϑÞ þ 1

4
½ϑ⊺ϵγμϑ�γμ½mþ ip�γ5

�

þ
ffiffiffiffi
m
2

r ��
1

m
þ δ2ðϑþÞ

�
a�−ðp; σÞ þ

�
1

m
− δ2ðϑ−Þ

�
a�þðp; σÞ

�
ϑ⊺ϵ½m − ip�

þ
ffiffiffiffi
m
2

r ��
1

m
− δ2ðϑþÞ

�
a�−ðp; σÞ −

�
1

m
þ δ2ðϑ−Þ

�
a�þðp; σÞ

�
ϑ⊺ϵ½mþ ip�γ5: ð23Þ

We note that UðϑÞbðp; σÞUðϑÞ−1 is consistent with (12).
Taking ϑ infinitesimal, Eq. (23) gives us the following
(anti)commutation relations:

i½a�þðp;σÞ;Qαg¼þð2mÞþ1=2½b−ðp;σÞϵγ5�α;
i½a�−ðp;σÞ;Qαg¼−ð2mÞþ1=2½bþðp;σÞϵγ5�α;
ifbαðp;σÞ;Qþδ�¼þð2mÞ−1=2a�−ðp;σÞ½ðIþγ5Þðm− ipÞ�δα;
ifbαðp;σÞ;Q−δ�¼−ð2mÞ−1=2a�þðp;σÞ½ðI−γ5Þðm− ipÞ�δα:

ð24Þ

In the rest frame LðkÞ ¼ I, therefore

i½a�þðk; σÞ;Qag ¼ 0; i½a�−ðk; σÞ;Q�
ag ¼ 0;

i½a�þðk; σÞ;Q�
ag ¼ −

ffiffiffiffiffiffiffi
2m

p
l�aðk; σÞ;

i½a�−ðk; σÞ;Qag ¼
ffiffiffiffiffiffiffi
2m

p
l�bðk; σÞeba;

ifl�aðk; σÞ;Q�
b� ¼

ffiffiffiffiffiffiffi
2m

p
a�−ðk; σÞeab;

ifl�aðk; σÞ;Qb� ¼ −
ffiffiffiffiffiffiffi
2m

p
a�þðk; σÞδab; ð25Þ

recovering the structure of laddering operators of the
fermionic generators (with steps �1=2 in the angular
momentum). Equations (15) and (22) show that, under
the super Poincaré group UðΛ; x; ϑÞ≡ UðΛ; xÞUðϑÞ,

UðΛ; x;ϑÞ½a∓ðp; s∓; σÞ; a��ðp0; s�0 ; σ0ÞgUðΛ; x;ϑÞ−1
¼ ½a∓ðp; s∓; σÞ; a��ðp0; s�0 ; σ0Þg; ð26Þ

that is, the (anti)commutator of creation-annihilation spar-
ticle operators remains invariant under a super Poincaré
transformation. When ϑ satisfies the Majorana condition
ϑ ¼ ϵγ5βϑ

�, Eq. (26) allows us to write ðUðΛ; x;ϑÞ−1Þ� ¼
UðΛ; x;ϑÞ consistently. In other words, the sparticle state

jp; s�; σi� ≡ a��ðp; s�; σÞjVACi ð27Þ

transforms unitarily under the super Poincaré group. Note
also that

UðΛ; x;ϑÞ½a∓ðp; s∓; σÞ; a�∓ðp0; s∓0 ; σ0ÞgUðΛ; x;ϑÞ−1
¼ ½a∓ðp; s∓; σÞ; a�∓ðp0; s∓0 ; σ0Þg: ð28Þ

It is also possible to eliminate the quadratic phase factor
appearing in (22) by defining

a��ðp; s; σÞ≡ exp ½s⊺ϵγ5ð−ipÞs∓�a��ðp; s�; σÞ;
a∓ðp; s; σÞ≡ ða��ðp; ϵγ5βs�; σÞÞ�; ð29Þ

leading to

UðΛ; xÞa��ðp; s; σÞUðΛ; xÞ−1

¼ e−ip·x

ffiffiffiffiffi
k0

p0

s X
σ0
UðjÞ

σ0σ½WðΛ;pÞ�a��ðpΛ; DðΛÞs; σ0Þ;

UðΛ; xÞa�ðp; s; σÞUðΛ; xÞ−1

¼ eþip·x

ffiffiffiffiffi
k0

p0

s X
σ0
UðjÞ�

σ0σ ½WðΛ;pÞ�a�ðpΛ; DðΛÞs; σ0Þ;

UðϑÞa��ðp; s; σÞUðϑÞ−1
¼ exp ½ϑ⊺ϵγ5ðþipÞs�a��ðp; sþ ϑ; σÞ;

UðϑÞa�ðp; s; σÞUðϑÞ−1
¼ exp ½ϑ⊺ϵγ5ð−ipÞs�a�ðp; sþ ϑ; σÞ: ð30Þ

III. CAUSAL SUPERFIELDS

Now, we are in a position to define causal quantum
superfields out of momentum superspace Fourier trans-
formations of the creation-annihilation sparticle operators.
We choose supersymmetric transformations in configura-
tion superspace that induce linear-homogeneous ones in the
spacetime variable xμ, and they in turn generate symmetric
covariant superderivatives [18]. It has to be noted that in
this formalism these superderivatives arise directly from
considering the most general superfield, without any other
extra input. As in ordinary quantum field theory, we
introduce two kinds of superfields,
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Ξ�
�nðx;ϑÞ≡

X
σ

Z
d3pd4sa��ðp; s; σÞv�nðx; ϑ;p; s; σÞ;

ð31Þ

Ξ�nðx;ϑÞ≡
X
σ

Z
d3pd4sa�ðp; s; σÞu�nðx; ϑ;p; s; σÞ;

ð32Þ
that give a total of four superfields. The quantities u�n and
v�n are the corresponding super wave functions that are
determined by demanding for Ξ�

�n the super Poincaré
transformation,

UðΛ; aÞΞ�
�nðx;ϑÞUðΛ; aÞ−1

¼
X
�m

½SðΛ−1Þ��n;�mΞ
�
�mðΛxþ a;DðΛÞϑÞ; ð33Þ

UðξÞΞ�
�nðx;ϑÞUðξÞ−1¼Ξ�

�nðxμþϑ⊺ϵγ5γ
μξ;ϑþξÞ; ð34Þ

where S�n;�m is a finite-dimensional Lorentz representa-
tion that in principle could be different for Ξ�þn and Ξ�

−n.
With the help of (30), the general solution of (31), and
including the requirements in (34), can be expressed as

Ξ�
�nðx;ϑÞ ¼

X
σ

Z
d3pd4se−ix·peϑ

⊺ϵγ5ðþipÞsa��ðp; s; σÞ

× v�nðp; ð−ipÞ½s − ϑ�; σÞ: ð35Þ

The coefficients v�nðp; ð−ipÞ½s − ϑ�; σÞ are given in the
rest frame:

v�nðp; ð−ipÞ½s − ϑ�; σÞ

¼
ffiffiffiffiffi
k0

p0

s X
�m

½SðLðpÞÞ��n;�m

× v�nðk; ð−ikÞD½LðpÞ�−1½s − ϑ�; σÞ: ð36Þ

Given a unitary representation for the superstate of super-
spin j, the coefficients in the rest frame are required to
satisfy

X
σ0
v�nðk; ð−ikÞ½s − ϑ�; σ0ÞUðjÞ�

σ0σ ðWÞ

¼
X
�m

½SðWÞ��n;�mv�nðk; ð−ikÞD½W−1�½s − ϑ�; σÞ;

ð37Þ

with W being a little group transformation of the form (7).
Equations (36) and (37) have to be satisfied by the
expansion coefficients of the ϑ − s variables independently,
showing that the superfield (35) is a reducible realization of
the super Poincaré symmetry.

Consider the zero order fermionic expansion in v�n for
the annihilation superfield:

χ��nðx;ϑÞ≡ −
1

m2

X
σ

Z
d3pd4se−ix·peϑ

⊺ϵγ5ðþipÞs

× a��ðp; s; σÞv�nðp; σÞ: ð38Þ

Since we can generate terms of the form ½pðϑ − sÞ�α by
applying the superderivative defined as

D≡ ðϵγ5Þ
∂
∂ϑ − γμϑ

∂
∂xμ ; ð39Þ

we can reconstruct the reducible superfields Ξ�
�nðx; ϑÞ from

superfields of the form (38). We can also introduce a zero-
order creation superfield χ�nðx; ϑÞ:

χ�nðx;ϑÞ≡ −
1

m2

X
σ

Z
d3pd4seþix·peϑ

⊺ϵγ5ð−ipÞs

× a�ðp; s; σÞu�nðp; σÞ: ð40Þ

Given n ¼ ða; bÞ, where a ¼ −A;−Aþ 1;…;A − 1;A
and b¼−B;−Bþ1;…;B−1;B, and 2A;2B¼0;1;2;…,
we enumerate irreducible finite representations of the
Lorentz group by the SUð2Þ pair of indices ðA;BÞ.
Depending on whether we operate an even or odd

number of times the D’s, we obtain all the possible
superspins that an irreducible representation S�m�n
can carry. For the zero order and the first superderivative,
we have

jA − Bj ≤ j ≤ jAþ Bj; zero order in Dα; ð41Þ

jA − B � 1

2
j ≤ j ≤ jAþ B � 1

2
j; linear in Dα: ð42Þ

These relations follow from (37) and the product rules of
ðA;BÞ ⊗ ½ð1

2
; 0Þ ⊕ ð0; 1

2
Þ�. With the help of Eq. (29), we

can integrate explicitly the superfields (38) and (40) in the
fermionic variable s to obtain

χ��nðx;ϑÞ ¼
X
σ

Z
d3pe−ix�·pa��ðp; ϑ�; σÞvnðp; σÞ; ð43Þ

χ�nðx;ϑÞ ¼
X
σ

Z
d3peþix�·pa�ðp; ϑ�; σÞunðp; σÞ;

ð44Þ

where xμ� ¼ xμ − ϑ⊺ϵγ5γ
μϑ�. Note that in Eqs. (43) and

(44) we are dropping the sign � in the Fourier coefficients
un and vn because the inequalities (41) and (42) allow us to
consider� superfields for one and the same representation.
From now on, we will suppose that this is case. We can see
that these zero-order superfields are chiral,
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D∓
�
χ��nðx;ϑÞ
χ�nðx;ϑÞ

�
¼ 0; ð45Þ

and also that

D⊺
�ϵD�

�
χ��nðx; ϑÞ
χ�nðx; ϑÞ

�
¼∓ 4m

�
χ�∓nðx;ϑÞ
χ∓nðx;ϑÞ

�
: ð46Þ

The last set of equations is usually taken as the free
equations of motion. For us, they mean we can work with
χþnðx;ϑÞ and χ−nðx;ϑÞ without the need to introduce
D⊺

�ϵD� or can just work with ðþÞ superfields χþnðx;ϑÞ
and D⊺

þϵDþχþnðx; ϑÞ (similar remarks for χ��n). From the
relation

fDα;Dβg ¼ þ2ðγμϵγ5Þαβ∂μ ð47Þ

and Eq. (45), pþ products ofDþα superderivatives together
with p− products of D−β superderivatives acting on

χ�nðx;ϑÞ are equivalent to p� products of D�α acting
on χ�nðx;ϑÞ plus sums of p0

� < p� products of D�α times
ordinary derivatives ∂μ acting on χ�nðx;ϑÞ. Also from (47),
fD�α;D�βg ¼ 0, which means that nonzero products of
superderivatives of the same sign end at the second order
D�αD�β, but D�αD�β ¼ 1

4
ð1� γ5ÞαβðD⊺

�ϵD�Þ, which due
to (46) flips the signs of χ�nðx; ϑÞ to χ∓nðx; ϑÞ [same
remarks for χ��nðx;ϑÞ]. Finally, since derivatives of super-
fields can be taken as superfields without derivatives, with
complete generality, we can consider superfields of the
form5

χ�n; χ��n; ðDχnÞ�α; ðDχ�nÞ�α: ð48Þ

For a fixed irreducible representation of the Lorentz group,
due to (41) and (42), chiral superfields and linear super-
derivatives of chiral superfields are incompatible. Now, we
introduce causal superfields

Φ�nðx;ϑÞ ¼ ð2πÞ−3=2
X
σ

Z
d3pfeþiðx�·pÞa�ðp; ϑ�; σÞunðp; σÞ þ ð−Þ2Be−iðx�·pÞac�ðp; ϑ�; σÞvnðp; σÞg;

Φ�
�nðx;ϑÞ ¼ ð2πÞ−3=2

X
σ

Z
d3pfð−Þ2Beþiðx�·pÞac�ðp; ϑ�; σÞðvnðp; σÞÞ� þ e−iðx�·pÞa��ðp; ϑ�; σÞðunðp; σÞÞ�g; ð49Þ

with vnðp; σÞ ¼ ð−Þjþσunðp;−σÞ (for explicit formulas of these wave functions, see Ref. [7]). Note that they are related by

Φ�∓nðx; ϑÞ ¼ ðΦ�nðx; ϵγ5βϑ�ÞÞ�: ð50Þ

Consider now another superfield ~Φ�∓; ~nðx0;ϑ0Þ for the same sparticle. Introducing

ðx�12Þμ ¼ xμ1 − xμ2 þ ðϑ2 − ϑ1Þ⊺ϵγ5γμðϑ2∓ þ ϑ1�Þ ¼ −ðx∓21Þμ; ð51Þ

we can we write the (anti)commutator of Φ�nðx1; ϑ1Þ and ~Φ�∓ ~nðx1; ϑ2Þ as

½Φ�nðx1; ϑ1Þ; ~Φ�∓ ~nðx2; ϑ2Þ�ε ¼ ð2πÞ−3
Z

d3pð2p0Þ−1 exp ½þix�12 · p�Pn; ~nðp; p0Þ

þ εð−Þ2ðBþ ~BÞð2πÞ−3
Z

d3pð2p0Þ−1 exp ½−ix�12 · p�Pn; ~nðp; p0Þ; ð52Þ

with ε ¼ −1 for the commutator and ε ¼ þ1 for the
anticommutator. Pn; ~nðp; p0Þ can be expressed as [7]

Pn; ~nðp; p0Þ ¼ Pn; ~nðpÞ þ p0Qn; ~nðpÞ; ð53Þ

where Pn; ~nðpÞ and Qn; ~nðpÞ polynomials in p are obtained
from

ð2p0Þ−1Pn; ~nðp; p0Þ
¼

X
σ

unðp; σÞ ~u�~nðp; σÞ ¼
X
σ

vnðp; σÞ~v�~nðp; σÞ: ð54Þ

Weinberg has shown [7] that Pn; ~nðp; p0Þ ¼
ð−Þ2ðAþ ~BÞPn; ~nð−p;−p0Þ, and therefore at ðx1 − x2Þ2 > 0,

½Φ�nðx1; ϑ1Þ; ~Φ�∓ ~nðx2; ϑ2Þ�ε
¼ ð1þ ϵð−Þ2ðAþBÞÞPn; ~nð−i∂1ÞΔþðx�12Þ; ð55Þ

5Expressions ðDχnÞ�α and ðDχ�nÞ�α are shorthand notations
for D�αχ�n and D�αχ

�
�n, respectively.
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with

Δþðx�12Þ ¼ ð2πÞ−3
Z

d3pð2p0Þ−1 exp ½þix�12 · p�: ð56Þ

Equation (55) vanishes provided that ε ¼ −ð−Þ2ðAþBÞ ¼
−ð−Þ2j. For linear superderivativesof chiral superfields, the
vanishing of the expression

½ðDΦn0 ðx1; ϑ1ÞÞ�α; ðD ~Φ�
~n0 ðx2; ϑ2ÞÞ∓β�ð−ε0Þ ð57Þ

at spacelike separations gives ε0 ¼ −ð−Þ2j ¼ −ε, therefore
making Φ�n and ðDΦn0 Þ�α incompatible. Since Φ�n goes
in accordance with the spin statistics theorem, from now on
we will leave out ðDΦn0 Þ�α from the discussion.
Causal superfields are also chiral,

D∓
�
Φ�

�nðx; ϑÞ
Φ�nðx; ϑÞ

�
¼ 0; ð58Þ

and satisfy

D⊺
�ϵD�

�
Φ�

�nðx; ϑÞ
Φ�nðx; ϑÞ

�
¼ ∓ 4m

�
Φ�∓nðx; ϑÞ
Φ∓nðx; ϑÞ

�
: ð59Þ

Expanding the superfields as

Φ�nðx; ϑÞ ¼ ϕ�nðx�Þ ∓
ffiffiffi
2

p
ϑ⊺�ϵγ5ψnðx�Þ

� 2mδ2ðϑ�Þϕ∓nðx�Þ; ð60Þ

we have

ϕ�nðxÞ¼ð2πÞ−3=2
X
σ

Z
d3pfeþix·pa∓ðp;σÞunðp;σÞ

þð−Þ2Be−ix·pac�� ðp;σÞvnðp;σÞg;

½ψnðxÞ�α¼
ffiffiffiffi
m

p ð2πÞ−3=2
X
σ

Z
d3pfeþix·p½bðp;σÞ�αunðp;σÞ

−ð−Þ2Bþ2je−ix·p½ϵγ5βbc�ðp;σÞ�αvnðp;σÞg;
ð61Þ

with ψnðxÞ satisfying Dirac’s equation: ð∂ þmÞψnðxÞ ¼ 0.
Now, it is clear that one of the roles of the superfields
Φ−n and Φþn is to allow us to use ð0; 1

2
Þ ⊗ ðA;BÞ and

ð1
2
; 0Þ ⊗ ðA;BÞ, respectively, for their linear terms. The

component fields in (61) satisfy Klein–Gordon equations,
since the ψn also satisfy the Dirac equation, the number of
independent components ϕþn and ϕ−n are equal to the
number of independent components of ψn. There could be
more redundancy equations that the three fields will share.

IV. TIME-ORDERED PRODUCTS AND
SUPERPROPAGATORS

So far, everything has gone as in ordinary quantum field
theory, but things are different for superpropagators: time-
ordered products in Dyson series are not supersymmetric
invariant, and we need to correct them in order to write
superpropagators properly. We start by writing the super-
propagator that follows from Wick’s pairing rules,

− i ~Δ�∓
n; ~n ðx1; ϑ1; x2; ϑ2Þ

¼ ωðx012Þð2πÞ−3Pn; ~n

�
−i

∂
∂x1

�
Δþðx�12Þ

þ ωðx021Þð2πÞ−3Pn; ~n

�
−i

∂
∂x1

�
Δþð−x�12Þ; ð62Þ

where ωðx012Þ¼ωðx01−x02Þ is the step function. To illustrate
that this superpropagator is not supersymmetric invariant,
we consider interactions restricted to superpotentials6

Vðx; ϑÞ ¼ V�ðx; ϑÞ þ V�∓ðx;ϑÞ;
V�ðx; ϑÞ ¼ iδ2ðϑ∓ÞW�ðx; ϑÞ; ð63Þ

where

W�
�ðx;ϑÞ ¼ ðW∓ðx; ϵγ5βϑ�ÞÞ�; D∓W�ðx; ϑÞ ¼ 0:

ð64Þ

Its general component expansion can be expressed as

W�ðx;ϑÞ ¼ Cðx�Þþ
ffiffiffi
2

p
ϑ⊺�ϵΩðx�Þþ δ2ðϑ�ÞF ðx�Þ: ð65Þ

Further restricting it to scalar superfields, the superpropa-
gator then becomes (dropping the −i factor for now)

δ2ðϑ1∓Þδ2ðϑ2�Þ ~Δ�∓ðx1; ϑ1; x2; ϑ2Þ
¼ δ2ðϑ1∓Þδ2ðϑ2�Þ½1þ 2ϑ⊺1ϵγ5ð−∂1Þϑ2∓
− 4m2δ2ðϑ1�Þδ2ðϑ2∓Þ�ΔFðx1 − x2Þ; ð66Þ

with

ΔFðxÞ ¼ ð2πÞ−4
Z

d4q
exp ½iq · x�

m2 þ q2 − iε
: ð67Þ

Making use of ð□ −m2ÞΔFðxÞ ¼ −δ4ðxÞ, we write

6The use of δ2ðϑþÞWþðx; ϑÞ or δ2ðϑ−ÞW−ðx; ϑÞ in the first
term of the superpotential is merely conventional since we can
always make the redefinition W 0

�ðx; ϑÞ ¼ W�
�ðx; ϑÞ.
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δ2ðϑ1∓Þδ2ðϑ2�Þ ~Δ�∓ðx1; ϑ1; x2; ϑ2Þ
¼ δ2ðϑ1∓Þδ2ðϑ2�ÞΔFðx�12Þ
− 4δ4ðϑ1Þδ4ðϑ2Þδ4ðx1 − x2Þ: ð68Þ

The term þ4iδ4ðϑ1Þδ4ðϑ2Þδ4ðx1 − x2Þ is Lorentz but not
supersymmetric invariant. Since this expression is local in
superspace, the noncovariant part of the superprogator
induces noncovariant terms in the interactions. For the case
of general superpotentials of arbitrary superfields, in order to
gain some insight on their form, we recall that, although the
step function is translational and Lorentz invariant (except at
spacelike separations where to achieve Lorentz invariance
commutators must vanish), it is not supersymmetric invari-
ant.ωwould be supersymmetric invariant if it were evaluated

at x�0
12 or even at x012 − ϑ⊺1ϵγ5γ

0ϑ2. Keeping in mind that the
Δþ functions in (62) are evaluated at x�0

12 , we write

ωðx012Þ ¼ ωðx�0
12 Þ þ ς�ðz1; z2Þ; z ¼ ðx; ϑÞ; ð69Þ

with ς�ðz1; z2Þ given by the negative of the next-to-zero-
order fermionic expansion coefficients in ωðx�0

12 Þ. The
second order of the unitary operator in expansion (1) is
given by

Uð2Þ ¼ ð−iÞ2
Z

d8z1d8z2ωðx012ÞVðz1ÞVðz2Þ ð70Þ

and for superpotentials can be written as

Uð2Þ ¼ ð−iÞ2
Z

d8z1d8z2½ωðx012ÞV�ðz1ÞV�∓ðz2Þ þ ωðx012ÞV�∓ðz1ÞV�ðz1Þ þ � � ��

¼ Uð2Þ
i þ Uð2Þ

n:i þ � � � ; ð71Þ

with the super Poincaré covariant term

Uð2Þ
i ¼ ð−iÞ2

Z
d8z1d8z2ðωðx�0

12 ÞV�ðz1ÞV�∓ðz2Þ þ ωðx∓0
21 ÞV�∓ðz2ÞV�ðz1ÞÞ ð72Þ

and the noncovariant term

Uð2Þ
n:i ¼ ð−iÞ2

Z
d8z1d8z2ðς�ðz1; z2ÞV�ðz1ÞV�∓ðz2Þ þ ς∓ðz2; z1ÞV�∓ðz2ÞV�ðz1ÞÞ: ð73Þ

Because of the fermionic delta functions in the superpotentials, we can evaluate invariant step functions at
ðx012 − 2ϑ⊺1�ϵγ5γ

0ϑ2∓Þ, allowing us to write the noncovariant part of the step functions as

ς�ðz1; z2Þ ¼ 2ϑ⊺1�ϵγ5γ
0ϑ2∓δðx012Þ − 4δ2ðϑ1�Þδ2ðϑ2∓Þ

∂
∂x01 δðx

0
12Þ: ð74Þ

We can see from this that the other terms [expressed by … in (71)] do not need to be corrected. Noting that
ς−ðz1; z2Þ ¼ −ςþðz2; z1Þ, we write

Uð2Þ
n:i ¼ ð−iÞ2

Z
d8z1d8z2ς�ðz1; z2Þ½V�ðz1Þ;V�∓ðz2Þ�: ð75Þ

Using Eq. (65), we can integrate the fermionic variables to obtain

Uð2Þ
n:i ¼ þ4

Z
d4x1d4x2

�
iδðx012Þ

X
α

f½Ωðx1Þ��α; ½Ω�ðx2Þ��αg þ δðx012Þ
∂
∂x01 ½Cðx1Þ; C

�ðx2Þ�
�
: ð76Þ

Any (anti)commutator will generate products of fields
multiplied by ΔðxÞ¼ΔþðxÞ−Δþð−xÞ functions and deriv-
atives. Because of delta functions in time and ð□ΔðxÞ ¼
m2ΔðxÞÞ, the only surviving terms in the anticommutator
(commutator) of Eq. (76) are the ones inwhich an odd (even)
number of time derivatives act on ΔðxÞ, generating

four-dimensional delta functions δðx012Þ ∂
∂x0

1

Δðx1 − x2Þ ¼
−iδ4ðx1 − x2Þ. This lets us write

Uð2Þ
n:i ¼ i

Z
d4x1d4x2δ4ðx1 − x2ÞFðx1Þ; ð77Þ
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with Fðx1Þ given explicitly by the term of the integral factor
of d4x1 in (76). Therefore, we must replace

Vðx;ϑÞ → Vðx; ϑÞ þ δ4ðϑÞFðxÞ ð78Þ

in order to cancel the lowest-order noncovariant term (77). It
is evident that this result extends to the case of general
potentials, since the effect of considering the full expansion
in fermionic variables in (69) is to add further higher-order
derivatives in time to Eq. (76). The important point is that we
always have a delta function δðx01 − x02Þ, ensuring counter-
terms are local in time, themain assumptionmade in (2). The
function Fðx1Þ is in general not only supersymmetric non-
covariant but also Lorentz noncovariant.
Equation (78), based only on pure operator methods, has

the advantage that it gives us directly the lowest-order
correction to the superpotential but cannot discern which
terms are purely supersymmetric and/or Lorentz noncovar-
iant. More importantly, so far, we have not made clear why
nonlocal terms cannot arise beyond the second-order
Dyson operator (70). We prove, at the level of the super
S-matrix and on the same lines of ordinary space, that all
of the noninvariant terms are local. For this purpose, we

introduce the function PðLÞ
n; ~nðqÞ for off-shell momentum

q by extending linearly in q0 the on-shell polynomial
Pn; ~nðp; p0Þ [Eq. (53)] to the off-shell case. Therefore, the
ordinary space propagator −iΔn; ~nðxÞ is expressed as

−iPðLÞ
n; ~nð−i∂ÞΔFðxÞ [where ΔF is (67)]. We can always

split the function PðLÞ
n; ~nðqÞ as the sum of a Lorentz-covariant

(polynomial in qμ) part,

PðoffÞ
n; ~n ðΛqÞ ¼

X
m; ~m

Sn;mðΛÞS�~n; ~mðΛÞPðoffÞ
m; ~m ðqÞ; ð79Þ

plus a Lorentz-noncovariant term originated at ðx1 ¼ x2Þ,
such that when q is on the mass shell PðLÞ

n; ~n and PðoffÞ
n; ~n

coincide [7]. By tracking first the Lorentz-noncovariant
parts, we can write the general superpropagator as

ð−iÞΔ�∓
n; ~n ðx1; ϑ1; x2; ϑ2Þ

¼ ð−iÞ½PðLÞ
n; ~nð−i∂1Þ þ 2ϑ⊺1ϵγ5ð−iγμÞϑ2∓PðLÞ

μ;n; ~nð−i∂1Þ
−4m2δ2ðϑ1�Þδ2ðϑ2∓ÞPðLÞ

n; ~nð−i∂1Þ�ΔFðx1 − x2Þ þ � � � ;
ð80Þ

where “…” represents the rest of the terms in the general
fermionic expansion variables ϑ1 and ϑ2 (the explicitly
shown terms are the ones that survive when we consider
the Δ�∓

n; ~n for superpotentials). The functions PðLÞðqÞ and

PðLÞ
μ ðqÞ are the off-shell extensions of the on-shell func-

tions PðpÞ and pμPðpÞ. We isolate the supersymmetric and

Lorentz-covariant part PðoffÞ
n; ~n ð−i∂1ÞΔFðx�12Þ by writing (80)

as (zi ¼ ðxi; ϑiÞ),

ð−iÞΔ�∓
n; ~n ðz1;z2Þ¼ð−iÞPðoffÞ

n; ~n ð−i∂1ÞΔFðx�12Þ
þϒn; ~nðz1;z2;−i∂1ÞΔFðx1−x2Þ; ð81Þ

with

ðþiÞϒn; ~nðz1; z2;−i∂1Þ
¼ 4δ2ðϑ1�Þδ2ðϑ2∓Þð□ −m2ÞPðoffÞ

n; ~n þ δPn; ~n

þ 2ϑ⊺1ϵγ5ð−iγμÞϑ2∓δPμ;n; ~n

− 4m2δ2ðϑ1�Þδ2ðϑ2∓ÞδPn; ~n þ � � � ð82Þ
and δPn; ~n ≡ PðLÞ

n; ~n − PðoffÞ
n; ~n and δPμ;n; ~n ≡ PðLÞ

μ;n; ~n − qμP
ðoffÞ
n; ~n .

The difference between PðLÞ and PðoffÞ must possess a
factor q2 þm2 that ensures their vanishing at the on-shell
momentum. This factor cancels off with the denominator in
(67), giving a delta function δ4ðx1 − x2Þ that guarantees
noncovariant terms are always local [8].
It is clear that the definition of PðLÞ has not made

PðoffÞ unique, since adding and subtracting a term
fn; ~nðqÞðq2 þm2Þ in the covariant and noncovariant off-
shell functions, respectively, does not alter PðLÞ, for an
arbitrary polynomial function fn; ~nðqÞ that satisfies (79). For
example, in the case of the derivative of a massive field
∂μϕ in ordinary space, the on-shell polynomial is pμpν,

and therefore the off-shell function is PðLÞ
μν ðqÞ ¼

qμqν þ δν0δ
μ
0ðq2 þm2Þ. Any functions of the form qμqν þ

αημνðq2 þm2Þ and ðδν0δμ0 − αημνÞðq2 þm2Þ serve as covar-
iant and noncovariant parts of PðLÞ

μν ðqÞ. In ordinary space,
the choice is to take PðoffÞ as the Weinberg form [7], where

the polynomial PðLÞ
μν − PðoffÞ has only terms that are all

Lorentz noncovariant (since precisely we want to isolate
those terms). In superspace, the issue is more subtle, as we
explain below.
Repeating the whole argument that led us to (81), for the

pairing of Φ�n with ~Φ�
� ~n, we end with a superpropagator of

the form

ð−iÞΔ��
n; ~n ðx1; ϑ1; x2; ϑ2Þ

¼ �2mð−iÞδ2ðϑ1 − ϑ2Þ� ~PðoffÞ
n; ~n ð−i∂1ÞΔFðx�12Þ þ � � � ;

ð83Þ
where “…” represents the noncovariant contributions to the
superpropagator. Being completely general, we are not

assuming that ~PðoffÞ
n; ~n ðqÞ and PðoffÞ

n; ~n ðqÞ coincide for the off-
shell momentum, since we are only sure that the weaker
condition holds:

PðoffÞ
n; ~n ðpÞ ¼ ~PðoffÞ

n; ~n ðpÞ ¼ Pn; ~nðpÞ; for p2 ¼ −m2: ð84Þ
Experience with canonical (or path-integral) formulations
helps us see why it is mostly the case that PðoffÞ has to be of
the Weinberg form and why it is not a surprise that ~PðoffÞ
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could be different from PðoffÞ. Consider general off-shell
(�) superfields Φoff

�nðx;ϑÞ of the form

Φoff
�nðx; ϑÞ ¼ ϕ�nðx�Þ ∓

ffiffiffi
2

p
ϑ⊺�ϵγ5ψnðx�Þ

� 2δ2ðϑ�ÞF∓nðx�Þ: ð85Þ

In all known formulations of supersymmetry, ϕ�n is a
propagating component field, while F∓n is a sum of
auxiliary and propagating fields. Thus, we expect that,
in general, the Green functions hϕ�n;ϕ0�

� ~niGreen and
hϕ�n;F 0�∓ ~niGreen would be different. This allows us to

see that PðoffÞ
n; ~n and ~PðoffÞ

n; ~n would be, in general, different
(since to compare the superpropagators obtained by non-
canonical and other methods it is sufficient to take one
of its components in fermionic expansion) and to note

that PðoffÞ
n; ~n must be of the form of Weinberg (since

hϕ�n;ϕ0�
� ~niGreen is made only of propagating fields).

The discussion of this section has revealed to us that not
only the breaking of the super S-matrix Lorentz invariance
but also that of its supersymmetric invariance are both due
to the singularity of the commutators at the light-cone apex
[6] [see Eq. (76)] and that by introducing noncovariant
local terms in the interaction Hamiltonian it is always
possible to define a super S-matrix as fully super Poincaré
covariant. As in the case of ordinary space, we drop the
noncovariant contributions in (81) and (83), assuming that
the counterterms have been introduced [7].

V. SUPER FEYNMAN RULES

Having all the ingredients, now we can state the super
Feynman rules. These rules can be written in a manner
similar to ordinary Feynman rules; the extra ingredient is
that we have to add ð�Þ signs for every vertex formed by the
superfields Φnþ and Φn−. For a theory written as the sum of
superfield polynomials Hl, of degree Nl, the potential is

Vðx; ϑÞ ¼
XN
l

glHlðx; ϑÞ: ð86Þ

Now, the super Feynman rules are7:
(a) Include a factor of −igl for every vertex.
(b) For every internal line running from a ð�Þ vertex at

ðx1; ϑ1Þ to a ð∓Þ vertex ðx2; ϑ2Þ, include a super-
propagator:

ð−iÞPn; ~nð−i∂1ÞΔFðx�12Þ: ð87Þ

(c) For every internal line running from a ð�Þ vertex at
ðx1; ϑ1Þ to a ð�Þ vertex ðx2; ϑ2Þ, include a super-
propagator:

� 2ð−iÞδ2ðϑ1 − ϑ2Þ�½mPn; ~nð−i∂1ÞΔFðx�12Þ
þ fn; ~nð−i∂1Þδ4ðx�12Þ�: ð88Þ

(d) For every external line corresponding to a sparticle of
superspin j, superspin z projection σ, and super-
momentum ðp; sÞ, include

ð∓Þ-sparticle created at vertex ð�Þ∶
ð2πÞ−3=2e−ix·peðϑ−2sÞ⊺ϵγ5ðþipÞϑ�u�nðp; σÞ; ð89Þ

ð�Þ-sparticle created at vertex ð�Þ∶
� 2mð2πÞ−3=2e−ix�·pδ2½ðϑ − sÞ��u�nðp; σÞ; ð90Þ

ð∓Þ-sparticle destroyed at vertex ð�Þ∶
ð2πÞ−3=2eþix·pe−½ϑ−2s�⊺ϵγ5ðþipÞϑ�unðp; σÞ; ð91Þ

ð�Þ-sparticle destroyed at vertex ð�Þ∶
� 2mð2πÞ−3=2eix�·pδ2½ðs − ϑÞ��unðp; σÞ; ð92Þ

ð∓Þ-antisparticle created at vertex ð�Þ∶
ð−ÞBð2πÞ−3=2e−ix·peþðϑ−2sÞ⊺ϵγ5ðþipÞϑ�vnðp; σÞ;

ð93Þ
ð�Þ-antisparticle created at vertex ð�Þ∶

� 2mð−ÞBð2πÞ−3=2e−ix�·pδ2½ðϑ − sÞ��vnðp; σÞ;
ð94Þ

ð∓Þ-antisparticle destroyed at vertex ð�Þ
∶ð−ÞBð2πÞ−3=2eþix·pe−ðϑ−2sÞ⊺ϵγ5ðþipÞϑ�v�nðp; σÞ;

ð95Þ
ð�Þ-antisparticle destroyed at vertex ð�Þ∶

� 2mð−ÞBð2πÞ−3=2eþix�·pδ2½ðs − ϑÞ��v�nðp; σÞ:
ð96Þ

(e) Integrate all superspacetime vertex indices ðx;ϑÞ, etc.,
and sum all discrete indices n; n0, etc. (that come from
Lorentz tensor products of the superfields in Hl).

(f) Supply minus signs that arise in theories with fer-
mionic superfields.

To derive the wave superfunctions (89)–(96), we have
taken (anti)commutators of superfields and creation-
annihilation (anti)sparticle operators. For external legs,
we can use any combination of þ or − signs, since they
are related by (17) and (18). Some remarks are pertinent:

(i) Each vertex and each line in the stated super Feyn-
man rules is explicitly super Poincaré covariant.
These rules work for general supersymmetric po-
tentials, including Kähler-type potentials.

(ii) Although the (presented) super Feynman rules are
formulated as superfield polynomial interactions
without explicit (super)derivatives, all numbers of7We are following very closely the form presented in Ref. [6].
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derivatives and all even -numbers of superderivatives
acting on the superfields are included; any covariant
ordinary derivative of a ð�Þ superfield is always
contained in the ð�Þ superfield in the tensor repre-
sention ðA;BÞ ⊗ ð1

2
; 1
2
Þ [7]. The superderivative

product DαDβ of a ð�Þ superfield is always con-
tained in the ð�Þ superfield in the representation
ðA;BÞ ⊗ ð1

2
; 1
2
Þ plus the ð∓Þ superfield in the

representation ðA;BÞ, multiplied by a factor propor-
tional to fðI � γ5Þϵgαβ (see Sec. III).

(iii) As explained at the end of Sec. IV, it is mostly the case
thatPn; ~n [with the label “(off)” dropped] is of the form
of Weinberg [7]. The polynomial fn; ~n is a Lorentz-
covariant undetermined function, that by dimensional
analysis has mass dimension equal tomPn; ~n minus 2,
and this dimension is positive if superfields are chosen
with canonical dimension. From this, we see that for
the case of the scalar superfield the Weinberg poly-
nomial is P ¼ 1, and therefore f ¼ 0 [15]. We could
havedefined anew set of ruleswherefn; ~n ¼ 0, but it is
better to leave fn; ~n general in order to easily compare
the superpropagators obtained from other methods.

VI. C, P, T, and R SYMMETRIES

To explore the C, P, T, and R transformation properties
of the superfields, we have to turn on the full notation of the
ðA;BÞ superfields: Φ�n → ΦAB

�ab. The transformation of
annihilation and creation (anti)sparticle operators goes as

Ca�ðp;s�;σÞC−1¼ς��ςa
c
�ðp;ς�s�;σÞ;

Cac�� ðp;s�;σÞC−1¼ςc�� ςca��ðp;ςc�s�;σÞ;
Pa�ðp;s�;σÞP−1¼η��ηa∓ð−p;η�ðβsÞ∓;σÞ;
Pac�� ðp;s�;σÞP−1¼ηc�� ηcac�∓ ð−p;ηc�ðβsÞ∓;σÞ;
Ta�ðp;s�;σÞT−1¼ζ��ζð−Þj−σa�ð−p;ζ�ϵs��;−σÞ;
Tac�� ðp;s�;σÞT−1¼ζc�� ζcð−Þj−σac�� ð−p;ζc�ϵs��;−σÞ; ð97Þ

where some of the phases are restricted to

ςþ ¼ ς�−; ηþ ¼ −η�−; ζþ ¼ −ζ�−;

ςcþ ¼ ςc�− ; ηcþ ¼ −ηc�− ; ζcþ ¼ −ζc�− : ð98Þ

The numbers that have � signs have to be the same for
all sparticles, in order to guarantee supersymmetric
covariance (this is due to the fact that they appear in
the algebra of the transformations with fermionic gen-
erators). These relations can be obtained by starting with
component transformations, then require invariance under
(16) and consistency with (17). We should mention that
to obtain appropriate relations for time reversal we have
defined Ts ¼ is�T for any fermionic number; in particu-
lar this guarantees that Tss0 ¼ ðss0Þ�T for any pair of
fermionic numbers. To perform superfield transforma-
tions, we use [7]

ðuAB
ab ðp; σÞÞ� ¼ ð−Þ−a−b−jvBA−b;−aðp; σÞ;

ðvAB
ab ðp; σÞÞ� ¼ ð−Þj−a−buBA−b;−aðp; σÞ;

ðuAB
ab ðp; σÞÞ� ¼ ð−ÞaþbþσþAþB−juAB

−a;−bð−p;−σÞ;
ðvAB

ab ðp; σÞÞ� ¼ ð−ÞaþbþσþAþB−jvAB
−a;−bð−p;−σÞ;

uAB
ab ð−p; σÞ ¼ ð−ÞAþB−juBAba ðp; σÞ;

vAB
ab ð−p; σÞ ¼ ð−ÞAþB−jvBAba ð−p; σÞ ð99Þ

and the properties of the exponential factor in (49),

ix� · ðΛPpÞ ¼ iðΛPxÞ · p − ðεPβϑÞ⊺ϵγ5ðþipÞðεPβϑÞ∓;
ix� · p ¼ −ðix · p − ðεCϵγ5βϑ�Þ⊺ϵγ5ðþipÞðεCϵγ5βϑ�Þ∓Þ�;

ðix� · ðΛPpÞÞ� ¼ iðΛT xÞ · p − ðεT ϵϑ�Þ⊺ϵγ5ϵðþipÞðεT ϵϑÞ��; ð100Þ

with ðεT Þ2 ¼ ðεPÞ2 ¼ −ðεCÞ2 ¼ −1 and ΛT ¼ −ΛP ¼
diagð 1 1 1 −1 Þ. For a superfield transforming onto
another superfield, we must impose

ηþ ¼ ηcþ ¼ εP; ζþ ¼ ζcþ ¼ εT ; ςþ ¼ ςcþ ¼ εC

ð101Þ

and

ηc ¼ ηð−Þ2j; ςc ¼ ς; ζ ¼ ζc; ð102Þ

giving
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CΦAB
�;abðx;ϑÞC−1¼ςð−Þ2A−a−b−jΦBA�

�;−b;−aðx;εCϑÞ;
PΦAB

�;abðx;ϑÞP−1¼ηð−ÞAþB−jΦBA∓;baðΛPx;εPβϑÞ;
TΦAB

�;abðx;ϑÞT−1¼ζð−ÞaþbþσþAþB−jΦAB
�;−a−bðΛT x;εT ϵϑ�Þ:

ð103Þ

The combined CPT transformation becomes

ðCPTÞΦAB
�;abðx; ϑÞðCPTÞ−1

¼ ςηζð−Þ2BΦAB�∓;abð−x; εCεPεT βϵϑ�Þ: ð104Þ
This last equation implies

ðCPTÞVðx;ϑÞðCPTÞ−1 ¼ Vð−x; εCεPεT βϵϑ�Þ: ð105Þ
Note that when applying T to Vðx; ϑÞ we pass troughR
d4xd4ϑ, and because εCεPεT is just a sign, we can write

Td4ϑ ¼ ðd4ϑÞ�T ¼ d4ðεCεPεT ϵβϑ�ÞT, giving a proof of
CPT invariance for massive supersymmetric theories.
The R transformations on annihilation-creation (anti)

sparticle operators are

UðθRÞa�ðp; s�; σÞUðθRÞ−1
¼ e½−iðq∓q0ÞθR�a�ðp; e½∓iq0θR�s�; σÞ;

UðθRÞac�� ðp; s�; σÞUðθRÞ−1
¼ e½−iðq∓q0ÞθR�ac�� ðp; e½∓iq0θR�s�; σÞ; ð106Þ

where q0 is the same for all superparticle species. With the
help of

x� · p ¼ x · p − ðe½�iq0θR�ϑÞ⊺ϵγ5pðe½∓iq0θR�ϑÞ�; ð107Þ
we can write

UðθRÞΦAB
�;abðx;ϑÞUðθRÞ−1

¼ exp ½−iðq ∓ q0ÞθR�ΦAB
�;abðx;RϑÞ; ð108Þ

with

Rαβ ¼
�
exp ½−iθRq0� 0

0 exp ½þiθRq0�

�
αβ

: ð109Þ

In definingR symmetries, we allow UðθRÞ to be a discrete
or continuous symmetry, restricting fθR; q; q0g to take
values in a discrete set in the former case.

VII. SCALAR SUPERPOTENTIALS

In this section, we restrict ourselves to a theory of a
sparticle with zero superspin of which the interactions are
constructed with cubic polynomials of the scalar superfield.
We calculate the lowest-order correction to time-ordered
products and construct a superamplitude for a sparticle-
antisparticle collision.

The parity and R transformations appearing in
Eqs. (103) and (108) become

PΦ�ðx;ϑÞP−1 ¼ ηΦ∓ðΛPx; εPβϑÞ;
PΦ�

�ðx;ϑÞP−1 ¼ η�Φ�∓ðΛPx; εPβϑÞ;
UðθRÞΦ�ðx;ϑÞUðθRÞ−1 ¼ exp ½−iðq∓ q0ÞθR�Φ�ðx;RϑÞ;
UðθRÞΦ�

�ðx;ϑÞUðθRÞ−1 ¼ exp ½þiðq� q0ÞθR�Φ�
�ðx;RϑÞ:

ð110Þ

For a sparticle that is its own antisparticle, the first equation
in (103) implies

Φ�ðx; ϑÞ ¼ Φ�
�ðx;ϑÞ; ð111Þ

with η ¼ η�. For the cubic superpotential, we have the
following stock of possibilities to form interactions:

Φ�Φ�Φ�; Φ�Φ�Φ�
�; Φ�Φ�

�Φ
�
�; Φ�

�Φ
�
�Φ

�
�: ð112Þ

Under R transformations, together with δ2ðR−1ϑ�Þ ¼
exp ½�2iq0�δ2ðϑ�Þ, these terms generate the following
phases in the superpotential:

−3q�q0; −q�q0; þq�q0; 3q�q0: ð113Þ

Therefore, for R-symmetric cubic superpotentials, only
one term (of the four possible) survives. For a sparticle that
is its own antisparticle, due to (111), the four possibilities
shrink to one.
Now, consider a superpotential for a sparticle with

different antisparticle8

Wþðx;ϑÞ ¼
gþ
3!

ðΦþðx;ϑÞÞ3 þ
g−
3!

ðΦ�þðx;ϑÞÞ3;

W�
−ðx;ϑÞ ¼

g�−
3!

ðΦ−ðx; ϑÞÞ3 þ
g�þ
3!

ðΦ�
−ðx; ϑÞÞ3: ð114Þ

When either gþ or g− is zero, if R charges are properly
chosen, we obtain R-invariant superpotentials.
From (65) and (60), we can see that

CðxÞ ¼ gþ
3!

ðϕþÞ3 þ
g−
3!

ðϕ�
−Þ3

ΩðxÞ ¼ −
gþ
2
ðϕþÞ2ψ þ g−

2
ðϕ�

−Þ2½ϵγ5βψ��
F ðxÞ ¼ gþð−ϕþψ⊺ϵψþ þmðϕþÞ2ϕ−Þ

þ g−ð−ϕ�
−ψ

†ϵψ�
− þmðϕ�

−Þ2ϕ�þÞ: ð115Þ

For this superpotential, the two lowest-order correction
terms in (76) are9

8The name “complex” superfield for such a superfield is
not appropriate since superfields are always chiral.

9To prepare us for field theory, we ignored bilinear terms when
we brought ½Cðx1Þ; C�ðx2Þ� to the form (116).
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iδðx012Þ
X
α

f½Ωðx1Þ��α; ½Ω�ðx2Þ��αg

¼ −2δðx012Þ
∂
∂x01 ½Cðx1Þ; C

�ðx2Þ�

¼ 1

2
½iδ4ðx1 − x2Þ�Fðx2Þ; ð116Þ

where Fðx2Þ is the function appearing in (77) given by

Fðx2Þ ¼ jgþj2ðϕþðx2ÞÞ2ðϕ�þðx2ÞÞ2
þ jg−j2ðϕ−ðx2ÞÞ2ðϕ�

−ðx2ÞÞ2: ð117Þ

The covariant spacetime potential

−iVðxÞ ¼ F ðxÞ − F ðxÞ� ð118Þ

acquires the form

−iVðxÞ ¼ gþð−ϕþψ⊺ϵψþ þmðϕþÞ2ϕ−Þ þ g−ð−ϕ−ψ
⊺ϵψ− −mðϕ−Þ2ϕþÞ

þ g�−ð−ϕ�
−ψ

†ϵψ�
− þmðϕ�

−Þ2ϕ�þÞ þ g�þð−ϕ�þψ†ϵψ�þ −mðϕ�þÞ2ϕ�
−Þ: ð119Þ

Finally, after integrating the fermionic variables in (78), the resulting corrected spacetime potential is

−HintðxÞ ¼ −FðxÞ − VðxÞ
¼ −igþð−ϕþψ⊺ϵψþ þmðϕþÞ2ϕ−Þ − ig−ð−ϕ−ψ

⊺ϵψ− −mðϕ−Þ2ϕþÞ
− ig�−ð−ϕ�

−ψ
†ϵψ�

− þmðϕ�
−Þ2ϕ�þÞ − ig�þð−ϕ�þψ†ϵψ�þ −mðϕ�þÞ2ϕ�

−Þ
− ðjgþj2ðϕþÞ2ðϕ�þÞ2 þ jg−j2ðϕ−Þ2ðϕ�

−Þ2Þ: ð120Þ

For the case when a particle is its own antiparticle, the component fields satisfy

ϕ ¼ ϕþ ¼ ϕ�
−; ϵγ5βψ ¼ −ψ�: ð121Þ

The most general (corrected) spacetime cubic potential for this case is

−H0
intðxÞ ¼ −igðþϕψ̄ψþ þmðϕÞ2ϕ�Þ þ ig�ðϕ�ψ̄ψ− þmðϕ�Þ2ϕÞ − jgj2ðϕÞ2ðϕ�Þ2: ð122Þ

Making ig ¼ ffiffiffi
2

p
λeþiα and

ffiffiffi
2

p
ϕ ¼ e−iαðAþ iBÞ, this last equation can be written as

−H0
intðxÞ ¼ −λAðψ̄ψÞ − iλBðψ̄γ5ψÞ −mλAðA2 þ B2Þ − λ2

2
ðA2 þ B2Þ2; ð123Þ

which is the interaction Lagrangian of the Wess–Zumino
model [15]. Thus, Eq. (120) generalizes to the case where a
sparticle is different from its antisparticle and where
possibly parity and R symmetries are not conserved.
We now are ready to compute a superamplitude of a

sparticle-antisparticle process for either gþ or g− zero
in (114).
To lowest order, there is only one superdiagram for a

sparticle-antisparticle collision (Fig. 1). For the external
legs, we choose left or right fermionic 4-spinors as
follows:

1 → �; 1c →∓; 2 →∓; 2c → �: ð124Þ

The upper (lower) signs correspond to the case g− ¼ 0
(gþ ¼ 0). After integrating out configuration superspace-
time variables, we are left with

Sg∓ðp1; s1�;pc
1; s

c
1∓;p2; s2∓;pc

2;s
c
2�Þ

¼ ð−4iÞjg∓j2fðp1;pc
1;p2;pc

2Þ ×
ðpc

1 − p2Þ2
m2 þ ðpc

1 − p2Þ2

× exp
�
−2iðpc

2s
c
2 − p1s1Þ⊺ϵγ5

ðpc
1 − p2Þ

ðpc
1 − p2Þ2

× ðp2s2 − pc
1s

c
1Þ�

�
; ð125Þ

where

fðp1;pc
1;p2;pc

2; Þ
¼ ð2πÞ−2½16ðp1Þ0ðpc

1Þ0ðp2Þ0ðpc
2Þ0�−1=2

× δ4ðp1 þ pc
1 − pc

2 − p2Þ: ð126Þ
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To calculate the particle-antiparticle scattering amplitude
for particles that are created by the10 a��ðpÞ and ac�∓ ðpÞ, we
take s1� ¼ sc1∓ ¼ s2∓ ¼ sc2� ¼ 0, and the exponential
factor in (125) vanishes. Then, since

ðpc
1 − p2Þ2

m2 þ ðpc
1 − p2Þ2

¼ 1 −
m2

m2 þ ðpc
1 − p2Þ2

; ð127Þ

the zero component of the superamplitude is giving us the
sum of two Feynman diagrams. These diagrams correspond
to the interaction terms [present in (120)]:

ð∓ imÞg∓ðϕ∓Þ2ϕ� þ H:c:þ jg∓j2ðϕ∓Þ2ðϕ�∓Þ2: ð128Þ

The particle-antiparticle scattering with three particles
and three antiparticles gives us a total of 34 initial-final state
combinations.11 Therefore, Eq. (125) represents a very
economical expression for the set of all processes of these
particles at order jg∓j2.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we obtain perturbative scattering super-
amplitudes as super Feynman diagrams for sparticles and
antisparticles that carry any superspin. We accomplish this
by introducing interactions out of superfields Φþn, Φ−n,
and their adjoints, in any representation ðA;BÞ of the
Lorentz group. These superfields possess component fields
ϕþn, ϕ−n in the representation ðA;BÞ and ψn in the
representation ½ð1

2
; 0Þ ⊕ ð0; 1

2
Þ� ⊗ ðA;BÞ.

It is striking that for scalar superfields, as we know from
canonical and path integral formulations, the lowest-order
correction to time-ordered products seems to be necessary
and sufficient to guarantee supersymmetric invariance at all
orders, suggesting that perturbatively some sort of domino

effect mechanism is occurring: lowest-order corrections
introduced at first order in Dyson series are canceling
noncovariant terms in second order, and these corrections
then generate second-order terms that seem to be canceling
the noncovariant terms arising at third order, and so on.
Since fermionic expansion coefficients of superamplitudes
are picking up external lines, to any order in coupling
constants, these coefficients are giving the sum of all
possible diagrams originated at that order.
Pertubartively, most broken supersymmetric theories

preserve the particle number of exact supersymmetric
theories. Thus, the formalism presented in this work can
in principle be extended to compute superamplitudes in
phases of the theory where nondegeneracy of the super-
multiplet massess is unimportant. This can be done by
extending the super Feynman rules to include symmetry
breaking terms that originate as local couplings constants in
the fermionic variables.
Generalizations to the N -extended supersymmetry

case seem straightforward, since the obtained creation-
annihilation superparticle operators, presented in Sec. II,
admit a recursive procedure: creation-annihilation super-
particle operators in N -extended momentum superspace
can be defined in terms of the creation-annihilation
superparticle operators in ðN − 1Þ-extended momentum
superspace.
The proposal may find applications beyond those of

higher superspin theories for example by extending results
in operator-based formulations of quantum field theory
to the superspace case. The obtention of multiparticle
superstates jN i that transform fully covariant under arbi-
trary super Poincaré transformations makes it possible to
express the general matrix element hMjOðz1;…; znÞjN i
for superspace operators O (created with Heisenberg
superfields evaluated at ðz1;…; znÞ and possibly time
ordered) as matrix elements at arbitrary shifted values
z1 − z;…; zn − z. This shifting is used in intermediary
matrix elements that are present in some operator-based
works, such as the spectral representations [19,20], the
operator product expansion (OPE) [21], and spontaneously
global symmetries [22]. So far, superspace extensions to
these results have been presented only in the context of
functional-based approaches (the supersymmetric Kallen–
Lehmann representation and the OPE for the scalar super-
field are offered in Refs. [23,24]). Also, it could be useful to
write fully supersymmetric covariant results that are usually
present in component form, such as the kinematical
constraints in supergravity [25] and the tree QCD ampli-
tudes from supersymmetric scattering amplitudes [26].
Also, midway between Lagrangian and pure S-matrix
formulations, the super Feynman rules for arbitrary mass-
less superparticles should be straightforward [27] (but it
will be instructive to compare it with the zero mass limit of
our results), superspace investigations for the higher-
dimensional theories [28], and scale and conformal

FIG. 1. Lowest-order superdiagram for a sparticle-antisparticle
collision.

10a�þ and a�c− for g− ¼ 0, and a�− and a�cþ for gþ ¼ 0.
11Some of them are zero, for example, all odd fermionic

expansions in (125).
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invariant field theories [29,30] seem also very well suited.
To obtain general super wave functions for supersymmetric
gauge theories and gravitation will be more challenging,
but extensions along the lines of Refs. [25,31,32] seem
feasible (from which evidence of new soft theorems and
relations with new Ward identities have recently been
found [33,34]).
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APPENDIX A: NOTATION AND CONVENTIONS

We use repeatedly identities of Dirac matrices and
fermionic 4-spinor variables. Since these relations are
standard, we limit ourselves to present the notation and
conventions employed in the paper. We represent Dirac
and Lorentz indices by α; α0; β; β0, etc., and μ; ν; μ0; ν0,
etc., respectively. We take the Lorentz metric as ημν ¼
diagð 1 1 1 − 1 Þ. The Dirac representation DðΛÞ is gen-
erated by

D½Λ� ¼ exp

�
i
1

2
wμνJ μν

�
; J μν ¼ −i

4
½γμ; γν�; ðA1Þ

where the anticommutator of γ matrices is taken positive:
fγμ; γνg ¼ 2ημν. We stick to the representation

γ0 ¼−i
�
0 I

I 0

�
¼−iβ; γi¼−i

�
0 σi

−σi 0

�
: ðA2Þ

Also, we use

γ5 ¼
�
I 0

0 −I

�
; ϵ¼

�
e 0

0 e

�
; e¼

�
0 1

−1 0

�
;

ðA3Þ

that together with β satisfy

βγμ ¼ −γμ†β; ϵγ5γ
μ ¼ −γμ⊺ϵγ5: ðA4Þ

For the standard transformation p ¼ LðpÞk, we take
k ¼ ð 0 0 0 mÞ as a standard vector.
For any 4-spinor v, its left projection is written as

vþ ¼ 1
2
ðI þ γ5Þv, and its right projection is written as

v− ¼ 1
2
ðI − γ5Þv. Useful identities for fermionic 4-spinors

are

ðs�Þðs�Þ⊺ ¼
1

2
½ϵðI � γ5Þ�δ2ðs�Þ;

ðs�Þðϵγ5sÞ⊺∓ ¼ 1

4
ðs⊺ϵγ5γμs�Þ½I � γ5�γμ;

s⊺ϵγ5γμs� ¼ −s⊺ϵγ5γμs∓;
ðs⊺ϵγ5γμs�Þ� ¼ ðϵγ5βs�Þ⊺ϵγ5γμðϵγ5βs�Þ�; ðA5Þ

where δ2ðsÞ is defined by

δ2ðsÞ≡ 1

2
s⊺ϵs; ½δ2ðsÞ�� ¼ −δ2ðs�Þ: ðA6Þ

A 4-spinor satisfies the Majorana condition if

s ¼ ϵγ5βs�: ðA7Þ

APPENDIX B: FERMIONIC INTEGRALS

Given a set of fermionic variables ζ1…ζN , the Berizinian
integral is defined to act from the left,Z

dζN0…dζ2dζ1fζ1ζ2…ζN0Ag ¼ A; N0 ≤ N: ðB1Þ

The lowest-dimension (nontrivial) integral with this set of
fermionic variables is the line integral,

Xn
ij

Z
dζ⊺i ζjCij ¼ TrC ¼

Xn
ij

Z
dðDζÞ⊺i ðDζÞjCij; ðB2Þ

where Dij is an invertible bosonic matrix; since
TrC ¼ TrD−1CD, we have dðDζÞ⊺ ¼ dζ⊺D−1. This holds
for any surface Berezinian integral:

dðDζÞ1dðDζÞ2…dðDζÞN0

¼ ½ðD−1Þ⊺dζ�1½ðD−1Þ⊺dζ�2…½ðD−1Þ⊺dζ�N0 : ðB3Þ

The right side of the complex conjugate of (B1) is A�. If we
allow conjugation to enter in the integral as ðζ1ζ2…ζNÞ�,
the net effect in the integral is�Z

dζN0…dζ2dζ1fζ1ζ2…ζN0Ag
��

¼
Z

ðdζN0…dζ2dζ1Þ�ðζ1ζ2…ζN0 Þ�A�: ðB4Þ

For fermionic 4-spinors, two-dimensional and four-
dimensional fermionic differentials are defined by

d2s� ≡ −
1

2
ds⊺�ϵds�; d4s≡ d2sþd2s−: ðB5Þ

They give
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Z
d2s�δ2ðs�Þ ¼

Z
d4sδ4ðsÞ ¼ 1; ðB6Þ

where δ4ðsÞ ¼ δ2ðsþÞδ2ðs−Þ. Under conjugation,

ðd2s�Þ� ¼ −d2s�� ðd4sÞ� ¼ d4s�: ðB7Þ

From (B3), we have

d4s� ¼ d4ðϵs�Þ ¼ d4ðγ5s�Þ ¼ d4ðβs�Þ ¼ d4ðϵγβs�Þ: ðB8Þ

For an arbitrary operator density KðsÞ that appears as

Z
d4sKðsÞ; ðB9Þ

due to (B4) and (B8), Hermiticity and Lorentz invariance in
the higher-order fermionic expansion s of KðsÞ can be
chosen as the requirement that

KðsÞ ¼ ½Kðϵγ5βs�Þ��: ðB10Þ

If s satisfies the Majorana condition (A7), then Eq. (B10)
becomes KðsÞ ¼ ½KðsÞ��. We also define fermionic deriv-
atives to act from the left.
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