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We provide a systematic treatment of chemical equilibrium in the presence of a specific type of time
dependent background. The type of time dependent background we consider appears, for example, in
recently proposed axion/Majoron leptogenesis models [A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys.
Rev. Lett. 115, 011302 (2015) and M. Ibe and K. Kaneta, Phys. Rev. D 92, 035019 (2015)]. In describing
the chemical equilibrium we use quantities which are invariant under redefinition of fermion phases (we
refer to this redefinition as a change of basis for short1), and therefore it is a basis invariant treatment. The
change of the anomaly terms due to the change of the path integral measure [K. Fujikawa, Phys. Rev. Lett.
42, 1195 (1979) and K. Fujikawa, Phys. Rev. D 29, 285 (1984)] under a basis change is taken into account.
We find it is useful to go back and forth between different bases, and there are insights which can be more
easily obtained in one basis rather than another. A toy model is provided to illustrate the ideas. For the axion
leptogenesis model [A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115, 011302 (2015)],
our result suggests that at T > 1013 GeV, when sphaleron processes decouple and ΓBþL ≪ H < ΓL (where
H is the Hubble parameter at temperature T and ΓL is theΔL ¼ 2 lepton number violating interaction rate),
the amount of B − L created is controlled by the smallness of the sphaleron interaction rate, ΓBþL.
Therefore it is not as efficient as described. In addition, we notice an interesting modification of gauge
boson dispersion relations at subleading order.
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I. INTRODUCTION

Recently, novel models of leptogenesis were proposed
[1,2] which employ the idea of spontaneous baryogenesis
pioneered by Cohen and Kaplan [3]. The key idea is the
existence of a specific type of time dependent classical
background field in the early universe. In [1] the back-
ground field comes from an axion which couples to the
electroweak gauge fieldsWa and Ba.2 The axion is assumed
to get nonzero mass from coupling to hidden sectors.3 In [2]
the time dependent background comes from a Majoron
which is assumed to get mass from new physics at the
Planck scale. In the early universe, after inflation a
homogeneous background is produced which, in general,
does not lie at its minimum, assuming the corresponding
symmetry is broken before the end of inflation. When either
the axion or Majoron run down their respective potentials at
a temperature scale T satisfying HðTÞ ∼mðTÞ (where m is
the mass of the background axion or Majoron field), a
homogeneous, time dependent background field is

produced. These models illustrate the interesting possibility
of explaining the observed baryon asymmetry η0B ≃ 6 ×
10−10 [4] in a CPT violating background field configura-
tion without using the CP violation in the fundamental
theory (CPT is assumed to be a good symmetry of the
fundamental theory).
While the time dependent background field (which may

be considered as a coherent state with zero momentum) is
not in thermal equilibrium, nonzero lepton number or baryon
number can be generated when the lepton/baryon number
violating interactions are in equilibrium, i.e. the interaction
rates are large compared to the Hubble parameter,H. It is not
always necessary for the system to reach the equilibrium
value, and when the system evolves towards the equilibrium
value with nonzero baryon/lepton number, a nonzero
baryon/lepton number asymmetry is generated. In the case
the equilibrium value is not reached, the amount of asym-
metry produced is determined by the relevant interaction
rates which enter the Boltzmann equations.
In this paper we discuss the change of basis invariance of

physics, which is relevant for the axion/Majoron lepto-
genesis models. In particular, we work out the equilibrium
values of B and L. The change of anomaly terms, due to the
change of the path integral measure [5,6] under basis
changes, is taken into account, and therefore, our discus-
sion should be distinguished from the Appendix of [2]
where the basis changes are discussed in the context of a
classical Lagrangian.

1In this paper, change of basis does not mean change of
Lorentz frame. All calculations in this paper are performed in the
center-of-momentum frame of the thermal plasma, i.e. the
Lorentz frame in which the average momentum of particles is
zero.

2In this paper we use a; b; c; d as space-time indices.
3Unlike the QCD axion, electroweak axion could not generate

a mass by anomaly. Also, for the purpose of leptogenesis, the
mass needs to be large.
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To the best of our knowledge, we are the first to
provide a systematic basis invariant treatment of chemical
equilibrium in such a time dependent background.4 For the
purpose of obtaining a basis invariant treatment, we use
quantities which are invariant under the basis changes we
consider, like the fermion number density n, the fermion
occupancy fð~pÞ, and the fermion effective chemical poten-
tial μ̄. On the other hand, the fermion energy E and fermion
chemical potential μ are not invariant under basis changes,
and they do not enter our final results. We find insights
which are better seen in one basis rather than another, and it
is useful to go back and forth between different bases.
A toy model is provided to illustrate most of the ideas. In

the toy model we illustrate a simple example of the time
dependent background we consider, the type of basis
changes we consider and the change of path integral
measure under basis changes. By choosing a suitable basis,
the Lagrangian becomes time independent and this explains
why thermal equilibrium and chemical equilibrium could
exist in the type of time dependent background being
considered. Quantities which are invariant under the basis
changes are discussed, and the chemical equilibrium is
described using the invariant quantities (especially the
effective chemical potential μ̄). The description in different
bases are explained at the level of the Boltzmann equation
and insight from different bases are discussed.
When applied to the axion leptogenesis model [1], our

result suggests a different equilibrium point than that
shown in [1]. Our result shows that B must be generated
at the same time B − L is generated, otherwise B ¼ L ¼ 0.
At T > 1013 GeV, the ΔL ¼ 2 interaction rate per particle
satisfies ΓL > H. However the sphaleron interaction rate
per particle, ΓBþL ≈ 250α5WT ≪ H [7] and it is thus not as
effective. We show that in this limit the amount of B − L
created is controlled by the smallness of the sphaleron
interaction rate per particle, ΓBþL, rather than, ΓL, and the
creation of B − L is not as efficient as described in [1]. We
also show that the end results obtained by the authors in [2]
are unchanged; however, the derivation of the effective
action was incomplete. As an aside, we notice a modifi-
cation of the gauge boson dispersion relation at subleading
order which exists in the axion leptogenesis model [1], but
not in the Majoron leptogenesis model [2].

II. CHANGE OF BASIS AND THE INVARIANCE
OF PHYSICS—A TOY MODEL

Invariance of physics under frame or basis changes plays
a key role in modern theoretical physics, such as Lorentz
invariance in special relativity, general coordinate

invariance in general relativity and gauge invariance in
gauge theories.
Changing of fermion phases is central in Fujikawa’s way

[5] of understanding quantum anomalies. Here we continue
the story of changing fermion phases (we call it change of
basis for short) and investigate its implication in thermal
dynamics, especially in chemical equilibrium. We find for
the type of basis changes we are interested in, the energy or
chemical potential of fermions are not invariant quantities.
Nevertheless, particle number density n, occupancy fð~pÞ,
3-momentum of fermions, effective chemical potential of
fermions, 4-momentum of bosons, the chemical potential
of bosons and the dispersion relation of bosons are invariant
quantities. By changing basis, a good amount of informa-
tion can be obtained.

A. The toy model in basis (A)

We illustrate the idea using a toy model. Consider four
left-handed Weyl fermions q1; q2; q3 and l in the funda-
mental representation of an SUð2Þ gauge group andWab is
the field strength of the SUð2Þ gauge field with the
Lagrangian given by

ðAÞ L ¼ l†iσ̄aDalþ
X3
i¼1

q†i iσ̄
aDaqi −

1

2g2
trðWabWabÞ

−
θðxÞ
16π2

trðWab
~WabÞ ð1Þ

where

Da ¼ ∂a þ iWa: ð2Þ

We are interested in a homogeneous and time dependent
background, so consider

∂aθ ¼ ð_θ; 0; 0; 0Þ ¼ ðδ; 0; 0; 0Þ: ð3Þ

Here, we consider δ ¼ const since in the realistic models
we will be interested in, _θ is slowly changing, and it could
be treated as a constant during a period of time when some
relevant interactions happen. We have chosen our notation
to indicate the similarity between this toy model and the
SUð2ÞL weak interaction in the standard model (SM).
According to the theorem of global anomaly by Witten

[8], for an SUð2Þ gauge theory to be consistent, there must
be an even number of SUð2ÞWeyl fermion doublets (in the
fundamental representation) assuming no fermions in other
representations of SUð2Þ. There are alternative proofs of
Witten’s theorem using Abelian anomaly [9] or non-
Abelian anomaly [10,11]. Therefore, it is possible to
choose a slightly simpler toy model with just two Weyl
fermion doublets. However, in the case of two Weyl
fermion doublets, the anomalous one-instanton effect
[12,13] or sphaleron effect [14–17] involves only two

4For a general time dependent background, both kinetic and
chemical equilibrium do not exist, but the specific type of time
dependent background we consider allows both kinetic and
chemical equilibrium.
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fermions and induces a correction to the fermion propa-
gators which is equivalent to a mass term rather than an
interaction. If we want the anomaly to induce an inter-
action, rather than a mass term at the lowest order, our toy
model is the minimal set up.

B. Change of basis from (A) to (B)

We consider the following change of basis (although
change of basis could be more general):

l → eic1θðxÞl

qi → eic2θðxÞqi i ¼ 1; 2; 3

c1 þ 3c2 ¼ 1: ð4Þ
Fujikawa’s method [5,6] (especially Ref. [6]) is very
helpful in understanding how an anomaly term changes
under fermion phase rotations in chiral gauge theories.
Fujikawa’s idea is to consider the path integral of the
theory; when the phases of the fermions are rotated, the
path integral measure of fermions may not be invariant
(depending on what rotation is performed and how fer-
mions couple to the gauge fields). This effect is equivalent
to adding a term into the classical Lagrangian after the
fermion phase rotation. Some useful results of Fujikawa’s
method are summarized in Appendix A 2 using our
notation. The effect of the rotation Eq. (4) is the following:
(1) The change of basis induces a change of the anomaly

term (due to the change of path integral measure)

δLanomaly ¼
ðc1 þ 3c2ÞθðxÞ

16π2
trðWab

~WabÞ

¼ θðxÞ
16π2

trðWab
~WabÞ: ð5Þ

Therefore, the original anomaly term is canceled in this
new basis.

(2) Since ∂aθ ¼ ðδ; 0; 0; 0Þ, the change of basis will also
introduce the following terms into the Lagrangian:

Lδ ¼ −c1δl†l −
X3
i¼1

c2δq
†
i qi: ð6Þ

Therefore, with a change from basis (A) to basis (B), the
Lagrangian becomes

ðBÞ L0 ¼ l†iσ̄aDal − δll†lþ
X3
i¼1

ðq†i iσ̄aDaqi − δqq
†
i qiÞ

−
1

2g2
trðWabWabÞ; ð7Þ

where

δl þ 3δq ¼ δ δl ¼ c1δ δq ¼ c2δ: ð8Þ

C. Energy shift and effective chemical potential

1. Energy shift

The terms δll†l and δqq
†
i qi give energy shifts to l and qi

particles.5 At the classical level, this may be seen by
considering classical solutions of the free part of the
Lagrangian (here, free means getting rid of interactions).
The reason we only consider the free part of the Lagrangian
is the assumption that for a weakly interacting plasma,
particle can be defined using the free part of the
Lagrangian. For example, consider the lðxÞ field

L0 ¼ l†iσ̄a∂al ⇒ l ¼ uðpÞe−ipx or l ¼ vðpÞeipx ð9Þ

where pa ¼ ðj~pj; ~pÞ. After basis changes l → eiδltl

L0
0 ¼ l†iσ̄a∂al − δll†l ⇒ l ¼ uðpÞe−ipxe−iδlt or

l ¼ vðpÞeipxe−iδlt: ð10Þ

The solutions with factor e−ipx are called particle solutions,
and the solutions with factor eipx are called antiparticle
solutions. The energy of particle and antiparticle is shifted
in opposite directions.

Elð~pÞ ¼ j~pj þ δl

El̄ð~pÞ ¼ j~pj − δl

Eqið~pÞ ¼ j~pj þ δq

Eq̄ið~pÞ ¼ j~pj − δq: ð11Þ

Energy shifts are not only defined in basis (B) but also
defined in basis (A). The amount of energy shift in basis
(A) is zero. More details about energy shifts may be found
in Appendix A 3.

2. Effective chemical potential

We have seen that energy shifts may come about in our
toy model by basis changes. In systems with energy shifts,
it is convenient to define an effective chemical potential μ̄.
Let us consider the following shifts of particle energy,

and mass m is added for a general definition. In the toy
model and the relevant temperature scales of the realistic
models in Sec. III, the particles are massless.

Eð~pÞ ¼ E0ð~pÞ þ δ with E0ð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

q
ð12Þ

In kinetic equilibrium the occupancy is

5Since we have freedom to choose c1 and c2 keeping
c1 þ 3c2 ¼ 1, we are actually considering a lot of possible basis
changes parametrized by a real number. Each of them gives you
different energy shifts.
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fð~pÞ ¼ 1

e
Eð~pÞ−μ

T � 1
¼ 1

e
E0ð~pÞþδ−μ

T � 1
: ð13Þ

For the purpose of calculating the occupancy it is conven-
ient to define the effective chemical potential

μ̄≡ μ − δ; ð14Þ
then

fð~pÞ ¼ 1

e
E0ð~pÞ−μ̄

T � 1
: ð15Þ

For each internal degree of freedom, the number density is

n ¼
Z

d3p
ð2πÞ3 fð~pÞ: ð16Þ

In a system with chemical potential μ and energy shift δ,
the occupancy and number density can be calculated as if
there is no energy shift and with the effective chemical
potential μ̄.

D. Invariant quantities of the toy model

For a basis invariant description of physics, it is very
important to find invariant quantities6 under basis changes.
For the toy model, there are fermions and gauge bosons. In
this section, we will discuss the invariant quantities of
fermions and gauge bosons which provide an invariant
description of the system.

1. Invariant quantities for fermions

We have seen that the fermion energy gets shifted and the
shift does not take the same value in basis (A) and basis (B).
On the other hand, from the requirement that physics is
independent of basis, the number of fermions with some
specific 3-momentum ~p are the same from the viewpoint of
both bases. At the classical level, it may be seen by
considering a classical solution of the free part of the
Lagrangian (9), (10). Under basis change l → eiδltl, the
particle solution

l ¼ uðpÞe−ipx → l ¼ uðpÞe−ipxe−iδlt: ð17Þ

The physics requirement is that, a particle described
by the solution uðpÞe−ipx will become a particle
described by the solution uðpÞe−ipxe−iδlt (with the same
3-momentum ~p) after the basis change l → eiδltl.
Similarly for antiparticles. Therefore, the number of
fermions with some specific 3-momentum ~p should be
the same from the viewpoint of both bases (for a further
discussion of this point see Sec. II E). This means that the
occupancy fð~pÞ is an invariant quantity. For each internal
degree of freedom

n ¼
Z

d3p
ð2πÞ3 fð~pÞ: ð18Þ

Therefore, fð~pÞ invariant implies the number density n is
an invariant quantity. For fermions, in kinetic equilibrium
we have

fð~pÞ ¼ 1

e
E0ð~pÞ−μ̄

T þ 1
: ð19Þ

Here, E0ð~pÞ is an invariant, therefore, the effective
chemical potential μ̄ is invariant. On the other hand,
the chemical potential μ ¼ μ̄þ δ is not invariant since δ
is not invariant.
To summarize, for fermions, the 3-momentum, the

occupancy fð~pÞ, the number density n, and (when the
system is in kinetic equilibrium) the effective chemical
potential μ̄ are invariant quantities.

2. Invariant quantities of gauge bosons

In the change of basis considered in the toy model,
we did not transform the gauge field. Therefore, we
expect that everything about the gauge boson in basis
(A) and (B) is the same. To be specific, we expect the
4-momentum, the occupancy fð~pÞ, the number density
n, the chemical potential and the dispersion relation of
the gauge boson to be invariant. We find there is an
interesting subtlety concerning the dispersion relation of
the gauge boson, and it conforms to our expectation.
In the context of an Abelian gauge theory, consider

S ¼
Z

d4x −
�
1

g02
BabBab þ θðxÞY2

16π2
Bab

~Bab

�
∂aθ ¼ ðδ; 0; 0; 0Þ: ð20Þ

A similar theory has been considered by Carroll, Field and Jackiw [18] in the context of electrodynamics modified by a
Lorentz-violating Chern-Simons term LCS ¼ −paAb

~Fab. [The term θF ~F is equivalent to −2ð∂aθÞAb
~Fab up to a total

6Quantities which change according to some simple rules (under basis changes) are called covariant quantities. Covariant quantities
can be important also. For example, in general relativity, vector and tensor are important covariant quantities.
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derivative.] By solving the classical equations of motion it can be shown that the dispersion relation of the gauge boson is
modified:

∂aBab ¼ ba ~B
abba ¼

�
−
g02Y2

16π2
δ; 0; 0; 0

�
⇒ ω2 ¼ k2 � g02Y2

16π2
kδ ð21Þ

with� for the two possible circularly polarized modes, and k≡ j~kj. For our non-Abelian gauge field in the toy model, from
the view point of basis (A), after neglecting the nonlinear terms, we expect a similar modification of the dispersion relation.
For the action

S ¼
Z

d4x −
�
1

2g2
trðWabWabÞ þ θðxÞ

16π2
trðWab

~WabÞ
�

∂aθ ¼ ðδ; 0; 0; 0Þ; ð22Þ

the dispersion relation would be

ω2 ¼ k2 � g2

8π2
kδ: ð23Þ

From the requirement that physics is independent of basis,
we expect the same dispersion relation in basis (B). But in
basis (B) there is no θðxÞW ~W term, and how should the
dispersion relation of the gauge boson be modified? It may
not be too surprising that from the point of view of basis
(B), the same modification of the dispersion relation comes
from a fermionic 1-loop correction to the propagator of the
gauge boson.7 A calculation of relevant 1-loop correction in
the context of QED (set fermion mass m ¼ 0) may be
found in [19], and we also notice that in their paper the
result was explained using the idea of basis changes taking
into account the change of anomaly term from the path
integral measure. From the viewpoint of basis (B), the
fermions get energy shifts of order δ, and the gauge
coupling g2 enters into the boson dispersion relation due
to the loop. This result justifies our basis independent
argument for gauge bosons. Summary and comments:
(1) The basis invariant quantities for gauge bosons are the

4-momentum, the occupancy fð~pÞ, the number density
n, the chemical potential and the dispersion relation.

(2) The dispersion relation of the gauge boson is given by

ω2 ¼ k2 � g2

8π2
kδ [as is shown in Eq. (23)]. Note that

the second term is linear in k, and therefore this
modification is not a mass term; this effect is special
for time dependent axion background and it is a zero
temperature effect. When k ≫ δ, this is equivalent to

an energy shift ω≃ k� g2

16π2
δ. Since the energy shift of

the gauge boson frequency is suppressed by a factor
g2

16π2
, compared to the energy shift of the fermions, we

will neglect this small energy shift for the gauge boson

in considering the equilibrium (assuming g2 ≪ 1). In
chemical equilibrium, we will use μW ¼ 0, and as we
neglect the small energy shift, we will not use an
effective chemical potential for gauge bosons since
it is equal to the chemical potential in every basis,
μ̄W ≃ μW .

(3) The dispersion relation of the gauge boson, ω2 ¼
k2 � g2

8π2
kδ [as is shown in Eq. (23)] has an instability

at small momentum, k < g2

8π2
δ. When the thermal mass

of gauge boson m ∼ gT (see for example [20]) is taken
into account, the instability no longer exists (assuming
both T ≫ δ and g ≪ 1). In fact, for a thermal averaged
momentum k ∼ T, the thermal correction to the fre-
quency is of the order g2T,8 and the correction due to
the axion background to the frequency is of the order
�g2δ. Both are second order in the gauge coupling g,
and when T ≫ δ, the thermal correction is bigger then
the axion correction. Nevertheless, the fact that the
axion background correction treats � circularly polar-
ized modes (or helicity) differently may have interest-
ing consequences, see Sec. III C 2 for more detail.

E. Chemical equilibrium

Generally speaking, chemical equilibrium does not exist
in systems with a time dependent Lagrangian. Our toy
model in basis (A) is time dependent, and at first sight, it is
not clear whether it is possible to have chemical equilib-
rium. Nevertheless, in basis (B), the Lagrangian is time
independent, and it is possible to define chemical equilib-
rium. We first provide a treatment of chemical equilibrium
in basis (B), and then use the invariant quantities to obtain
the equilibrium in basis (A). The viewpoint from different
bases are discussed at the level of Boltzmann equation.

7The terms δll†l and δqq
†
i qi which cause energy shifts of the

fermions also contribute to the loop diagram, and this makes it
possible to modify the dispersion relation of the boson.

8The thermal correction treats the two circularly polarized
(transverse) modes in the same way, while the axion background
distinguishes the two modes. In thermal plasma there are
longitudinal modes also, but only for momentum smaller than
gT, and therefore not relevant here.
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1. A brief review of chemical equilibrium

As we will use chemical equilibrium in a nontrivial way,
it is worthwhile to briefly review it here, together with the
derivation from the Boltzmann equation. For a process

Aþ Bþ � � � ⇌ CþDþ � � � : ð24Þ

Start with the Boltzmann equation9 which may be found in
[21] (here I set the Hubble parameter H ¼ 0)

dnA
dt

≡ −
Z

dΠAdΠB…dΠCdΠD…

× ð2πÞ4δ4ðpA þ pB… − pC − pD…Þ

×

� jMj2AþBþ���→CþDþ���fAfB � � � ð1� fCÞð1� fDÞ � � �
−jMj2CþDþ���→AþBþ���fCfD � � � ð1� fAÞð1� fBÞ � � �

�
ð25Þ

where for each internal degree of freedom dΠ ¼ d3p
ð2πÞ3

is the phase space factor, fð~pÞ is the occupancy and in
kinetic equilibrium fð~pÞ ¼ 1

expEð~pÞ−μT �1
.

(1) If we have

jMj2AþBþ���→CþDþ��� ¼ jMj2CþDþ���→AþBþ��� ð26Þ
then, in chemical equilibrium we could derive

μA þ μB þ � � � ¼ μC þ μD þ � � � : ð27Þ

(2) If T is violated, we may have

jMj2AþBþ���→CþDþ��� ≠ jMj2CþDþ���→AþBþ��� ð28Þ

then, in chemical equilibrium one would derive

μA þ μB þ � � �

¼ μC þ μD þ � � � þ T ln

����MCþDþ���→AþBþ���
MAþBþ���→CþDþ���

����2:
ð29Þ

Throughout this paper, we do not need to worry about
the situation in Eq. (29) because we neglect the small
CP nonconservation in the weak interactions when
considering the axionic/Majoron leptogenesis models.

(3) In a time dependent background, if chemical equilib-
rium exists, there will be another effect which could
make μA þ μB þ � � � ≠ μC þ μD þ � � �.
Recall that the δ4ðpA þ pB… − pC − pD…Þ in the

Boltzmann equation comes from energy-momentum
conservation. Especially, the energy conservation could
be derived by time translational invariance of the
Lagrangian. If the Lagrangian depends on time explic-
itly,10 then the time translational invariance no longer
exists and the delta function may need to be modified.
This nonconservation of energy may be seen by

Noether’s theorem. The energy-momentum tensor for a
time dependent Lagrangian satisfies

∂aTa
b ¼ −

∂L
∂xb ¼ −δ0b

∂L
∂t : ð30Þ

More details of Noether’s theorem for a time dependent
Lagrangian may be found in Appendix A 4. Consider
the following modification of the Boltzmann equation:

dnA
dt

≡ −
Z

dΠAdΠB…dΠCdΠD…

× ð2πÞ4 × δðEA þ EB þ � � � − EC − ED � � � − ΔÞ × δ3ð~pA þ ~pB… − ~pC − ~pD…Þ

×

� jMj2AþBþ���→CþDþ���fAfB � � � ð1� fCÞð1� fDÞ � � �
−jMj2CþDþ���→AþBþ���fCfD � � � ð1� fAÞð1� fBÞ � � �

�
: ð31Þ

If we still have

jMj2AþBþ���→CþDþ��� ¼ jMj2CþDþ���→AþBþ��� ð32Þ

9If there are identical particles in the interaction, the phase space needs to be modified.
10In our case, the fundamental Lagrangian does not depend on time explicitly. When the axion/Majoron is treated as time dependent

classical background, the effective Lagrangian depends on time explicitly.
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then in chemical equilibrium one could derive

μA þ μB þ � � � ¼ μC þ μD þ � � � þ Δ: ð33Þ

2. The equilibrium from the viewpoint of basis (B)

In basis (B), everything is time independent, and all
terms are T invariant (see Appendix A 3 for why δll†l and
δqq

†
i qi are T invariant). Therefore, in basis (B) we could

use Eq. (27) in chemical equilibrium. The fermions in the
toy model participate in two types of interactions, namely
the perturbative gauge interaction and the nonperturbative
anomalous gauge interaction.11

(1) When the perturbative gauge interaction is in equilib-
rium with a unbroken gauge symmetry we have

μW ¼ 0: ð34Þ
This allows us to define the chemical potential μl and
μqi for each doublet. Also, we have μl̄ ¼ −μl and
μq̄i ¼ −μqi , similarly for the effective chemical poten-
tial μ̄l̄ ¼ −μ̄l and μ̄q̄i ¼ −μ̄qi . With this in mind, we
will not repeatedly write down the chemical potentials
or effective chemical potentials for antiparticles.

(2) When, in addition, the anomalous gauge interaction is
in equilibrium

μl þ
X3
i¼1

μqi ¼ 0 ⇒ μ̄l þ
X3
i¼1

μ̄qi ¼ −δ: ð35Þ

Note that while μl þ
P

3
i¼1 μqi ¼ 0 we may have

μ̄l þ
P

3
i¼1 μ̄qi ≠ 0. Also δ only enters the equation

of the effective chemical potential for the anomalous
interaction but not the perturbative gauge interaction,
and the energy shifts δl and δq do not come separately
in the effective chemical potential equations, only the
combination δ ¼ δl þ 3δq matters. The above facts can
be explained more easily by changing basis.

3. The equilibrium from the viewpoint of basis (A)

We can solve the entire problem in basis (B), but as
physics is independent of basis, it worthwhile to share the
viewpoint of basis (A).

As is argued earlier in Sec. II D, the particle number
density n, the occupancy fð~pÞ and the effective chemical
potential μ̄ are invariant quantities under the basis changes
we consider. In basis (A), the amount of energy shift is
zero, so

μl ¼ μ̄l μqi ¼ μ̄qi : ð36Þ

With the result obtained from basis (B) in Eq. (35), and the
invariance of effective chemical potential, we find in
basis (A)

μ̄l þ
X3
i¼1

μ̄qi ¼ −δ ⇒ μl þ
X3
i¼1

μqi ¼ −δ: ð37Þ

Amore careful comparison of different basis (at the level of
Boltzmann equation) in the following section II E 4 shows
that the reason to have μl þ

P
3
i¼1 μqi ≠ 0 in basis (A) is

that the time dependent term θðxÞW ~W causes the situation
described in Eqs. (31), (32), (33). Furthermore, from the
viewpoint of basis (A), there is no surprise that δ only
affects the effective chemical potential equation of the
anomalous interactions (but not the perturbative gauge
interaction) since it is in θW ~W.

4. Compare basis (A) and (B) at the level
of Boltzmann equation

The last two sections II E 2 and II E 3 mainly focus on
equilibrium. Some more information can be seen at the
level of the Boltzmann equations, and it makes the
correspondence between the two bases more clear.
Consider the following anomalous interaction:

lþ q1 ⇌ q̄2 þ q̄3: ð38Þ
Let the partial rate12 for the change of the number density
for l particles, due to this interaction, be�

dnl
dt

�
lþq1⇌q̄2þq̄3

: ð39Þ

In basis (B), as everything in the Lagrangian is time
independent, and all terms are T invariant, the Boltzmann
equation for this process is

ðBÞ
�
dnl
dt

�
lþq1⇌q̄2þq̄3

¼ −
Z

dΠldΠq1dΠq̄2dΠq̄3 × ð2πÞ4δ4ðpl þ pq1 − pq̄2 − pq̄3Þ

×

� jMj2lþq1→q̄2þq̄3
flfq1ð1 − fq̄2Þð1 − fq̄3Þ

−jMj2q̄2þq̄3→lþq1
fq̄2fq̄3ð1 − flÞð1 − fq1Þ

�
; ð40Þ

11The anomalous gauge interaction may be an instanton or sphaleron interaction.
12It is called partial rate because the number l particle can be changed by other interactions.
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the energy is conserved, and from T invariance, we have

ðBÞ jMj2lþq1→q̄2þq̄3
¼ jMj2q̄2þq̄3→lþq1

: ð41Þ

As argued in Sec. II D, when going from basis (B) to basis (A), the number density nl, the occupancy flð~pÞ fq1ð~pÞ fq̄2ð~pÞ
fq̄3ð~pÞ are invariant quantities, and the fermion energy changes according to the energy shifts. The only consistent way is to
have the following Boltzmann equation in basis (A):

ðAÞ
�
dnl
dt

�
lþq1⇌q̄2þq̄3

¼ −
Z

dΠldΠq1dΠq̄2dΠq̄3

× ð2πÞ4δðEl þ Eq1 − Eq̄2 − Eq̄3 þ δÞ × δ3ð~pl þ ~pq1 − ~pq̄2 − ~pq̄3Þ

×

" jMj2lþq1→q̄2þq̄3
flfq1ð1 − fq̄2Þð1 − fq̄3Þ

−jMj2q̄2þq̄3→lþq1
fq̄2fq̄3ð1 − flÞð1 − fq1Þ

#
ð42Þ

with

ðAÞ jMj2lþq1→q̄2þq̄3
¼ jMj2q̄2þq̄3→lþq1

: ð43Þ

From this Boltzmann equation one can directly derive the
relation

μl þ
X3
i¼1

μqi ¼ −δ: ð44Þ

This shows that the reason μl þ
P

3
i¼1 μqi ≠ 0 in basis (A)

is that the time dependent term θðxÞW ~W causes the
situation described in Eqs. (31), (32), (33). In other
words, from the viewpoint of basis (A), the effect of the
operator θðxÞW ~W in the anomalous interaction lþ q1 ⇌
q̄2 þ q̄3 is to make the sum of the energies of the
incoming particles not equal to the sum of the energies of
the outgoing particles, i.e.

Eq̄2 þ Eq̄3 ¼ El þ Eq1 þ δ: ð45Þ

An independent proof of Eq. (45), using Noether’s
theorem, can be found in Appendix A 4.

F. Insight from different bases

Here, we remark that it is very useful to go back and
forth between different bases, and there are insights easier
seen in one basis rather than another. For the toy models
described above:
(1) In basis (A), the modification of the dispersion relation

of the gauge boson, Eq. (23), can be derived at the
classical level, while in basis (B), it can be seen only
after doing a 1-loop calculation. Therefore, the modi-
fication of the dispersion relation is best seen in basis
(A). Furthermore, by the invariance of physics, and
change of basis, we predict what the 1-loop diagram

should give us before doing any calculation. This
shows the power of basis changes.

(2) In basis (B), the Lagrangian is time independent, and
all terms in the Lagrangian are T invariant. Therefore,
the Boltzmann equation looks most familiar, see
Eq. (40), and the chemical potential equations and
effective chemical potential equations are most easily
derived. By changing basis rather than direct calcu-
lation we find that the θðxÞW ~W term, from the view-
point of basis (A), is responsible for the energy
nonconservation in the anomalous interactions, see
Eq. (45). [A direction calculation in basis (A) using
Noether’s theorem which confirms the result is pro-
vided in Appendix A 4.]

(3) In basis (B), it is not straightforward to see why δl and
δq do not separately enter the effective chemical
potential equations, and only the combination δ ¼
δl þ 3δq matters. Nevertheless, by changing basis, and
the invariance of physics, one can argue that only δ
matters by choosing a basis, for example, with δl ¼ δ
and δq ¼ 0.13

III. THE CHEMICAL EQUILIBRIUM
EQUATIONS FOR AXION/MAJORON

LEPTOGENESIS MODELS

In this section, we work out the equations for the
effective chemical potentials in realistic models.
Consider the SM Lagrangian with neutrino mass and added
in energy shifts:

L ¼ Lkinetic þ LYukawa þ Lgauge þ LHiggs þ LM þ Lδ:

ð46Þ

13The basis with with δl ¼ δ and δq ¼ 0 is a special case of
basis (B).
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In the following we only explicitly write down the Lagrangian for one family of quarks and leptons while keeping in mind
there could be Nf families (we are mostly interested in Nf ¼ 3). We assume there is one Higgs doublet. We neglect the CP-
violating mixing in the Yukawa couplings for this problem, and we will assume the chemical potentials are independent of
family.

Lkinetic ¼ l†iσ̄aDalþ ē†iσ̄aDaēþ q†iσ̄aDaqþ ū†iσ̄aDaūþ d̄†iσ̄aDad̄ ð47Þ

LYukawa ¼ −geðēH†l − l†Hē�Þ − gdðd̄H†q − q†Hd̄�Þ − guðū ~H†q − q† ~Hū�Þ ð48Þ

Lgauge ¼ −
1

2g2s
trðGabGabÞ − 1

2g2
trðWabWabÞ − 1

4g02
BabBab ð49Þ

LHiggs ¼ ðDaϕÞ†ðDaϕÞ − VðϕÞ ð50Þ

LM ¼ g2ν
2M

½ð ~H†lÞð ~H†lÞ − ðl† ~HÞðl† ~HÞ� ð51Þ

Lδ ¼ −δqJ0Q − δlJ0L ð52Þ

where the two component spinor indices are antisymme-
trized (see Appendix A 1). We assume there are heavy
neutrinos, and we have integrated them out because we are
interested in the physics at a much lower energy scale than
the heavy neutrino massM. The term LM is the dimension-
5 Weinberg operator that is obtained by integrating out the
heavy neutrinos. Here M is real, and JaQ and JaL are the
quark and lepton currents (the baryon current JaB ≡ 1

3
JaQ)

JaL ¼ l†σ̄al − ē�σ̄aē ð53Þ

JaQ ¼ q†σ̄aq − ū�σ̄aū − d̄�σ̄ad̄: ð54Þ

For later convenience let us define δ≡ 3δq þ δl, and we
will use δ and δl as two independent variables (instead of
using δq and δl). We assume in this problem δ and δl change
with time slowly enough and in chemical equilibrium we
can treat them as constants. Also, we assume δ ≪ T and
δl ≪ T, where T is the temperature of the thermal plasma.

A. Energy shifts from axion/Majoron
leptogenesis models

In this section, we show that the axion leptogenesis
model in [1] is equivalent to our Lagrangian (46) with δ ≠ 0
and δl ¼ 0, and the Majoron leptogenesis model in [2] is
equivalent to our Lagrangian (46) with δ ¼ 0 and δl ≠ 0. In
order to verify this statement, a basis change is needed and
the change of Lagrangian due to the change in the path
integral measure is taken into account.

1. For the axion leptogenesis model in [1]

In our notation, the Lagrangian for the axion lepto-
genesis model in [1] looks like

L ¼ Lkinetic þ LYukawa þ Lgauge þ LHiggs þ LM þ Lanomaly

ð55Þ

where

Lanomaly ¼ −
θðxÞ
16π2

½trðWab
~WabÞ − 2Bab

~Bab�

θðxÞ ¼ aðxÞ
fa

: ð56Þ

Here aðxÞ is the electroweak axion field which we treat as a
classical background, and fa is the axion decay constant.
We consider, as in [1], a homogeneous and time dependent
background, so we have

∂bθ ¼ ∂ba
fa

≡ ðΔ; 0; 0; 0Þ: ð57Þ

With the following basis change (vector rotations on
quarks)14:

q → eiθ2ðxÞq

ū → e−iθ2ðxÞū

d̄ → e−iθ2ðxÞd̄ ð58Þ

and

θ2ðxÞ ¼
θðxÞ
3Nf

ð59Þ

14We do not rotate the leptons, since this would induce phases
in the dim-5 Weinberg operator.
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(refer to Appendix A 2 for how the Lagrangian changes),
we find the Lagrangian in this new basis is just described as
Eq. (46) with

δ ¼ Δ
Nf

¼ _a
Nffa

δl ¼ 0: ð60Þ

In the relevant temperature range, δ ≪ T is satisfied.

2. For the Majoron leptogenesis model in [2]

In our notation, the Lagrangian for the Majoron lepto-
genesis model in [2] looks like

L ¼ Lkinetic þ LYukawa þ Lgauge þ LHiggs þ L0
M ð61Þ

where

L0
M ¼ g2ν

2M
½e−iθðxÞð ~H†lÞð ~H†lÞ − eiθðxÞðl† ~HÞðl† ~HÞ�; ð62Þ

here compare with the notation in [2]

θðxÞ ¼ χðxÞffiffiffi
2

p
vB−L

∂aθ ¼ ∂aχffiffiffi
2

p
vB−L

≡ ðΔl; 0; 0; 0Þ ð63Þ

where χðxÞ is the Majoron field which we treated as a
classical background, and vB−L is the B − L breaking scale
which is assumed to be roughly the same scale as the heavy
neutrino mass M. With the following basis change (vector
rotation on quarks and leptons):

l → eiθ1ðxÞl

ē → e−iθ1ðxÞē

q → eiθ2ðxÞq

ū → e−iθ2ðxÞū

d̄ → e−iθ2ðxÞd̄ ð64Þ

and

θ1ðxÞ ¼
1

2
θðxÞ θ2ðxÞ ¼ −

1

6
θðxÞ ⇒ θ1 þ 3θ2 ¼ 0

ð65Þ

(refer to Appendix A 2 for how the Lagrangian changes),
we find the Lagrangian in this new basis is just described as
Eq. (46) with

δ ¼ 0 δl ¼
Δl

2
¼ _χ

2
ffiffiffi
2

p
vB−L

: ð66Þ

In the relevant temperature range, δl ≪ T is satisfied. Note,
the second term in Eq. (66), i.e. δl, is the same value found
in Ref. [2]. However the derivation in [2] did not take into

account Fujikawa’s result for the change in the fermion
path integral measure under the basis change and the fact
that δ ¼ 0.

B. Effective chemical potential in the early universe

We work out the equations for the effective chemical
potentials when the relevant process is in chemical equi-
librium. We will use notation very similar to that in
Ref. [22], and we consider the following result to be the
generalization of the result in [22] for the types of slowly
changing time dependent background fields described
above. The chemical potential will be used in intermediate
steps, but we would like the final result to be written in
terms of effective chemical potentials because the effective
chemical potential is invariant under basis changes. The
intermediate steps with chemical potential will depend on
the specific basis chosen, while the final result in terms of
the effective chemical potential is independent of basis.15

(a) In the early universe before electroweak symmetry
breaking, the chemical potentials of the gauge bosons
vanish

μB ¼ μW ¼ μg ¼ 0: ð67Þ

(b) When fermion and Higgs interactions with gauge
bosons are in equilibrium, it is possible to assign a
single chemical potential for each fermion or Higgs
multiplet. The chemical potential of particles and
antiparticles add up to zero. Moreover, δ and δl shifts
for particles and antiparticles are opposite. Therefore,
the effective chemical potential for particles and
antiparticles adds up to zero. With this in mind, we
only write down the chemical potential for particles
(not antiparticles). We also assume the chemical
potentials are independent of family and therefore
we drop the family indices. Given the following
chemical potentials and effective chemical potentials
we find relations among them when interaction rates
are in equilibrium, i.e. they are fast compared to the
Hubble expansion rate. We have

μl μe μq μu μd μH ðchemical potentialsÞ
ð68Þ

μ̄l μ̄e μ̄q μ̄u μ̄d μ̄H

ðeffective chemical potentialsÞ:
ð69Þ

Since μ̄H ¼ μH in any basis, we will use μH for both
chemical potential and effective chemical potential of
the Higgs doublet.

15We use the effective chemical potential for fermions but not
for gauge bosons or Higgs because in our problem, gauge bosons
and Higgs never get energy shifts, i.e. neglecting possible small
energy shifts for the gauge bosons.
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(c) When the QCD anomaly is in equilibrium, we
have

2μq ¼ μu þ μd ⇒ 2μ̄q ¼ μ̄u þ μ̄d: ð70Þ

In the derivation we used the fact that all quarks shift
by the same amount δq.

(d) When the SUð2ÞL anomaly is in equilibrium, we have

3μq þ μl ¼ 0 ⇒ 3μ̄q þ μ̄l ¼ −ð3δq þ δlÞ ¼ −δ:
ð71Þ

(e) When Yukawa coupling interactions are in equilib-
rium, we have

μq ¼ μd þ μH ⇒ μ̄q ¼ μ̄d þ μH ð72Þ

μq ¼ μu − μH ⇒ μ̄q ¼ μ̄u − μH ð73Þ

μl ¼ μe þ μH ⇒ μ̄l ¼ μ̄e þ μH: ð74Þ

(f) The requirement of a hypercharge neutral universe,P
Y ¼ 0, constrains μ̄i directly, rather than μi since

what is relevant is the number density

μ̄q þ 2μ̄u − μ̄d − μ̄l − μ̄e þ
2

Nf
μH ¼ 0: ð75Þ

Here we have used the approximation that for μ̄i ≪ T,
each internal degree of freedom gives you

ðFermionÞ ni − nī ≃ 1

6
μ̄iT2

ðBosonÞ ni − nī ≃ 1

3
μ̄iT2:

(g) The lepton number changingΔL ¼ 2 interaction gives

ΔL ¼ 2 H̄ þ H̄ ⇌ lþ l l̄þ H̄ ⇌ lþH:

ð76Þ

When it is in equilibrium, and notice the Lagrangian
(46) is T invariant and time independent, we have

μl þ μH ¼ 0 ⇒ μ̄l þ μH ¼ −δl: ð77Þ

We observe that the δ, which could come from a time
dependent electroweak axion background, only ap-
pears in the effective chemical potential equation for
the electroweak anomaly, and δl which could come
from a time dependent Majoron background only
appears in the effective chemical potential equation
for ΔL ¼ 2 interactions.

C. Phenomenological implications

1. The equilibrium point in the limit SUð2ÞL
sphaleron is turned off

In this section, the phrase turned off means the theo-
retical limit in which some specific interaction rate goes to
zero. It should be understood as a theoretical limit which is
useful to obtain some insight. This limit is not necessarily
realized in realistic situations. However it is a good
approximation when the electroweak sphaleron rate sat-
isfies, ΓBþL ≪ H. This is in fact relevant to the axionic
leptogenesis model [1] for T > 1013 GeV.
We are trying to solve for the baryon number density nB

and lepton number density nL. In the early universe, the
SUð2ÞL anomalous interaction is the sphaleron interaction,
and if it is turned off, we cannot use (d). Let us solve the
equilibrium effective chemical potentials when all other
interactions are in equilibrium. The useful relations of
fermion effective chemical potential from (a), (b), (c), (e),
(f), (g) are

ðYukawaÞ μ̄q ¼ μ̄d þ μH ð78Þ

ðYukawaÞ μ̄q ¼ μ̄u − μH ð79Þ

ðYukawaÞ μ̄l ¼ μ̄e þ μH ð80Þ

ðY ¼ 0Þ μ̄q þ 2μ̄u − μ̄d − μ̄l − μ̄e þ
2

Nf
μH ¼ 0 ð81Þ

ðLÞ μ̄l þ μH ¼ −δl: ð82Þ

Solving the equilibrium in terms of δl and μ̄q we find (δ
does not enter this result)

μ̄l ¼ −
2Nf þ 1

3Nf þ 1
δl þ

Nf

3Nf þ 1
μ̄q

μH ¼ −
Nf

3Nf þ 1
ðδl þ μ̄qÞ

μ̄e ¼ −
Nf þ 1

3Nf þ 1
δl þ

2Nf

3Nf þ 1
μ̄q

μ̄d ¼
Nf

3Nf þ 1
δl þ

4Nf þ 1

3Nf þ 1
μ̄q

μ̄u ¼ −
Nf

3Nf þ 1
δl þ

2Nf þ 1

3Nf þ 1
μ̄q ð83Þ

and

B ¼ 4Nfμ̄q ð84Þ

L ¼ Nf

�
−
5Nf þ 3

3Nf þ 1
δl þ

4Nf

3Nf þ 1
μ̄q

�
ð85Þ
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B − L ¼ Nf

�
5Nf þ 3

3Nf þ 1
δl þ

8Nf þ 4

3Nf þ 1
μ̄q

�
ð86Þ

where B and L are defined such that the net baryon number
density nB and the net lepton number density nL can be
written as

nB ≡ nb − nb̄ ≃ BT2

6
⇒ B ¼ Nfð2μ̄q þ μ̄u þ μ̄dÞ ð87Þ

nL ≡ nl − nl̄ ≃ LT2

6
⇒ L ¼ Nfð2μ̄l þ μ̄eÞ: ð88Þ

As we are interested in the early universe when the
lepton number is generated. In the limit the SUð2ÞL
sphaleron is turned off, nB does not change at that period
of time. We are interested in the initial condition nB ¼ 0,
which gives you

B ¼ 0 ⇒ 2μ̄q þ μ̄u þ μ̄d ¼ 0 ⇒ μ̄q ¼ 0: ð89Þ

Plugging the result of Eq. (89) into Eq. (83) we find16

μ̄q ¼ 0

μ̄l ¼ −
2Nf þ 1

3Nf þ 1
δl

μH ¼ −
Nf

3Nf þ 1
δl

μ̄e ¼ −
Nf þ 1

3Nf þ 1
δl

μ̄d ¼
Nf

3Nf þ 1
δl

μ̄u ¼ −
Nf

3Nf þ 1
δl: ð90Þ

In the model described in [1], we argued that δl ¼ 0. We
find the equilibrium value of the effective chemical
potentials (μ̄q μ̄l μ̄e μ̄d μ̄u μH) to be zero. Therefore, B ¼
L ¼ 0 and no asymmetry could be generated in the limit the
SUð2ÞL sphaleron interaction is turned off.17 This is a
different result than obtained in [1], in which only the
ΔL ¼ 2 interaction rate, ΓL, enters the Boltzmann equa-
tions and δl was assumed to be nonvanishing. Note, if the

sphaleron interaction is not completely turned off, i.e. we
do not neglect the results of Eq. (71), then the equilibrium
value of μ̄q ≠ 0 and a baryon asymmetry will be generated
by δ.
This result suggests that for the model in [1], nonzero B

must be generated at the time nonzero B − L is generated,
otherwise B − L ¼ 0. The sphaleron interaction rate per
particle satisfies ΓBþL < H when T > 1012 GeV (since
the sphaleron decouples at T > 1012 GeV, see for
example [22]) and according to the data in [1] the ΔL ¼
2 interaction rate ΓL > H for T > 1013 GeV. Therefore,
at T > 1013 GeV we expect the amount of B − L
generated is controlled by the smallness of ΓBþL rather
than ΓL, since ΓL > H ≫ ΓBþL. We expect the B − L
generated at T > 1013 GeV to be less efficient than
described in [1].

2. A subleading order effect

We notice a subleading order effect: the modification of
the dispersion relation of the gauge boson, [similar to
Eq. (23)].

ðWa fieldÞ ω2 ¼ k2 � g2

8π2
kðNfδÞ ð91Þ

ðBa fieldÞ ω2 ¼ k2∓ g02

8π2
kðNfδÞ: ð92Þ

This effect exists in the axionic leptogenesis model [1] but
does not exist in the Majoron model [2]. It is an effect at
subleading order, has similar g2 suppression as the thermal
correction to the gauge boson dispersion relation, and when
calculating the effective chemical potentials we neglected
this effect.
The axion modification of the dispersion relation is

different from a thermal correction:
(1) It is a zero temperature effect.
(2) The correction is linear in k and therefore it is not a

mass term. On the other hand, the thermal effect is a
mass term (m ∼ gT for k ≫ gT).

(3) The thermal correction treats the two circularly
polarized modes in the same way, while the axion
correction treats � circularly polarized modes (or
helicity) differently.

It may be interesting to investigate whether this modi-
fication of gauge boson dispersion relations leads to any
observable. A possible observable due to a cold axion
background modified dispersion relation of a photon is
discussed in [23]. The dispersion relation discussed is of
very similar origin as the one we consider, but the energy
scale is very different, and it could make the observable (if
it exists) very different.
The fact that an axion background treats the two

circularly polarized modes (� helicity states) of gauge
bosons differently could result in a nonzero helicity

16In this case, only δl matters and it is reasonable.
17From the viewpoint of the original basis Eq. (55), the effect

of the time dependent axion background is to make energy not
conserved in sphaleron interaction, and when the sphaleron is
turned off, it could not affect the equilibrium and therefore, could
not produce asymmetry. For another possible basis in which the
anomaly term is canceled by a vector rotation on leptons, time
dependence in the dim-5 Weinberg operator and the energy shifts
on leptons both have effect, and in the end the same result is
obtained.
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density H ≠ 0. The definition of helicity density H in
the context of electrodynamics may be found in [24]
together with its possible origin during an electroweak
phase transition (T ∼ 100 GeV). Our result indicates that
the axionic leptogenesis model [1] could give rise to a
H ≠ 0 (for the gauge fields Ba and Wa) at a much
higher temperature scale (T ∼ 1012 GeV). It is not clear
to us whether such a H ≠ 0 in the early universe could
induce an observable effect today.
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APPENDIX A: SOME MORE DETAILS

1. Our notation of gauge fields and spinors

For spinors, we only use left-handed Weyl spinors. Here
is a comparison between different notations

ψ ≡
�
ψL

ψR

�
¼

�
α

iσ2β�

�

σa ≡ ð1; σiÞ σ̄a ≡ ð1;−σiÞ ðA1Þ

L ¼ ψ̄ði∂ −mÞψ ¼ ψ†
Liσ̄

a∂aψL þ ψ†
Riσ

a∂aψR

−mðψ†
LψR þ ψ†

RψLÞ
¼ α†iσ̄a∂aαþ β†iσ̄a∂aβ

þm½ðαβÞ − ðα�β�Þ� ðA2Þ

where ðαβÞ≡ αTðiσ2Þβ. Both α and β are left-handed Weyl
spinors.

ψ̄ iγaAaψ ¼ ψ†
Liσ̄

aAaψL þ ψ†
Riσ

aAaψR

¼ α†iσ̄aAaαþ β†iσ̄að−AT
aÞβ: ðA3Þ

As −AT
a is Aa in the conjugate representation, when

the spinor switches ψR → β, the representation
switches into its conjugate representation. Let us look
at how the vector current looks like in different
notations

ja ≡ ψ̄γaψ ¼ ψ†
Lσ̄

aψL þ ψ†
Rσ

aψR ¼ α†σ̄aα − β†σ̄aβ:

ðA4Þ
For standard model particles: In the notation with left-
handed and right-handed Weyl spinors one generation
of SM fermion is

l≡
�
νL

eL

�
eR q≡

�
uL
dL

�
uR dR: ðA5Þ

In our notation, only left-handed spinors appear.

ν≡ νL e≡ eL ē≡ −iσ2e�R ðA6Þ

u≡ uL d≡ dL ū≡ −iσ2u�R d̄≡ −iσ2d�R
ðA7Þ

And therefore for 1-generation of fermion

l≡
�
ν

e

�
ē q≡

�
u

d

�
ū d̄: ðA8Þ

The notation of the SM gauge fields: A frequently
used notation for gauge field

Da ¼ ∂a þ igsGi
aTi

s þ igWi
aTi þ i

g0

2
BaY

trðTi
sT

j
sÞ ¼ 1

2
δij trðTiTjÞ ¼ 1

2
δij: ðA9Þ

And the Lagrangian of the gauge field is

Lgauge ¼ −
1

4
Gi

abG
abi −

1

4
Wi

abW
abi −

1

4
BabBab: ðA10Þ

Do the following switch to get our notation:

g0

2
Ba → Ba

gWi
aTi → Wa

gGi
aTi

s → Ga: ðA11Þ

In our notation

Da ¼ ∂a þ iGa þ iWa þ iBaY

Lgauge ¼ − 1
2g2s

trðGabGabÞ − 1
2g2 trðWabWabÞ − 1

g02 BabBab

Gab ¼ ∂aGb − ∂bGa þ i½Ga;Gb�
Wab ¼ ∂aWb − ∂bWa þ i½Wa;Wb�
Bab ¼ ∂aBb − ∂bBa ðA12Þ
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SUð3Þc × SUð2ÞL × Uð1ÞY
q ð3; 2; 1

3
Þ

ū ð3̄; 1;− 4
3
Þ

d̄ ð3̄; 1; 2
3
Þ

l ð1; 2;−1Þ
ē (1,1,2)
ν̄ (1,1,0)
H (1,2,1)
~H ð1; 2;−1Þ

2. The changes of anomaly term under fermion phase
rotations, Fujikawa’s result

As we mainly deal with chiral gauge fields Wa and Ba,
Fujikawa’s paper [6] is the right reference. I just summarize
some useful results in our notation.
For a left-handed Weyl spinor which couples to gauge

field Wa and Ba like

q†iσ̄að∂a þ iWa þ iBaYÞq ðA13Þ

the phase rotation

q → eiαðxÞq ðA14Þ

will result in a change of anomaly term due to the change of
path integral measure

δL ¼ αðxÞ
16π2

½trðWab
~WabÞ þ Bab

~BabY2�

~Bab ≡ 1

2
ϵabcdBcd: ðA15Þ

In the SM Lagrangian with Nf families of fermions
[Eq. (46)], when making the following local vector
rotations:

l → eiθ1ðxÞl

ē → e−iθ1ðxÞē

q → eiθ2ðxÞq

ū → e−iθ2ðxÞū

d̄ → e−iθ2ðxÞd̄: ðA16Þ

(1) Lgauge, LYukawa and LHiggs are invariant.
(2) LM has the following changes:

g2ν
2M

½ð ~H†lÞð ~H†lÞ − ðl† ~HÞðl† ~HÞ�

→
g2ν
2M

½e2iθ1ðxÞð ~H†lÞð ~H†lÞ − e−2iθ1ðxÞðl† ~HÞðl† ~HÞ�:
ðA17Þ

(3) The change of Lkinetic is

δLkinetic ¼ −ð∂aθ1Þl†σ̄alþ ð∂aθ1Þē†σ̄aē
− ð∂aθ2Þq†σ̄aqþ ð∂aθ2Þū†σ̄aū
þ ð∂aθ2Þd̄†σ̄ad̄: ðA18Þ

When ∂aθ1 ¼ ðδl; 0; 0; 0Þ and ∂aθ2 ¼ ðδq; 0; 0; 0Þ we
get terms like

−δll†l − δqq†q: ðA19Þ

In Appendix A 3 we will explain that these terms cause
energy shifts to fermions.

(4) Vector rotation does not give anomaly term to QCD
gauge field Ga, but there will be changes of anomaly
terms for chiral gauge fields Wa and Ba (due to path
integral measure).

δLanomaly ¼ Nfðθ1 þ 3θ2Þ
1

16π2
trðWab

~WabÞ

þ Nf

�
θ1½ð−1Þ2 × 2 − 22�

þ 3θ2

��
1

3

�
2

× 2 −
�
−
4

3

�
2

−
�
2

3

�
2
�	

×
1

16π2
Bab

~Bab

¼ Nfðθ1 þ 3θ2Þ
1

16π2

× ½trðWab
~WabÞ − 2Bab

~Bab� ðA20Þ

Comparing to the frequently used notation discussed in
Eq. (A9)

1

16π2
½trðWab

~WabÞ − 2Bab
~Bab�

→
1

32π2
½g2Wi

ab
~Wabi − g02Bab

~Bab�: ðA21Þ

3. Energy shifts and invariant quantities under
basis changes

Here we provide some details about energy shifts in the
context of massless left-handed Weyl fermion.

a. Classical solutions for a free left-handed Weyl
fermion without energy shift

First consider the free theory

ðAÞ L ¼ l†iσ̄a∂al: ðA22Þ

Equation of motion
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iσ̄a∂al ¼ 0: ðA23Þ

Solutions with pa ¼ ðj~pj; ~pÞ

l ¼ uðpÞe−ipx l ¼ vðpÞeipx with

σ̄apauðpÞ ¼ 0 σ̄apavðpÞ ¼ 0: ðA24Þ

For example with E0ð~pÞ ¼ j~pj, u and v are normalized
such that

uðpÞ ¼ vðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð~pÞ

q �
0

1

�
when

pa ¼ ðE0ð~pÞ; 0; 0; E0ð~pÞÞ ðA25Þ

and

uðpÞ ¼ vðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð~pÞ

q �
1

0

�
when

pa ¼ ðE0ð~pÞ; 0; 0;−E0ð~pÞÞ: ðA26Þ

The general classical solution is

l ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð~pÞ

p ðα~puðpÞe−ipx þ β�~pvðpÞeipxÞ:

ðA27Þ

b. Basis changes make δll†l term appear and why it
corresponds to an energy shift

Do the change of basis l → eiδltl on the free Lagrangian
(A22), you will find

ðBÞ L0 ¼ l†iσ̄a∂al − δll†l: ðA28Þ

The equation of motion

ðiσ̄a∂a − δlÞl ¼ 0: ðA29Þ

The classical solution of this equation can be obtained by
the solution without energy shift times a factor e−iδlt, and it
is consistent with the intuition that this Lagrangian is the
free Lagrangian after basis change, and the solutions should
be related by the similar transformation. With p2 ¼ 0, the
solutions are

l ¼ uðpÞe−ipxe−iδlt l ¼ vðpÞeipxe−iδlt with

σ̄apauðpÞ ¼ 0 σ̄apavðpÞ ¼ 0: ðA30Þ

The general classical solution is

l ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð~pÞ

p ðα~puðpÞe−ipxe−iδlt

þ β�~pvðpÞeipxe−iδltÞ ðA31Þ

Therefore, with E0ð~pÞ ¼ j~pj

Eð~pÞ ¼ E0ð~pÞ þ δl ðparticlesÞ ðA32Þ

Eð~pÞ ¼ E0ð~pÞ − δl ðantiparticlesÞ: ðA33Þ

This is why we could interpret −δll†l as an energy shift
which shifts the energy of particles and antiparticles in
opposite directions by the same amount.

c. Quantization with creation
and annihilation operators

For the theory without an energy shift

L ¼ l†iσ̄a∂al ⇒
∂L
∂_l ¼ il†: ðA34Þ

Hamiltonian density

H ¼ l†ið~σ · ~∇Þl ðA35Þ

Quantize l field by

l ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð~pÞ

p ða~puðpÞe−ipx þ b†~pvðpÞeipxÞ

ðA36Þ

with the commutation relations

fa~p; a
†
~qg ¼ ð2πÞ3δ3ð~p − ~qÞ

fb~p; b
†
~qg ¼ ð2πÞ3δ3ð~p − ~qÞ:

ðA37Þ

One can work out that the Hamiltonian (after dropping an
infinite constant) is

H0 ≡
Z

d3xl†ði~σ · ~∇Þl ¼
Z

d3p
ð2πÞ3 E0ð~pÞða†~pa~p þ b†~pb~pÞ:

ðA38Þ

d. Quantization of fermion with δll†l term

For theory with an energy shift

L0 ¼ l†iσ̄a∂al − δll†l ⇒
∂L0

∂_l ¼ il† ðA39Þ

the Hamiltonian density is given by

BASIS INVARIANT DESCRIPTION OF CHEMICAL … PHYSICAL REVIEW D 92, 085008 (2015)

085008-15



H ¼ l†ið~σ · ~∇Þlþ δll†l ¼ H0 þHδ: ðA40Þ

The quantized l field is given by

l ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ð~pÞ

p ða~puðpÞe−ipxe−iδlt

þ b†~pvðpÞeipxe−iδltÞ ðA41Þ

where the operators a, a†, b, b†, u and v have the same
property as described in A 3 c. One can work out the
Hamiltonian (after dropping an infinite constant) and we
find

H0 ≡
Z

d3xl†ði~σ · ~∇Þl ¼
Z

d3p
ð2πÞ3 E0ð~pÞða†~pa~p þ b†~pb~pÞ

ðA42Þ

Hδ ≡
Z

d3xδll†l ¼
Z

d3p
ð2πÞ3 δlða

†
~pa~p − b†~pb~pÞ: ðA43Þ

Again, we recover the energy shift explanation in the
context of the quantized theory.

e. Discrete symmetries

We remark that the operator δll†l is even under a T (time
reversal) transformation, and odd under CP:

ðTÞ δll†l → þδll†l

ðCPÞ δll†l → −δll†l

ðCPTÞ δll†l → −δll†l: ðA44Þ

At the operator level, it may be seen by looking at the
transformation on operators

ðTÞ a~p → a−~p b~p → b−~p

ðCPÞ a~p → b−~p b~p → a−~p: ðA45Þ

4. Energy-momentum tensor in a time dependent
background from Noether’s theorem

a. Noether’s theorem and energy-momentum tensor
in a background

Consider a general Lagrangian, Lðϕ; ∂aϕ; xaÞ, and
allow it to depend on xa explicitly, so that it may apply
to theories with time dependent background fields. We will
take the partial derivative of the Lagrangian with respect to
xa, and we use the following two quantities for different
meanings:

∂L
∂xa ≠ ∂aL: ðA46Þ

The one on the lhs is the partial derivative which keeps ϕ
and ∂aϕ fixed, while the one on the rhs is

∂aL≡ ∂L
∂xa þ

∂L
∂ϕ ∂aϕþ ∂L

∂ð∂bϕÞ
∂að∂bϕÞ: ðA47Þ

Given the action

S ¼
Z

d4xLðϕ; ∂aϕ; xaÞ; ðA48Þ

take infinitesimal variation δϕðxÞ which vanishes at the
boundary, and then integrate by parts

δS ¼
Z

d4x

�∂L
∂ϕ δϕþ ∂L

∂ð∂aϕÞ
δð∂aϕÞ

�

¼
Z

d4xδϕ

�∂L
∂ϕ − ∂a

� ∂L
∂ð∂aϕÞ

��
: ðA49Þ

Therefore, in the case the Lagrangian depends on xa

explicitly, we are still be able to derive the Euler-
Lagrange equation

∂L
∂ϕ − ∂a

� ∂L
∂ð∂aϕÞ

�
¼ 0: ðA50Þ

Consider a constant infinitesimal space-time translation ϵb.
Using Eq. (A47) we find

ϵb
∂L
∂xb þ

∂L
∂ϕ ðϵb∂bϕÞ þ

∂L
∂ð∂aϕÞ

ϵb∂bð∂aϕÞ ¼ ϵb∂bL:

ðA51Þ

Then, use the Euler-Lagrangian equations to derive

ϵb∂a

�� ∂L
∂ð∂aϕÞ

�
∂bϕ − δabL

�
¼ −ϵb

∂L
∂xb : ðA52Þ

It is valid for any ϵb, and let us define the energy-
momentum tensor to be

Ta
b ≡

� ∂L
∂ð∂aϕÞ

�
∂bϕ − δabL ⇒ ∂aTa

b ¼ −
∂L
∂xb :

ðA53Þ

Therefore, if the Lagrangian does not explicitly depend on
xa, we will find ∂aTa

b ¼ 0 and the energy-momentum
tensor is conserved. On the other hand, if the Lagrangian
explicitly depends on xa, the energy-momentum tensor is
not conserved.
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b. The energy nonconservation in basis (A)
of the toy model

Recall that the Lagrangian for the toy model in basis (A)
is (with ∂aθ ¼ ðδ; 0; 0; 0Þ)

ðAÞ L ¼ l†iσ̄aDalþ
X3
i¼1

q†i iσ̄
aDaqi −

1

2g2
trðWabWabÞ

−
θðxÞ
16π2

trðWab
~WabÞ: ðA54Þ

Notice that the Lagrangian depends on xa explicitly only
through the background θðxÞ. Thus using Eq. (A53) we
find18

∂aTa
b ¼ δ0b

δ

16π2
trðWab

~WabÞ: ðA55Þ

∂aTa
i ¼ 0 with i ¼ 1; 2; 3 tells you 3-momentum is con-

served, and ∂aTa
0 ≠ 0 tells you the energy is not con-

served. [If θðxÞ depends on the 3-dimensional space, we

expect the 3-momentum not to be conserved.] The energy
of the system is

EðtÞ ¼
Z

d3xT0
0ð~x; tÞ: ðA56Þ

The amount of energy nonconservation is

Eðt2Þ − Eðt1Þ ¼
Z

t2

t1

dt
Z

d3x∂aTa
0

¼
Z

t2

t1

dt
Z

d3x
δ

16π2
trðWab

~WabÞ: ðA57Þ

The instanton number

ν≡
Z

d4x
1

16π2
trðWab

~WabÞ: ðA58Þ

Therefore, the change of energy is þνδ for an instanton
process. This confirms our result in Sec. II E 4. In other
words, in the anomalous interaction

lþ q1 ⇌ q̄2 þ q̄3 ðA59Þ
the energy is not conserved from the viewpoint of basis (A)
and

Eq̄2 þ Eq̄3 ¼ El þ Eq1 þ δ: ðA60Þ

[1] A. Kusenko, K. Schmitz, and T. T. Yanagida, Leptogenesis
via Axion Oscillations after Inflation, Phys. Rev. Lett. 115,
011302 (2015).

[2] M. Ibe and K. Kaneta, Spontaneous thermal leptogenesis via
Majoron oscillation, Phys. Rev. D 92, 035019 (2015).

[3] A. G. Cohen and D. B. Kaplan, Thermodynamic generation
of the Baryon asymmetry, Phys. Lett. B 199, 251 (1987).

[4] P. Ade et al. (Planck Collaboration), Planck 2013 results.
XVI. Cosmological parameters, Astron. Astrophys. 571,
A16 (2014).

[5] K. Fujikawa, Path Integral Measure for Gauge Invariant
Fermion Theories, Phys. Rev. Lett. 42, 1195 (1979).

[6] K. Fujikawa, Evaluation of the chiral anomaly in gauge
theories with γ5 couplings, Phys. Rev. D 29, 285 (1984).

[7] S. Davidson, E. Nardi, and Y. Nir, Leptogenesis, Phys. Rep.
466, 105 (2008).

[8] E. Witten, An SU(2) anomaly, Phys. Lett. 117B, 324 (1982).
[9] S. de Alwis, Relation between global and U1 anomalies,

Phys. Rev. D 32, 2837 (1985).
[10] S. Elitzur and V. Nair, Nonperturbative anomalies in higher

dimensions, Nucl. Phys. B243, 205 (1984).

[11] F. R. Klinkhamer, Another look at the SU(2) anomaly,
Phys. Lett. B 256, 41 (1991).

[12] G.’t Hooft, Symmetry Breaking Through Bell-Jackiw
Anomalies, Phys. Rev. Lett. 37, 8 (1976).

[13] G.’t Hooft, Computation of the quantum effects due to a
four-dimensional pseudoparticle, Phys. Rev. D 14, 3432
(1976).

[14] F. R. Klinkhamer and N. Manton, A saddle point solution
in the Weinberg-Salam Theory, Phys. Rev. D 30, 2212
(1984).

[15] V. Kuzmin, V. Rubakov, and M. Shaposhnikov, On the
anomalous electroweak baryon number nonconservation in
the early universe, Phys. Lett. 155B, 36 (1985).

[16] P. B. Arnold and L. D. McLerran, Sphalerons, small fluc-
tuations and baryon number violation in electroweak theory,
Phys. Rev. D 36, 581 (1987).

[17] P. B. Arnold and L. D. McLerran, The sphaleron strikes
back, Phys. Rev. D 37, 1020 (1988).

[18] S. M. Carroll, G. B. Field, and R. Jackiw, Limits on a
Lorentz and parity violating modification of electrodynam-
ics, Phys. Rev. D 41, 1231 (1990).

18In our case δ ¼ const, it is possible to define the energy-
momentum tensor another way and make it a conserved tensor. It
is because when δ ¼ const the θðxÞW ~W is equivalent to a time
independent term up to a total derivative. For a general time
dependent background it is not possible to define a conserved
energy-momentum tensor.

BASIS INVARIANT DESCRIPTION OF CHEMICAL … PHYSICAL REVIEW D 92, 085008 (2015)

085008-17

http://dx.doi.org/10.1103/PhysRevLett.115.011302
http://dx.doi.org/10.1103/PhysRevLett.115.011302
http://dx.doi.org/10.1103/PhysRevD.92.035019
http://dx.doi.org/10.1016/0370-2693(87)91369-4
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1103/PhysRevLett.42.1195
http://dx.doi.org/10.1103/PhysRevD.29.285
http://dx.doi.org/10.1016/j.physrep.2008.06.002
http://dx.doi.org/10.1016/j.physrep.2008.06.002
http://dx.doi.org/10.1016/0370-2693(82)90728-6
http://dx.doi.org/10.1103/PhysRevD.32.2837
http://dx.doi.org/10.1016/0550-3213(84)90024-5
http://dx.doi.org/10.1016/0370-2693(91)90215-C
http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRevD.30.2212
http://dx.doi.org/10.1103/PhysRevD.30.2212
http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1103/PhysRevD.36.581
http://dx.doi.org/10.1103/PhysRevD.37.1020
http://dx.doi.org/10.1103/PhysRevD.41.1231


[19] M. Perez-Victoria, Exact Calculation of the Radiatively
Induced Lorentz and CPT Violation in QED, Phys. Rev.
Lett. 83, 2518 (1999).

[20] E. Braaten, Diagnosis and treatment of the plasmon
problem of hot QCD, Nucl. Phys. B, Proc. Suppl. 23,
351 (1991).

[21] E.W. Kolb and M. S. Turner, The Early Universe, Front.
Phys. 69, 1 (1990).

[22] W. Buchmuller, R. Peccei, and T. Yanagida, Leptogenesis as
the origin of matter, Annu. Rev. Nucl. Part. Sci. 55, 311
(2005).

[23] D. Espriu and A. Renau, Photons in a cold axion back-
ground and strong magnetic fields: polarimetric conse-
quences, Int. J. Mod. Phys. A 30, 1550099 (2015).

[24] T. Vachaspati, Estimate of the Primordial Magnetic Field
Helicity, Phys. Rev. Lett. 87, 251302 (2001).

BOWEN SHI AND STUART RABY PHYSICAL REVIEW D 92, 085008 (2015)

085008-18

http://dx.doi.org/10.1103/PhysRevLett.83.2518
http://dx.doi.org/10.1103/PhysRevLett.83.2518
http://dx.doi.org/10.1016/0920-5632(91)90703-H
http://dx.doi.org/10.1016/0920-5632(91)90703-H
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151558
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151558
http://dx.doi.org/10.1142/S0217751X15500992
http://dx.doi.org/10.1103/PhysRevLett.87.251302

