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Stringy (holographic) Pomeron with extrinsic curvature
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We model the soft Pomeron in QCD using a scalar Polyakov string with extrinsic curvature in the
bottom-up approach of holographic QCD. The overall dipole-dipole scattering amplitude in the soft
Pomeron kinematics is shown to be sensitive to the extrinsic curvature of the string for finite momentum
transfer. The characteristics of the diffractive peak in the differential elastic pp scattering are affected by a

small extrinsic curvature of the string.
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I. INTRODUCTION

The high energy proton on proton (antiproton) cross
sections are dominated by Pomeron exchange, an effective
object corresponding to the highest Regge trajectory.
The slowly rising cross sections are described by the soft
Pomeron with intercept ap(0) —1~0.08 and vacuum
quantum numbers. Reggeon exchanges have smaller inter-
cepts and are therefore subleading. Reggeon theory for
hadron-hadron scattering with large rapidity intervals
provides an effective explanation for the transverse growth
of the cross sections [1].

The transverse growth of the proton with rapidity y
follows from the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
ladders [2-6] at weak coupling in QCD. Collinear gluon
bremsstrahlung is large even when the coupling is weak and
requires resummation. The ensuing BFKL hard Pomeron
carries a large intercept and zero slope. The intercept is
slightly improved by higher order perturbative corrections to
the BFKL ladder.

The soft Pomeron kinematics suggests an altogether non-
perturbative approach. Through duality arguments, Veneziano
suggested long ago that the soft Pomeron is a closed string
exchange [7]. In QCD the closed string world sheet can be
thought of as the surface spanned by planar gluon diagrams or
fishnets [8]. The quantum theory of planar diagrams in
supersymmetric gauge theories is tractable in the double limit
of alarge number of colors N, and 't Hooft coupling A = ¢*>N,
using the AdS/CFT holographic approach [9].

In the past decade there have been several attempts
at describing the soft Pomeron using holographic QCD
[10-32]. In this paper we follow the work in [23-26] and
describe the soft Pomeron as an effective string with extrinsic
curvature in 5 dimensions. This is inherently a bottom-up
approach with the holographic or 5th direction playing the role
of the scale dimension for the closed string. The geometry is
thatof AdSs withawall. Inthe UV AdSsenforces conformality
which is a property of QCD-BFKL kernels, while in the IR
the wall enforces confinement as a generic feature of QCD.

In Sec. II, we review the setup for dipole-dipole
scattering through a closed string exchange. In Sec. III,
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we introduce the QCD effective action with a finite string
tension and extrinsic curvature and use it to derive the
closed string exchange propagator in flat 5=2-+ D
dimensions. In Sec. IV, we detail how the extrinsic
curvature modifies the correlation of twisted Wilson loops,
and show how it affects the position of the diffractive peak
in the differential elastic pp scattering cross section. Our
conclusions are in Sec. V. In the Appendix, we show how
the extrinsic curvature affects the stringy interaction
between two static dipoles.

II. DIPOLE-DIPOLE SCATTERING

In this section, we briefly review the setup for dipole-
dipole scattering using an effective string theory. For that,
we follow [23] and consider the elastic scattering of two
dipoles,

Di(p1) + Dy(p2) = Di(ki) + Ds(kz) (2.1)
as depicted in Fig. 1. ar and q, are the dipoles’ transverse
and longitudinal lengths, respectively, set near the UV

boundary of AdSs, b is an impact parameter and the angle 6
is the Euclidean analogue of the rapidity interval

Lz —1 - cosd (2.2)

coshy = 7
m

with s = (p; + p»)? [33,34]. Following the same argument
as in [23], the scattering amplitude 7 in Euclidean space is
given by

1 . 0 b 0b
~ 2t ,iq b __ __ D
STO.0) [ @ven <w( ’ 2>w(2,2) 1>

(2.3)

where

W(0,b) = Nitr {PC exp <ig /c,) drA(x) - vﬂ (2.4)

c
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FIG. 1 (color online). Dipole-dipole scattering.

is the normalized Wilson loop for a dipole with (W) = 1.
Cy is the closed rectangular loop in Fig. 1. For simplicity,
we denote the Euclidean loop correlator as WW.
Considering one closed string exchange between dipoles,
we have

= (o (- (28))
:9§/§—;K(T)

where

K(T) = /T D[]Sl ehost (2.6)

is the string partition function on the cylinder topology
with modulus 7. The overall factor of g2 in (2.5) is due to
the relative genus in comparison to the unconnected
Wilson loops. This analysis of the soft Pomeron is
different from the (distorted) spin-2 graviton exchange
in [15—18] as the graviton is massive in walled AdSs. Our
approach is similar to the one followed in [23] with the
difference that 2+ D, =5 and not 10 [24-26]. It is
essentially an effective approach along the bottom-up
scenario of AdSs with metric

2

ds* = ; ((dx")? 4 (dx')* + (dx ) )* + (dz)?)

(2.7)

and 0 < 7z < zg. R is the size of the AdS space for z; = .
Although the dual field theory corresponding to this
truncated version of AdSs metric is not QCD, it does
capture some key aspects, i.e., conformality in the UV and
confinement in the IR. A similar argument was made in
[35] in calculating the light-front wave functions from the
AdS/CFT holographic correspondence.
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III. K WITH EXTRINSIC CURVATURE

At large impact parameters b and for fixed dipole sizes a
on the boundary, the exchanged string in Fig. 1 is long and
lies mostly along the wall at z =~ z;, whereby the metric is
nearly flat [11,12,23-28]. In [23-26], the authors used the
scalar Polyakov string action and showed that such a single
closed string exchange yields a Regge behavior of the
elastic amplitude. Note that the results are in agreement
with those developed originally in [11,12] after correcting a
few mistakes as detailed in [23]. We now revisit the analysis
in [23-26] by considering the corrections due to the
extrinsic curvature of the effective string action as advo-
cated also by Polyakov [36]. The purpose is to extend the
regime of validity of the approach for intermediate values
of b or momentum transfer |¢|.

A. Effective string action

There are many indications from lattice simulations that
flux tubes in Yang-Mills theory can be described by an
effective theory of strings of which the Nambu-Goto (NG)
action is a good approximation in leading order [37].
Polyakov has suggested that the NG action must include
an effective contribution that accounts for the extrinsic
curvature of the world sheet at next order. The extrinsic
curvature favors smooth string configurations and penalizes
strings with high curvature. Specifically, the scalar action in
Polyakov form with extrinsic curvature is [36,38]

09 [ oo
= 2 u "
0 0
1 Td ld BES 2-/,4-/ el
+ﬁ0 TO O'()C)CM+ xxﬂ+x xu)'
(3.1)

We have set the gauge on the world sheet to be h§, = 6 and
used the nearly flat metric ¢**(z ~ zo) = &*R*/z5 at the
bottom of AdSs (long strings). Here x = 0,x and x’ = 9,x.
The string tension is o7 = 1/(2zd) with o« = z3/V/4,
and the effective and dimensionless extrinsic curvature
is k = ez} /R%.

B. Boundary conditions

For small dipole size and large impact parameter, the
boundaries of the funnel of the exchanged string will be
pinched and can be approximated as two straight lines,

0 0

cos <§)x' + sin <§> X |,.0=0
0 0

cos <2)x1 —sin <2> X ., =0

and x* is periodic along the 7 direction,

(3.2)
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() =x"(t+T). (3.3)

The twisted boundary condition [Eq. (3.2)] can be sim-
plified as follows:

0 %  _qinf 0
<x>_ COS 7 sin = (y)
1 - . 1
X sin % cos% y

2

(3.4)

with 6, = 0(20 — 1). As a result (3.2) are now ordinary
Dirichlet boundary conditions,

yllo':O,l =0. (35)

By taking 0, on both sides of Eq. (3.5) and recalling
that the world-sheet energy-momentum tensor is null, i.e.
T% = 55/5g,5 = 0, we have

afyl |a:0,1 =0

86y0|o':0,1 =0. (3~6)

C. Closed string propagator K

The natural mode decomposition for the string coordi-
nates is given by

Z Zygn,n exp <i2ﬂm%> cos(zno)
Z Zym,,exp (zZﬂm )sin(zma)
1 1 1 n
¥ (r.0) =y (r.0)=0—5 |b
+ Z Z)’m neXP<l2ﬂm )Sin(ﬂna) (3.7)

with b+ = (0,0,5,0,0) along one of the 2 spatial
perpendicular directions. A rerun of the arguments pre-
sented in [23,27] yields the closed string propagator K
in (2.6) in the form

K = KOL X K@L X KL X thost' (38)
Ky, and Kg; are the longitudinal zero and nonzero

mode contributions, respectively, K| is the transverse
|

co Sll’lh nnT

2
a T2
K(T,k) = —e2Th
( ) o 2 smh GT |ﬁl sHi 51nh
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contribution, and K. is the ghost contribution. Their
explicit forms are

= [o/T An’m?
KOL:{ H [§<92+ e

=—00

T 47*m? 21 %
41<b2ﬂ( T’ +n2ﬂ2> ” ’ G
GTT 2 2 o
ghost H H +n'm
n=1 m=—oco
T [(4m*n? 2
+ i (T+”2”2> | 312

which are seen to reduce to those in [23,27] for k = oo
The ghost contribution beyond the scalar Polyakov action
and for finite extrinsic curvature is assumed so as to cancel
the s = 41 spurious nonzero modes contribution from the
longitudinal contribution for # = 0. This assumption, while
proved for k = oo, is now assumed for finite «.

The string of diverging products can be regularized by
standard zeta function regularization,

o 2
sinh(zx) = zx H (1 +x_2>
m
m=1

in terms of which the string partition function (3.8)
now reads

(3.13)

szsmh( alis

-D,+2
T orkb?

b n
20112 inh 1
1+ orkb? Hsm 2 * n2n?

x . H |: (nm+s6)

2 sinh (g \/92 + O'Tsz) =1 5=+ 2sinh | L

2

(nr+50)* n=1

(3.14)
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with

2

2 L
sin(%)

a’* — ay + - az (3.15)

as the longitudinal dipole size a; is suppressed at large y
after analytical continuation. Note that for large transverse
impact parameter b,

(3.16)
and

ﬁZsinh nal [} orxb?

e 2 nn?

©. Th./xor 1 n’n?
~ — Y (1 _ .
exp [Z ) < + +

2 07‘Kb2

n=1

~exp <_ ”’Tﬁ> (3.17)

where we used {(-2n) =0 (n =1,2,3, ..
simplifies to

.). Thus (3.14)

K(T,«) ~ Kg(T) exp {(DZJ Tb\/a} (3.18)

with Kg(7) the closed string propagator without the
extrinsic curvature x,

a? sinh(“2%)
KF(T) = ;

smh(eT H H

n=1 s=+ Sll’lh
b nxT
inh
< [[asm(5)]

The resulting (3.18) is rather similar to the one derived in
one loop in [38] for a large and static Wilson loop. We now
detail its impact on the scattering of two twisted dipoles
with the soft Pomeron kinematics.

nrH—sH ]

(3.19)

PHYSICAL REVIEW D 92, 085012 (2015)

IV. SCATTERING AMPLITUDE WITH
EXTRINSIC CURVATURE

A. Dipole-dipole scattering

The result (3.18) may now be used to estimate the dipole-
dipole scattering amplitude of Sec. II. Indeed, inserting
(3.18) into (2.5), and then analytically continuing § — —iy,
yields for the twisted Wilson-loop correlator,

S o ()
da — k X

{(Dl 2_;(2)kﬂ ,

X exp (4.1)

=

where 7(z) is a Dedekind eta function and 7(ix) =

n(i/x)//x [23,27],

. Dy b 0 -D,
oo (8- (1 o2
X X n=1 k

k LR )
- (-”) Ty d(n)e . (4.2)
X n=0
In momentum space, the scattering amplitude is
T
21s oo(x-q)
z/dzbeiqrb<WW>
20202 O &2 k
~TECS S G ()
=0 k=1 X
D 2 qi -2q.]
Pk T XK T X Gk + VR Jor
(4.3)

where we used y = In s for large s. Recall that the sum over
k runs over the N-ality of the gauge group which is up to
[N./2] = o in the AdS/CFT correspondence [27]. For
QCD, N. = 3 and [3/2] = 1 which means only the k = 1
term contributes to the scattering of two dipoles in the
fundamental representation of SU(N,.). The effect of the
extrinsic curvature is a momentum dependent contribution
to the exponent that is large but subleading at large y.

B. pp scattering

For a fixed impact parameter, (WW) is the elastic
amplitude of a dipole of size a onto a fixed dipole
a’ = a,both of which are fixed in the UV or on the boundary.
In general, the dipole size in a given hadron, say p or p,
is scale dependent and identified with the holographic
direction, ie. a = z = zpe 9 and o — 7/ = zpe™ ()
with 0 < u,u’ < oo [25]. With this in mind, the elastic
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FIG. 2 (color online).
curve with k = e = 0.002. The data are from [40].

scattering amplitude for pp scattering p; p, — p; p, reads,
in general,

Topeb) = [ [T i)

X Tpp (b u, )y (wyn (). (4.4)

do 1 , 1
& e Tl =g

An optimal analysis of the available elastic differential pp
data follows by setting D, =3, N, =3, A= ¢’N, = 9.4,
Kk, =4ng,/q* =2.85, zo=R=04fm, N, =15, and
a = 0.25 fm with a fixed rapidity interval y = 6. This
parameter set is overall consistent with the one used in [25]
for the analysis of the deep inelastic scattering data. The
results are displayed in Fig. 2 and compared to the elastic
pp data for /s =30.7,44.7,52.8 GeV from [39]. The
solid curve is for no extrinsic curvature ¢ = k = 0, and the
dashed curve is for ¢ = k = 0.002. The slope parameter
B(t) for the elastic differential cross section

r-5((5)

is tabulated in Table 1. While B(#) does not change with a
small change in the extrinsic curvature e, Fig. 2 shows that
the depth and somehow the position of the diffractive peak
are affected by a small extrinsic curvature for a stringy
description of the Pomeron. The shaded region illustrates a

(4.6)

[ ave [au [ awenrywPlaPa - o)

Elastic differential pp cross section: solid curve stringy Pomeron with no extrinsic curvature k = e = 0; dashed

In our case, |y ,(u,u')* =N ,6(u,u’ — u(a)) for equal
and fixed size dipoles a, and 7 pp is the dipole-dipole
scattering amplitude. In the eikonal approximation, the
elastic differential cross section reads

(4.5)

possible range of extrinsic curvatures that are compatible
with the measured diffractive peak.

While a more exhaustive analysis of the parameter space,
together with a better description of the dipole-dipole
scattering amplitude at larger |¢|, is needed, our estimates
show an interesting interplay between the characteristics
of the diffractive peak and the extrinsic curvature of the
stringy Pomeron. Is this expected within the range of our
analysis? To answer this question, we recall that in dipole-
dipole scattering the use of the leading scalar Polyakov

TABLEL Slope parameter B(¢) for the elastic differential cross
section.
Vs [GeV]  t [GeV?] B(t) [GeV~?] B(t) [GeV~?]
Experimental

Data [39] e=0 e=0.002
30.7 0.015-0.055 13.0+0.7 8.4 8.5
447 0.03-0.15 129+04 8.4 8.5
52.8 0.04-0.16 13.0+0.3 8.5 8.5

085012-5



YACHAO QIAN AND ISMAIL ZAHED

action [first term in (3.1)] is justified for large impact
parameters b, when the induced Unruh temperature
1/p =2zb/y on the string world sheet is small in

comparison to the Hagedorn temperature 1/fy =
\/6/(D, d)/2r [27,28,41,42],
2 1
b _2b 1 (4.7)
Bu  XPu V2

with the string length &/ = I, ~0.1 fm. For the above
choice of parameters, this implies that b>4l,/v/2~
0.28 fm, which puts the validity range at /=t~ 1/b =~
0.7 GeV. The inclusion of the extrinsic curvature [second
term in (3.1)] extends the validity range to smaller b or
larger /—t. Our numerical analysis shows that these
corrections are small with the exception of the region near
the diffractive peak or /—¢ ~ 1 GeV. Clearly, next to next
to leading corrections in the string effective action as
discussed in [43] may be needed to firm up the validity
of this observation. Their analysis goes beyond the scope of
this work. Finally, we note that if we were to relax the flat
space approximation, the validity range can somehow be
increased, as the effects of curvature on the stringy part of
the dipole-dipole scattering can be schematically captured
through an effective reduction in the transverse dimension
D, =3 - D (A) <3[24-26,28,29,41]. Thus, there is an
effective increase in the Hagedorn temperature and a
slightly lower bound on b through (4.7).

V. CONCLUSION

In holographic QCD, the Pomeron exchange in dipole-
dipole scattering with a large rapidity y is described by the
exchange of a noncritical string in hyperbolic D =5
dimensions. The extra (curved) direction is identified with
the string scale dimension. In leading order, the Pomeron
intercept is set by the Luscher-like term or D, /12 [23],
and its slope is set by the string tension at the confinement
scale. The curvature of the extra dimension causes the
Pomeron intercept to shift from the Luscher term to order
1/v/4 [24-26].

Long color flux tubes in QCD are smooth. In leading
order, the Nambu-Goto effective theory is corrected by a
term that depends on the extrinsic curvature to allow for
smooth string configurations [36]. The extrinsic curvature
affects the zero point energy of large Wilson loops to one
loop [38] and is amenable to lattice simulations. We have
shown that a similar contribution affects the scattering
amplitude of two dipoles. While there are higher order
(loop) corrections to (4.3), the retained contributions are
leading in the Pomeron kinematics.

In leading order, the extrinsic curvature induces an
overall momentum dependent contribution to the scattering
amplitude. A detailed comparison with accurate but differ-
ential proton on proton measurements at large /s but fixed

PHYSICAL REVIEW D 92, 085012 (2015)

t=—q% shows sensitivity of the diffractive peak to
changes in the extrinsic curvature. pp scattering may
provide for an empirical estimate of the extrinsic curvatures
of smooth QCD strings, in addition to the current meas-
urement estimates for the slope (string tension) and
intercept (Luscher contribution) of the Pomeron.
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APPENDIX: STATIC AND STRINGY
DIPOLE-DIPOLE INTERACTION

In this appendix, we detail the role of the extrinsic
curvature on the correlator of two static but untwisted
Wilson loops with @ = 0, i.e. the interaction between two
static dipoles. Instead of (3.7), we now have the mode
decomposition

[o9] (o) P
x0(z,0) = m;m ;xg,,n exp (iZﬂm%) cos(zno) +X +0_—TT
1 , _ 1 2 1 .
x'(z,0) m;w;xmﬂ exp (z amz; sin(zno)

S

+ Z foﬁ‘nexp <i275m%) sin(zno)  (Al)

m=—o00 n=1

with P the number of windings in the temporal direction.
The exchanged closed string is assumed to be infinitely thin
in this case in the absence of the boosting kinematics for the
two scattering dipoles in the text. This approximation is
justified in the final result (A7)—(A9) below. With this in
mind, a repeat of the algebra in Sec. III yields the string
partition function

K(T,x) = Kp(T) exp (% Tbﬁ) (A2)

with Kg(T) the string propagator without the extrinsic
curvature in (3.1),

2 T P2 S T\ 1P+
Ky(T) :%exp (—%sz _E> [stinh (%)] .
n=1
(A3)

In comparing to the result in [38], we note the occurrence of
the same zero point energy (one loop)

D
Enn = —Tﬂ/—o K. (A4)
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This is to be compared with our result (3.18) for the twisted dipoles, and it shows the commonality between the untwisted

and large Wilson loops and the twisted and far Wilson loops.

Now, we also notice that in our case,

Xz +T,0) = x(z,

Thus, P =cW with W=0,%1,£2,...

P
o) +—T.
or

(AS)

with W the winding number and ¢ a constant to be interpreted below.

The propagators with different windings can be resummed using the Poisson summation formula

0o 00 2

Z K(T,x) = Z a—exp( 7Tb2—

W=—c0 =

ot a 2
”Tc O{Zexp{ Tb<1—

_DL

2 o) ()

D \/x _k227r o -y iz
2b./or Tc? 2

where 7(7) is a Dedekind eta function and #n(ix) = n(i/x)/+/x [23,27]. Inserting (A6) into (2.5) yields

/
k=—00 n=0

D, -3 5
T T D 2
/ ar () exp |- Lo (1 = PLvE 2t 1y
2 2b./or T c

D, c?
12k’ 761

L+ -
1= D,k
2b\/or

%T<|c|>7l > > dm

k=—00 n=0

NOR

2nmc?
22
k°nor

DL C2
12k*noy

D -1

2nmc?

I)LC2

2.2
k°nor

2bkroy D \/x
Ko, - 1- 1
X —”é‘( E ¢< 2b,/_aT)< *

which is the correlator between two static dipoles at large
distances b > D | \/k/4o;. The summation over k should
be limited to k = [N./2] = 1 for dipoles in the fundamental
representation of SU(N,.) [27]. d(n) is the canonical string
density of states with d(0) = 1. The static dipole-dipole
potential following from the smooth string exchange
amounts to a tower of scalar exchanges with masses (k = 1)

_ 2mor - Dch
e 12707

(A3)

ma(5.0) DL\/_> (1 | 2nnc?

2b\/_ 77,' or

B 12k27mT> ) (A7)

at large distances b > D | \/k/4or. Without the extrinsic
curvature and setting |c| = 2z/f, m,, is the mass spectrum
for closed strings of (arbitrary) size f > fy,

ma(00.21/B) = o1y 1 @’;+ =i}

with the Hagedorn temperature fy = \/zD, /307. Here
1/p = |c|/2x plays the role of an effective temperature
associated with the exchange of a closed (periodic) string.
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