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N =1 super Feynman rules for any superspin: Noncanonical SUSY
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Super Feynman rules for any superspin are given for massive A’ = 1 supersymmetric theories, including
momentum superspace on-shell legs. This is done by extending, from space to superspace, Weinberg’s
perturbative approach to quantum field theory. Superfields work just as a device that allow one to write
super Poincaré-covariant superamplitudes for interacting theories, relying neither in path integral nor
canonical formulations. Explicit transformation laws for particle states under finite supersymmetric
transformations are offered. C, P, T, and R transformations are also worked out. A key feature of this
formalism is that it does not require the introduction of auxiliary fields, and when introduced, their purpose
is just to render supersymmetric invariant the time-ordered products in the Dyson series. The formalism is
tested for the cubic scalar superpotential. It is found that when a superparticle is its own antisuperparticle
the lowest-order correction of time-ordered products, together with its covariant part, corresponds to the

Wess—Zumino model potential.
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I. INTRODUCTION

From the inception of superspace by Salam and Strahdee
[1], functional and path integral methods have been the
preferred scheme to formulate field theory in superspace
[2-4]. These formalisms allow us to write correlation
functions that perturbatively give super Feynman rules
with off-shell legs, making it unclear how to replace them
by the corresponding momentum superspace on-shell legs.
Perhaps, because realistic supersymmetric theories would
never be symmetries of the S-matrix [5], this issue seems
secondary. However, thinking of supersymmetry as a
theoretical laboratory, the issue has its own importance.
A purpose of this paper is to provide formulas for on-shell
legs in order to construct superamplitudes Sy, for
scattering processes of massive superparticle states (or
particle superstates), where A/ and M label Fock states,
extended such that one superparticle carries momentum p,
spin-projection o, and left or right fermionic 4-spinors s, or
s_. These superamplitudes are constructed extending
Weinberg’s approach [6,7] from fields to superfields, that
is from (momentum and configuration) space to super-
space. What is done here is to express the potential
appearing in the Dyson operator series

S =7Texp {—i/dtV(t)] (1)
as

V(t) —/d3xd419V(x, 9), (2)
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where V(x,9) is a sum of free superfield products
obtained as super momentum Fourier transforms of
creation-annihilation superparticle operators. These creation-
annihilation superparticle operators are used to write
superparticle states that allow us to write Sy, in terms
of super Feynman rules, after the appropriate Wick
pairings. As in the ordinary space approach [6], the
assumed conditions for the super S-matrix are perturba-
tivity, unitarity, Poincaré covariance, and clustering, with
the addition of supersymmetry covariance. All of these
are satisfied (with an important qualification made below)
by Egs. (1) and (2).

One advantage of Weinberg’s approach is that it repre-
sents an alternative perturbative formulation for massive
quantum field theories, independently of whether a corre-
sponding canonical and/or path-integral formulation can be
established.' At present, a systematic formulation to obtain
general massive super Feynman rules from canonical and/
or path-integral formulations is not only unknown [9], but
also only a few low superspin massive free Lagrangians
have been constructed [10-13] (propagating component
free fields for general massive supersymmetric multiples
have been recently presented in Ref. [14]). Thus, one of the
main aims of this paper is to provide a set of general super
Feynman rules for massive arbitrary superspins, where the
hypothetical canonical/path integral formulations from
which the rules can be derived are lacking (if they exist
at all). Since another aspect of Weinberg’s approach is that
it tells us what to expect from any massive field theory
when considered in the interaction picture, we hope that
this new formulation will provide guidance for studies on

'For a discussion on these matters, see Chapter 7 in Ref. [8].
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the broader task of finding if indeed a systematic canonical
and/or path-integral formulation is possible [9].

This extension maintains all the properties of Weinberg’s
approach; i.e., super Feynman rules can be built for any
superspin in a straightforward manner, and one can easily
incorporate charge conjugation, parity, time reversal, and R
symmetries. Furthermore, it also allows us to obtain
economic and concise expressions.

A characteristic feature of supersymmetric theories [15]
is that when the Lagrangian does not contain auxiliary
fields the potential becomes not only a function of the
coupling constant ¢ but also of its square ¢, relating one
and the next order in perturbation theory (otherwise
“miraculous” cancellations could not occur). Thus, it is
difficult to see how a perturbative scheme can cope with
this situation. As in the case of Lorentz invariance, in
considering V(x*, d) as an invariant density under super-
symmetry transformations,

9)U(&)”

is not sufficient to render supersymmetric invariant the
time-ordered products appearing in Eq. (1); therefore, we
must introduce noncovariant terms of higher order in
coupling constants. We show that these noncovariant terms
are always local in space, making the definition of the
covariant super S-matrix possible [7]. For this perturbative
formalism, this seems to be the origin of auxiliary fields.

We adopt the notation and conventions of Refs. [8,16],
except for left and right 4-spinors, which we write as 29, =
(I £y5)9 instead of 9; . As for the methods employed, we
use the standard techniques of the operators’ formalism and
calculus in superspace (see, for example, Refs. [16,17]). We
present notation and all our conventions in Appendix A.
Also, we conjugate under the integrals of the fermionic
variables and explain this in Appendix B.

The article is structured as follows. In Sec. II, unitary
representations of the super Poincaré group are constructed.
Section III deals with causal superfields, and meanwhile
Sec. IV is devoted to time-ordered products and super-
propagators. In Sec. V, super Feynman rules are presented.
Charge conjugation, parity, time-reversal, and R trans-
formation formulas are written in Sec. VI. The details of
the cubic superpotential for a scalar superfield are worked
out in Sec. VII. Finally, our conclusions are presented in
Sec. VIIL.

UE)v(x+, P=V(# + Ieysyré, 9+ &), (3)

II. CREATION-ANNIHILATION
SUPERPARTICLE OPERATORS

N =1 supersymmetric multiplets have four particle
states with angular momentum (j, j, j + %)2 With this in

2Except for the case j = 0. We call superspin j to the set
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mind, we embed these states into two superparticle states,
one with left 4-spinor s, and the other with right 4-spinor
s_, and their fermionic expansion coefficients represent
the states of the supersymmetric multiplet. We show that
super Poincaré transformations are acting unitarily on
these superstates, with the additional feature that finite
supersymmetric transformations are also considered. To
do so, instead of taking states with j —|— and j —5 angular
momentum, we take these states to be in the tensorial
representation j ® That is, at the level of creation
operators, we start w1th

L1
“a=Ty Ty

(4)

ai(p.o), at(p.o), I;(p. o),

that satisfy the (nonzero) (anti)commutators4

las(p.o).ai(p'.0")} =& (p— D)6
{la(p.0). ;(p'.0")] =& (p —P)0usbor  (5)

and under a Poincaré transformation behave as

U(A, x)a’ (p.o
: e—wfzuw o
U(A, x)5(p,o)U(A, x)~
e ZUM PIUS WA p))I;(Ps. o).

(6)

where U is the spin-; rotation matrix and W (A, p) is the
so-called Wigner rotation,

W(A.p) = L(Ap)~'AL(p).  p=L(plk. (7)
with k=(0 0 0 m) as a standard vector and W(A,p)
isomorphic to the rotation group. As a definition, fermionic
(bosonic) creation-annihilation particle operators remain
fermionic (bosonic) with respect to supernumbers. A very
important fact is that when a Lorentz transformation R is an
element of the rotation group the following relation holds:

D.(R)., = US(R), (8)

3All states are constructed from a* (- - -)|VAC), where [VAC)
is a super Poincaré-invariant vacuum. Here, we denote the adjoint
of an operator as *. When the adjoint is accompanied by a
transpose of some vector, we denote it by .

“{] is defined to be an anticommutation or commutation if [} is
a commutation or an anticommutation, respectively.
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where D, stands for the Weyl representations. We embed
the operators /; in a four component vector,

b(p.c) = DIL(p) (jgj;) ©)

with D[A] = D (A) @ D_(A), the Dirac representation. In
view of (6) and (8),

x)b(p

—\f S"UY W(A p)]b(pa.#)DIAL  (10)

where b is the Dirac adjoint 57f. The nonvanishing (anti)
commutation relations of (b, b) are

{ba(pv 0)’ B/?(p,9 0/)] = [I + (_l’ﬁ)/m]aﬁé(p - p/)ao'o"
(11)
One can also show that

(=ip)b(p, o) = mb(p, o), (12)

which is a reminder that, although we are using a four-
dimensional vector with 4(2j + 1) spin projections, only
2(2j+ 1) of them are independent.
We define two types of creation superparticle (sparticle)
operators,
a’.(p.s+.0) = ai(p,o) £ V2m b(p.o)ss
+2mé*(s1)a%(p, o). (13)

with their corresponding annihilation sparticle operators

ax(p. sz, 0) = (aL(p. (ersps)..0))"
= a,(p,o) £ V2msLeysh(p, o)
F 2m&*(s)az(p. o). (14)

Creation-annihilation sparticle operators have the Poincaré
transformation property

U(A, x)a’ (p,si.o

= 3_””\/ ZUM A, p)lai(pa, D(A)sz, o),

U(A x)ar(p,ss,o
_e-pr l ZUUO—

and the (nonzero) anti(commutation) relations

P)las(pa. D(A)sy. o),

(15)

PHYSICAL REVIEW D 92, 085013 (2015)

laz(p, s5,0),a;(p', s+, o)}

=5 (p/ _ p)‘saoj exp [2ST€75(—i )S/ﬂ:]’
[as(p.ss.0).ar(p' s o)}

= +2m&* (p’ — p),y0*[(s' — 5)]. (16)

The (+) and (—) creation-annihilation sparticle operators
are not independent; they are related by a Fourier trans-
formation in fermionic variables. For the creation type, we
have

ai(p.sy.o)
=F (2m)™! / st exp [2s} eys(+ip)st]ak (p. 5. o),
(17)
and meanwhile for the annihilation type,
a.(p,s+.0)
= m)! [ dstexp(2slersCHip)stlar(p.so)
(18)
Now, we introduce the Majorana fermionic operators,
U(A)QU™'(A) = > D(A
p
{Qu Qs} = (=20)(r") apPy

that are supersymmetry generators. We define a super-
symmetric transformation through the exponential mapping

D Dpo

[Qa. P =0, (19)

U(9) = exp [+i97ey5Q], (20)

where d is a fermionic 4-spinor that parametrizes the
transformation. The composition rule for the supersym-
metric transformation is given by

U(9)U(9) = exp [i8TeysPOIUW + &), (21)

We take the action of a supersymmetric transformation on
creation-annihilation sparticle operators as

U(9)a’(p, s+, 0)U(9)™!
= exp [Teys(+ip)(2s +9).]a
U(O)as (p. 5. 0)U(8)"
=exp[(2s + 9)Teys(+ip)9

L. (s +9)s,0),

+lax(p, (s +9).0).
(22)
This equation is consistent with the composition prop-

erty (21), with (17), and (18). From here, we can write the
finite supersymmetric transformations in components:
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U@)a’(p.o)U(9)~" =1

— m25*(9)]a’ (p.
U(9)a* (p.o)U(9)~" = 1 :

- m?8*(9)]a’(p. o) -

6) + V2mb(p,o)[9, + m&*(9,)9_] +
V2mb(p, o)[9_ — m&*(9_)9.] +
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[Teys(+ip)d, + 2ms? (9,)]a’.(p.o),

[9Ters(+ip)9_ —2m(9_)]a” (p.o).

U(9)b(p.s)U(9)~" = +b(p. ){1+m254(,9) 4[,91% Iy [m + iply }

g

&

We note that U(8)b(p,o)U(9)™" is consistent with (12).
Taking I infinitesimal, Eq. (23) gives us the following
(anti)commutation relations:

+
_|_

m

(
<1

ila} (p.0), Qu} =+(2m) "2 [b_(p.0)eys] .

ila*(p.0). Q. } =~(2m)*' (b, (p.0)eys] .

i{bo(P.0). Q5] =+(2m) ™" 2a% (p.o)[(I +75)(m = ip)]s0.
i{ba(p.0), Q5| == (2m)™'a’ (p.0)[(I=75) (m~ip)]5q

(24)

In the rest frame L(k) = I, therefore

ila’ (k.0).Q,} =0, i[a’(k,0),Q;} =0,
ilat(k.0). Qi} = —V2ml; (k. o),

ila* (k,0), Q,} = V2mli(K,0)e,,,

i{l;(k, 0), Q5] = V2maz (k, 0)eq,

i{l;(k.0). Q) = —V2ma’ (k. 0)5,. (25)

recovering the structure of laddering operators of the
fermionic generators (with steps +1/2 in the angular
momentum). Equations (15) and (22) show that, under
the super Poincaré group U(A,x,d) = U(A, x)U(9),

U(Ax, ) [a(p. 55.0). a2 (9. 5. &) JU(A.x, )

= laz(p.s5,0), ai(p', s, o)} (26)
that is, the (anti)commutator of creation-annihilation spar-
ticle operators remains invariant under a super Poincaré
transformation. When J satisfies the Majorana condition

9 = eysp9*, Eq. (26) allows us to write (U(A,x,9)7!)* =
U(A, x,9) consistently. In other words, the sparticle state

p. s+, 0)* = di(p,ss,0)[VAC) (27)

transforms unitarily under the super Poincaré group. Note
also that

%4—52 . )ai(p,a) + <——52 >a+ p,a)}&Te —ip]

(94)
——52(19+)>ai(p,6)—< + 529 ) p,a)}gfem+zp] (23)

[
U(A, x,9)[az(p, s5.0), a%(p', s%, ') JU(A, x, 9)~!
= [ax(p.55.0),a%(p". 5%, 0')}. (28)

It is also possible to eliminate the quadratic phase factor
appearing in (22) by defining

ai(p 5,0) = exp [sTeys(—ip)sz]al(p, s+, 0),
az(p.s,0) = (aL(p.ersps™.0))", (29)

leading to

U(A, x)a’ (p,s,o)U

—e—w,/ ZUM A,p)lat(pa. D(A)s, o),

U(A,x)as(p,s,o)U

_e+lpx\/72U66

U(9)a’(p.s,o)

= exp [19T€7/5(+l’p/)s]a:t(pv s+9.0),
U(9)a(p.s.c)U(9)™

= exp [9Teys(—ip)s|as(p,s + 9,0). (30)

p)las(ps. D(A)s. o).

ITII. CAUSAL SUPERFIELDS

Now, we are in a position to define causal quantum
superfields out of momentum superspace Fourier trans-
formations of the creation-annihilation sparticle operators.
We choose supersymmetric transformations in configura-
tion superspace that induce linear-homogeneous ones in the
spacetime variable x#, and they in turn generate symmetric
covariant superderivatives [18]. It has to be noted that in
this formalism these superderivatives arise directly from
considering the most general superfield, without any other
extra input. As in ordinary quantum field theory, we
introduce two kinds of superfields,
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EL,(x,9) Z/(de“sai(p,s 0)vi,(x,9;p, 5.0),
(31)

E(x,9) = Z/d3pd4sai(p,s,a)ui,,(x,él;p,s,a),

(32)

that give a total of four superfields. The quantities u.,, and

v4, are the corresponding super wave functions that are

determined by demanding for =%, the super Poincaré

transformation,
U(A, a):i;n(

U(&)=EL, (x. 9V =EL, (¢ +

)U(A a)”!
in im“j:m(Ax +a, D(A)&), (33)

INeysyhE,9+E),  (34)

where S, ., is a finite-dimensional Lorentz representa-
tion that in principle could be different for =7, and =*,.
With the help of (30), the general solution of (31), and
including the requirements in (34), can be expressed as

=58 =3 [ dpdtserer i ps.o)

X U:I:n(p7 (_lﬁ) [S - ]’5)' (35)

The coefficients v.,(p, (—ip)[s — 9], 0) are given in the
rest frame:

ven(P. (—ip)ls — 9], 0)

kO

X Uin(

in,im

.(=ik)D[L(p)]"'[s = 9].0).  (36)

Given a unitary representation for the superstate of super-
spin j, the coefficients in the rest frame are required to
satisfy

Zvin
:Z[S(W)]j:n,:tmvj:n(k ( lk) [

+m

—ik)[s = 9], 6" ) U (W)
s = 9], 0),
(37)

with W being a little group transformation of the form (7).
Equations (36) and (37) have to be satisfied by the
expansion coefficients of the § — s variables independently,
showing that the superfield (35) is a reducible realization of
the super Poincaré symmetry.

PHYSICAL REVIEW D 92, 085013 (2015)

Consider the zero order fermionic expansion in vy, for
the annihilation superfield:

Z / d3pd4se—zx p Oers(+ip)s

X a2 (p.5.0)0:4(p.0).

)(in X, 19
(38)

Since we can generate terms of the form [p(9 — )], by
applying the superderivative defined as

0 0
D= "9 39
(er5) 59 =195 (39)
we can reconstruct the reducible superfields =%, (x, 9) from
superfields of the form (38). We can also introduce a zero-
order creation superfield y.,(x,9):

)(:tn X, 19 Z/d3pd4se+txpeweyg —ip)s
x ax(p,s,o)us,(p,o). (40)
Givenn = (a,b),wherea = -A,-A+1,....A-1,A

and b=-B,-B-+1,....B-1,B, and 2A4,28=0,1,2,...,
we enumerate irreducible finite representations of the
Lorentz group by the SU(2) pair of indices (A, B).
Depending on whether we operate an even or odd
number of times the D’s, we obtain all the possible
superspins that an irreducible representation S,
can carry. For the zero order and the first superderivative,
we have
|A-B|<j<|A+B

zero order in D,;  (41)

1 1
|A—B:|:§|§j§|A+B:I:§|, linear in D,. (42)
These relations follow from (37) and the product rules of
(A.B) @ [(£.0) & (0.1)]. With the help of Eq. (29), we
can integrate explicitly the superfields (38) and (40) in the
fermionic variable s to obtain

59 =3 [ @t (0,00l (43

a9 =Y / et Pa, (p, 9. 0)iy(p. o),
(44)

where ¥/, = x* — 9Teysy*9.. Note that in Egs. (43) and
(44) we are dropping the sign =+ in the Fourier coefficients
u, and v, because the inequalities (41) and (42) allow us to
consider =+ superfields for one and the same representation.
From now on, we will suppose that this is case. We can see
that these zero-order superfields are chiral,
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*(omn) @

and also that

oL, () =T )

The last set of equations is usually taken as the free
equations of motion. For us, they mean we can work with
Xin(x,9) and y_,(x,9) without the need to introduce
DLeD. or can just work with (4) superfields y,(x, )
and D' €D,y ,(x,9) (similar remarks for y% ). From the
relation

{,Da’ Dﬂ} = —|—2(]/”€}/5)aﬁa” (47)
and Eq. (45), p. products of D, superderivatives together

with p_ products of D_; superderivatives acting on
|

PHYSICAL REVIEW D 92, 085013 (2015)

X+n(x,9) are equivalent to p. products of D., acting
on y.,(x,d) plus sums of p/, < p. products of D, times
ordinary derivatives 0, acting on y,,(x, 8). Also from (47),
{D.,.D.s} =0, which means that nonzero products of
superderivatives of the same sign end at the second order
DyyDig,but Dy, Doy =1(1+ YS)aﬁ(DL:GDi) which due
to (46) flips the signs of Xin(X,9) t0 y4,(x,9) [same
remarks for y%, (x,9)]. Finally, since derivatives of super-
fields can be taken as superfields without derivatives, with
comglete generality, we can consider superfields of the
form

Xeno X Dr)ew (Pli)ia (48)
For a fixed irreducible representation of the Lorentz group,
due to (41) and (42), chiral superfields and linear super-
derivatives of chiral superfields are incompatible. Now, we

introduce causal superfields

Dy, (x,8) = (22)°Y / Pl ay (p. 9. 0)u,(p.o) + (=) B )t (p. 9. 0)v, (. )},

oL, (x.9) = (277)_3/22/dSP{(—)me“O‘“’)ai(p,19i,6)(vn(P70))* + o7 Pai (p, 9. 0)(u,(p.0))' ) (49)

with Uy (p’ 6) = (_>j+6

%, (x.9) =

u,(p, —o) (for explicit formulas of these wave functions, see Ref. [7]). Note that they are related by

(Dp(x, €75497))" (50)

Consider now another superfield &);ﬁ (x',9) for the same sparticle. Introducing

(H =X = x5 4 (92— 91)Tersy (9ax + 914) =

—(x)m, (51)

we can we write the (anti)commutator of @, (x;,9;) and &)’:‘Fﬁ(xl ,9,) as

(@, (x1,8)), Ph(x, )], = (27)7 / d*p(2p°)~" exp [+ixt; - p]P,;(p. P°)

1 e(o)BB) (o) / Pp(2p°) exp [=ixty - plPos(p. ).

with ¢ = —1 for the commutator and ¢ = +1 for the
anticommutator. P, ;(p, p?) can be expressed as [7]

Pn,fl(p1 pO) = Pn,?t(p) + pOQn,fl(p)’ (53)

where P, ;(p) and Q, ;(p) polynomials in p are obtained
from

*Expressions (Dy,)., and (D)., are shorthand notations
for Diyy+, and Doy, , respectively.

(52)

[
(2p°)7'P, ;5 (p. p°)

= Zun o)ii(p Zvn p.o)v;(p.o).  (54)

shown [7] that
P, (—p.—p°), and therefore at (x,

Pn,ﬁ(p’ pO) =
— X2)2 > 0,

Weinberg  has
(-)? (A+B)

[(I)in(xl’ '-91)7 (i);:;,()(é, '-92)]5
= (1 +e(=)"O)P, 5(=id))A (x),  (55)
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with

AL () = 20)" / PpRp°) exp[+inh - pl. (56)

Equation (55) vanishes provided that & = —(—)*A+5) =
—(=)¥. For linear superderivativesof chiral superfields, the
vanishing of the expression

(PP, (x1,91)) 44 (D(i)}} (x2, 192));/;}(_5) (57)

at spacelike separations gives ¢ = —(—)% = —e, therefore
making ®., and (D®,/),, incompatible. Since P, goes
in accordance with the spin statistics theorem, from now on
we will leave out (D®,),, from the discussion.

Causal superfields are also chiral,

*(omin)

and satisfy
o7 (x, 9 PL, (x, 8
DLeDi<(I)i"(x ;) = F 4m< =l )) (59)

Expanding the superfields as

Doy (x,8) = ¢o,(xs) F V20 ersy,(x)

+2m*(91) e (xs), (60)

we have

bin() =207 [ dpleras(p.o)un(p.o)
+(=)FemPas (p,o)v,(p.0)},
a0l =vin(22) 25 [ (e b(p.0) i (p.0)

_(_)28+2je—ix‘p [6}’5ﬂbc* (p7 6)}(11}}1 (p’ O-)}’
(61)

with y,, (x) satisfying Dirac’s equation: (& + m)y,(x) = 0.
Now, it is clear that one of the roles of the superfields
$_, and ®,, is to allow us to use (0,3) ® (A, B) and
(1.0) ® (A, B), respectively, for their linear terms. The
component fields in (61) satisfy Klein—-Gordon equations,
since the v, also satisfy the Dirac equation, the number of
independent components ¢, and ¢_, are equal to the
number of independent components of y,,. There could be
more redundancy equations that the three fields will share.
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IV. TIME-ORDERED PRODUCTS AND
SUPERPROPAGATORS

So far, everything has gone as in ordinary quantum field
theory, but things are different for superpropagators: time-
ordered products in Dyson series are not supersymmetric
invariant, and we need to correct them in order to write
superpropagators properly. We start by writing the super-
propagator that follows from Wick’s pairing rules,

- iﬁﬁ(xl,&m,ﬁz)

— o) 2) P, (i )8, 0)

T () (2n) 2P <_’3%>A+( x5, (62)

where o(x?,) = w(x{ — x9) is the step function. To illustrate
that this superpropagator is not supersymmetric invariant,
we consider interactions restricted to superpotentials6

V(x,8) =Vi(x,9)+ Vi(x,9),
Vi (x.8) = i82(95)Wa (x. 9). (63)
where
Wi(x,9) = Wx(x,erspd*))",  DeWi(x,9) =0.
(64)

Its general component expansion can be expressed as

Wo(x,9) =Clxy) +V29LeQ(xy) + 62 (9.) F(xs). (65)

Further restricting it to scalar superfields, the superpropa-
gator then becomes (dropping the —i factor for now)

F(815)8% (920) AT (x1, 81, x5, 9,)
= 6%(915)5%(924)[1 + 29 ers(—27) 9%
- 4m252('91:|:>52('923!:)]AF(x1 - X2), (66)

with

explig -

67
m2+q2—t£ ( )

Ar(x) = (22)7* / g

Making use of (O — m?)Ax(x) = —6*(x), we write

SThe use of 82(9, )W, (x,9) or 8*(9_)W_(x,9) in the first
term of the superpotential is merely conventional since we can
always make the redefinition W, (x,9) = Wi (x,9).
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8 (915)6% (920) AT (x1, 81, x5, )
= 52(191¢)52 1921)AF(XE)
- 454(191)54(82)54(x1 - Xz)- (68)

The term +4i5*(9;)56*(9,)6*(x; — x,) is Lorentz but not
supersymmetric invariant. Since this expression is local in
superspace, the noncovariant part of the superprogator
induces noncovariant terms in the interactions. For the case
of general superpotentials of arbitrary superfields, in order to
gain some insight on their form, we recall that, although the
step function is translational and Lorentz invariant (except at
spacelike separations where to achieve Lorentz invariance
commutators must vanish), it is not supersymmetric invari-
ant. @ would be supersymmetric invariant if it were evaluated

|
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at xi3 or even at x5 — 9l eysy’9,. Keeping in mind that the
A functions in (62) are evaluated at xi}, we write

o(x),) = 0(xi)) +61(21.22), z2=(x.9). (69

with ¢, (z;,2,) given by the negative of the next-to-zero-
order fermionic expansion coefficients in @(xiy). The
second order of the unitary operator in expansion (1) is

given by
U = (i) / Boyd o)V (e )V()  (70)

and for superpotentials can be written as

U@ = (-i)? / Bz d 2w (x0,) Vi (21) Vi (22) + 0(x)) Vi (1) Valzr) + -

=0+ U+ (71)
with the super Poincaré covariant term
U = (-i)? / &2 2 (0(xiF )V (21)Vi(22) + 05 )V (22) Vi (21)) (72)
and the noncovariant term
Uy = (-i)? / d*21d°2 (6 (21, 22) Ve (1) V5 (22) + 65 (22, 20) VE(22) Vi (21))- (73)

Because of the fermionic delta functions in the superpotentials, we can evaluate invariant step functions at
(x%, —29] ieysyoé)ﬁ), allowing us to write the noncovariant part of the step functions as

d
ci(z1,20) = 219}1675}’0192:&(95?2) - 452(81i)52(’92$)@5(x(1)2)' (74)
1
We can see from this that the other terms [expressed by ... in (71)] do not need to be corrected. Noting that
¢ (z1.22) = —¢, (22, 21), we write
2 . .
08 = (7 [ @adnsa2)Vea) Vi), (75)

Using Eq. (65), we can integrate the fermionic variables to obtain

Ul = +4 / d*xd*x, (i(s(x?z)Z{[sz(xl)]ia, Q" (x2)] u} + 5<x?2>8%? [c<x1>,c*<x2>}). (76)

Any (anti)commutator will generate products of fields
multiplied by A(x)=A, (x)—A,(—x) functions and deriv-
atives. Because of delta functions in time and (OA(x) =
m*A(x)), the only surviving terms in the anticommutator
(commutator) of Eq. (76) are the ones in which an odd (even)
number of time derivatives act on A(x), generating

|
four-dimensional delta functions 5(x?2)%A(xl —X) =
—i5*(x| — x,). This lets us write ]

n.1

U = i/d4x1d4x254(X1 —x2)F(x;), (77)
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with F(x;) given explicitly by the term of the integral factor
of d*x, in (76). Therefore, we must replace

V(x,9) = V(x,9) + 5*(9)F(x) (78)

in order to cancel the lowest-order noncovariant term (77). It
is evident that this result extends to the case of general
potentials, since the effect of considering the full expansion
in fermionic variables in (69) is to add further higher-order
derivatives in time to Eq. (76). The important point is that we
always have a delta function 5(x{ — x9), ensuring counter-
terms are local in time, the main assumption made in (2). The
function F(x;) is in general not only supersymmetric non-
covariant but also Lorentz noncovariant.

Equation (78), based only on pure operator methods, has
the advantage that it gives us directly the lowest-order
correction to the superpotential but cannot discern which
terms are purely supersymmetric and/or Lorentz noncovar-
iant. More importantly, so far, we have not made clear why
nonlocal terms cannot arise beyond the second-order
Dyson operator (70). We prove, at the level of the super
S-matrix and on the same lines of ordinary space, that all
of the noninvariant terms are local. For this purpose, we

introduce the function PﬁlL,Z(q) for off-shell momentum
g by extending linearly in ¢° the on-shell polynomial
P, (p, p°) [Eq. (53)] to the off-shell case. Therefore, the
ordinary space propagator —iA,;(x) is expressed as
M( i0)Ap(x) [where Ap is (67)]. We can always
split the function P,(L;z (g) as the sum of a Lorentz-covariant
(polynomial in ¢*) part,
off Z S

m,m

NSz A(MPY (). (79)

plus a Lorentz-noncovariant term originated at (x; = x,),

such that when ¢ is on the mass shell P( and P(Off)

coincide [7]. By tracking first the Lorentz- noncovanant
parts, we can write the general superpropagator as

(=i) A0 T (x1, 81, %2, 92)
= (=i)[P{)(=i01) + 28] eys(—iy") 9, P, P L) (=)
—4m252('91¢)52('92¢)1)n,ﬁ(_ial)]AF(xl — X))+,
(80)

where “...” represents the rest of the terms in the general
fermionic expansion variables d; and 9, (the explicitly
shown terms are the ones that survive when we consider

the A, 7 for superpotentials). The functions P(")(g) and

Pﬁ,”(q) are the off-shell extensions of the on-shell func-
tions P(p) and p,P(p). We isolate the supersymmetric and

Lorentz-covariant part P (off) ( i0;)Ap(x3;) by writing (80)
as (z; = (x.9)),

PHYSICAL REVIEW D 92, 085013 (2015)

(=) AZF (21.2,) = (=) PN (=i0)) Ap (xhy)

+ Y5 (21,22, —101) Ap (X1 —x2),  (81)
with
(+0)Yi(21. 22, —i0))
= 48%(91)8(9,5) (O = m2) Py + 6P, ;
+ 297 eys(—ir*)9,26P, i
- 4m252(191i)52(192¢)5Pn PR (82)

and 6P, ; = (L) _ g4 ploh

_ pl(L) (off
and 6P,; =P, — P uni — Dt ni

n, n
The difference between P) and P©) must possess a
factor g> + m? that ensures their vanishing at the on-shell
momentum. This factor cancels off with the denominator in
(67), giving a delta function §*(x; — x,) that guarantees
noncovariant terms are always local [8].

It is clear that the definition of P(“) has not made
PO unique, since adding and subtracting a term
fni(q)(g*> +m?) in the covariant and noncovariant off-
shell functions, respectively, does not alter P@L) for an
arbitrary polynomial function £, ;(g) that satisfies (79). For
example, in the case of the derivative of a massive field
0,¢ in ordinary space, the on-shell polynomial is p*p*,

and therefore the off-shell function is P/%)(q) =

q"q" + 848,(q> + m?). Any functions of the form ¢*¢* +
an®(q* + m?) and (848, — an)(q*> + m?*) serve as covar-
iant and noncovariant parts of Pf,l,j)(q). In ordinary space,
the choice is to take P°") as the Weinberg form [7], where
the polynomial P\’ — P has only terms that are all
Lorentz noncovariant (since precisely we want to isolate
those terms). In superspace, the issue is more subtle, as we
explain below.

Repeating the whole argument that led us to (81), for the
pairing of ®_, with ®% -, we end with a superpropagator of
the form

(- )Ai (x1,91, %2, %)
D82(9) — 85) PN (=it ) Ap(xy) +

n.n

= +2m(-

(83)

where “...” represents the noncovariant contributions to the

superpropagator. Being completely general, we are not

assuming that P(Oﬁ)( ) and Pi(l p >( ) coincide for the off-

shell momentum, since we are only sure that the weaker
condition holds:

of = (off

Poi (p) = P (p) = Poi(p). for p*=—m.  (84)
Experience with canonical (or path-integral) formulations
helps us see why it is mostly the case that P©) has to be of
the Weinberg form and why it is not a surprise that pff)
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could be different from P©). Consider general off-shell
(+) superfields 9% (x, 9) of the form

@‘ffl(x, 9) = in(xy) F \6191675%!(?%)
£ 28%(92) F 5 (xs). (85)

In all known formulations of supersymmetry, ¢, is a
propagating component field, while F., is a sum of
auxiliary and propagating fields. Thus, we expect that,
in general, the Green functions (¢.,,¢ " ;)Green and
(@2ns F'2i)Green Would be different. This allows us to

see that Pf:g) and 1353? would be, in general, different

(since to compare the superpropagators obtained by non-
canonical and other methods it is sufficient to take one

of its components in fermionic expansion) and to note

(off)

that P =" must be of the form of Weinberg (since

(hsn. @) Green is made only of propagating fields).

The discussion of this section has revealed to us that not
only the breaking of the super S-matrix Lorentz invariance
but also that of its supersymmetric invariance are both due
to the singularity of the commutators at the light-cone apex
[6] [see Eq. (76)] and that by introducing noncovariant
local terms in the interaction Hamiltonian it is always
possible to define a super S-matrix as fully super Poincaré
covariant. As in the case of ordinary space, we drop the
noncovariant contributions in (81) and (83), assuming that
the counterterms have been introduced [7].

V. SUPER FEYNMAN RULES

Having all the ingredients, now we can state the super
Feynman rules. These rules can be written in a manner
similar to ordinary Feynman rules; the extra ingredient is
that we have to add (=£) signs for every vertex formed by the
superfields @, , and ®,_. For a theory written as the sum of
superfield polynomials H,, of degree N,, the potential is

V(x,9) =) grH(x.9). (86)
¢

Now, the super Feynman rules are’:

(a) Include a factor of —ig, for every vertex.

(b) For every internal line running from a (+) vertex at
(x1,91) to a (F) vertex (x,,8,), include a super-
propagator:

(—i)Pn,ﬁ(—ial)AF(xE)- (87)

(c) For every internal line running from a (£) vertex at
(x1,91) to a (£) vertex (x,,9,), include a super-
propagator:

"We are following very closely the form presented in Ref. [6].

PHYSICAL REVIEW D 92, 085013 (2015)
£ 2(=0)8*(8) — 9,) s [mP, 5(=i0))Ap(x73)
+ [ (=i01)8* (x1)]- (88)
(d) For every external line corresponding to a sparticle of

superspin j, superspin z projection o, and super-
momentum (p, s), include

(F)-sparticle created at vertex (+£):
(2”)—3/26—ix-[)e(19—2S>16}’5(+iﬁ)19i u (p’ G); (89)
(£)-sparticle created at vertex (£):
+2m(27) 3 e P2 [(9 — 5), Jui(p.o);  (90)

(F)-sparticle destroyed at vertex (+):

(2m) 32 Hixn =025 i, (p o), (91)

(£)-sparticle destroyed at vertex (+):
£ 2m(2m) e P& (s = 9) u,(p.o): (92)

(F)-antisparticle created at vertex (£):

(_)B(271.>—3/2€—ixpe—s—(.9—2s)Teys(4—1’44)19i v, (p’ 0')

>

(93)
(+)-antisparticle created at vertex (£):
+2m(=)P(2m) 727 P8((9 = 5)|va (. 0):
(94)
(F)-antisparticle destroyed at vertex (+)
. (_)B(277)—3/2e+ix~pe—('9—2s)Teys(+i4za)6!i vk (p’ 0');
(95)
(4)-antisparticle destroyed at vertex (+):
+2m(=)P(2m) et P8 (s — 9). vy (p. o).
(96)

(e) Integrate all superspacetime vertex indices (x, 9), etc.,
and sum all discrete indices n, n’, etc. (that come from
Lorentz tensor products of the superfields in H,).

(f) Supply minus signs that arise in theories with fer-
mionic superfields.

To derive the wave superfunctions (89)—(96), we have
taken (anti)commutators of superfields and creation-
annihilation (anti)sparticle operators. For external legs,
we can use any combination of + or — signs, since they
are related by (17) and (18). Some remarks are pertinent:

(i) Each vertex and each line in the stated super Feyn-

man rules is explicitly super Poincaré covariant.
These rules work for general supersymmetric po-
tentials, including Kéhler-type potentials.

(i) Although the (presented) super Feynman rules are

formulated as superfield polynomial interactions
without explicit (super)derivatives, all numbers of
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derivatives and all even -numbers of superderivatives
acting on the superfields are included; any covariant
ordinary derivative of a (+) superfield is always
contained in the (+) superfield in the tensor repre-
sention (A,B) ® (1,1) [7]. The superderivative
product D, Dy of a (&) superfield is always con-
tained in the (£) superfield in the representation
(A, B) ® (5.%) plus the (F) superfield in the
representation (A, 5), multiplied by a factor propor-
tional to {(I & ys)e},4 (see Sec. IIN).

(iii) Asexplained at the end of Sec. IV, it is mostly the case
that P, ; [with the label “(off)” dropped] is of the form
of Weinberg [7]. The polynomial f, ; is a Lorentz-
covariant undetermined function, that by dimensional
analysis has mass dimension equal to mP,, ; minus 2,
and this dimension is positive if superfields are chosen
with canonical dimension. From this, we see that for
the case of the scalar superfield the Weinberg poly-
nomial is P = 1, and therefore f = 0 [15]. We could
have defined anew setof rules where f, ; = 0, butitis
better to leave f, ; general in order to easily compare
the superpropagators obtained from other methods.

VL. C, P, T, and R SYMMETRIES

To explore the C, P, T, and ‘R transformation properties
of the superfields, we have to turn on the full notation of the
(A, B) superfields: ®., — &5 The transformation of
annihilation and creation (anti)sparticle operators goes as
Ca(p.s+.0)C™" =¢ical (p.c15+.0).
Caci*(pvsj:va)c_l :gggcai(p,G;Si,0>,
Pﬂi(P,Siﬁ)P_l :ﬂi’?ai(—l’ﬂi(/ﬁ);ﬁ)’
Pa$ (p.s+.0)P~ =n¢ncas (—p.n.(Bs)+.0).
Tas(p,s+.0)T'=C0(=)"a.(-p.Crest,~0),
Tag (p.s..o) T =0 (=) as (-p.Liest.—0). (97)
|
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where some of the phases are restricted to

ny = -1z, ¢ =01,
n=—nt. =L (98)

g+ = g*—v

¢G =¢o,

The numbers that have + signs have to be the same for
all sparticles, in order to guarantee supersymmetric
covariance (this is due to the fact that they appear in
the algebra of the transformations with fermionic gen-
erators). These relations can be obtained by starting with
component transformations, then require invariance under
(16) and consistency with (17). We should mention that
to obtain appropriate relations for time reversal we have
defined Ts = is*T for any fermionic number; in particu-
lar this guarantees that Tss’ = (ss')*T for any pair of
fermionic numbers. To perform superfield transforma-
tions, we use [7]

(P (p. o))" = (=)™ *=5_(p.o),
(viP (p.0))" = (=)= uf_(p.o),
(uy (p,0))" = (=)ot ATB=Iy A8 (—p, o),
(2B (p, o))" = (=)etbiorAtB=ipAE (p _g).
g (=p, o) = ()M BIupA(p, o),
vy (=p,0) = (=) BT (—p, o) (99)

and the properties of the exponential factor in (49),

ixy - (App) = i(Apx) - p — (epp9)Ters(+ip)(eph9).
ixy - p=—(ix - p— (eceyspd*)Teys(+ip)(ecerspd ) )",

(ixe - (App))" = i(A7x) - p = (e7ed")Teyse(+ip)(ered)i,

with (e7)? = (ep)? = —(e¢)? = =1 and Ay = —-Ap =
diag(1 1 1 —1). For a superfield transforming onto
another superfield, we must impose

Ny =n% = ép, (=04 =er,

(100)

and
n=n(=)¥  ¢=¢ (= (102)

giving
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C@ﬁib(x 9)C ' =¢ (—)M_a_b_jéif‘l—*b,—a
P@ﬁih (x,9)P~!
TO5, (x,9)T!

(-x7 801‘9) ’
_ n(_)A+B—jq)?‘}m (Apx,eppd),

:C(_)a+b+0+A+B_jq)ﬁEa_b(A’Tx’87'619*)-

(103)
The combined CPT transformation becomes
(CPT)CDj:‘ib(x 9)(CPT)~!
= onl (=) 825 (—x, eceperfed’).  (104)
This last equation implies
(CPT)V(x, 8)(CPT)™! = V(=x, eceperfed®). (105)

Note that when applying T to V(x,d) we pass trough
J d*xd*9, and because eceper is just a sign, we can write
Td*9 = (d*9)'T = d*(eceperep9)T, giving a proof of
CPT invariance for massive supersymmetric theories.

The R transformations on annihilation-creation (anti)
sparticle operators are

U(0r)ay(p,ss,o)U(0r)™!
_ e[—i(qﬂqu)HR]ai(p, e[:FqueR]Si’ o),

U(Or)ag (p. s+.0)U(0)™"

— e[—i(QZVZQO)HR]ai* (p’ e[:FquHR]Si, g)’ (106)

where ¢ is the same for all superparticle species. With the
help of

Xy - p=x-p— (eF00RI9)Teys p(elFialrl9),  (107)
we can write
U(0r) P15, (x. 9)U(0%)~"
=exp[-i(qg F QO)QR](I)ﬁle(x’ RY),  (108)
with
—i0 0
Ruy— <eXp[ i0rq0] . ) (109)
0 exp [+i0r qo)

In defining R symmetries, we allow U(0%) to be a discrete
or continuous symmetry, restricting {6z, q,qo} to take
values in a discrete set in the former case.

VII. SCALAR SUPERPOTENTIALS

In this section, we restrict ourselves to a theory of a
sparticle with zero superspin of which the interactions are
constructed with cubic polynomials of the scalar superfield.
We calculate the lowest-order correction to time-ordered
products and construct a superamplitude for a sparticle-
antisparticle collision.

PHYSICAL REVIEW D 92, 085013 (2015)

The parity and R transformations
Egs. (103) and (108) become

appearing in

PO, (x,9)P~" = n® (Apx, eppd),

PO (x, 9)P~! = " % (Apx, eppd),
U(0r) 24 (x, 9)U(Or)™" = exp[=i(q F 4o)0r] P~ (x. RY).
U(0r) 2% (x, 9)U(Or)™" = exp[+i(g & qo)0x] D% (x. RY).
(110)

For a sparticle that is its own antisparticle, the first equation
in (103) implies

D, (x.9) = " (x,9), (111)

with 7 = n*. For the cubic superpotential, we have the
following stock of possibilities to form interactions:
.0, P, DD DL, P.PLDL, PLOLDL. (112)
Under R transformations, together with §*(R™19.) =
exp [£2igo)6*(9,), these terms generate the following
phases in the superpotential:

-3g+q0, —-q£qo, +q*taqo, 3qtqe. (113
Therefore, for R-symmetric cubic superpotentials, only
one term (of the four possible) survives. For a sparticle that
is its own antisparticle, due to (111), the four possibilities
shrink to one.

Now, consider a superpotential for a sparticle with

different antisp.amicle8

W (x.9) = 51 (4 (. 0) + 57 (8 (x. 9))°
W (x, 8) = g_'(q)_(x,&)f+%(<I>i(x,19))3. (114)

When either g, or g_ is zero, if R charges are properly
chosen, we obtain R-invariant superpotentials.
From (65) and (60), we can see that

C(x) =
Qx) =

L@ 5 (@)
~ L+ (¢ Plerspur]
F(x) = g (~pwTew, +m(dy)¢-)

+9-(=¢ty ey +m(gL) @) (115)

For this superpotential, the two lowest-order correction
terms in (76) are’

*The name “complex” superfield for such a superfield is
not appropriate since superfields are always chiral.

To prepare us for field theory, we ignored bilinear terms when
we brought [C(x),C*(x,)] to the form (116).
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i5(x%) D {[Q001)] g [97(02)] ) F(x;) = |g: (¢4 (x2))*(#7.(x2))

5 +g-PP(h-(x2))* (P (x2))%. (117)
= =25(x,) 5 5 [C(x1). C*(x2)]

ox) The covariant spacetime potential
1.
=5 1i8* (01 = )] F(x2), (116) —iV(x) = F(x) = F(x)* (118)
where F(x,) is the function appearing in (77) given by acquires the form

—iV(x) = g (~pyTew +m(dpy ) d_) + g (~p_yTey_ —m(p_)’¢.)
+ gL (=glyleyt + m(PL)* ¢y ) + gt (=diwl ey’ — m(¢)2¢L). (119)
Finally, after integrating the fermionic variables in (78), the resulting corrected spacetime potential is
—Hin(x) = =F(x) = V(x)
= —ig, (¢ yTey, +m(p,)’hp_) —ig_(—p_yTey_—m($_)*¢.)
—igt(=¢iyleyt + m(¢L)’Pt) — igi (—¢ iy ew — m(47)* L)
= (lg+1P(61)2(95)* + 9-PP(#-)*(¢2)?). (120)

For the case when a particle is its own antiparticle, the component fields satisfy
b=, =0~ erspy=-y". (121)
The most general (corrected) spacetime cubic potential for this case is
—Hip(x) = —ig(+iy . +m(@)*¢*) +ig" (¢ Gy— + m($*)*$) — |9’ (¢)*(#*). (122)

Making ig = v/24et® and v/2¢p = e~™*(A + iB), this last equation can be written as

—H

nt

(x) = ~A(w) — IABrsw) — mAA(A2 + BY) =2 (a2 + B2, (123)

|
which is the interaction Lagrangian of the Wess—Zumino Sy (P15 S145 PS5 S5 P2s S25 P5.554)
model [15]. Thus, Eq. (120) generalizes to the case where a (0 = po)?
. P . . . ) - D
spart.1cle is .dlﬂ’erent from its antisparticle and where = (—41)|g=*f(P1. PS. P2. PS) Xﬁ
possibly parity and R symmetries are not conserved. m” + (p§ = p2)
We now are ready to compute a superamplitude of a Y . ; (7 — 1)
sparticle-antisparticle process for either g, or g_ zero X exp § —2i(p5s5 — p151) GYSW
in (114). !
To lowest order, there is only one superdiagram for a X (P53 — 15 Sf)i}, (125)
sparticle-antisparticle collision (Fig. 1). For the external
legs, we choose left or right fermionic 4-spinors as
follows: where

1 - +, 1¢ >, 2 >TF, 2¢ > 4. (124) ) )
f(pl’pi’pbpé’)

The upper (lower) signs correspond to the case g_ =0 = (27)72[16(p1)°(p5)°(p2)°(p$)°) 1/
(g, = 0). After integrating out configuration superspace- 4
time variables, we are left with x 8*(py + p{ — p5 — p2). (126)
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1 2¢
:F
+
1¢ 2
FIG. 1. Lowest-order superdiagram for a sparticle-antisparticle
collision.

To calculate the particle-antiparticle scattering amplitude
for particles that are created by the'® a* (p) and as(p), we
take s14 = s{; = 5o = 55, =0, and the exponential
factor in (125) vanishes. Then, since

c _ 2 2
_pizp) o m
m?® + (p{ = p2) m?® + (p{ = p2)
the zero component of the superamplitude is giving us the
sum of two Feynman diagrams. These diagrams correspond
to the interaction terms [present in (120)]:

(F im)ge (s 2+ Hoe. + gz P(do 2502 (128)

The particle-antiparticle scattering with three particles
and three antiparticles gives us a total of 3% initial-final state
combinations.'' Therefore, Eq. (125) represents a very
economical expression for the set of all processes of these
particles at order |g-|*.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we obtain perturbative scattering super-
amplitudes as super Feynman diagrams for sparticles and
antisparticles that carry any superspin. We accomplish this
by introducing interactions out of superfields ¢, ®_,,
and their adjoints, in any representation (A, ) of the
Lorentz group. These superfields possess component fields
¢Pin» P_, in the representation (A,B) and wy, in the
representation [(3,0) @ (0,1)] ® (A, B).

It is striking that for scalar superfields, as we know from
canonical and path integral formulations, the lowest-order
correction to time-ordered products seems to be necessary
and sufficient to guarantee supersymmetric invariance at all
orders, suggesting that perturbatively some sort of domino

]Oai and a* for g_ = 0, and aZ and a’¢ for g, = 0.

''Some of them are zero, for example, all odd fermionic
expansions in (125).
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effect mechanism is occurring: lowest-order corrections
introduced at first order in Dyson series are canceling
noncovariant terms in second order, and these corrections
then generate second-order terms that seem to be canceling
the noncovariant terms arising at third order, and so on.
Since fermionic expansion coefficients of superamplitudes
are picking up external lines, to any order in coupling
constants, these coefficients are giving the sum of all
possible diagrams originated at that order.

Pertubartively, most broken supersymmetric theories
preserve the particle number of exact supersymmetric
theories. Thus, the formalism presented in this work can
in principle be extended to compute superamplitudes in
phases of the theory where nondegeneracy of the super-
multiplet massess is unimportant. This can be done by
extending the super Feynman rules to include symmetry
breaking terms that originate as local couplings constants in
the fermionic variables.

Generalizations to the N -extended supersymmetry
case seem straightforward, since the obtained creation-
annihilation superparticle operators, presented in Sec. II,
admit a recursive procedure: creation-annihilation super-
particle operators in N -extended momentum superspace
can be defined in terms of the creation-annihilation
superparticle operators in (A — 1)-extended momentum
superspace.

The proposal may find applications beyond those of
higher superspin theories for example by extending results
in operator-based formulations of quantum field theory
to the superspace case. The obtention of multiparticle
superstates |N) that transform fully covariant under arbi-
trary super Poincaré transformations makes it possible to
express the general matrix element (M|O(zy, ..., z,)|N)
for superspace operators O (created with Heisenberg
superfields evaluated at (zj,...,z,) and possibly time
ordered) as matrix elements at arbitrary shifted values
21 —Z,...,2, — 2. This shifting is used in intermediary
matrix elements that are present in some operator-based
works, such as the spectral representations [19,20], the
operator product expansion (OPE) [21], and spontaneously
global symmetries [22]. So far, superspace extensions to
these results have been presented only in the context of
functional-based approaches (the supersymmetric Kallen—
Lehmann representation and the OPE for the scalar super-
field are offered in Refs. [23,24]). Also, it could be useful to
write fully supersymmetric covariant results that are usually
present in component form, such as the kinematical
constraints in supergravity [25] and the tree QCD ampli-
tudes from supersymmetric scattering amplitudes [26].
Also, midway between Lagrangian and pure S-matrix
formulations, the super Feynman rules for arbitrary mass-
less superparticles should be straightforward [27] (but it
will be instructive to compare it with the zero mass limit of
our results), superspace investigations for the higher-
dimensional theories [28], and scale and conformal
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invariant field theories [29,30] seem also very well suited.
To obtain general super wave functions for supersymmetric
gauge theories and gravitation will be more challenging,
but extensions along the lines of Refs. [25,31,32] seem
feasible (from which evidence of new soft theorems and
relations with new Ward identities have recently been
found [33,34]).
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APPENDIX A: NOTATION AND CONVENTIONS

We use repeatedly identities of Dirac matrices and
fermionic 4-spinor variables. Since these relations are
standard, we limit ourselves to present the notation and
conventions employed in the paper. We represent Dirac
and Lorentz indices by a,d,f,f, etc., and u,v, i,V
etc., respectively. We take the Lorentz metric as 7, =
diag(1 1 1 —1). The Dirac representation D(A) is gen-
erated by

DAl =exp 3w, T =Tl (D

where the anticommutator of y matrices is taken positive:
{y*,y"} = 2n". We stick to the representation

01 0 o
yo——i<1 0>_—iﬁ, y,--—i(_gi ‘(’)) (A2)

Also, we use

_(1 0) _<e 0> _<0 1)
"7No 1) TTloe) T \a1 o)

(A3)
that together with f satisfy

Br* = —r"1p, (A4)

eysy' = —r'Teys.
For the standard transformation p = L(p)k, we take
k= (0 0 0 m) as a standard vector.

For any 4-spinor v, its left projection is written as
vy :%(1 +7vs)v, and its right projection is written as
v_ = L (I —ys)v. Useful identities for fermionic 4-spinors
are
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1
(54)(s4)7 = ) le(I £ 75)]52(51)»

1
(s1)(erss)k = Z(STGVSVuSi)[I + sl

sTeysyuss = —=sTeysy,u s,
(sTeysyuss)” = (ersps™)Tersyu(eysPs™)..  (AS)
where &°(s) is defined by
1
&(s) = EsTes, [6%(s)]" = =8%(s*).  (A6)
A 4-spinor satisfies the Majorana condition if
s = eysfs*t. (A7)

APPENDIX B: FERMIONIC INTEGRALS

Given a set of fermionic variables {;...{y, the Berizinian
integral is defined to act from the left,

[ devdisdti 6t tway =4 N SN, (B

The lowest-dimension (nontrivial) integral with this set of
fermionic variables is the line integral,

> [agc; ==Y [awolvo,c, 62
ij ij

where D;; is an invertible bosonic matrix; since
TrC = TrD~'CD, we have d(D¢)T = d{TD~". This holds
for any surface Berezinian integral:

d(D¢),d(DE),...d(DE)y
= [(D™))1dZ],[(D7Y)TdC],...[(D™)TdC]y.  (B3)

The right side of the complex conjugate of (B1) is A*. If we
allow conjugation to enter in the integral as (£{{>...0y)",
the net effect in the integral is

( / dCN/...dczd«:l{slcz...cN/AQ*
:/(dgN’---dCZdCl)*(€l§2---§N’)*A*' (B4)

For fermionic 4-spinors, two-dimensional and four-
dimensional fermionic differentials are defined by

d*s =d*s . d*s_. (B5)

1
d*s,. =— 3 dsleds.,

They give
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/ P, 5 (5.) = / dsi(s) =1, (B6)
where 6%(s) = 6*(s,)8*(s_). Under conjugation,
(d*sy)* = —d°s7,. (d*s)* = d*s*. (B7)

From (B3), we have
d's* = d(es”) = d(yss") = d(Bs") = d*(erps™). (BS)

For an arbitrary operator density /C(s) that appears as

PHYSICAL REVIEW D 92, 085013 (2015)

[ sk,

due to (B4) and (B8), Hermiticity and Lorentz invariance in
the higher-order fermionic expansion s of K(s) can be
chosen as the requirement that

K(s) = [Klersps™)]".

If s satisfies the Majorana condition (A7), then Eq. (B10)
becomes K(s) = [K(s)]*. We also define fermionic deriv-
atives to act from the left.

(B9)

(B10)
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